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Abstract

Solutions of double-stranded DNA (ds-DNA) have been investigated in the pres-

ence of excess salt to represent a model neutral polymer system. However, very

recently, there have also been some contrary discussions regarding the suitability

of using ds-DNA as a model polymer, based on scaling arguments and simula-

tions. Here, we report systematic experimental investigations of dilute and semidi-

lute unentangled ds-DNA solutions, to test the hypothesis that ds-DNA is a model

polymer. In addition, we have meticulously characterized the behaviour of ds-

DNA solutions far from equilibrium, in shear and extensional flows.

In order to study the behaviour of ds-DNA to compare with well known re-

sults from neutral polymers, we first characterize its solutions close to equilibrium.

We use the solvent quality parameter z and the dimensionless concentration c/c∗

(where c∗ is the overlap concentration), as the scaling variables. We have deter-

mined the θ-temperature of DNA in Tris-EDTA buffer under excess salt conditions

to be Tθ = 14.7± 0.5◦C, and provide the formula to determine z for DNA of any

molecular weight at any temperature above Tθ . We also show that the temperature

crossover for dilute DNA solutions of various molecular weights (from 2.9 to 289

kilobasepairs) for the second virial coefficient, the hydrodynamic radius and the

viscosity radius agree with the scaling behaviour of neutral synthetic polymers.

The scaling behavior of the zero shear rate viscosity of semidilute DNA solu-

tions, in the double crossover regime driven by temperature and concentration, is

shown to have a power law dependence on the scaled concentration c/c∗, with an

effective exponent that depends on z, in agreement with reported Brownian Dy-

namics Simulations of flexible polymer chains.
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Away from equilibrium, in shear flow, the shear rate dependence of viscosity

for semidilute and dilute DNA solutions, at various temperatures and concentra-

tions, can be collapsed onto master curves when interpreted in terms of a different

relaxation time based Weissenberg number. In extensional flow, the concentration

dependence of the steady state uniaxial extensional viscosities of semidilute DNA

solutions has been studied and compared with theoretical predictions.

The material functions obtained in this work will also provide benchmark data

that are useful for the characterization of industrially important semidilute sys-

tems. Equilibrium rheological characterization carried out on dilute and semidi-

lute DNA solutions, investigated under excess salt conditions, show a remarkable

agreement with other neutral synthetic polymers, asserting that DNA can be used

as a model polymer for rheological studies.

Key Words: Double-stranded DNA, model polymer, dilute polymer solution,

semidilute solutions, solvent quality, zero shear rate viscosity, Weissenberg num-

ber, relaxation time, shear flow, extensional flow, steady state uniaxial extensional

viscosity.
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1
Introduction

Double-stranded Deoxyribonucleic acid (DNA) has been used in several exper-

imental studies in recent years as a model polymer (Sorlie and Pecora, 1990; Robert-

son et al., 2006; Smith et al., 1996; Sunthar and Prakash, 2005; Smith and Chu, 1998;

Sunthar et al., 2005; Laib et al., 2006; Valle et al., 2005; Nayvelt et al., 2007; Ostrander

and Gray Jr, 1973; Ross and Scruggs, 1968; Hodnett et al., 1976; Sibileva et al., 1987;

Marathias et al., 2000; Nicolai and Mandel, 1989; Fujimoto et al., 1994; Leighton and

Rubenstein, 1969; Doty et al., 1958). This is largely because the most significant ad-

vantage of using DNA molecules lies in their monodispersity (Pecora, 1991). Even

though DNA is a polyelectrolyte, it is widely accepted that in the presence of ex-

cess salt, the charges on the backbone are screened, leading to behaviour identical

to that of neutral synthetic polymers (Barrat and Joanny, 1996; Smith et al., 1996;

Sorlie and Pecora, 1990; Robertson et al., 2006; Marko and Siggia, 1995). Recently,

however, there has been some discussion in the literature based on scaling argu-

ments and simulations, regarding the appropriateness of using double-stranded

DNA to represent linear flexible chains due to the essentially semiflexible character

of DNA which arises from the structural rigidity of the double helix (Latinwo and

Schroeder, 2011; Tree et al., 2013). Earlier studies have justified their use of DNA

1
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by noting that the diffusivity of single molecules scales with molecular weight M

as M0.6, which is the expected power law scaling for linear polymers under good

solvent conditions (Robertson et al., 2006; Smith et al., 1996). However, it is clearly

important to resolve the question of whether DNA is a model polymer or not by

carrying out a thorough and systematic investigation not only in the limit of good

solvent conditions, but also across a range of other conditions in which the be-

haviour of linear synthetic polymers is well understood.

The most outstanding feature of polymer solutions at equilibrium is their uni-

versal behaviour, which is exhibited not only in the power law scaling of large scale

properties, but also by the existence of universal crossover scaling functions, inde-

pendent of the details of polymer and solvent chemistry. A convincing establish-

ment of the appropriateness of using DNA as a model polymer requires a satisfac-

tory demonstration that solutions of double-stranded DNA also exhibit universal

behaviour at equilibrium, for sufficiently long chains.

One of the two central goals of this thesis is to carry out a systematic investi-

gation of equilibrium properties in dilute and semidilute DNA solutions, to test

the hypothesis that double-stranded DNA is a model polymer. The second goal of this

thesis is to meticulously characterize the behaviour of double-stranded DNA so-

lutions away from equilibrium, in shear and extensional flows. In characterizing

the DNA solutions we use three independent scaling variables discussed in the

following sections.

1.1 Scaling variable z

As is well known, large scale properties of linear polymers in dilute solutions obey

power laws under θ-conditions and under very good solvent conditions. For in-

stance, the radius of gyration Rg ∼ Mν, where M is the molecular weight, while

the diffusivity D ∼ M−ν, where the Flory exponent ν has a value 0.5 in θ-solvents

and ν ≈ 0.6 in very good solvents (de Gennes, 1979; Rubinstein and Colby, 2003). In

the intermediate region between θ and very good solvents, the behaviour of dilute

polymer solutions can be described in terms of a single scaling variable z , which
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combines the dependence on temperature T and M, i.e.,

z ≡ k
(

1− Tθ

T

) √
M, (1.1)

where, Tθ is the θ-temperature and k is a chemistry dependent parameter (Schäfer,

1999; Rubinstein and Colby, 2003). For instance, the ‘swelling’ αg , of the radius of

gyration Rg at any temperature T relative to that at the θ-temperature, defined as

αg ≡
Rg (T)

Rθ
g

, (1.2)

is found to exhibit universal scaling behaviour such that (Miyaki and Fujita, 1981;

Schäfer, 1999; Kumar and Prakash, 2003),

αg = fg(z) (1.3)

is independent of polymer-solvent chemistry. Here Rθ
g is the radius of gyration

under θ-conditions . Similarly, the swelling αH of the hydrodynamic radius RH , is

defined by

αH ≡
RH

Rθ
H

=
Dθ

D(T) , (1.4)

where Rθ
H and Dθ , the hydrodynamic radius and diffusivity under θ-conditions

respectively, obeys the universal scaling expression (Tominaga et al., 2002; Sunthar

and Prakash, 2006),

αH = fH(z). (1.5)

Here D(T) is the diffusivity coefficient in good solvents. Another dynamic prop-

erty that is often used to characterize dilute polymer solutions is the swelling of

the viscosity radius Rη ,

αη ≡
Rη

Rθ
η

=

(
[η]

[η]θ

) 1
3

, (1.6)

where Rθ
η is the same under θ-conditions. Here, [η] and [η]θ are the intrinsic

viscosities of a polymer solution in good and θ-solvents, respectively. Experimen-

tal observations of several polymer-solvent systems have demonstrated (Tominaga
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et al., 2002; Miyaki and Fujita, 1981) that,

αη = fη(z), (1.7)

such that, provided a suitable choice is made of the chemistry dependent parameter

k, data across the different polymer-solvent systems collapses on to a master curve.

The functions fg, fH, and fη are well known for linear synthetic polymer solu-

tions (Kumar and Prakash, 2003; Sunthar and Prakash, 2006; Pan et al., 2014). If

data for dilute solutions of double-stranded DNA, in the presence of excess salt,

can be shown to satisfy these functions, then we would have succeeded in showing

that in dilute solutions at least, DNA is a model linear polymer.

In order to characterize the behaviour of DNA solutions in the temperature

crossover regime between θ and very good solvents, both in dilute and semidilute

solutions, it is necessary to determine the solvent quality z of DNA solutions in the

particular solvent that has been used in the current experiments. For determining z,

the knowledge of the θ-temperature is essential. In spite of the extensive utilization

of DNA solutions in a variety of experimental contexts, to date there is no reported

measurement of the θ-temperature of any DNA solution.

1.2 Scaling variable c/c∗

Recently, Jain et al. (2012a) have developed detailed scaling predictions for the be-

haviour of linear polymers in semidilute solutions, in the phase space of temper-

ature and concentration c . They show that in addition to the scaling variable z,

the scaled concentration,
c
c∗

is necessary to obtain chemistry independent predic-

tions. Here, c∗ is the ‘overlap’ concentration, which is the threshold concentration

at which polymer coils just begin to touch each other. Note that, the c∗ is given

by (Rubinstein and Colby, 2003; Doi and Edwards, 1986)

c∗ =
3M

4πNA R3
g

, (1.8)
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where, NA is Avogadro’s number and is calculated based on the estimated values

of Rg. Using the ‘blob’ concept (de Gennes, 1979; Colby and Rubinstein, 1990), they

have derived explicit scaling relations for the mean size, diffusivity and viscosity of

semidilute solutions of linear polymers. Further, by carrying out Brownian dynam-

ics simulations, they have verified the validity of their scaling relationships for the

mean size and the diffusivity. However, the scaling predictions of Jain et al. (2012a)

have not been verified by experimental observations. This provides us with an op-

portunity to demonstrate that double-stranded DNA solutions satisfy the universal

scaling predictions for flexible, linear and neutral chains, under semidilute as well

as under dilute solution conditions.

1.3 Scaling variable Wi

For polymer solutions subject to a flow velocity gradient, typically, the strength of

the flow is characterized by the non-dimensional Weissenberg number Wi = λγ̇

(in shear flow) or Wi = λε̇ (in extensional flow, where ε̇ is the extension rate).

The quantity λ is some measure of the large scale relaxation time for the solution.

The use of λ to scale the strength of flow often leads to the revelation of univer-

sal behaviour in polymer solutions (Bird et al., 1987; Doi and Edwards, 1986). For

instance, when the scaled viscosity
ηp

ηp0
is plotted versus λγ̇, master curves inde-

pendent of T, molecular weight and polymer-solvent system have been obtained

for dilute polymer solutions (Bird et al., 1987; Doi and Edwards, 1986). Here ηp and

ηp0 are the polymer contributions to the solution shear viscosity and zero shear

rate viscosity , respectively. In recent simulations of semidilute polymer solutions,

Huang et al. (2010) have suggested that the use of a relaxation time that follows the

known equilibrium scaling dependence on (c/c∗), would lead to universal obser-

vations for the dependence of
ηp

ηp0
on λγ̇, far from equilibrium. The validity to this

suggestion has not been examined by experiments so far.

The extensive data that we have accumulated on ηp0 as a function of z and

c/c∗ enables us to calculate the large scale relaxation time λη , defined as (Öttinger,
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1996),

λη =
Mηp0

cNA kB T
, (1.9)

as a function of these scaling variables. Here kB is the Boltzmann constant . This

definition is often used to represent flow data, with the product ληγ̇ referred to as

the characteristic shear rate. The scaling of λη with c/c∗ in the semidilute regime

is identical to any other large scale relaxation time, such as the longest relaxation

time λ1 used in the simulations of Huang et al. (2010). As a result, we can carefully

examine if the use of λη to scale the shear rate γ̇, reveals the universal behaviour of
ηp

ηp0
, independent of the scaled concentration c/c∗, T and M.

The majority of experimental studies of DNA solutions far from equilibrium

have been carried out mainly for dilute solutions, both in shear flow (Hur et al.,

2001; Lee et al., 2007; Lueth and Shaqfeh, 2009; Schroeder et al., 2005) and in ex-

tensional flow (Schroeder et al., 2003; Babcock et al., 2003; Smith and Chu, 1998;

Schroeder et al., 2004; Sunthar et al., 2005). To our knowledge, there is only one

study of DNA solutions in shear flow in the semidilute regime (Hur et al., 2001).

These experiments were confined to a single temperature and three concentrations

c = c∗, 3c∗ and 6c∗. Also, in a previous study from our group, we measured uniaxial

extensional viscosities of dilute DNA solutions and predicted the extensional flow

properties in terms of solvent quality (Sunthar et al., 2005). It is important to study

the extensional rheological behaviour of semidilute polymer solutions, which play

a critical role in a number of industrial contexts. However, there is not a single,

systematic experimental study to understand the extensional properties of semidi-

lute polymer-solvent systems in terms of the effects of concentration and molecular

weight. Clearly, there is a pressing need for developing a more comprehensive set

of experimental data both in shear and extensional flows.

1.4 Methodology

In order to study the scaling behaviour of DNA in the chief parameters described,

we need highly mono-dispersed population of DNA molecules over a wide range
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of molecular weights. We have been guided by the recombinant DNA technology

protocol to obtain DNA in a range of molecular weights ranging from ∼3 to 300

kilobasepairs (or kbp) (Laib et al., 2006), and prepared solutions ranging in concen-

tration from a dilute to the semidilute regime. Details of this procedure are given

in Chapter 2.

We have characterized these DNA solutions by traditional methods used for

neutral polymers, namely static and dynamic light scattering and rheology. We

have carried out systematic measurements of second virial coefficients, hydrody-

namic and viscosity radii and shear and extensional viscosities of DNA solutions

across a range of temperatures, concentrations, molecular weights and flow streng-

ths. These experiments not only help in answering the central question of this

thesis (of DNA as a model polymer), but also provides a wealth of data previously

unavailable for semidilute polymer solutions.

We also employ scaling arguments based on the blob theory to explain universal

scaling in semidilute solutions in strong flows.

1.5 Organization of the Thesis

The schematic 3D phase-space diagram displayed in Figure 1.1 serves as a simple

illustration of the parameter space explored in this study. In Part I, Chapter 3 we

determine the θ-temperature of DNA. In Chapters 4 and 5, we examine the equilib-

rium and close to equilibrium behaviour of dilute DNA solutions along the z-axis of

the phase diagram, describing the temperature crossover behaviour of polymer so-

lutions. We study the behaviour of double-stranded DNA in dilute solutions for its

universal scaling behaviour, in line with earlier observations for synthetic polymer

solutions, by measuring the swelling of the hydrodynamic and viscosity radius,

αH and αη , respectively, as functions of solvent quality z. In Chapter 6, we extend

our studies to the (z—c/c∗) plane of the phase diagram by investigating the close

to equilibrium behaviour of semidilute DNA solutions, that describes the double

crossover of temperature and concentration. We compare the results with the re-

cent scaling predictions and the predictions of BD simulations by Jain et al. (2012a).
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Figure 1.1: A 3-D schematic representation of the parameters that affect the rheological
behaviour of a polymer solution. Here c/c∗ represents scaled polymer concentration; z
represents the excluded volume parameter (defined in Equation 1.1) that combines the de-
pendence of both molecular weight M and temperature T; and Wi represents Weissenberg
number, a parameter that characterizes the flow strength. Also indicated are the Chapters
numbers of this report which cover the parameter space marked against them.

In Part II of this report, we soar away from equilibrium, into the 3rd dimension of

the phase diagram, characterized by the Weissenberg number Wi. In Chapter 7, we

examine the proper definition of a relaxation time that reveals the universal scaling

of semidilute and dilute DNA solutions in shear flow. In Chapter 8, we study the

concentration dependence of extensional properties of semidilute DNA solutions.

Finally, in Chapter 9, we summarize our conclusions, and make suggestions for

future work.



2
Materials and Methods

The core workhorses of this thesis are the range of monodisperse DNA molecules

obtained by recombinant DNA technology, which broadly involves genetic manip-

ulation of bacterial strains, as shown in Figure 2.1. The gene of interest or foreign

(donor) DNA is first attached (ligated) to a standard vector (plasmid / fosmid /

BAC) through an enzyme (ligase) to produce a recombinant target construct. This

recombinant construct is then introduced to a host cell (bacteria). Multiple copies

of the desired DNA are produced when the bacterial cell (here Escherichia coli or E.

coli) reproduces and the recombinant DNA replicates. The various DNA fragments

are described in detail in the next section which includes details of working condi-

tions and procedures for preparation and quantification of linear DNA fragments.

2.1 Bacterial strains, working conditions and preparation of
linear DNA fragments

For the purposes of the experiments proposed here, a range of large molecular

weight DNA, each with a monodisperse population, is desirable. This require-

ment has been met thanks to the work by Smith’s group (Laib et al., 2006), who

genetically engineered special double-stranded DNA fragments in the range of 2.9

9
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Donor DNA

Bacteria (E. coli )

Reproduction

Multiple copies of  

desired DNA

Figure 2.1: DNA from recombinant DNA technology. For explanation, see text. Reprinted
(adapted) from Encyclopaedia Britannica (2012) under fair usage policy.
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to 289 kbp and incorporated them inside commonly used E. coli bacterial strains,

which can be selectively extracted for rheological studies. The procedure adopted

by Laib et al. (2006) to originally synthesize the circular DNA fragments is related

to Figure 2.1. These strains can be cultured to produce sufficient replicas of its

DNA, which can be cut precisely at desired locations to extract the special linear

DNA fragments. The E. coli stab cultures were procured from Smith’s laboratory

and the DNA fragments were extracted, linearized and purified according to stan-

dard molecular biology protocols (Laib et al., 2006; Sambrook and Russell, 2001).

Typical properties of all the DNA molecules used in this work for both equilibrium

and non-equilibrium characterization are tabulated in Table 2.1.

Primarily, the DNA samples synthesized by Laib et al. (2006) fall into three cate-

gories: plasmids, fosmids and Bacterial Artificial Chromosomes (BAC). Altogether

six samples (two plasmids, two fosmids and two BACs), which were originally syn-

thesized by Laib et al. (2006), were procured from Dr. Brad Olsen, Caltech, USA.

In addition, two special bacterial strains containing the plasmids: pBSKS (2.9 kbp)

and pHCMC05 (8.3 kbp) were provided by Prof. Santosh Noronha at IIT Bombay.

The details about size, growth conditions of bacteria and single cutters of the DNA

samples are mentioned in Table 2.2. After procurement of samples (in the form of

agar stab cultures of E. coli), glycerol freeze stocks were made using 50% glycerol

and stored at -80◦C. The cultures can be stored in this way for several years and

can be used at any time to produce the DNA samples (Laib et al., 2006).

Standard procedures (Laib et al., 2006; Sambrook and Russell, 2001) involving

alkaline lysis (mediated by NaOH) were adopted for extraction, linearization and

purification of plasmids, fosmids and BAC from the cultures. The major procedu-

ral steps are shown in Figure 2.2. For high copy number plasmids, no inducer was

added. For low (fosmids) and very low (BACs) copy number samples, L-arabinose

was added as inducer. From each freeze stock, 15 µL of ice was scrapped and

transferred to 40 mL LB medium with proper antibiotic (as mentioned in Table 2.2)

and incubated overnight (16 to 18 hours) at 37◦C with vigorous shaking (200 to

250 rpm). The overnight grown culture was poured into microcentrifuge tubes and
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Table 2.1: Representative properties of all DNA samples used in this work. The con-
tour length is estimated using the expression Lo = number of base-pairs × 0.34 nm; the
molecular weight is calculated from M = number of base-pairs × 662 g/mol, where the
base-pair molecular weight has been calculated for a sodium-salt of a typical DNA base-
pair segment†; the number of Kuhn steps from Nk = L0/(2P) (where P is the persistence
length, which is taken to be 50 nm), and the radius of gyration at the θ temperature is esti-
mated from Rθ

g = L0/
√

6Nk. The two relaxation times at the θ-temperature are defined by

λθ
D =

(
Rθ

g

)2
/Dθ , where Dθ is the measured diffusion coefficient under θ conditions, and

λθ
η = λη (defined in Equation 1.9 under θ-conditions. While λθ

D is evaluated at c/c∗ = 0.1,
λθ

η is calculated at c/c∗ = 1. The estimation of θ-temperature and subsequently Dθ are
discussed in Chapters 3 and 4, respectively. The estimation of the overlap concentration c∗

is discussed in Chapter 6 and polymer contribution to the zero shear rate viscosity ηp0, for
dilute and semidilute solutions are discussed in Chapters 5 and 6, respectively.

Size M L0 Nk Rθ
g λθ

D λθ
η

(kbp) (×106 g/mol) (µ) (nm) (×10−3 s) (×10−1 s)
2.96 1.96 1 10 130 7.70 –
5.86 3.88 2 20 182 21.7 –
8.32 5.51 3 28 217 36.9 –
11.1 7.35 4 38 251 56.7 –
25 16.6 9 85 376 197 1.19
45 29.8 15 153 505 480 –

48.5 32.1 16 165 524 – 4.97
114.8 76.0 39 390 807 1970 –
165.6 110 56 563 969 – 51.9
289 191 98 983 1280 7930 –

†The molecular weight of DNA has been estimated by calculating the average
molecular weight of a nucleotide monomer pair (AT or GC). The molecular weights
(in g/mol) of the bases are easily calculated: A = 135.15, T = 126.1, G = 151.15, C
= 111.12. Each deoxyribose sugar (M = 134.15 g/mol) looses a water molecule (at
the 1’ carbon) on condensation with a nucleotide base and one hydroxyl group on
condensation (at 3’) with the phosphate group, and an additional hydroxyl group
is lost (at 5’) upon polymerisation (Berg et al., 2002). This loss needs to be doubled
for a pair of nucleotide bases. Since the solution contains excess salt (NaCl), it is
the sodium ions that are localised around the phosphate group (M = 117.97 g/mol),
instead of Hydrogen. DNA used here is therefore a sodium salt. Assuming equal
fractions of AT and GC pairs in a DNA, we can therefore calculate the base pair
molecular weight to be 662 g/mol.

cells were harvested by centrifugation. The bacterial pellet (obtained above) was

resuspended in 100 µL of ice-cold Solution I (4◦C) (Sambrook and Russell, 2001) fol-

lowed by 200 µL of freshly prepared Solution II (Sambrook and Russell, 2001) and

150 µL of ice-cold Solution III (Sambrook and Russell, 2001). The tubes were stored

on ice for 3–5 minutes and centrifuged. The supernatant was transferred to a fresh
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Table 2.2: DNA Fragments. Here ‘LB’ stands for Luria Bertini broth, ‘AntR’ refers to An-
tibiotic resistance, ‘Amp’ refers to Ampicillin, ‘CAM’ refers to Chloramphenicol and ‘Kan’
refers to Kanamycin. All the cultures were incubated overnight at 37◦C with vigorous
shaking (200–250 rpm). L-arabinose (inducer) was used at a concentration of 0.01 g per
100 mL (stock concentration: 5 g in 100 mL). Stock concentrations for Ampicillin, Chlo-
ramphenicol and Kanamycin were 100 mg/mL, 25 mg/mL and 100 mg/mL respectively.
The working concentrations for Amp, CAM and Kan are 100 µg/mL, 12.5 µg/mL and 100
µg/mL respectively. Growth conditions for all the plasmids are same (LB + Amp) except
pHCMC05 (LB + Amp + CAM). For both the fosmids, growth conditions are identical (LB
+ CAM + L-arabinose). For both the BACs, growth conditions are the same (LB + CAM +
Kan + L-arabinose).

Type Name Size (kb) /(Notation) AntR 1 Cutter
Plasmid pBSKS(+) 2.9 / F2.9 Amp. BamHI

pYES2 5.9 / F5.9 Amp. BamHI
pHCMC05 8.3 / F8.3 Amp. + CAM BamHI

pPIC9K<TRL5> 11.1 / F11.1 Amp. BamHI
Fosmid pCC1FOS-25 25 / F25 CAM ApaI

pCC1FOS-45 45 / F45 CAM ApaI
BAC CTD-2342K16 114.8 / F114.8 CAM + Kan MluI

CTD-2657L24 289 / F289 CAM + Kan MluI

tube. The precipitate (containing mainly the cell debris and genomic DNA) was

discarded. RNase was added (at 10 µg/mL) to the tube and incubated at 37◦C for

20 minutes. Equal volume of Phenol-Chloroform-Isoamyl Alcohol (25:24:1) mix-

ture was added and mixed well by vortexing. After centrifugation, supernatant

was transferred to a fresh tube. Equal volume of Chloroform was added and cen-

trifuged. The supernatant was transferred to a fresh tube. Two volumes of chilled

100% ethanol (at 4◦C) was added at room temperature kept for 7 to 8 hours at -20◦C.

The tube was then centrifuged and the supernatant removed by gentle aspiration.

The tube was kept in an inverted position in a paper towel to allow all of the fluid

to drain away. Following this, 1 mL of 70% ethanol was added to the tube and

centrifuged. When all of the ethanol was evaporated, the resulting DNA pellet was

dissolved in 50 µL of Milli-Q grade water and stored at -20◦C.

To linearize the extracted DNA fragments, 39 µL of water was added to a 1.7

mL microcentrifuge tube, followed by 10 µL of corresponding 10X Assay Buffer

(working concentration is 1X) and 50 µL of DNA solution (purified DNA stored at

4◦C). 1 µL of appropriate enzyme was added. A thumb rule is 0.5–1 U enzyme
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Linearization

Circular ds DNA Linear ds DNARestriction digestion

DNA Extraction and Purification

• Freeze stock

• Harvesting of cells

• Lysis of cell wall

Precipitation

(16 – 18 hours)

purification
Circular ds DNA

Phenol: 

Chloroform

extraction

Preserving E. coli cultures

Stab Culture Stored at -73°C
Revived and 

freeze stocks 

prepared

Figure 2.2: Major steps in the preparation of linear DNA molecules for the current work.
From the revived and preserved freeze stock cultures of E. coli, the circular double stranded
DNA was obtained following alkaline lysis, phenol chloroform extraction and ethanol pre-
cipitation. The linear double stranded DNA was obtained through restriction digestion
(cutting) of the circular DNA using specific enzymes (restriction endonuclease) and subse-
quent purification. For details, see the text.

for 1 µg DNA (Sambrook and Russell, 2001). The samples were mixed well with

micropippette (wide bore tips) for several times. The reaction mix (100µl) was in-

cubated at 37◦C for three hours. After restriction digestion / linearization, it is

necessary to remove the enzymes / other reagents present in the reaction mix so

that they do not interfere with the downstream application/s like light scattering

studies, rheometry etc. For this, normal phenol-chloroform extraction followed by

ethanol precipitation of DNA was carried out as described elsewhere (Sambrook

and Russell, 2001). The purified DNA pellet for all DNA samples after lineariza-

tion were dissolved in specific solvents (as described in the next section) for the

light scattering and rheology experiments.

In addition to the above DNA samples, T4 bacteriophage linear genomic DNA

(size 165.6 kbp) and λ-phage linear genomic DNA (size 48.5 kbp) were procured

from Nippon Gene, Japan (#314-03973) and New England Biolabs, U.K. (#N3011L),

respectively. For both T4 DNA and λ-phage DNA, with an anticipated purity of

high order, the company specified values of 0.24 mg/ml and 0.5 mg/ml were used

as their maximum concentrations, respectively.
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Table 2.3: Composition of solvents used in the current work.

Light scattering and Extensional studies
Shear studies
10 mM Tris 10 mM Tris
1 mM EDTA 1 mM EDTA
0.5 M NaCl 0.5 M NaCl
Water 61.2 wt% Sucrose

Water

2.1.1 Solvents used

Two different solvents were used in this study (see Table 2.3). For all the light scat-

tering and shear rheological experiments, the solvent employed is predominantly

the widely used Tris-EDTA (TE) buffer. The measured viscosity of this solvent at

20◦C is 1.01 mPa.s. For all the uniaxial stretching (extensional) experiments, the

same solvent has been used but with added sucrose (61.2 wt.%), mainly to increase

the viscosity by approximately 60 times. The measured viscosity of this solvent at

21◦C is 61 mPa.s. Both the solvent viscosities have been measured by a HAAKE

MARS rheometer (Thermo Fisher Scientific). For each molecular weight, the puri-

fied linear DNA pellet was dissolved in these solvents, which have been commonly

used in polymer physics and rheology experiments involving DNA solutions (Sun-

thar et al., 2005; Smith et al., 1996; Robertson et al., 2006; Smith and Chu, 1998).

Both the solvents contain 0.5 M NaCl, to ensure charge screening (Marko and Sig-

gia, 1995). Consequently, in both these solutions, the DNA molecules are expected

to behave identically to charge neutral molecules.

2.1.2 Quantification of linear DNA samples

After the DNA samples were extracted and purified, their purity were determined

using the Nano-Photometer (UV-VIS Spectrophotometer, IMPLEN, Germany, #UV-

2450, Shimadzu). Optical Density (O.D.) readings were taken at three different

wavelengths: 260 nm, 280 nm and 230 nm. The ratio of absorbance at 260 nm

to that of 280 nm gives a rough indication of DNA purity (Sambrook and Rus-
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sell, 2001). The concentrations were calculated from absorbance reading at 260 nm

(DNA shows absorption peak at 260 nm) by Beer-Lambert’s Law (Sambrook and

Russell, 2001) and also by agarose gel electrophoresis through a serial dilution of

DNA samples as suggested elsewhere (Laib et al., 2006). All the linear DNA sam-

ples demonstrated A260/A280 ratio of 1.8 and above. This indicates good purity for

DNA samples, though it is largely an assumption (Laib et al., 2006) and A260/A230

ratio from 2.0 to 2.2 (absence of organic reagents like phenol, chloroform etc) (Laib

et al., 2006). The low molecular weight linear DNA fragments (plasmids) were

quantified through agarose gel electrophoresis with a known standard 1 kbp DNA

marker (Fermentas). For low copy number fragments (fosmids) and very low copy

number samples (BACs), it was confirmed that the samples were not sheared dur-

ing extraction by running a very low concentration agarose gel for extended period

at low voltage. A loss of 25 to 50% was observed in the amount of DNA samples

after the linearization procedure. This is attributed to purification steps by phenol-

chloroform extraction (Sambrook and Russell, 2001).

2.2 Static light scattering

2.2.1 Sample preparation

Solutions of linear purified 25 kbp DNA were used for the static light scattering

(SLS) studies. The details of the preparation and quantification of this DNA and

the solvent (see Table 2.3) used for making solutions and subsequent dilutions

are mentioned in the above sections. For SLS, an extensive sample preparation

method was followed to ensure repeatability. The methodology of sample prepara-

tion was modified from earlier studies (Sorlie and Pecora, 1990; Lewis et al., 1985;

Selis and Pecora, 1995) and was repeated before each measurement. The cuvette

was washed with ethanol (0.5 ml) for 5 times and kept for 15 minutes inside lami-

nar air flow. It was followed by wash with milliQ grade water for 10 to 15 minutes

continuously. In the meantime, the solvents were filtered with 0.45µ membrane-

filter (PALL Corp., USA) with 2 different membranes consecutively. After filtration,
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DNA was added to make final concentration of c/c∗ = 0.2 to 0.4. Initial estimates

of c∗ were based on values of Rg as reported by Laib et al. (2006) for molecular

weights that are identical to those used in this study. Typical c∗ values for 25 kbp

DNA in the solvent used for light scattering at different temperatures are summa-

rized in Table 6.1 in Chapter 6. The SLS methodology has been explained in the

following subsection.

2.2.2 Methodology

The static light scattering measurements were obtained from a BI-200SM Goniome-

ter (Brookhaven Instruments Corporation, USA) with a 473 nm wavelength Argon

ion laser from Coherent Inc. (USA) using BI-SLSW static light scattering software.

A separate temperature control system (PolySc, USA) was used. The intensity of

scattered light I(q) was determined as a function of the scattering vector q , and

polymer concentration c, at 5 different temperatures: 11.2◦C, 13◦C, 14◦C, 15◦C, and

20◦C. The angle range was selected based on the sample concentration. For the

highest concentration (0.0284 mg/ml) the following set of angles were used:15◦,

16.5◦, 18◦, 19.5◦, 21◦, 22.5◦, 24◦, and 25◦, while for the three other concentrations,

the angles used were:15◦, 16◦, 17◦, 18◦, 19◦, and 20◦. Readings were taken in two

temperature scans; with 5 repeats at each temperature. The mean of 10 repeats was

taken as the final data point at each temperature. The SLS data was analysed ac-

cording to the arguments given Chapter 3 in order to find the dependence of the

second virial coefficient on temperature, and by this means, the θ-temperature.

2.3 Dynamic light scattering

2.3.1 Sample preparation

Solutions of linear purified DNA having a wide range of molecular weights (2.9,

5.9, 8.3, 11.1, 25, 45, 114.8 and 289 kbp) were used for the dynamic light scatter-

ing (DLS) studies. The preparation and quantification of all the DNA solutions

and the solvent used are detailed in the above sections. All the DNA fragments



18 Materials and Methods

were characterized by DLS for measuring the hydrodynamic radii, RH, at differ-

ent temperatures: 5◦C, 10◦C, 15◦C, 20◦C, 25◦C, 30◦C and 35◦C. The same sample

preparation methodology for DLS has been adopted, as elaborated in the previous

section for SLS. The final DNA solutions for all the different molecular weights had

a concentration of c/c∗ = 0.1. The initial estimates of c∗ have been discussed in the

above section. Typical c∗ values for different DNA fragments used for dynamic

light scattering at different temperatures are summarized in Table 6.1.

2.3.2 Methodology

The hydrodynamic radii were determined using a Zetasizer Nano ZS (ZEN3600,

MALVERN, U.K.) particle size analyzer with temperature control fitted with a 633

nm He-Ne laser using back-scattering detection. This instrument uses dynamic

light scattering to measure the diffusion coefficient D, which is then converted to

an average hydrodynamic size RH of particles in solution using the Stokes-Einstein

equation (Rubinstein and Colby, 2003)

RH =
kB T

6π ηs D
, (2.1)

where ηs is the solvent viscosity. A Standard Operating Procedure (SOP) was cre-

ated using the Dispersion Technology Software (DTS 5.00, MALVERN, U.K.) to

achieve the desired outcome (RH) without manual intervention. Scattering of the

DNA solutions was measured at a fixed 173◦ scattering angle (this enables measure-

ments even at high sample concentrations and the effect of dust is greatly reduced).

The temperature range investigated was from 5 to 35◦C. The Zetasizer Nano ZS has

the ability to measure a wide size range (0.6 to 6000 nm in diameter). In Chapter 4,

we have reported sizes roughly in the range 140 to 2800 nm in diameter, which is

within the size range of the instrument. Readings for the size were taken in three

temperature scans (a sequence of High-Low, Low-High, and High-Low temper-

ature settings); with 5 readings at each temperature. The mean of 15 readings was

taken as final hydrodynamic radius at each temperature for each DNA fragment.
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The DLS data was analysed according to the arguments given Chapter 4 in order

to find the chemistry dependent constant k (see Equation 1.1), and by this means,

the solvent quality z.

2.4 Shear rheometry

A Contraves Low Shear 30 rheometer with Couette geometry (1T/1T: Cup and

bob; shear rate (γ̇) range: 0.01 to 100 s−1; temperature sensitivity: ± 0.1◦C) has

been used to obtain all the shear viscosity measurements reported in the present

work because of two main advantages (Heo and Larson, 2005): it has a zero shear

rate viscosity sensitivity even at a shear rate of 0.017 s−1 and thus can measure

very low viscosities; and has a very small sample requirement (minimum 800 µl).

Both of these are ideal for measuring viscosities of biological samples such as DNA

solutions. Recently, Heo and Larson (2005) have given a detailed description of

the measuring principles underlying the Contraves rheometer. The zero error was

adjusted prior to each measurement. The rheometer was calibrated with appropri-

ate Newtonian Standards (silicone oils) with known viscosities before measuring

actual DNA samples. Values obtained fall within 5% of the company specified val-

ues.

Avoiding a continuous shear ramp, the steady state shear viscosities η were

measured for the DNA solutions at different absolute concentrations and temper-

atures. To avert the problem of aggregation of long DNA chains, T4 and λ-phage

DNA (at their maximum concentrations) were kept at 65◦C for 10 minutes and in-

stantly put into ice for 10 minutes (Heo and Larson, 2005). A manual delay of 30

seconds was applied at each shear rate to allow the DNA chains to relax to their

equilibrium state and the sample was equilibrated for 30 minutes at each temper-

ature. Some typical relaxation times observed in dilute and semidilute solutions

are given in Table 2.1.
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2.5 Filament stretching rheometer and
extensional rheometry

For all extensional viscosity measurements, a Filament Stretching Rheometer or

FSR (Tirtaatmadja and Sridhar, 1993; Gupta et al., 2000; Sunthar et al., 2005) was

used, which is deemed to be the most efficient instrument to obtain reasonable esti-

mates of the elongational stress growth of a polymer solution (McKinley and Srid-

har, 2002). The instrument has a very small sample requirement (minimum 0.01

ml), which is ideal for measuring DNA solutions. The measuring principle of FSR

is detailed (Gupta et al., 2000; McKinley and Sridhar, 2002) and standardized (Anna

et al., 2001) in earlier studies and the theory of uniaxial extensional rheometry has

also been discussed (Tirtaatmadja and Sridhar, 1993; McKinley and Sridhar, 2002).

Briefly, the DNA samples were placed between two plates initially at rest and con-

sequently moved in opposite directions at a controlled exponential rate. This pro-

duces an elongated liquid bridge that experiences a uniaxial extensional flow close

to its midpoint, at a fixed strain-rate (Sridhar et al., 1991; Tirtaatmadja and Sridhar,

1993). The force needed for the separation depends on the stress due to the linear

DNA molecules being extended from their equilibrium coil-like shape to elongated

shapes. The stress is acquired by measuring this force at the end plates (Sunthar

et al., 2005). By carefully choosing the extension rate for the solvent used in this

study, the polymer contributions to the stress from other factors such as gravity,

surface tension, and inertia were isolated, as suggested elsewhere (McKinley and

Sridhar, 2002). The elongational stress growth coefficients (or the extensional vis-

cosities) of the DNA solutions were obtained at different strain rates by a master-

curve technique (Gupta et al., 2000). All experiments were conducted at a constant

strain rate based on the mid-point diameter and carried out at the room temper-

ature (21 ± 0.5◦C).
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3
Determination of θ Temperature

3.1 Introduction

In both dilute and semidilute solutions, the scaling of static and dynamic properties

of linear polymer chains are well explained in terms of the Flory exponent ν for the

two extreme limits of θ and good solvents (de Gennes, 1979; Rubinstein and Colby,

2003), as pointed out in Chapter 1. Also, in the crossover region between these two

extreme limits, the universality in a dilute solution has been long established by ex-

periments (Tominaga et al., 2002; Miyaki and Fujita, 1981; Hayward and Graessley,

1999), theory (Yamakawa, 2001), and mesoscopic simulations (Kumar and Prakash,

2003; Sunthar and Prakash, 2006). However, this has not been demonstrated for

dilute DNA solutions.

In order to characterize the crossover behaviour of DNA solutions, it is essen-

tial to determine both the θ-temperature Tθ and the solvent quality z, for these

solutions at any temperature above the θ-temperature. In spite of the extensive

use of DNA solutions, to our knowledge, the θ-temperature of any DNA solution

has not been reported so far. To address this issue, first we establish that the salt

concentration used in the solvent employed is well above the threshold value for

observing charge screening effects. We find the θ-temperature using 25 kbp DNA

23
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in this solvent (under excess salt conditions) with the help of static light scattering

measurements in the dilute regime. We determine the absolute values of second

virial coefficients A2 from the SLS data at different temperatures and identify the

temperature at which A2 vanishes. We also attempt to collapse a suitable scaled A2

on to a master curve for neutral synthetic polymers.

The plan of the chapter is as follows. In Section 3.2 we determine the salt con-

centration regime in which DNA behaves as a neutral polymer. The analysis of

static light scattering data for dilute DNA solutions is discussed in Section 3.3.

The determination of the θ-temperature is explained in Section 3.4. Finally, in Sec-

tion 3.5, we summarize the principal conclusions of the present chapter.

3.2 Salt concentration independence

Before discussing the details of the estimation of θ-temperature, it is appropriate

to first establish the salt concentration regime in which DNA behaves as a neutral

polymer. DNA is a polyelectrolyte, so it is essential to ensure that sufficient salt

is added to the DNA solutions such that all the charges are screened and they be-

have essentially like neutral synthetic polymer solutions. We have measured the

hydrodynamic radii of two different linear DNA fragments across a range of salt

concentrations (from 0.001 to 1 M) at 25◦C using dynamic light scattering (DLS)

experiments, and the results are displayed in Figure 3.1. Note that the methodol-

ogy of DLS is given in Section 2.3. It is clear from the figure that complete charge

screening occurs above 10 mM NaCl. This is in agreement with earlier dynamic

light scattering studies on linear DNA (Soda and Wada, 1984; Langowski, 1987; Liu

et al., 2000). Since the solvents used for the light scattering and rheology studies

here contains 0.5 M NaCl, all the experiments performed are in a regime well above

the threshold for observing charge screening effects.
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Figure 3.1: Dependence of RH on salt concentration for two different molecular weights at
25◦C.

3.3 Anaysis of SLS data for dilute DNA solutions

The sample preparation procedure and the methodology for SLS has been dis-

cussed in Section 2.2.

For solutions of macromolecules, the basic equation for the angular dependence

of light scattering is the Debye-Zimm relation (Harding, 1994; Fishman and Patter-

son, 1996; Rubinstein and Colby, 2003),

Kc
Rθ

=
1
M

[1 + 2 A2 c M]
1

P(q)
, (3.1)

where, K is an optical constant, A2 is the second virial coefficient, P(q) is the form

factor, and Rθ is the Rayleigh excess ratio, defined by the expression,

Rθ =
Īr2

Ii
, (3.2)

where, Ī = Iex/V, is the excess scattered intensity Iex per unit scattering volume

V, the quantity Ii represents the incident intensity, and r is the distance from

the sample to the detector. Here, we assume that the excess scattered intensity,
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Table 3.1: The zero angle scattered intensity I0 (in kilowatts/cm2) for 25 kbp DNA, at vari-
ous temperatures and a range of concentrations, determined using the Guinier approxima-
tion.

c (×10−5g/ml) 11.2◦C 13◦C 14◦C 15◦C 20◦C
2.84 12.7±1.45 7.0±0.4 5.3±0.23 3.8±0.21 2.2±0.16
2.485 9.3±0.72 5.9±0.27 4.4±0.1 3.2±0.17 2.1±0.1
2.13 6.5±0.73 4.8±0.33 3.8±0.27 2.84±0.089 1.54±0.089
1.42 3.2±0.29 2.8±0.33 2.4±0.15 1.9±0.15 1.08±0.058

Iex = I(q)− Is ≈ I(q), since the scattered intensity I(q) from the DNA solution is

much greater than the scattered intensity from pure solvent, Is . If we define the

quantity,

K′ = K
(

Ii V
r2

)
(3.3)

it follows from Equations 3.1–3.3 that,

K′c
I(q)

=
1
M

[1 + 2 A2 c M]
1

P(q)
. (3.4)

Denoting the scattered intensity in the limit of zero scattering angle by I0 , then,

since limq→0 P(q) = 1, Equation 3.4 implies,

I0 ≡ lim
q→0

I(q) =
K′c M

[1 + 2 A2 c M]
(3.5)

and, Equation 3.4 can be rearranged in this limit to be,

c
I0

=
1

K′M
+

[
2A2

K′

]
c. (3.6)

If I0 is known, then, it is clear from Equation 3.6 that a plot of c/I0 versus the con-

centration c would be a straight line with intercept 1/(K′M) and slope (2A2/K′).

In the present instance, since we know M a priori for the 25 kbp sample used in the

light scattering experiments, the constant K′ can be determined from the intercept.

As a result, the second virial coefficient A2 can be determined from the slope. We

address the question of determining I0 as follows.
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From Equations 3.4 and 3.5, it follows that,

I0

I(q)
=

1
P(q)

. (3.7)

At low scattering angles, q2R2
g ∼ O(1), the form factor is often approximated by

the Guinier function (Rubinstein and Colby, 2003),

P(q) = exp

[
−

q2R2
g

3

]
. (3.8)

It then follows from Equation 3.7 that,

ln
(

1
I(q)

)
= ln

(
1
I0

)
+

(
R2

g

3

)
q2. (3.9)

As a result, a plot of ln(1/I(q)) versus q2 would be linear, and the zero angle scat-

tered intensity I0 could be determined from the intercept without a knowledge of

either K′, A2 or Rg.

Figure 3.2 displays the intensity as a function of the scattering wave vector for

25 kbp DNA, at 14◦C and four different concentrations (corresponding to c/c∗ =

0.2, 0.3, 0.35 and 0.4), plotted semilog. The fact that nearly all the measured inten-

sity data, for various values of q2, lies on the fitted lines indicates that the Guinier

is a good approximation in this case. All the values of I0, determined by extrapo-

lating linear fits of ln(1/I(q)) versus q2 data to q = 0, at various temperatures and

concentrations, are listed in Table 3.1.

Attempts to use an alternative procedure to find I0 by assuming that P(q) is a

linear function of q2, for q2R2
g . O(1), i.e., P(q) = 1− (q2R2

g/3) and plotting 1/I(q)

versus q2 (as in a Zimm plot), or
√

1/I(q) versus q2 (as in a Berry plot) (Burchard,

2008) and extrapolating the fitted line through the data to q = 0, did not lead to

consistent results in the subsequent analysis.

Once I0 is known, the ratio c/I0 can be plotted versus c, and both K′ and A2 de-

termined, as discussed below Equation 3.6. Figure 3.3 is a plot of c/I0 versus c for

the values of I0 listed in Table 3.1, at the various temperatures at which measure-
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Figure 3.2: I0 by Guinier approximation. Intensity as a function of scattering wave vector
q, measured for 25 kbp DNA at 14◦C and four different concentrations, corresponding to
c/c∗ = 0.2, 0.3, 0.35 and 0.4, extrapolated to q = 0.

ments were carried out. While in principle the data for all the temperatures should

extrapolate to a unique intercept at c = 0, the scatter observed in Figure 3.3 reflects

the uncertainty in the I(q) data. Accounting for the spread in the values of the in-

tercepts, leads to the value, K′ = 9.5± 0.3 mol cm watts/g2. The dependence on

temperature of the second virial coefficient A2, determined from the slopes of the

fitted lines in Figure 3.3, and the subsequent analysis, is discussed in the following

section.

3.4 Determining the θ-temperature of DNA solutions

The θ-temperature for a polymer solution can be determined by finding the tem-

perature at which the second virial coefficient A2 vanishes. One of the methods

often used to determine the temperature dependence of A2 is static light scatter-

ing, since the intensity of scattered light, I(q), at any temperature, concentration
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Figure 3.3: Linear dependence of the ratio c/I0 on concentration, as expressed by Equa-
tion 3.6, for 25 kbp DNA at various temperatures. The constant K′ is determined from the
intercept, and the temperature dependence of the second virial coefficient is determined
from the slope.

and molecular weight of the dissolved species, depends on A2(T). Details of the

static light scattering experiments, the governing equation for I(q), and the proce-

dure adopted here to determine A2(T), have already been discussed in the above

sections. The principal results of the analysis are presented here.

Figure 3.4, which is a plot of the second virial coefficient for 25 kbp DNA as a

function of temperature in the range 10 to 20◦C, shows that A2 increases from being

below zero to above zero in this range of temperatures. A linear least squares fit to

the data in the vicinity of the θ temperature (where the dependence is expected to

be linear) suggests that,

Tθ = 14.7± 0.5◦C (3.10)

Note that this implies that a significant fraction of the temperatures at which mea-

surements were carried out are in the poor solvent regime. The reliability of mea-

surements in the poor solvent regime is discussed in detail in Appendix A.

As in the case of other polymer solution properties, the second virial coefficient,

when represented in a suitably normalised form, is a universal function of the sol-
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Figure 3.4: Determination of the θ-temperature, Tθ , for 25 kbp DNA. The equation of the
fitted line to the temperature dependence of the second virial coefficient is: A2 = −3.15×
10−3 + 2.16× 10−4 T, where T is in ◦C.

vent quality parameter in the crossover region. The specific form of the crossover

function used to describe the dependence is,

A2M
1
2 m

3
2
k

NAb3
k

= 0.20
[
z̃−2.64 + z̃−1.4

]−0.38
, (3.11)

where, z̃ = N1/2
k

(
1− Tθ

T

)
[see Equation 3.109 in Rubinstein and Colby (2003)].

The temperature and molecular weight dependence of the second virial coefficient,

for a number of polymer-solvent combinations, and from computer simulations, is

found to obey this universal crossover function. Figure 3.5 is a plot of this function,

which is modelled after a similar figure in Rubinstein and Colby (2003), along with

the data reported previously by Berry (1966) for linear polystyrenes in decalin. We

have used a linear least squares fit to the 25 kbp DNA data displayed in Figure 3.4,

and evaluated A2 at a few temperatures between 14 and 20◦C (indicated by the red

triangles in Figure 3.5). Clearly the present data also appears to lie on the universal

crossover function.
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Figure 3.5: Universal crossover plot for the second virial coefficient. Values of A2 for 25 kbp
DNA (red triangles) are calculated from the fit function given in the caption to Figure 3.4
at 14, 15, 16, 17 and 18◦C. The θ temperature is taken to be Tθ = 14.7◦C. The line is drawn
according to Equation 3.11. The molar mass per Kuhn step is defined as mk = M/Nk, and
the Kuhn step length is bk = 2P. Values of M, Nk, and P are given in Table 2.1. Open
squares represent data from Berry (1966), for linear polystyrene in decalin.

At the θ-temperature, the precise form of the expression for the form factor,

P(q) = I(q)/I0, where, I0 = limq→0 I(q), is known to have the following form

(referred to as the Debye function (Rubinstein and Colby, 2003)),

P(q) =
2(

q2 Rθ
g

2
)2

[
exp

(
−q2 Rθ

g
2
)
− 1 + q2 Rθ

g
2
]

. (3.12)

Note that, since we know the contour length and the persistence length for 25 kbp

DNA, we can estimate Rθ
g = 376 nm, as displayed in Table 2.1. The determination

of I0 from the measured I(q) data for 25 kbp DNA is discussed in the supplemen-

tary material. As a result, the dependence of P(q) on q, for the current measure-

ments on 25 kbp DNA, is known. The Debye function is also known to describe the

angular dependence of the scattered intensity at temperatures away from the θ tem-

perature very well, over a wide range of values of q2Rg
2 (Schäfer, 1999; Utiyama,

1971). As a result, the Debye function can be used to fit the P(q) data to determine
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Figure 3.6: A Debye function fit to the form factor, P(q), data for 25 kbp DNA, ob-
tained at 14◦C and four different concentrations. The Guinier approximation, P(q) =
exp(−q2Rg

2/3), and the linear approximation, P(q) = 1− (q2Rg
2/3) are also displayed.

Rg. Figure 3.6 displays the Debye function fit to the P(q) data for 25 kbp DNA,

at 14◦C and four different concentrations, along with the Guinier approximation

P(q) = exp
(
−q2Rg

2/3
)
, and the linear approximation, P(q) = 1−

(
q2Rg

2/3
)
. We

can see that the Debye function describes the data reasonably accurately, indepen-

dent of concentration, over a wide range of the measured values of q2Rg
2. We find

that the fitted values of Rg are in the range 389.4± 68.1 nm across the four different

concentrations. While this is reasonably close to the analytical value of Rθ
g = 376

nm, as is expected at 14◦C, the current data does not cover a sufficiently wide range

of q2Rg
2 values to determine Rg more precisely.

3.5 Conclusions

Using static light scattering measurements, for the first time, the θ-temperature (Tθ)

has been determined using a single, medium molecular weight DNA fragment, 25

kbp, from the absolute values of second virial coefficients A2 at different temper-

atures in a solvent (10 mMTris, 1 mMEDTA, 0.5 M NaCl and water), that is com-
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monly used for polymer physics and rheology studies. DNA, in this solvent, has

Tθ = 14.7 ± 0.5◦C. The absolute values of A2 from the current work appear to lie

on a universal crossover function of the second virial coefficient when plotted as

a function of solvent quality, and are in agreement with reported data on linear

polystyrene in decalin from Berry (1966). This is our first confirmation that double-

stranded DNA under high salt concentration behaves similar to neutral synthetic

polymers.

The knowledge of the θ-temperature of DNA in this solvent will facilitate the

characterization of the z values of DNA in this solvent which is essential for proper

characterization of the crossover behaviour of DNA solutions, both in dilute and

semidilute regime. The estimation of solvent quality for DNA solutions using dy-

namic light scattering measurements is discussed in the next chapter.





4
Solvent Quality and Universal Swelling of

the Hydrodynamic Radius

4.1 Introduction

We know that this universality in a dilute solution, in terms of dynamic proper-

ties for synthetic polymer-solvent systems, has already been demonstrated through

experiments, simulations and theoretical predictions, as a function of the solvent

quality parameter z in the crossover regime (see Section 3.1). However this is not

the case with DNA solutions. As pointed out in Chapters 1 and 3, for character-

izing the behaviour of DNA solutions in the crossover region, it is mandatory to

determine the solvent quality z of the DNA solutions in the specific solvent that

has been used in current experiments.

In this chapter, we establish the methodology for determining the solvent qual-

ity of the DNA solutions by systematically characterising the DNA molecules in

an extended range of molecular weights from 2.9 to 289 kbp (≈106 to 108 g/mol),

and at a variety of different temperatures by dynamic light scattering (DLS) mea-

surements in the dilute regime. For determining the solvent quality parameter z for

DNA solutions, we need to know both the θ-temperature and the chemistry depen-

35
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dent constant k (see Equation 1.1). We have already determined the θ-temperature

for DNA in a particular solvent (see Section 3.4 in the previous chapter). With the

knowledge of Tθ we have determined k by finding the dependence of the swelling

of the hydrodynamic radius αH on the variable
(

1− Tθ

T

)√
M in the same solvent,

and by shifting the data for DNA with a shift factor such that it coincides with

the BD simulation data from our group (Sunthar and Prakash, 2006) and also data

for different synthetic polymer-solvent systems (Tominaga et al., 2002). We show

that, similar to the behaviour exhibited by neutral synthetic polymer solutions, the

swelling of DNA solutions in excess salt also exhibits universal behaviour in the

context of αH, which is a dynamic equilibrium property. More importantly, this

will also enable us to properly characterize the temperature crossover behaviour of

the zero shear rate viscosity for semidilute DNA solutions, as a function of z and to

validate the scaling predictions by Jain et al. (2012a).

In this chapter, the estimation of the solvent quality z, the chemistry dependent

constant k, and asymptotic swelling of the hydrodynamic radii as a function of z

for dilute DNA solutions are discussed in various subsections of Section 4.3. In

Section 4.4, we summarize the principal conclusions of the present work.

4.2 DLS of dilute DNA solutions

The sample preparation procedure and the methodology for DLS has been dis-

cussed in Section 2.3. A typical example of the “Correlation Coefficient” , G(τ) =<

I(t)I(t + τ) > measured by the instrument for 25 kbp DNA at various tempera-

tures and c/c∗ = 0.1 is shown in Figure 4.1. Here, I is the intensity of scattered light,

and τ is the time difference of the correlator. The correlation function is processed

by the instrument to obtain the size distribution as a plot of the relative intensity

of light scattered by particles in various size classes. Typical intensity size distribu-

tion plots are shown in Figure 4.2 for 25 kbp DNA at various temperatures, where it

can be seen that there is a single fairly smooth peak indicating the molecule’s size.

Measured values of RH are reported in Table 4.1.
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Figure 4.1: Intensity autocorrelation spectra for 25 kbp DNA at various temperatures (indi-
cated within the figures) and c/c∗ = 0.1.
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Figure 4.2: Intensity size distributions for 25 kbp DNA at various temperatures (indicated
within the figures).
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4.3 Estimating the solvent quality of DNA solutions

The scaling variable that describes the temperature crossover behaviour from θ sol-

vents to very good solvents, is the solvent quality parameter z, defined in Equa-

tion 1.1. The significance of the variable z is that when data for any equilibrium

property of a polymer-solvent system is plotted in terms of z in the crossover re-

gion, then regardless of the individual values of M and T, provided the value of z

is the same, the equilibrium property will turn out to have the same value. Indeed,

provided the values of k are chosen appropriately, equilibrium data for different

polymer-solvent systems can be shown to collapse onto master plots, revealing the

universal nature of polymer solution behaviour. Typically, a particular polymer-

solvent system is chosen as the reference system and data for all other systems

are shifted to coincide with the values of the reference system by an appropriate

choice of k (Miyaki and Fujita, 1981; Tominaga et al., 2002; Hayward and Graessley,

1999). The same shifting procedure is also commonly used to compare experimen-

tal observations in the crossover regime with theoretical predictions or simulations

results (Kumar and Prakash, 2003; Sunthar and Prakash, 2006). Basically, as will

be demonstrated in greater detail subsequently, the values of k for an experimen-

tal system are chosen such that the experimental and theoretical values of z agree

when the respective equilibrium property values are identical.

We have determined the value of z for the DNA solutions used here by compar-

ing experimental measurements of the swelling αH of the hydrodynamic radius RH,

with predictions of Brownian dynamics simulations reported previously (Sunthar

and Prakash, 2006). The hydrodynamic radius has been measured by carrying out

dynamic light scattering measurements over a range of temperatures and molec-

ular weights at a concentration c/c∗ = 0.1. Details of the dynamic light scattering

measurements, including the instrument used, sample preparation procedure, and

typical intensity plots are given in the above sections. Before discussing the details

of the estimation of solvent quality, it is appropriate to first present some results of

the measurements of the hydrodynamic radius.
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Figure 4.3: Comparison of the molecular weight dependence of hydrodynamic radius, ob-
tained previously by Smith et al. (1996) and Robertson et al. (2006) at 25◦C with the current
work.

Figure 4.3 compares present measurements of the dependence of hydrodynamic

radius on molecular weight, with previous measurements (Smith et al., 1996; Robert-

son et al., 2006) at 25◦C. While Smith et al. (1996) used fragments and concatenates

of λ-phage DNA to obtain molecules across the wide range of molecular weights

that were studied, the measurements of Robertson et al. (2006) were carried out on

molecules identical to those that have been used here. Both the earlier results were

obtained by tracking fluorescently labeled linear DNA, in contrast to current mea-

surements which were obtained by dynamic light scattering. The close agreement

between results obtained by two entirely different techniques, across the entire

range of molecular weights, establishes the reliability of the procedures adopted

here.

Table 4.1 is a compilation of all the measurements of RH carried out here, across

all molecular weights and temperatures. Since we have established that Tθ = 14.7±

0.5◦C, we expect the hydrodynamic radius to scale as M0.5 at T = 15◦C. Figure 4.4

is a plot of Rθ
H versus M, which clearly confirms that indeed ideal chain statistics are
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Table 4.1: Hydrodynamic Radius (RH) of linear DNA at different temperatures. Each data
point corresponds to the intensity peaks from DLS measurements. The mean of 15 readings
was taken as final data point at each temperature for each DNA fragment. The values of
Rθ

H, with the θ-temperature assumed to be 15◦C, are indicated in italics.

Sequence length 2.9 kbp 5.9 kbp 8.3 kbp 11.1 kbp
Temperature RH (in nm) RH (in nm) RH (in nm) RH (in nm)

5◦C 73±4 104±3 123±3 141±3
10◦C 77±3 109±3 131±3 152±3
15◦C 85±3 121±3 145±3 167±3
20◦C 87±3 124±3 148±3 173±4
25◦C 90±3 131±5 155±2 183±6
30◦C 96±2 136±4 162±3 189±3
35◦C 101±4 145±7 174±3 203±5

Sequence length 25 kbp 45 kbp 114.8 kbp 289 kbp
Temperature RH (in nm) RH (in nm) RH (in nm) RH (in nm)

5◦C 203±4 258±5 385±13 540±35
10◦C 226±5 303±6 473±14 718±46
15◦C 258±3 349±4 560±18 897±57
20◦C 267±8 367±4 607±13 1025±39
25◦C 286±5 397±5 677±15 1201±49
30◦C 297±4 417±6 722±13 1300±38
35◦C 313±8 431±8 753±19 1363±57

obeyed in the neighbourhood of the estimated θ-temperature. It is remarkable that

the θ-solvent scaling behaviour is seen in as low as a molecular weight as 2.9 kbp.

This serves as our second confirmation of the double-stranded DNA behaviour like

a neutral polymer.

Since both Rθ
g and Rθ

H scale with molecular weight as M0.5 at the θ-temperature,

their ratio should be a constant. As is well known, experimental observations and

theoretical predictions indicate that Uθ
RD = Rθ

g/Rθ
H is a chemistry independent uni-

versal constant (for a recent compilation of values see Table I in Kröger et al. (2000)).

Zimm theory predicts a universal value Uθ
RD ≈ 1.47934 (Zimm, 1956; Öttinger,

1996). Since we have estimated Rθ
g by assuming Gaussian chain statistics at the

θ temperature, and have measured Rθ
H, we can calculate Uθ

RD for all the molecular

weights used in this work. The expected molecular weight independence of Uθ
RD is

displayed in Figure 4.5. The mean value of Uθ
RD is also seen to be close to the value
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Figure 4.4: The variation of the hydrodynamic radius (Rθ
H) with molecular weight (in bp)

at T = 15◦C, which is estimated to be close to the θ-temperature.

predicted by Zimm. This confirms that both the scaling with molecular weight, and

the absolute values of Rθ
H, across the entire range of DNA molecular weights, are

accurately captured by the dynamic light scattering experiments.

The swelling αH for any combination of M and T can be calculated from the val-

ues reported in Table 4.1, and plotted as a function of the scaling variable z, once a

choice has been made for the value of the constant k. As mentioned in Section 4.1, k

can be determined by comparison of experimental measurements with the results

of Brownian dynamics simulations. We refer the interested reader to the relevant

literature (Domb and Barrett, 1976; Barrett et al., 1991; Yamakawa, 2001; Schäfer,

1999; Kumar and Prakash, 2003; Sunthar and Prakash, 2006) for a discussion of

how the solvent quality parameter z enters the structure of analytical theories and

Brownian dynamics simulations. It suffices here to note that the theoretically pre-

dicted swelling of the hydrodynamic radius can be represented by the functional

form αH = fH(z), where, fH(z) = (1 + a z + b z2 + c z3)m/2, with the values of the

constants a, b, c, m, etc., dependent on the particular context. The values of the var-

ious constants that fit the results of Brownian dynamics simulations, are reported
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Figure 4.5: The molecular weight independence of Uθ
RD. The mean value is close to the

Zimm model prediction in the long-chain limit, Uθ
RD ≈ 1.47934 (Zimm, 1956; Öttinger,

1996).

in the caption to Figure 4.7. We find the constant k for DNA solutions by adopting

the following procedure.

The value of the chemistry dependent constant k (appearing in the definition

of the solvent quality parameter z) has been determined for the current solvent by

adopting a procedure elaborated in an earlier work (Kumar and Prakash, 2003).

Consider α
expt
H to be the experimental value of swelling at a particular value of

temperature T and molecular weight M. It is then possible to find the Brownian

dynamics value of z that would give rise to the same value of swelling from the

expression z = f−1
H (α

expt
H ), where f−1

H is the inverse of the function fH(z). Since

z = k τ̂
√

M, where τ̂ =

(
1− Tθ

T

)
, it follows that a plot of f−1

H (α
expt
H )/

√
M versus

τ̂, obtained by using a number of values of α
expt
H at various values of T and M,

would be a straight line with slope k (see Figure 4.6). The value of k found by this

procedure is,

k = 0.0047± 0.0003 (g/mol)−1/2 . (4.1)

Once the constant k is determined, both experimental measurements of swelling
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Figure 4.6: Determination of the chemistry dependent constant k for the current solvent by
adopting a procedure elaborated in an earlier work (Kumar and Prakash, 2003). Only the
temperatures above Tθ are considered here. The data points were least square fitted with a
straight line, and the slope k was determined (Kumar and Prakash, 2003). A value of 15◦C
has been used for the θ-temperature. The value of k found by this procedure is given in
Equation 4.1.

and results of Brownian dynamics simulations can be represented on the same plot.

Assuming that the θ-temperature is 15◦C for the solvent used in this study, we have

determined the value of k by following this procedure. It follows that for any given

molecular weight and temperature, the solvent quality z for the DNA solution can

be determined. Typical values of z, at various M and T, obtained by this procedure

are reported in Table 6.1.

The solvent quality crossover of αH for DNA, determined from the current mea-

surements, is shown in Figure 4.7, along with the predictions of Brownian dynam-

ics simulations. Experimental data of Tominaga et al. (2002), which are considered

to be highly accurate measurements of synthetic polymer swelling, are also plotted

in the same figure. It is evident from the figure that, just as in the case of syn-

thetic polymer solutions, irrespective of solvent chemistry, the swelling of DNA

is universal in the crossover region between θ to good solvents. This is our third

confirmation of double-stranded DNA good to be considered as a model polymer.
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Figure 4.7: Swelling of the hydrodynamic radius. The filled coloured symbols represent
experimental data for DNA. BDS refers to the predictions of Brownian dynamics simula-
tions (Sunthar and Prakash, 2006), with the curve representing the function fH(z), with
constants a = 9.528, b = 19.48, c = 14.92, and m = 0.0999. Empty circles represent several
experimental data on synthetic polymers collated in Tominaga et al. (2002).

Having estimated the value of z for any values of M and T, it follows that other

universal properties predicted by simulations or theory, at any particular value of

z, can be compared with experimental results for DNA, at the same value of z.

4.4 Conclusions

In the current work, a dynamic property (RH) of a range of DNA (2.9 to 289 kbp)

in a commonly used solvent (same as in Chapter 3) have been characterized in

terms of parameters used in dilute polymer solution theory. Using dynamic light

scattering, the chemistry dependent constant k has been found out from the RH

values at different temperatures for different molecular weights, and the crossover

of the swelling of the hydrodynamic radius (αH) in good solvent conditions (T >

Tθ) was also demonstrated in the same solvent, as used for SLS studies. DNA in

this solvent has k = 0.0047 ± 0.0003 (g/mol)−1/2.
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As with the regular polymers, the dilute solution crossover data of DNA can

also be collapsed into a unique function of a scaling variable z. The scaling func-

tions also agree within experimental error with the functions for synthetic poly-

mers and model chains in good solvents obtained using molecular simulations.

With known values of Tθ (from Chapter 3) and k (from this chapter), it is now pos-

sible to accurately determine the value of z for a DNA of any M and at any T in

this solvent. Also, by demonstrating the universal dynamic crossover of DNA, it

was established that the crossover regime between θ and good solvents can only

be characterized by a combined dependence of both molecular weight and tem-

perature, in the form of z. This is crucial for the characterization of the semidi-

lute unentangled solutions in the crossover regime, as will be shown in Chapter 6.

These developments make it now possible to examine the crossover behaviour of

any static or dynamic property of linear DNA molecules in the presence of excess

salt.



5
Intrinsic Viscosity and the Swelling of the

Viscosity Radius

5.1 Introduction

The swelling αη (defined in Equation 1.6), of the viscosity radius Rη , defined as

Rη ≡
(

3[η]M
4πNA

) 1
3

, (5.1)

has already been experimentally measured and shown to be a universal function of

only the solvent quality parameter z in the crossover regime for synthetic polymer-

solvent systems (Tominaga et al., 2002; Arai et al., 1995; Jamieson and Simha, 2010;

Miyaki and Fujita, 1981; Hayward and Graessley, 1999). Notably, however, the

universal curve for the swelling αg of the gyration radius Rg as a function of z is

significantly different from the universal curve for either αη or swelling αH of the

hydrodynamic radius RH (Miyaki and Fujita, 1981; Arai et al., 1995; Tominaga et al.,

2002; Hayward and Graessley, 1999). However, to our knowledge, an experimental

study demonstrating the universal crossover of αη as a function of z for dilute DNA

solutions is still lacking.

47
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The approximate quasi-two-parameter theory of Yamakawa and co-workers

(Yamakawa, 2001, 1997), which is based on pre-averaged hydrodynamic interac-

tions (HI) (Barrett, 1984), is able to describe the crossover behaviour of αη with

reasonable accuracy (Tominaga et al., 2002; Jamieson and Simha, 2010). On the

other hand, it fails to describe the crossover behaviour of αH, even when modified

to take into account fluctuations in HI (Yamakawa and Yoshizaki, 1995; Arai et al.,

1995; Jamieson and Simha, 2010). By carrying out exact Brownian dynamics sim-

ulations, Sunthar and Prakash (2006) have shown that the fundamental difference

between the crossover scaling behaviour of the static swelling αg, and the dynamic

swelling αH, is in fact due to the presence of fluctuating HI. By suitably accounting

for fluctuating HI and excluded volume (EV) interactions in the asymptotic long

chain limit, Prakash and coworkers have been able to obtain quantitatively accu-

rate, parameter free predictions of αg and αH, as functions of z (Kumar and Prakash,

2003; Sunthar and Prakash, 2006). Very recently, Prakash and coworkers have ob-

tained parameter free predictions of αη for flexible chains in dilute solutions by

exact BD simulations and have examined the role of fluctuating HI (Ahirwal, 2009;

Pan et al., 2014), in determining the observed difference between αη and αg, which

also agree quantitatively with experimental observations.

The universal viscosity ratio , UηR, which is closely related to the Flory-Fox

constant (Rubinstein and Colby, 2003; Jamieson and Simha, 2010) Φ , and which is

frequently used to characterise dilute polymer solutions, is defined by (Öttinger,

1996; Kröger et al., 2000),

UηR ≡
(

Rη

Rg

)3

=
6

3
2

(4π/3)
Φ

NA
. (5.2)

For θ solvents, experimental measurements (Miyaki et al., 1980; Kröger et al., 2000)

indicate that Uθ
ηR = 1.49± 0.06, which corresponds to the well known value of the

Flory-Fox constant for θ solvents (Rubinstein and Colby, 2003), Φ0 = 2.6× 1023 .

As discussed by Jamieson and Simha (2010) in their recent review, a number of ex-

perimental measurements of the Flory-Fox constant under good solvent conditions

have been reported in the literature. Nevertheless, the behaviour of Φ with vary-
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ing solvent conditions appears not to be known with any great certainty. The ap-

proximate quasi-two-parameter theory seems to accurately describe (indirectly) the

crossover of UηR from θ to very good solvents (Tominaga et al., 2002; Jamieson and

Simha, 2010). Also, in addition to αη , Prakash and coworkers have predicted the

crossover behaviour of UηR through exact Brownian dynamics simulations, which

account for fluctuating HI (Ahirwal, 2009; Pan et al., 2014). As in the case with αη ,

the universal crossover of UηR as a function of z has not been demonstrated so far

for dilute DNA solutions.

As mentioned earlier in this section, the reported observations of the swelling

of the viscosity radius αη and the Flory-Fox constant have largely been on synthetic

polymer-solvent systems (Tominaga et al., 2002; Miyaki and Fujita, 1981; Hayward

and Graessley, 1999). We have shown in Chapter 4 that the crossover swelling of RH

of linear DNA molecules in dilute solutions with excess salt can be collapsed onto

earlier observations of the αH of synthetic polymers. This now makes it possible

to examine the crossover behaviour of any static or dynamic property of linear

DNA solutions in the presence of excess salt. Since the solvent quality z for the

DNA solutions has been determined (see Chapter 4), this enables us to verify the

universal scaling of αη with z, by comparison with experimental measurements

for synthetic polymer systems. From its definition (see Equation 1.6), αη for DNA

solutions can be obtained from the measurement of [η] at the θ-temperature and at

several temperatures above the θ-temperature.

The aim of this work is two-fold. First, by carrying out systematic measure-

ments of the intrinsic viscosity of two different molecular weight samples of linear

double-stranded DNA at a range of temperatures in the presence of excess salt,

we examine the crossover scaling of the swelling of the viscosity radius αη , and

the universal viscosity ratio, UηR. Comparison with earlier observations of the be-

haviour of synthetic polymers enables not only the establishment of the universal

scaling of DNA solutions, but also serves as an independent verification of the θ-

temperature and solvent quality, as estimated in Chapters 3 and 4. Second, we also

compare our results with the detailed BD simulations from Prakash and cowork-
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ers (Ahirwal, 2009; Pan et al., 2014). This is a further step in validating the role of

double-stranded DNA as a model flexible polymer.

The plan of the chapter is as follows. In subsection 5.3.1, we describe the mea-

surement of the intrinsic viscosity of the DNA solutions, and tabulate values of

intrinsic viscosity and the Huggins coefficient across a range of temperatures. In

the remaining subsections of Section 5.3, we briefly discuss the prediction of αη

and UηR by BD simulations (Ahirwal, 2009; Pan et al., 2014) and compare simu-

lation predictions with prior and current experimental measurements. Finally, in

Section 5.4, we summarize the principal conclusions of the present work.

5.2 Methodology

5.2.1 Preparation of DNA solutions

We have measured the shear viscosities of two DNA samples: 25 kbp and T4 DNA

at various temperatures (15 to 35◦C) and concentrations (0.0038 to 0.118 mg/ml) in

the dilute regime. The procurement of the T4 DNA and and protocols for prepara-

tion and purification of the 25 kbp DNA solutions including the solvent used have

been discussed in Section 2.1. The maximum concentration used for T4 DNA was

the same as mentioned in Section 2.1. The maximum concentration used for 25 kbp

was 0.24 mg/ml.

5.2.2 Shear rheometry

Details about the rheometer used, measuring principle, temperature sensitivity,

shear rheometry procedure, precautions taken while measurements, instrument

calibration, shear rate range employed and avoidance of shear ramp, sample equi-

libration time, dependence on rheometer geometry etc., have been elaborated in

Section 2.4.

The shear rate dependence of the measured steady state shear viscosity η of

the solutions is shown in Figure 5.1. From the figure, it is clear that the solution

viscosity is virtually independent of the shear rate at very low shear rates, which
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Table 5.1: Steady state zero shear rate viscosities, η0 (mPa.s) for 25 kbp and T4 DNA at
various concentrations, c (mg/ml) and temperatures, T (◦C) in the dilute regime. Note that
Tθ ≈ 15◦C.

25 kbp
c T c/c∗ η0

0.112 15 0.91 2.95 ± 0.01
0.07 15 0.57 1.76 ± 0.01

18 0.74 1.75 ± 0.01
21 0.85 1.72 ± 0.01
25 0.97 1.58 ± 0.02

0.0441 15 0.36 1.53 ± 0.01
18 0.46 1.49 ± 0.01
21 0.54 1.43 ± 0.01
25 0.61 1.31 ± 0.01
30 0.7 1.27 ± 0.01
35 0.76 1.2 ± 0.01

0.028 15 0.23 1.38 ± 0.01
18 0.29 1.31 ± 0.01
21 0.34 1.25 ± 0.01
25 0.39 1.15 ± 0.01
30 0.44 1.09 ± 0.01
35 0.48 1.01 ± 0.01

0.0175 15 0.14 1.29 ± 0.01
18 0.18 1.2 ± 0.01
21 0.21 1.14 ± 0.01
25 0.24 1.05 ± 0.01
30 0.28 0.98 ± 0.01
35 0.3 0.9 ± 0.01

T4 DNA
c T c/c∗ η0

0.038 15 0.79 5.38 ± 0.13
0.023 15.7 0.58 2.43 ± 0.01

17.3 0.72 2.33 ± 0.01
19.4 0.85 2.23 ± 0.01

0.015 15.7 0.38 1.96 ± 0.01
17.3 0.47 1.86 ± 0.01
19.4 0.56 1.79 ± 0.01
22 0.65 1.68 ± 0.01
24.5 0.71 1.6 ± 0.01

0.0094 15 0.2 1.51 ± 0.01
20 0.36 1.48 ± 0.01
25 0.39 1.43 ± 0.01
30 0.52 1.4 ± 0.01
35 0.59 1.37 ± 0.01

0.0059 15 0.12 1.36 ± 0.01
20 0.23 1.29 ± 0.01
25 0.25 1.22 ± 0.01
30 0.33 1.16 ± 0.01
35 0.37 1.09 ± 0.01

0.0038 15 0.08 1.27 ± 0.01
20 0.14 1.18 ± 0.01
25 0.15 1.09 ± 0.01
30 0.21 1.02 ± 0.01
35 0.23 0.96 ± 0.01

is expected for dilute polymer solutions. The zero shear rate solution viscosities η0

were determined by least-square fitting of the viscosity values in the plateau region

of very low shear rates with a straight line and then extrapolating it to zero shear

rate, as shown in the figures. Table 5.1 displays all the zero shear rate viscosities

obtained this way for the two molecular weights across the range of concentrations

and temperatures examined in the current work. We have also established that the

measured viscosity does not depend on rheometer geometry in the range of shear

rates employed (in terms of the ‘gap’ between the cup and the bob), by measur-

ing the viscosity of T4 DNA at two different gaps at two different temperatures as

shown in Figure 5.2.
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Figure 5.1: Determination of the zero shear rate solution viscosity η0. The shear rate de-
pendence of solution viscosity η in the region of low shear rate is extrapolated to zero shear
rate (a) for T4 DNA at a fixed concentration, for a range of temperatures and (b) for 25 kbp
DNA at a fixed temperature, for a range of concentrations. The extrapolated values in the
limit of zero shear rate are indicated in the legends.
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Figure 5.2: Measured solution shear viscosity η as a function of shear rate γ̇ for a dilute so-
lution of T4 DNA at two different ‘gaps’ (between the cup and the bob) and at two different
temperatures: (a) 21◦C and (b) 30◦C. The measurement with the gap of 0.5 mm corresponds
to the 1T/1T geometry that has been used for all the measurements in the current work.

5.2.3 Simulations

The Brownian dynamics simulations are not a part of this thesis, but were car-

ried out as a separate study by our group and the predictions (Ahirwal, 2009; Pan

et al., 2014) have been used for comparison with the experimental data on linear

DNA solutions from the current work and previously reported experimental data

on synthetic polymer-solvent systems. A detailed description of the BD simula-

tion methodology, universal properties derived from the viscosity radius, variance

reduced simulations and integration of the correlation functions is given in Ap-

pendix B.

5.3 Results and Discussion

5.3.1 Intrinsic viscosity

The intrinsic viscosity of a polymer solution is typically obtained from a virial ex-

pansion of the dilute solution viscosity as a function of concentration. Two com-

monly used forms of the virial expansion are the Huggins equation,

ηsp ≡
ηp,0

ηs
= [η] c + kH ([η] c)2 + k′H ([η] c)3 + · · · (5.3)
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and Kraemer’s equation,

ln
η0

ηs
= [η] c− kK ([η] c)2 + k′K ([η] c)3 + · · · (5.4)

where, ηsp is the specific viscosity, η0 is the zero shear rate viscosity , the coefficient

kH in the quadratic term in Huggins equation (Equation 5.3) is the Huggins con-

stant, and is analogous to the second virial coefficient for viscosity (Rubinstein and

Colby, 2003), while kK is the equivalent coefficient in Kraemer’s equation. The pa-

rameters k′H and k′K are coefficients of the cubic terms in the Huggins and Kraemer’s

equations, respectively.

Substituting the Huggins expansion in terms of η0 from Equation 5.3 into the

left hand side of Kraemer’s equation (Equation 5.4), and comparing terms of similar

order leads to,

kK =
1
2
− kH , and k′K = k′H − kH +

1
3

. (5.5)

Typically, dilute solution viscosities are measured at low values of concentration,

where the contribution of the cubic terms in the Huggins equation are negligible.

As a result, by plotting ηsp/c versus concentration, the intrinsic viscosity can be

obtained from the intercept on the y-axis of a straight line fitted to the data, while

kH can be determined from the slope of the line, since,

ηsp

c
= [η] + kH [η]2c. (5.6)

As pointed out by Pamies et al. (2008) even though k′H ([η] c)3 ≈ 0, the contribu-

tion of the cubic terms in Kraemer’s equation need not be zero (unless, kH ≈ 1/3,

see Equation 5.5). At sufficiently low concentrations, however, Kraemer’s equa-

tion (Equation 5.4) suggests that a plot of ln(η0/ηs)/c will be linear in concentra-

tion,
1
c

ln
η0

ηs
= [η] − kK [η]2c, (5.7)

with the intrinsic viscosity obtained by extrapolating to zero concentration, while

kK can be determined from the slope of the line through the data.
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Since the leading order term in the expansions for both ηsp and ln(η0/ηs) is

[η]c, Solomon and Ciutǎ (1962) suggested that the virial expansion of the difference

ηsp − ln(η0/ηs) would have a weaker dependence on concentration ,

ηsp − ln
η0

ηs
= kSC ([η] c)2 + k′SC ([η] c)3 + · · · (5.8)

with, kSC =
1
2

, and k′SC = kH −
1
3

(5.9)

As a result, by defining the quantity,

[η]c =
1
c

√
2
(
ηsp − ln (η0/ηs)

)
(5.10)

it follows that,

[η]c = [η] + k′SC[η]
2 c + · · · (5.11)

As discussed in some detail by Pamies et al. (2008) under the special circumstances

when k′SC[η]
2 c ≈ 0, or kH ≈ 1/3 (see Equation 5.9), the intrinsic viscosity can be

determined from the Solomon-Ciută equation (Equation 5.11) by measuring the

viscosity at a single concentration, without the necessity of an extrapolation proce-

dure. The departure of [η]c from a constant value when [η]c is plotted as a function

of c, can be seen as indicating the departure of kH from a value of 1/3.

Plots of the relevant variables in the linear versions of the Huggins equation

(Equation 5.6), the Kraemer equation (Equation 5.7) and the Solomon-Ciută equa-

tion (Equation 5.11), as a function of concentration, can now be interpreted in the

light of the discussion above. Figure 5.3 displays plots of ηsp/c, ln(η0/ηs)/c, and

[η]c, obtained using results of the zero shear rate solution viscosity measurements

described previously in Section 5.2 (see Table 5.1), as a function of concentration.

Values of [η] obtained by extrapolating linear fits to the finite concentration data

to the limit of zero concentration are listed in Table 5.2, where the subscript on [η]

indicates the equation used to obtain the value. The mean values of [η] obtained

from the three methods are also indicated in the table. It is clear that the three

extrapolation methods give values that are fairly close to each other.
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Figure 5.3: Determination of [η] for 25 kbp and T4 DNA. The left and right column of fig-
ures represent 25 kbp and T4 DNA respectively at different temperatures (indicated within
the figures). The solid, dashed and dotted lines are least-squares linear fits to the data
points extrapolated to zero concentration in accordance with the Huggins, Kraemer and
Solomon-Ciută equations, respectively. In each figure, the mean value of [η] obtained by
extrapolating data for [ln(η0/ηs)]/c (open diamonds), ηp0/cηs (opaque squares) and [η]c
(half-filled triangles), is represented by an opaque circle (the common intercept on the y-
axis). Note that the unit of y-axis is ml/mg, the same as [η].
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Figure 5.4: Temperature dependence of [η] for (a) 25 kbp DNA and (b) T4 DNA. The lines
are the least-squares linear fits to the data.

Recently, Rushing and Hester (2003) have shown that the intrinsic viscosity of a

number of different polymer-solvent systems scales linearly with inverse temper-

ature, in line with a relationship proposed originally by Stockmayer and Fixman

(1963). Figure 5.4 indicates that the mean value of [η], for both the DNA samples,

scales linearly with inverse temperature, as T increases from Tθ to good solvent

conditions, in agreement with the observations of Rushing and Hester (2003) for

synthetic polymer solutions.

As discussed earlier, the values of kH can be obtained from the slopes of the

lines in Figure 5.3. While it is obtained directly from the slope of the line through

the Huggins data, Kraemer’s data gives kH from kK (see Equation 5.5), and the

Solomon-Ciută data gives kH from k′SC (see Equation 5.9). The values of kH obtained

from these different methods are listed in Table 5.3. We first discuss the data for T4

DNA, which appears to be more in line with previous observations on synthetic

polymer solutions.

Pamies et al. (2008) have recently tabulated values of kH for several systems by

collating data reported previously in literature (see Table 1 in Pamies et al. (2008)).

For flexible polymers, kH is observed to lie in the range 0.4 − 0.7 for θ-solvents,

and in the range 0.2 − 0.4 for good solvents. Clearly, values of kH reported for

T4 DNA in Table 5.3 lie in the expected ranges for θ and good solvents, with the

θ-solvent value greater than that for good solvents. The three different means of
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Figure 5.5: (a) Dependence of the specific viscosity ηsp on the non-dimensional concentra-
tion c[η]H, and, (b) dependence of the dimensionless ratio ηsp/c[η]H on c[η]H, for the two
DNA used in this work at different absolute concentrations, each of which is at different
temperatures in good solvents.

estimating kH also give values reasonably close to each other. Since kH ≈ 1/3, we

expect from the Solomon-Ciută equation (Equation 5.11) that the slope of the line

through values of [η]c is close to zero. This is indeed the case, as can be seen from

Figures (b), (d) and (f) for T4 DNA in Figure 5.3.

When terms of order ([η]c)3 are negligible, we expect a plot of ηsp versus c[η]

to depend quadratically on c[η] for increasing values of c[η] (see Equation 5.3). The

departure from linearity can be observed for the T4 DNA data in Figure 5.5 (a) for

c[η] & 0.3 (filled symbols). The importance of the quadratic term can be seen more

clearly by plotting ηsp/(c[η]) versus (c[η]), as shown in Figure 5.5 (b), since,

ηsp

c[η]
= 1 + kH c[η]. (5.12)

The data for T4 DNA is scattered around a line with slope = 1/3, as expected from

the values of kH listed for T4 DNA in Table 5.3.

Values of kH extracted from the dilute solution viscosity data for 25 kbp DNA

using the Huggin’s method have a greater degree of uncertainty associated with

them compared to those for T4 DNA (see first column in Table 5.3). Even though

the values obtained from the Kraemer and Solomon-Ciută equations lie closer to

the expected range of values for good solvents, the θ-solvent values are smaller
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than the good solvent values. Figure 5.5 (a) indicates that the dependence of ηsp

on c[η]H for 25 kbp DNA appears to be linear in the entire range of values of c[η]H

observed here (empty symbols), which suggests that it would be harder to extract

the values of kH with confidence using the Huggin’s method. This is also clearly

reflected in Figure 5.5 (b), where the data indicates that the value of the Huggins

constant is highly scattered, and in most cases smaller than 1/3. More extensive

measurements at a larger range of concentrations would be required to obtain kH

with greater accuracy for 25 kbp DNA.

The intrinsic viscosity data obtained at various temperatures can be used to cal-

culate the viscosity radius of 25 kbp and T4 DNA. Of the two properties of interest

in the present work, namely, UηR and αη , the latter is directly calculable from ex-

perimental measurements. Values of αη for the two DNA samples are reported in

Table 5.2. On the other hand, the direct estimation of UηR at different values of z

requires the additional knowledge of Rg as a function of z. While the prediction of

UηR here by simulations is based on the determination of both the viscosity and the

radius of gyration as a function of solvent quality, we do not have experimental in-

formation on Rg for the DNA samples studied here. The ratio (UηR/Uθ
ηR), however,

which is also equal to the ratio of the Flory-Fox constants in good and θ-solvents,

can be calculated without a knowledge of Rg. From Equations 1.6 and 5.2, we can

write

αη =
Rη

Rg

Rg

Rθ
g

Rθ
g

Rθ
η

=

(
UηR

Uθ
ηR

)1/3

αg, (5.13)

or
UηR

Uθ
ηR

=
Φ
Φ0

=

(
αη

αg

)3

. (5.14)
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The swelling αη is known from the present experimental measurements at various

values of M and T. Since, in Chapter 4, the mapping between T and M and the

solvent quality parameter z has already been established, αη can be determined as

a function of z, while αg can be obtained from the following equation (Domb and

Barrett, 1976; Schäfer, 1999; Kumar and Prakash, 2003),

αg = (1 + az + bz2 + cz3)m/2 (5.15)

at any value of z. As a result, experimentally determined values of (UηR/Uθ
ηR)

and αη for DNA can be compared at identical values of the solvent quality z, with

earlier observations for synthetic polymer solutions and with results of Brownian

dynamics simulations, as discussed in the following subsections.

5.3.2 Solvent quality crossover of UηR

Experimental observations of the dependence of the Flory-Fox constant on solvent

quality for a number of different polymer-solvent systems have been summarised

in the recent review by Jamieson and Simha (2010). The general consensus appears

to be that the ratio Φ/Φ0 decreases rapidly with increasing solvent quality, and

with increasing molecular weight in good solvents. Using Equation 5.14, Jamieson

and Simha (2010) argue that analytical predictions of the z dependence of αη and

αg by Barrett (1984), and the experimental observations of these crossover func-

tions by Tominaga et al. (2002) support these conclusions on the dependence of the

ratio Φ/Φ0 on solvent quality. Very recently, Prakash and coworkers (Ahirwal,

2009; Pan et al., 2014) have carried out exact simulations predictions by extrapo-

lating finite chain data to the long chain limit, while simultaneously keeping the

hydrodynamic interaction parameter h∗ and solvent quality z constant, that lead

to asymptotic predictions of crossover behaviour of UηRin the non-draining limit

(see Appendix B). Though the simulations are not a part of the current work, it

is important to understand the predictions of solvent quality dependence of UηR,

particularly for comparison with the experiments.
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Figure 5.6: Predicted values of the universal viscosity ratio UηR as a function of the solvent
quality parameter z. Black squares are the results of BD simulations obtained by extrap-
olating finite chain data to the long chain limit (Ahirwal, 2009; Pan et al., 2014). The red
curve is a fit to the simulation data with the expression given in Equation 5.16. Reproduced
with permission from Ahirwal (2009); Pan et al. (2014).

Figure 5.6 displays the dependence on z of the asymptotic values of UηR ob-

tained in this manner (Ahirwal, 2009; Pan et al., 2014). Starting at Uθ
ηR = 1.49± 0.1

at z = 0, the universal ratio appears to decrease rapidly with increasing values of

z, levelling off to an excluded volume limit value of U∞
ηR = 1.1± 0.1 for z & 5. This

behaviour is in agreement with the qualitative trend expected from experimental

observations Jamieson and Simha (2010).

The dependence of the swelling αη on the solvent quality z, predicted by BD

simulations, can be represented by a functional form identical to that for αg, de-

scribed elsewhere (Kumar and Prakash, 2003), with values of the parameters a, b

and c as given in Table 5.4. The value of the exponent m, however, is the same in the

expressions for both the crossover functions αη and αg, since (as can be seen from

Equation 5.14), this must be true in order for UηR to level off to a constant value for

large values of z, as observed in the BD simulations displayed in Figure 5.6. Using
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Table 5.4: Values of the parameters a, b, c and m in the functional form f (z) = (1 +
az + bz2 + cz3)m/2 used to fit the Brownian dynamics simulations data for the crossover
functions αg (Kumar and Prakash, 2003), αη(Current work) and αH (see Chapter 4).

αg αη αH
a 9.5286 5.4475 ± 1.776 9.528
b 19.48 ± 1.28 3.156 ± 1.982 19.48
c 14.92 ± 0.93 3.536 ± 0.277 14.92
m 0.133913 ± 0.0006 0.1339 0.0995 ± 0.0014

the functional forms for αη and αg, and Equation 5.14, it follows that,

UηR = Uθ
ηR

(
1 + aηz + bηz2 + cηz3

1 + agz + bgz2 + cgz3

)3m/2

(5.16)

where, the suffixes on the parameters a, b and c indicate the relevant crossover

function. The red curve in Figure 5.6 is a fit to the BD simulation data using Equa-

tion 5.16, along with Uθ
ηR = 1.49, and the appropriate values for the fitting pa-

rameters listed in Table 5.4. As seen from Figure 5.6, the fit is very good, as can be

expected from the excellence of the fits for the crossover functions for αη and αg.

Tominaga et al. (2002) have reported the crossover behaviour of αη in terms of

a solvent quality parameter they denote as z̃. Since the data in Tominaga et al.

(2002) is for a wide range of polymer-solvent systems, including helical polymer

chains, the definition of z̃ is more general than the quantity z used here. How-

ever, as pointed out in by Tominaga et al. (2002), z̃ = z in the random-coil limit.

Additionally, Tominaga et al. (2002) have also directly plotted log α3
η versus log α3

g.

As a result, using Equation 5.14, the dependence of (UηR/Uθ
ηR) on z can be de-

termined for the polymer-solvent systems studied in Tominaga et al. (2002). As

discussed earlier in subsection 5.3.1, this ratio can also be determined for the 25

kbp and T4 DNA samples studied here. Figure 5.7 displays a comparison of these

experimental observations, with the curve fit to the BD simulations data. The ex-

perimental data can be seen to be scattered around the BD simulation curve, and

closely follow the trend of rapid decrease in (UηR/Uθ
ηR) with increasing solvent

quality. In particular, experimental measurements for the two DNA samples lie
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Figure 5.7: Comparison of experimental observations of the universal viscosity ratio UηR as
a function of the solvent quality parameter z, obtained from current measurements on DNA
solutions and data collated in Tominaga et al. (2002). The solid curve is a fit to experimental
data using Equation 5.16.

close to the observations for synthetic polymer-solvent systems, and to the BD

simulation curve. For large values of z, Equation 5.16 implies that the excluded

volume limit value of the ratio, from fitting Brownian dynamics simulations is,

(U∞
ηR/Uθ

ηR) =
(
cη/cg

)3m/2
= 0.749. Experimental measurements appear to indi-

cate a value of the ratio, Φ/Φ0 ≈ 0.773 (Jamieson and Simha, 2010).

5.3.3 Swelling of the viscosity radius

A comparison of the experimental measurements of αη as a function of z, for 25

kbp and T4 DNA obtained in the present work, with the results of current BD sim-

ulations, and with previous measurements on synthetic polymer-solvent systems

collated in Tominaga et al. (2002), is displayed in Figure 5.8.

The excellent agreement between the swelling of DNA, and synthetic polymer-

solvent systems implies that the swelling of the viscosity radius of DNA, in dilute

solutions with excess salt, is universal. This was also observed with the swelling

of the hydrodynamic radius of DNA in similar solutions (see Chapter 4). Impor-
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Figure 5.8: Swelling of the viscosity radius in the crossover region from θ to good solvents.
The filled blue circles are the predictions of the current BD simulations. The line represents
the fitting function described in the caption to Table 5.4. Experimental measurements of
the swelling of 25 kbp and T4 DNA are represented by the filled hexagons and diamonds,
respectively, while the remaining symbols represent data on various synthetic polymer-
solvent systems collated in Tominaga et al. (2002).

tantly, the collapse of the data onto a master plot validates the estimation of the

θ-temperature to be Tθ ≈ 15◦C, as shown in Chapter 3, and the determination of

the solvent quality z, at any given molecular weight M and temperature T, for

DNA solutions in the presence of excess salt. The agreement between experimental

observations and current BD simulations (Ahirwal, 2009; Pan et al., 2014) displayed

in Figure 5.8 suggests that the simulation framework is highly suited to obtain ac-

curate predictions of universal behaviour of dilute polymer solutions in the entire

solvent quality crossover regime.

5.4 Conclusions

The intrinsic viscosities of dilute DNA solutions, of two different molecular weight

samples (25 kbp and T4 DNA), have been measured at different temperatures in a

commonly used solvent under excess salt conditions. The measurements have been

used to calculate the swelling of the viscosity radius αη and the universal viscosity
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ratio UηR, as a function of the solvent quality z. Also, the experimental results

are compared with the universal predictions of these crossover functions obtained

with the help of BD simulations (Ahirwal, 2009; Pan et al., 2014) that incorporate

fluctuating hydrodynamic interactions, in the non-draining limit.

The experimental measurements of UηR and αη for the DNA solutions are found

to collapse onto previously reported data for synthetic polymer-solvent systems,

and onto the BD simulations predictions. The close agreement between prior ex-

periments, current experiments and simulations suggests that the DNA solutions

in the presence of excess salt exhibit universal behaviour in line with similar obser-

vations for synthetic polymer solutions and the model used by our group (Ahirwal,

2009; Pan et al., 2014), incorporates all the important mesoscopic physics necessary

to capture the universal behaviour of equilibrium static and dynamic properties of

dilute polymer solutions.



6
Zero Shear Rate Viscosity and Scaling in

Semidilute Solutions

6.1 Introduction

Like dilute polymer solutions, various large scale properties of semidilute solutions

too obey power law scaling in the limits of θ and good solvents. In semidilute solu-

tions, for viscosity, one observes for instance, ηp0/ηs ∼ (c/c∗)2 in θ solvents, while

ηp0/ηs ∼ (c/c∗)1/(3ν−1) in very good solvents (de Gennes, 1979; Rubinstein and

Colby, 2003). Power law scaling is, however, not obeyed in the crossover regime

between θ and very good solvents. Instead, the polymer solution in this regime is

described in terms of universal crossover scaling functions (Schäfer, 1999). Though

in case of dilute solutions, the nature of these scaling functions is very well under-

stood in terms of scaling arguments, analytical theories, experimental observations

and computer simulations (see Section 5.1); to the best of our knowledge, a compre-

hensive characterization of the crossover scaling functions for semidilute polymer

solutions is yet to be achieved. In this work, the systematic measurement of the

crossover scaling function for the zero shear rate viscosity of semidilute polymer

solutions is discussed, using DNA molecules as model polymers. It is shown that

67
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the crossover behaviour of the zero shear rate viscosity can also be described in

terms of a power law, albeit with an exponent that depends on where the solution

lies in the crossover regime. This behaviour is shown to be in quantitative agree-

ment with recent Brownian dynamics simulation predictions (Jain et al., 2012a,b).

From the definition of the solvent quality parameter z (see Equation 1.1), it may

be noted that z = 0 in θ-solvents and z→ ∞ in very good solvents, so that the scal-

ing of many dilute polymer solution properties in the crossover regime is typically

represented in terms of functions of z (Schäfer, 1999; Rubinstein and Colby, 2003).

For instance, the swelling of the gyration radius αg, can be expressed as function of

z in the crossover regime, as shown in Equation 5.15, where the constants (a, b, c,

m, etc.) are either theoretically or experimentally determined constants (Domb and

Barrett, 1976; Schäfer, 1999; Kumar and Prakash, 2003). This expression reduces to

the appropriate power laws in the limits z → 0 and z → ∞. The crossover scal-

ing functions for semidilute solutions have an additional dependence on the scaled

concentration c/c∗. We expect, for instance, ηp0/ηs = f (z, c/c∗) in the double

crossover regime of temperature and concentration. The specific power law forms

of these scaling functions in the phase space of solvent quality and concentration,

far away from the crossover boundaries, has been predicted previously by scaling

theories (de Gennes, 1979; Grosberg and Khokhlov, 1994; Rubinstein and Colby,

2003). More recently, using scaling theory based on the blob picture of polymer

solutions, Prakash and coworkers (Jain et al., 2012a,b) have made a number of pre-

dictions regarding the behaviour of scaling functions in the entire (z, c/c∗) phase

space, and, by carrying out Brownian dynamics simulations, have demonstrated

the validity of their predictions for the scaling of the polymer size and diffusivity

in the semidilute regime. In this work, we investigate experimentally, the scal-

ing of the zero shear rate viscosity of semidilute polymer solutions in the double

crossover regime of the variables z and c/c∗, to examine if the observed scaling

behaviour is indeed as predicted by blob scaling arguments.

Two central conclusions from Jain et al. (2012a) are of relevance to this work.

The first is that there is only one unique scaling function in the double crossover
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regime of semidilute polymer solutions. In other words, if the scaling function for

any one property is known, the scaling function for other properties can be inferred

from it. The second conclusion, which comes from the results of Brownian dynam-

ics simulations (since scaling theories cannot predict precise functional forms), is

that the crossover scaling functions (in a significant range of values of c/c∗) can

also be represented as power laws, but with an effective exponent that depends on

z. By combining these two observations, one can anticipate that in the semidilute

regime, ηp0/ηs ∼ (c/c∗)1/(3νeff(z)−1), where the effective exponent νeff(z) is identi-

cal to the exponent which characterises the power laws for both the polymer size

and the diffusivity. The aim of the experiments carried out here is to establish if

such is indeed the case.

In order to examine the scaling behaviour of the zero shear rate viscosity of

semidilute polymer solutions in the double crossover regime, it is necessary to

measure the viscosity as a function of concentration and temperature for a range

of molecular weights, and to represent this behaviour in terms of z and c/c∗. As

pointed out in Chapter 1, c∗ depends on Rg (Rubinstein and Colby, 2003), which

according to the function fg(z), also varies between θ and very good solvent condi-

tions. Therefore, it is evident that a comparison of the experimental data with the

BD simulation predictions or scaling predictions for semidilute solutions is possi-

ble only with the knowledge of the solvent quality z at given values of T and M.

Also, the determination of the scaled concentration c/c∗, that determines the loca-

tion of a solution in the concentration crossover between dilute and concentrated

solutions, will depend on the estimates of z in the limit of dilute solutions. To ad-

dress these issues, we have already established a method to accurately estimate the

θ-temperature and consequently the solvent quality for DNA solutions in Chap-

ters 3 and 4. In the current work, by systematically measuring the zero shear rate

viscosities for semidilute solutions of 25 kbp, λ-phage and T4 DNA, across a range

of temperatures and concentrations, we show that the scaling predictions of Jain

et al. (2012a) are correct. By doing so, we also simultaneously assert the universal

nature of double-stranded DNA solutions.
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The plan of the chapter is as follows. In various subsections of Section 6.3, the

double crossover behaviour of semidilute solutions is examined. First it is demon-

strated that at the θ-temperature, the power law scaling is obeyed, as predicted by

blob scaling theory. The dependence of the zero shear rate viscosity on z and c/c∗

is then examined in the light of the scaling predictions of Jain et al. (2012a), and

the validity of these predictions in the double crossover regime is established. Fi-

nally, in Section 6.4, we compare measurements of the longest relaxation time λη

obtained in this work, defined in terms of the zero shear rate viscosity, with the

recent measurements of the longest relaxation time λ1 by Steinberg and cowork-

ers (Liu et al., 2009), who observed the relaxation of stained T4 DNA molecules

in semidilute solutions following the imposition of a stretching deformation. In

Section 6.5, we summarize the principal conclusions of the present work.

6.2 Methodology

6.2.1 Preparation of DNA solutions

We have measured the shear viscosities of three DNA samples: 25 kbp, λ-phage

and T4 DNA at various temperatures (10 to 44.6◦C) and concentrations (0.023 to

0.441 mg/ml) in the semidilute regime. The procurement of the T4 DNA and λ-

DNA, the protocols for preparation and purification of the 25 kbp DNA solutions

including the solvent used, and the maximum concentrations used for T4 and λ-

DNA have been discussed in Section 2.1. The same maximum concentration was

used for 25 kbp DNA as mentioned in Section 5.2.

6.2.2 Shear rheometry

Details about the rheometer used, measuring principle, temperature sensitivity,

shear rheometry procedure, precautions taken while measurements, instrument

calibration, shear rate range employed and avoidance of shear ramp, sample equi-

libration time, dependence on rheometer geometry etc., have been elaborated in

Section 2.4.
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Table 6.1: Solvent quality parameter z and the overlap concentration c∗ (in mg/ml) for
several DNA samples, at various temperatures. The θ-temperature is taken to be 15◦C.

15◦C 20◦C 25◦C 30◦C 35◦C
z 0 0.11 0.22 0.32 0.43

2.9 kbp
c∗ 0.371 0.313 0.278 0.253 0.234

z 0 0.16 0.31 0.46 0.60
5.9 kbp

c∗ 0.251 0.201 0.173 0.155 0.142

z 0 0.19 0.37 0.54 0.71
8.3 kbp

c∗ 0.214 0.165 0.141 0.125 0.114

z 0 0.22 0.43 0.63 0.83
11.1 kbp

c∗ 0.184 0.139 0.117 0.103 0.093

z 0 0.33 0.64 0.95 1.24
25 kbp

c∗ 0.123 0.084 0.068 0.059 0.052

z 0 0.44 0.86 1.27 1.66
45 kbp

c∗ 0.092 0.058 0.045 0.039 0.034

z 0 0.69 1.37 2.03 2.66
114.8 kbp

c∗ 0.057 0.031 0.023 0.019 0.017

z 0 1.11 2.18 3.22 4.22
289 kbp

c∗ 0.036 0.016 0.012 0.010 0.008

6.3 Solvent quality crossover of the zero shear rate viscosity

6.3.1 Zero shear rate viscosity of semidilute DNA solutions

The scaling behaviour of the zero shear rate viscosity of semidilute polymer so-

lutions can be determined by measuring the viscosity as a function of concentra-

tion and temperature for a range of molecular weights, and then representing this

behaviour in terms of the crossover variables z and c/c∗. In Chapter 3, we have

shown that for the solvent used in current experiments, the θ-temperature of DNA

is 14.7± 0.5 ◦C. A value of Tθ = 15◦C has been used in all the calculations carried

out here, since measurements have been done at this temperature. We have also

established a procedure for determining the solvent quality z for DNA in the same

solvent (see Chapter 4). Representative values of z, obtained by this procedure at

various values of M and T and for several DNA, are displayed in Table 6.1.
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The estimation of the overlap concentration, c∗ depends on the radius of gy-

ration, Rg (see Equation 1.8). Rg can be determined from the expression Rg =

Rθ
g αg(z), for any M and T. Since the chain confirmations at the θ-temperature are

expected to be ideal Gaussian chains, the analytical value for Rg at Tθ is, Rθ
g =

Lo/
√

6Nk. The respective values of Lo and Nk have been consistently used for

all the molecular weights used here, to determine Rθ
g (as displayed in Table 2.1).

Further, since we know z, αg can be determined from Equation 5.15, where the con-

stants, a = 9.528, b = 19.48, c = 14.92, and m = 0.1339 have been determined

earlier by Brownian dynamics simulations (Kumar and Prakash, 2003). Represen-

tative values of c∗ found using this procedure, at various M and T and for several

DNA, are displayed in Table 6.1. Note that we expect the estimated values of Rg

to be close to the actual values for DNA, since measured crossover values for the

hydrodynamic and viscosity radii agree with the results of Brownian dynamics

simulations at identical values of z (as demonstrated in Chapters 4 and 5).

Figure 6.1 displays examples of the dependence of the measured steady state

shear viscosity on the shear rate. The zero shear rate viscosities have been deter-

mined by the same procedure as discussed in Section 5.2. All the zero shear rate

viscosities determined in this manner, across the range of molecular weights, tem-

peratures and concentrations examined here, are displayed in Table 6.2.

6.3.2 Power law scaling at the θ-temperature

Under θ-solvent conditions, the polymer contribution to the zero shear rate vis-

cosity is expected to obey the following scaling law in the semidilute unentangled

regime (Jain et al., 2012a),
ηp0

η∗p0
∼
( c

c∗
)2

, (6.1)

where, η∗p0 is the value of ηp0 at c = c∗. Jain et al. (2012a) have shown that it

is more convenient to used η∗p0 rather than ηs as the normalising variable in the

development of some of their scaling arguments. Additionally, it ensures that the

ratio ηp0/η∗p0 = 1 when c/c∗ = 1, for all the systems studied here. Clearly, when the

bare zero shear rate viscosity versus concentration data (displayed in Figure 6.2),

is replotted in terms of scaled variables in Figure 6.3, data for different molecular
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Figure 6.1: Determination of the zero shear rate solution viscosity η0. The shear rate de-
pendence of solution viscosity η in the region of low shear rate is extrapolated to zero shear
rate (a) for 25 kbp DNA at a fixed concentration, for a range of temperatures and (b) for T4
DNA at a fixed temperature, for a range of concentrations. The extrapolated values in the
limit of zero shear rate are indicated in the legends.
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Table 6.2: Zero shear rate steady state viscosities (mPa.s) for 25 kbp, λ-phage, and T4 DNA
at various concentrations (mg/ml) and temperatures (◦C) in the semidilute regime.

25 kbp
c T c/c∗ η0

0.441 13 2.12 44.2 ± 0.3
15.8 3.9 39.3 ± 0.5
20 5.13 33.5 ± 0.2
24.3 6.04 28.8 ± 0.2
30 7 23.5 ± 0.2
37.2 7.88 18.4 ± 0.1
44.6 8.65 14.5 ± 0.1

0.364 13 1.75 22.6 ± 0.1
15.8 3.22 20.4 ± 0.1
20 4.23 17.7 ± 0.1
24.3 4.99 15.5 ± 0.1
30 5.78 12.8 ± 0.1
37.2 6.5 10.5 ± 0.1
44.6 7.14 8.5 ± 0.01

0.315 13 1.51 15.8 ± 0.1
15.8 2.79 14.7 ± 0.04
20 3.66 12.7 ± 0.1
24.3 4.32 11.2 ± 0.01
30 5 9.3 ± 0.03
37.2 5.63 7.7 ± 0.05
44.6 6.18 6.6 ± 0.05

0.112 18 1.18 2.7 ± 0.02
21 1.37 2.5 ± 0.01
25 1.56 2.3 ± 0.02
30 1.78 2 ± 0.02
35 1.93 1.8 ± 0.01

0.07 30 1.11 1.5 ± 0.01
35 1.21 1.5 ± 0.01

λ-DNA
c T c/c∗ η0

0.5 10 – 408.7 ± 9.7
13 – 357.7 ± 5.9
21 9.26 334.8 ± 10
25 10.87 291.2 ± 15.1

0.315 10 – 82.6 ± 0.5
13 – 71.5 ± 2.1
21 5.83 61.4 ± 1.05
25 6.85 57.9 ± 0.9

0.2 10 – 19.4 ± 0.2
13 – 16.2 ± 0.7
15 2.25 16 ± 0.1
21 3.7 14.6 ± 0.3
25 4.35 12.3 ± 0.6
30 4.88 11.3 ± 0.3
35 5.41 10 ± 0.2

0.125 10 – 9.1 ± 0.1
13 – 8 ± 0.1
21 2.31 6.1 ± 0.1
25 2.72 5.6 ± 0.2
30 3.05 5 ± 0.1
35 3.38 4.4 ± 0.1

0.08 10 – 4.4 ± 0.1
13 – 4.1 ± 0.02
21 1.48 3.4 ± 0.02
25 1.74 3.1 ± 0.01
30 1.95 2.8 ± 0.01
35 2.16 2.5 ± 0.03

0.05 25 1.09 1.9 ± 0.01
30 1.22 1.7 ± 0.01
35 1.35 1.6 ± 0.02

T4 DNA
c T c/c∗ η0

0.214 13 2.08 128.4 ± 0.1
25 10.82 95.7 ± 0.4
30 11.89 85.3 ± 0.4
35 13.76 75.6 ± 0.4

0.148 10 – 66.7 ± 0.3
13 1.44 58.5 ± 0.4
15 3.08 55.9 ± 0.7
18 4.93 50.7 ± 0.5
21 6.14 46.7 ± 0.5
25 7.48 42.5 ± 0.4
30 8.22 37.1 ± 0.2
35 9.52 32.5 ± 0.3

0.094 10 – 21.9 ± 0.6
13 0.57 20.2 ± 0.8
15 1.96 19.2 ± 0.6
18 3.13 17.6 ± 0.4
21 3.92 16.6 ± 0.1
25 4.75 14.6 ± 0.3
30 5.22 12.9 ± 0.2
35 6.05 11.6 ± 0.2

0.059 15 1.23 10.2 ± 0.2
18 1.97 9.6 ± 0.1
21 2.46 8.9 ± 0.1
25 2.98 8.1 ± 0.03
30 3.28 7.3 ± 0.1
35 3.79 6.6 ± 0.1

0.038 18 1.27 4.9 ± 0.2
21 1.58 4.6 ± 0.2
25 1.92 4.2 ± 0.2
30 2.11 3.8 ± 0.2
35 2.44 3.3 ± 0.05

0.023 22 1 2.1 ± 0.01
24.5 1.1 2 ± 0.01

weights of DNA collapse on top of each other, with the viscosity ratio depending

linearly on c/c∗ in the dilute regime, followed by the expected power law scaling

(with an exponent of 2) in the semidilute regime. Note that the values of viscosity

at Tθ = 15◦C, displayed in Figure 6.3, were obtained by interpolation from values at

nearby T reported in Table 6.2.
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Figure 6.2: Dependence of the raw polymer contribution to viscosity ηp0 on raw concentra-
tion c for 25 kbp, λ and T4 DNA, at the θ-temperature.
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Figure 6.3: Dependence of the viscosity ratio ηp0/η∗p0 (where η∗p0 is the value of ηp0 at
c = c∗) on the scaled concentration c/c∗, for 25 kbp, λ and T4 DNA, at the θ-temperature.
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The semidilute unentangled regime is typically expected to span the range from

c/c∗ = 1 to 10 (Graessley, 1980; Rubinstein and Colby, 2003). Figure 6.3 suggests

that for θ-solutions, the onset of the semidilute regime for the viscosity ratio, which

is dynamic property that is influenced by the presence of hydrodynamic interac-

tions, occurs with a relatively small crossover at a concentration less than c/c∗ = 1.

Further, T4 DNA, which is the longest molecule in the series studied here, appears

to follow the semidilute unentangled scaling for the largest concentration range,

while the 25 kbp and λ-phage DNA crossover into the entangled regime beyond a

concentration c/c∗ & 3. The difference in the behaviour of the different DNA can

be understood by the following qualitative argument.

Chain entanglement is likely to occur when monomers from different chains

interact with each other. In a semidilute solution, this would require a monomer

within a concentration blob of a particular chain encountering a monomer within

the concentration blob of another chain. A simple scaling argument suggests that

at a fixed value of c/c∗, such encounters become less likely as the molecular weight

of the chains increases. For a fixed value of c/c∗, it can be shown that the num-

ber of concentration blobs in a chain remains constant, independent of the molec-

ular weight of the chain (Jain et al., 2012a). As a result, the size of a concentra-

tion blob increases with increasing molecular weight, while at the same time the

concentration of monomers within a blob reduces. This decreasing concentration

within a blob makes entanglements less likely to occur in systems with longer

chains compared to systems with shorter chains, at the same value of c/c∗. This

can also be seen from the fact that, since in a semidilute solution the concentration

within a blob cblob is the same as the overall solution concentration c, we can write

cblob = (c/c∗)× c∗ ∼ (c/c∗) M1−3ν .

The scaling of the zero shear rate viscosity in semidilute solutions under θ sol-

vent conditions, displayed in Figure 6.3, has been observed previously (Rubinstein

and Colby, 2003) for synthetic polymer solutions. However, there have been very

few explorations in the experimental literature of the scaling of the zero shear rate

viscosity in the crossover region above the θ-temperature (Berry, 1996). The ex-
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Table 6.3: Temperature range investigated in the shear experiments for different molecular
weights. Temperatures in each row correspond to the same solvent quality.

T4 DNA λ-DNA 25 kbp DNA z
15◦C 15◦C 15◦C 0

16.8◦C 18.4◦C 19.7◦C 0.3
19.2◦C 22.9◦C 26.1◦C 0.7
21.7◦C 27.5◦C 32.8◦C 1.1
25.4◦C 34.8◦C 43.4◦C 1.7

perimental results that we have obtained in this regime are discussed within the

framework of scaling theory in the section below.

6.3.3 Power law scaling in the crossover regime

The concentration dependence of the scaled polymer contribution to the viscosity

in the semidilute regime, ηp0 /η∗p0, for three different molecular weights of DNA, is

presented in Figure 6.4, for four different values of the solvent quality z. In order to

maintain the same value of solvent quality across the various molecular weights, it

is necessary to carry out the experiments at the appropriate temperature for each

molecular weight (see Table 6.3). This procedure would not be possible without

the systematic characterisation of solvent quality. Remarkably, Figure 6.4 indicates

that, provided z is the same, the data collapses onto universal power laws, inde-

pendent of DNA molecular weight. Also worth noting is that while the crossover

into entangled regime for θ-solutions occurs at around c/c∗ = 3, Figure 6.4 appears

to suggest that the threshold for the onset of entanglement effects increases with

increasing z.

As discussed earlier in Section 6.1, recent scaling theory and Brownian dynam-

ics simulations (Jain et al., 2012a) suggest that the viscosity ratio should scale ac-

cording to the power law,

ηp0

η∗p0
∼
( c

c∗
)1/(3νeff(z)−1)

, (6.2)

where, the dependence of the effective exponent νeff on the solvent quality z should
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Figure 6.4: Dependence of the viscosity ratio ηp0 /η∗p0 on the scaled concentration c/c∗ in
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Table 6.4: Values of the effective exponent νeff(z) determined experimentally at z = 0.3, 0.7,
1.1, 1.7 and by Brownian dynamics simulations at z = 0.7, 1.7

z 25 kbp λ-DNA T4 DNA
∂ ln(ηp0 /η∗p0)

∂ ln(c/c∗)
νeff νeff

T T T (experiments) (experiments) (BDS)
0.3 19.7◦C 18.4◦C 16.8◦C 1.84 ± 0.04 0.51 ± 0.01 –
0.7 26.1◦C 22.9◦C 19.2◦C 1.75 ± 0.04 0.52 ± 0.01 0.54 ± 0.02
1.1 32.8◦C 27.5◦C 21.7◦C 1.70 ± 0.07 0.53 ± 0.01 –
1.7 43.4◦C 34.8◦C 25.4◦C 1.64 ± 0.07 0.54 ± 0.01 0.58 ± 0.03

be identical to that which characterizes the power laws for both the polymer size

and the diffusivity. From the set of values of z for which Brownian dynamics sim-

ulations results have been reported by Jain et al. (2012a), there are two values at

which this conclusion can be tested by comparison with experiment (z = 0.7 and

z = 1.7). [Note that at each value of z, the experimental value of νeff can be deter-

mined by equating the slope of the fitted lines in Figure 6.4 to 1/(3 νeff -1).] The

values of νeff(z) listed in Table 6.4, at z = 0.7 and 1.7, suggest that simulation and

experimental exponents agree with each other to within error bars.

6.4 Universal ratio of relaxation times

Blob scaling arguments can be used to show that, away from the crossover bound-

aries, the concentration dependence of the longest relaxation time, λ1 , obeys the

power law,

λ1 ∼
( c

c∗
)(2−3ν)/(3ν−1)

. (6.3)

In very good solvents, since ν ≈ 0.59, this would imply λ1 ∼ (c/c∗)0.3, while in

θ-solutions, λ1 ∼ c/c∗.

Liu et al. (2009) have recently examined the concentration dependence of λ1 by

studying the relaxation of stretched single T4 DNA molecules in semidilute solu-

tions. They find that at 22◦C, the longest relaxation time obeys the power law,

λ1

λ1,z
∼
( c

c∗
)0.5

, (6.4)
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where, λ1,z is the longest relaxation time in the dilute limit. This clearly suggests

that, (i) for the solution of T4 DNA considered in their work, 22◦C is in the crossover

regime, and (ii) the relaxation time also obeys a power law in the crossover regime

(as observed here for viscosity), with an effective exponent νeff ≈ 0.56.

It is worth noting that, for T4 DNA molecules dissolved in the solvent used in

the present work, 22◦C corresponds to a values of the solvent quality parameter z

= 1.17.

It is common to define an alternative large scale relaxation time λη , based on

the polymer contribution to the zero shear rate viscosity ηp0, as shown in Equa-

tion 1.9. It is straight forward to show that, in the semidilute unentangled regime,

λη obeys the same power law scaling with concentration as obeyed by λ1 (see Equa-

tion 6.3). Figure 6.5 compares the concentration dependence of the ratio λ1/λ1,z in

the semidilute regime, obtained by Liu et al. (2009), with that of the ratio λη/λη,z,

measured by the current experiments at 22◦C. Here, λη,z is a large scale relaxation

time in the dilute limit, based on [η] (Sunthar et al., 2005)

λη,z =
M[η] ηs

NA kB T
. (6.5)

It is clear that both relaxation times exhibit identical scaling with concentration in

the semidilute regime at 22◦C.

It is well known that for dilute polymer solutions, the ratio of the two large scale

relaxation times ,

Uηλ =
λη,z

λ1,z
, (6.6)

is a universal constant, independent of polymer and solvent chemistry. Predicted

values of Uηλ vary from 1.645 by Rouse theory to 2.39 by Zimm theory, with pre-

dictions by other approximate theories lying somewhere in between (Kröger et al.,

2000). Recently, Somani et al. (2010) have predicted the dependence of Uηλ on the

solvent quality z, in the dilute limit, with the help of Brownian dynamics simula-

tions. This enables us to calculate the value of the ratio λη/λ1 at 22◦C using the

present measurements and the measurements of Liu et al. (2009), by the following
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Figure 6.5: The concentration dependence of the ratio λ1/λ1,z in the semidilute regime,
obtained by Liu et al. (2009), compared with the dependence of the ratio λη/λη,z, measured
by current experiments at 22◦C.

argument. Clearly,
λη

λ1
=

(
λη

λη,z

)(
λ1,z

λ1

)
Uηλ(z). (6.7)

Since the effective exponent in the experiments of Liu et al. (2009) and the present

experiments is the same (νeff = 0.56), we assume that the two solutions have the

same value of z = 1.17. At this value of z, the simulations of Somani et al. (2010)

suggest that Uηλ (z = 1.17) = 1.79. Equation 6.7 can then be used to find the ratio

λη/λ1 at the various values of concentration at which the ratios λη/λη,z and λ1/λ1,z

have been measured in the two sets of experiments.

Figure 6.6 displays the ratio λη/λ1 obtained in this manner in the dilute and

semidilute regimes. Since both the ratios λη/λη,z and λ1/λ1,z are nearly equal to 1

in the limit of small c, it is not surprising that λη/λ1 ≈ Uηλ (z) for concentrations

in the dilute regime. However, while λη/λ1 is constant in the semidilute regime,

as expected from the similar scaling with concentration exhibited in the two sets of

experiments, its value is not identical to the value in the dilute limit. This appears

to be because λη/λη,z increases more rapidly with concentration in the crossover

regime between dilute and semidilute, than λ1/λ1,z. More experiments carried out

for different polymer solvent systems are required to substantiate this observation.
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6.5 Conclusions

By carrying out accurate measurements of the polymer contribution to the zero

shear rate viscosity of semidilute DNA solutions in the double crossover regime,

the scaled polymer contribution to the viscosity is shown to obey the expression,

ηp0

η∗p0
∼ (c/c∗)

1
3νeff (z)−1

in line with recent predictions on the form of universal crossover scaling functions

for semidilute solutions (Jain et al., 2012a). The experimentally determined values

of the effective exponent νeff, for two values of z = 0.7 and 1.7, agree within error

bars, with values determined from Brownian dynamics simulations. This suggests,

in accordance with the prediction of scaling theory (Jain et al., 2012a), that the expo-

nent νeff(z) that governs the scaling of viscosity is identical to the exponent which

characterizes the power laws for polymer size and the diffusivity.

The results obtained here clearly demonstrate that the solvent quality param-

eter z, and the scaled concentration c/c∗, are the two scaling variables that are
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essential in order to properly understand and characterise the concentration and

temperature dependent dynamics of a linear viscoelastic property, such as the zero

shear rate viscosity, of semidilute polymer solutions.
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7
Shear Flow of Semidilute and Dilute DNA

Solutions

7.1 Introduction

In spite of the occurrence of polymer solutions at semidilute concentrations in a

number of industrially relevant flows such as in inkjet printing, to date, there are

very few systematic studies of the rheological behaviour of semidilute solutions ei-

ther experimentally (Hur et al., 2001), or via simulations (Huang et al., 2010; Stoltz

et al., 2006). On the other hand, dilute polymer solutions have been studied much

more extensively. In particular, the dependence of the polymer contribution to

viscosity, ηp, on the Weissenberg number, Wi = λγ̇ (where λ is the measure of

the largest relaxation time of the solution), has been thoroughly investigated, and

various scaling relationships have been derived analytically (Winkler, 2006; Rubin-

stein and Colby, 2003; Winkler, 2010; Bird et al., 1987; Öttinger, 1996), measured

experimentally (Schroeder et al., 2005; Bird et al., 1987), and estimated by simula-

tions (Schroeder et al., 2005; Aust et al., 1999). In this chapter, results of measure-

ments of the shear viscosity of DNA solutions (discussed in Chapters 5 and 6), are

presented as a function of flow strength, across a range of temperatures, concen-
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trations and molecular weights, in the semidilute and dilute regimes. The central

purpose of this part of the study is to identify the relevant scaling variables with

which to represent the data, such that the universal behaviour of polymer solutions

in flow (if it exists) can be revealed.

In order to place the present work in context, it is necessary to summarize the

results of earlier studies, both in the dilute and semidilute regimes.

A number of different analytical approaches to predicting the dependence of

ηp on Wi for dilute polymer solutions suggest that for Wi � 1, ηp ∼ Wi−2/3 (Bird

et al., 1987; Doyle et al., 1997; Winkler, 2006, 2010). There are very few experimental

studies validating this prediction. A recent study by Hua and Wu of polystyrene

in DOP (Hua and Wu, 2006) observed this scaling only for the largest molecular

weight sample considered by them (2 Million molecular weight). Samples of lower

molecular weight polystyrene appear to follow a scaling ηp ∼ Wi−α, with α vary-

ing with molecular weight, but is always less than 2/3. Simulation studies of di-

lute bead-spring solutions (with finitely extensible springs) (Jendrejack et al., 2002;

Schroeder et al., 2005) observe the existence of two power law regimes, ηp ∼Wi−0.5

(for 102 < Wi < 103) and ηp ∼Wi−2/3 (for Wi > 104), regardless of whether non-

linear effects such as HI and EV are included or absent. On the other hand, simu-

lations of dilute bead-rod solutions only appear to observe the Wi−0.5 regime (Liu,

1989; Hur et al., 2001; Doyle et al., 1997).

At very high Weissenberg numbers, in the experiments of Hua and Wu (2006)

and in bead-rod simulations, ηp for dilute polymer solutions is observed to level

off and approach a constant asymptotic value. On the other hand, predictions of ηp

from BD simulations of FENE chains (Jendrejack et al., 2002; Schroeder et al., 2005),

and analytical solutions of constitutive equations with an approximate treatment

of the FENE spring force law, give rise to power law shear thinning for Wi > O(1)

that persists for arbitrarily high Wi.

The only experimental measurements of the shear rheology of semidilute poly-

mer solutions appears to be the pioneering study of Hur et al. (2001), who exam-

ined the behaviour of λ-phage DNA at concentrations equal to 1c∗, 3c∗ and 6c∗.
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In all these cases, they found ηp ∼ Wi−α, with α close to -0.5, independent of the

concentration, and in agreement with simulation predictions for dilute bead-rod

chains. It should be noted here, that for semidilute solutions, a decision needs to

be made regarding the choice of relaxation time λ, to use in the definition of the

Weissenberg number. Hur et al. (2001) use the longest relaxation time λ1, at the

particular concentration of interest, which they determined by carrying out stretch

relaxation experiments on stained DNA molecules.

Very recently, there have been two simulation studies of semidilute solutions in

shear flow. The first study is by Stoltz et al. (2006), who have used BD simulations to

predict the behaviour of bead-spring chains with roughly 20 beads per chain. They

find that in the range of c/c∗ from 0 to 2, ηp ∼ Wi−0.51 (when HI is included), in

close agreement with the observations of Hur et al. (2001). Individual curves for the

different values of c/c∗, however, were found not to collapse on top of each other.

As in the case of Hur et al. (2001), the Weissenberg number is defined in terms of

the longest relaxation time λ1, determined by stretch relaxation simulations.

Using massively parallel multi-particle collision dynamics, Huang et al. (2010)

have carried out an exhaustive study of semidilute solutions at equilibrium and

in shear flow. In particular, they have paid close attention to validating all the

simulation results with known scaling predictions for semidilute solutions (un-

der good solvent conditions) that have been derived from blob theory. For in-

stance, they establish that the longest relaxation time in their simulations scales

as (c/c∗)(2−3ν)/(3ν−1) as expected from scaling arguments. When their simulation

data is represented in terms of ηp / ηp0 versus Wi, where the concentration depen-

dent longest relaxation time is used in the definition of Wi, they observe a data

collapse on to a master curve, independent of c/c∗and chain length. Subsequent

to the onset of shear thinning, they find ηp /ηp0 ∼ Wi−0.3 for 1 < Wi < 100,

and a steeper power law, with ηp /ηp0 ∼ Wi−0.45 for high shear rates. The scaling

with Wi at high Weissenberg number is consequently in agreement with the earlier

simulations by Stoltz et al. (2006), and the experimental observations of Hur et al.

(2001).
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Since we have not carried out stretch relaxation experiments, we cannot use

λ1 in our definition of Wi. However, since λη (defined in Equation 1.9) obeys the

same scaling with concentration as λ1, (as demonstrated in Figure 6.5), it is entirely

equivalent to define the Weissenberg number as λη γ̇.

In the subsequent sections of this chapter, we first examine if ηp / ηp0 versus

λη γ̇ leads to data collapse for various values of c/c∗ and molecular weight in the

semidilute regime. We find that, contrary to the simulation predictions by Huang

et al. (2010), this is not the case, both for DNA as well as synthetic polystyrene

solutions. We then develop a scaling argument, which exploits the existence of

Pincus blobs in shear flow, that leads to an alternative definition of a relaxation

time, based on which data collapse is observed independent of the solvent quality

and c/c∗. Finally, we present results for the viscosity of dilute DNA solutions, and

discuss the observed behaviour in the light of the previous results on synthetic

polymer solutions by Hua and Wu (2006).

7.2 Results and Discussion

7.2.1 Semidilute solutions in shear flow

We have measured the shear viscosities of three DNA samples: 25 kbp, λ-phage

and T4 DNA at various temperatures and concentrations, same as in Sections 5.2

and 6.2. The experimental details of the shear rheometry are not discussed here,

since they have already been discussed earlier in Section 2.4.

Two examples of the dependence of solution viscosity on shear rate γ̇ are given

in Figures 7.1 (a) and (b). The former displays the viscosity of 25 kbp DNA at a fixed

concentration c = 0.441 mg/ml and at various temperatures ranging from T = 13 to

44.6◦C. Since c∗ varies with temperature, this corresponds to values of c/c∗ rang-

ing from 2.12 to 8.65 (see Table 6.2 in Chapter 6), all of which are in the semidilute

regime. In Figure 7.1 (b), the dependence of η on γ̇ of T4 DNA at a fixed temper-

ature T = 25◦C, is displayed at various concentrations c, varying from 0.059 to 0.214

mg/ml. This corresponds to a c/c∗ range of 2.98 to 10.82, as displayed in Table 6.2.
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We have estimated the overlap concentrations (c∗) for all the DNA samples at dif-

ferent temperatures from the z values, as explained in Section 6.3. Representative

values of c∗ found from the z values, at various M and T and for several DNA,

are displayed in Table 6.1. The general pattern of the viscosity curves is typical of

the behaviour observed for polymer solutions, with a constant plateau region at

low shear rates denoting Newtonian behaviour, followed by shear thinning at high

shear rates, with a power law decay. We have not observed the viscosity levelling

off in any of our measurements at the highest shear rate used in our experiments,

which is typically of the order 102 s−1.

Figure 7.2 displays the dependence of the scaled viscosity ηp/ηp0 on the shear

rate γ̇, for 25 kbp and λ-DNA, and Figure 7.3 the same for T4 DNA. Each of the

subfigures in these two plots corresponds to a different concentration, with the

individual symbols in the subfigures representing different temperatures. All the

concentrations correspond to the solutions in the semidilute regime, as can be com-

firmed from the values of c/c∗ listed in Table 6.2. The reason the scaled viscosity

appears to increase with temperature is because of the division of ηp by ηp0. While

ηp decreases with temperature, as expected (see Figure 7.1 (a)), the shear rate de-

pendence of ηp is more pronounced over the same range of shear rates for solutions

at a lower temperature.

The dependence of the scaled viscosity ηp/ηp0 on the Weissenberg number ληγ̇

for 25 kbp, λ-phage and T4 DNA, is displayed in Figures 7.4, 7.5 and 7.6, respec-

tively. There are several striking features in these figures that we discuss in turn.

The first noticeable fact is that the various curves for ηp/ηp0 at different temper-

atures, but at the same concentration collapse on top of each other when the data is

represented in this form. This implies that using λη as the relaxation time to scale

the shear rate leads to time-temperature superposition, i.e., all the different curves

seen in the individual subfigures of Figures 7.2 and 7.3 collapse on to a single curve

for each concentration, independent of temperature.

The dependence of λη on inverse temperature 1/T is displayed in Figures 7.7

to 7.9 for each of the three DNA samples. There is clearly a linear relationship
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Figure 7.1: (a) Shear rate dependence of the steady state shear viscosity for 25 kbp DNA
at a fixed absolute concentration for different temperatures. (b) Shear rate dependence of
the steady state shear viscosity for T4 DNA at a fixed temperature for different absolute
concentrations.
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Figure 7.2: ηp/ηp0 as a function of shear rate γ̇ for 25 kbp and 48.5 kbp DNA, each at a
fixed absolute concentration and at different temperatures. The temperatures are indicated
in the legends and the concentrations are mentioned in individual figures.
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Figure 7.3: ηp/ηp0 as a function of shear rate γ̇ for T4 DNA, each at a fixed absolute
concentration and at different temperatures. The temperatures are indicated in the legends
and the concentrations are mentioned in individual figures.
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Figure 7.4: Shear rate dependence of scaled polymer contribution to shear viscosity for lin-
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as we move from higher to lower concentrations. The lines are least quare fits of data in the
shear thinning region.
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Figure 7.5: Shear rate dependence of scaled polymer contribution to shear viscosity for
linear λ DNA at different temperatures and concentrations. There is a definite temperature
superposition across the range of concentrations. A broad power law regime exists as we
move from higher to lower concentrations. The lines are least quare fits of data in the shear
thinning region.
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Figure 7.6: Shear rate dependence of scaled polymer contribution to shear viscosity for lin-
ear T4 DNA at different temperatures and concentrations. There is a definite temperature
superposition across the range of concentrations with a broad power law regime as we
move from higher to lower concentrations. The lines are least quare fits of data in the shear
thinning region.

between λη and 1/T, which can be anticipated from our earlier observation of the

linear dependence of [η] on 1/T displayed in Figure 5.4 in Chapter 5.

The usefulness of λη as a scaling variable, in leading to time-temperature su-

perposition of the scaled viscosity versus shear rate data, can also be seen for the

case of semidilute solutions of two other polymer-solvent systems. In the follow-

ing chapter on elongational flow Chapter 8, we use a more viscous solvent for sus-

pending the DNA molecules as shown in Table 2.3. We have also characterised its

shear rate dependence. The dependence of the scaled viscosity ηp/ηp0 on the Weis-

senberg number ληγ̇ for 25 kbp, λ-phage and T4 DNA, is displayed in Figures 7.10,

7.11 and 7.12, respectively. We see that the various curves for ηp/ηp0 at different

temperatures, but at the same absolute concentration collapse on top of each other

when the data is represented in this form. Also, irrespective of the DNA molecular

weight, the terminal slope in the power law region at high shear rates increases

with increasing concentration.
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Figure 7.7: λη vs 1/T at a fixed c for 25 kbp DNA. The lines are the linear least squares fit
to the data.
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Figure 7.9: λη vs 1/T at a fixed c for 165.6 kbp DNA. The lines are the linear least squares
fit to the data.
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Figure 7.10: Shear rate dependence of scaled polymer contribution to shear viscosity for
linear 25 kbp DNA at different temperatures and concentrations in the viscous solvent
used for extensional studies, Table 2.3. There is a definite temperature superposition across
the range of concentrations. A broad power law regime exists as we move from higher to
lower concentrations. The lines are least quare fits of data in the shear thinning region.
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Figure 7.11: Shear rate dependence of scaled polymer contribution to shear viscosity for
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range of concentrations. A broad power law regime exists as we move from higher to
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Figure 7.12: Shear rate dependence of scaled polymer contribution to shear viscosity for
linear T4 DNA at different temperatures and concentrations in the viscous solvent used
for extensional studies, Table 2.3. There is a definite temperature superposition across the
range of concentrations with a broad power law regime as we move from higher to lower
concentrations. The lines are least quare fits of data in the shear thinning region.
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Figure 7.13: ηp/ηp0 as a function of shear rate γ̇ for linear 1.1 M polystyrene, each at a
fixed absolute concentration and at different temperatures. The temperatures are indicated
in the legends and the concentrations are mentioned in individual figures.

We have also studied the time-temperature superposition for linear polysty-

rene in DiOctyl Phthalate (DOP), displayed in Figures 7.13 to 7.15. The various

subfigures in Figures 7.13 and 7.14 display the shear rate dependence of the scaled

viscosity ηp/ηp0 at fixed concentrations c and various temperatures, for two differ-

ent molecular weights of polystyrene, namely 1.1 M and 15.4 M. Figures 7.15 (a)

and (b) show the time-temperature superposition of this data when represented in

terms of ληγ̇, for these two molecular weights, respectively. As in the case of the

DNA solutions, provided the concentration is fixed, data collapses on to a single

curve, regardless of the temperature, with more pronounced shear thinning with

increased concentration.

The concentrations and temperatures at which the measurements reported in

Figures 7.13 and 7.14 were carried out, correspond to a range of c/c∗ from 1 to
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Figure 7.14: ηp/ηp0 as a function of shear rate γ̇ for linear 15.4 M polystyrene, each at a
fixed absolute concentration and at different temperatures. The temperatures are indicated
in the legends and the concentrations are mentioned in individual figures.



102 Shear Flow of Semidilute and Dilute DNA Solutions

1 0 - 2 1 0 - 1 1 0 00 . 7

0 . 7 5

0 . 8

0 . 8 5
0 . 9

0 . 9 5
1

1 . 0 5

c  =  0 . 0 1 4 4  m g / m l  

c  =  0 . 0 2 2 5  m g / m l  

c  =  0 . 0 3 6  m g / m l  

��� �

L i n e a r  P S  ( 1 . 1  M )  i n  D O P  

c  =  0 . 0 3 6  g / m l :     2 2 o C   3 0 o C   3 5 o C
c  =  0 . 0 2 2 5  g / m l :   2 2 o C   3 0 o C   3 5 o C
c  =  0 . 0 1 4 4  g / m l :   2 2 o C   3 0 o C   3 5 o C
c  =  0 . 0 0 8 9  g / m l :   2 2 o C   3 0 o C   3 5 o C

c  =  0 . 0 0 8 9  m g / m l  

p 0

p
�
�

(a)

1 0 - 1 1 0 0 1 0 10 . 6

0 . 7

0 . 8

0 . 9

1

1 . 1

c  =  0 . 0 0 9 8  m g / m l  

c  =  0 . 0 0 6 1  m g / m l  

c  =  0 . 0 0 2 7  m g / m l  

��� �

c  =  0 . 0 0 9 8  g / m l :   2 2 o C   3 0 o C   3 5 o C
c  =  0 . 0 0 6 1  g / m l :   2 2 o C   3 0 o C   3 5 o C
c  =  0 . 0 0 2 7  g / m l :   2 2 o C   3 0 o C   3 5 o C

L i n e a r  P S  ( 1 5 . 4  M )  i n  D O P  

p 0

p
�
�

(b)

Figure 7.15: (a) Shear rate dependence of scaled polymer contribution to shear viscosity
for linear 1.1 M polystyrene at different temperatures and concentrations. (b) Shear rate
dependence of scaled polymer contribution to shear viscosity for linear 15.4 M polystyrene
at different temperatures and concentrations. For both molecular weights, there is a defi-
nite temperature superposition across the range of concentrations and a broad power law
regime as we move from higher to lower concentrations.
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Table 7.1: Steady state zero shear rate viscosities, η0 (mPa.s) for 1.1 M and 15.4 M linear
polystyrene in DOP at various concentrations, c (mg/ml) and temperatures, T (◦C) in the
semidilute regime. Note that Tθ for polystyrene in DOP is 22◦C (Brandrup et al., 1999). The
c/c∗ values at Tθ has been estimated from the [η] values at Tθ from Li et al. (2000) using the
relation c∗ ≈ 1/[η].

1.1 M
c T c/c∗ η0

(at Tθ)
0.036 15 – 3043.8 ± 13.3

22 4 1686.5 ± 1.3
35 – 721.6 ± 0.9

0.0225 15 – 796.1 ± 2.3
22 2.5 505.6 ± 0.6
35 – 238.6 ± 0.3

0.0144 15 – 370.2 ± 0.3
22 1.6 240.4 ± 0.2
35 – 118.3 ± 0.2

0.0144 15 – 220 ± 0.2
22 1 147.4 ± 0.2
35 – 74.6 ± 0.1

15.4 M
c T c/c∗ η0

(at Tθ)
0.0098 15 – 666.6 ± 2.8

22 4 443.4 ± 2.8
35 – 223.6 ± 0.2

0.0061 15 – 286.2 ± 1.4
22 2.5 196.9 ± 0.6
35 – 105 ± 0.6

0.0038 15 – 195.6 ± 1.9
22 1.6 139.3 ± 0.4
35 – 72.3 ± 0.3

0.0027 15 – 163.8 ± 0.4
22 1 112 ± 0.6
35 – 58.3 ± 0.2

4 (at T = Tθ), as displayed in Table 7.1. Two linear polystyrene polymers have

been used in this study: (i) a molecular weight of 1.14×106 g/mol (1.1 M) with

a polydispersity index (pdi = Mw/Mn) of 1.09 purchased from Polymer Source

Inc. (Canada) and (ii) a molecular weight of 1.54×107 g/mol (15.4 M) (pdi = 1.04)

purchased from Varian (England). Both the polystyrene samples were dissolved

in DOP, which is considered a θ-solvent for polystyrene at 22◦C (Brandrup et al.,

1999). To assist dissolving of polystyrene in DOP, methylene chloride was used as

a co-solvent and the mixture was mixed for 24 hours. Methylene chloride was then

completely evaporated in a vacuum oven at 40◦C over the course of several days

until no further weight loss was registered.

The most significant aspect of Figures 7.4 to 7.6 and Figures 7.10 to 7.12 for

DNA, and Figures 7.15 (a) and (b) for polystyrene, is that the data does not collapse

on to master curves, independent of c/c∗ or molecular weight, as has been observed

previously in the MPCD simulations of Huang et al. (2010). Nor is the slope in

the power-law region close to 0.5 as observed in the simulations and experiments

of Hur et al. (2001). Indeed, there is a significant power law regime over several

decades of ληγ̇, with the slope increasing with increasing concentration.
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Figure 7.16: Slope of ηp/ηp0 vs λη γ̇ plots from Figures 7.4–7.6 for DNA and from Fig-
ure 7.15 for polystyrene as a function of absolute concentration c.

The dependence of the slope of the ηp/ηp0 vs ληγ̇ curves for DNA and polysty-

rene, in the power law regime, on concentration, is displayed in Figure 7.16. As can

be seen, the magnitude of the slope for DNA appears to increase almost linearly be-

fore saturating to a value of 0.5. It should be noted that each of the symbols in the

figure correspond to several temperatures, and as a result, to several values of c/c∗.

Consequently while for each of the DNA, the asymptotic value of 0.5 is reached for

increasing values of c/c∗, there is no meaningful threshold value in terms of c/c∗.

The source of the lack of agreement between the current experimental observa-

tions on DNA and polystyrene, with the predictions of the MPCD simulations of

Huang et al. (2010), in terms of the ability of a concentration dependent large scale

relaxation time to obtain data collapse across different values of c/c∗, is not clear

to us. In particular, since both λ1 and λη exhibit the same scaling with c/c∗. This

was demonstrated for the special case of 22◦C in Figure 6.5 in Chapter 6, since the

experiments by Liu et al. (2009) were carried out at this temperature. Figure 7.17
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Figure 7.17: Crossover plot of λη for the three DNA at different values of z. The experiments
have been conducted at different temperatures (see Table 6.3 in Chapter 6) for different
DNA keeping the z constant. The collapse of different M at different T are seen when
λη/λ∗η is plotted against c/c∗, keeping the z constant. Here λ∗η is the value of λη at c = c∗.
In order to display all the measurements on a single plot, the ratios of relaxation times for
the different values of z have been multiplied by different fixed factors as indicated. Lines
through the data have been drawn with a slope calculated from the value of νeff (z), listed
in Table 6.4.

illustrates that indeed the scaled variable

λη

λ∗η
∼
( c

c∗
) 2−3νeff

3νeff−1
,

with νeff = νeff (z) being an affective exponent discussed earlier in the context of

Figure 6.4. The lines through the symbols (representing the experimental data) in

Figure 7.17, have been drawn with a slope calculated with values of νeff (z) listed in

Table 6.4 in Chapter 6.

In the next subsection, we develop a scaling argument that suggests that an

alternative relaxation time may be more appropriate to represent the universal be-

haviour observed in the shear flow of semidilute polymer solutions.
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7.2.2 The derivation of an appropriate relaxation time

In the absence of shear flow, in semidilute solutions, the chain conformation con-

sists of a series of ‘correlation’ blobs, with size ξc , such that chain segments be-

low this length scale are under dilute solution conditions, while chain segments

at larger length scales are under concentrated solution conditions. As a result,

within the correlation blob, chain segments experience hydrodynamic (HI) and ex-

cluded volume (EV) interactions, while they are absent between the correlation

blobs themselves due to the screening of these interactions. A consequence of the

absence of EV, is that the correlation blobs obey random walk statistics. Further-

more, since the correlation blobs are space filling, semidilute solutions are often

treated as a melt of correlation blobs.

The postulation of the correlation blob ansatz gives rise to some simple scaling

arguments. If a chain consists of Nc correlation blobs, then random walk statistics

imply,

Req ∼ ξcN
1
2

c (7.1)

where, Req is the mean size of the chain at equilibrium. If c̃ is the number of

monomers N per unit volume, then (c̃/N) is the number of polymers per unit

volume, and
c̃
N

=
Np

V
, (7.2)

where, Np is the total number of polymers in the system, and V is the system

volume. Since the correlation blobs are space filling, this implies,

ξ3
c NcNp = V,

or, from Equation 7.2,
c̃
N

=
1

ξ3
c Nc

. (7.3)

Solving for ξ3
c we get,

ξ3
c =

(
N
Nc

)
1
c̃

. (7.4)
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At the overlap concentration we know that ,

c̃∗
N

R3
eq
∼ b−3N1−3ν. (7.5)

Multiplying and dividing the right hand side of Equation 7.4 with c̃∗, and using

Equation 7.5, we get,

ξ3
c =

(
N
Nc

)(
c̃∗

c̃

)
b3N3ν−1. (7.6)

For semidilute solutions, it can be shown that (see Supplementary material in Jain

et al. (2012a)),

Nc =

(
c̃
c̃∗

) 1
3ν−1

. (7.7)

As a result,

ξ3
c = b3N3ν

(
c̃
c̃∗

)−1 ( c̃
c̃∗

) −1
3ν−1

,

which simplifies to,

ξ3
c = b3N3ν

( c
c∗
) −3ν

3ν−1
, (7.8)

where, we have used c/c∗ in place of c̃/c̃∗ since they are identical (c = c̃mk, where

mk is the mass of a monomer).

The diffusivity of a correlation blob is given by

Dc =
kB T

ζc
, (7.9)

where, ζc is the friction coefficient for the blob. Since the chain segment within a

correlation blob obeys Zimm dynamics,

ζc ∼ ηs ξc. (7.10)

As a result ,

Dc =
kB T
ηs ζc

. (7.11)
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The relaxation time for a single blob can be derived from the expression ,

τc =
ξ2

c
Dc

=
ξ2

c
kB T/ηs ξc

,

or,

τc =
ηs ξ3

c
kB T

. (7.12)

If we define ,

τ0 =
ηs b3

kB T
, (7.13)

as the monomer relaxation time, it follows from Equation 7.8 that,

τc = τ0N3ν
( c

c∗
) −3ν

3ν−1
. (7.14)

Since a single chain in a semidilute solution is equivalent to a Rouse chain of cor-

relation blobs in a melt, it follows that the relaxation time of the chain as a whole,

τchain is given by (Rubinstein and Colby, 2003)

τchain = τcN2
c

or,

τchain =

(
ηs ξ3

c
kB T

)
N2

c . (7.15)

These results will prove useful shortly.

Consider a system of chains with N monomers each, in the semidilute concen-

tration regime, undergoing simple shear flow at a shear rate γ̇ (see Figure 7.18).

Under these conditions, it is envisaged that the chain breaks up into a series of

‘Pincus’ blobs (Pincus, 1976), where the blob size ξS sets the length scale at which

the stretching energy of the chain segment within the Pincus blob is equal to kB T.

Clearly, with the onset of flow, it is the chain of correlation blobs that breaks up

into a sequence of Pincus blobs, and one can consider each Pincus blob to consist
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Figure 7.18: Illustration of a linear polymer chain in a semidilute solution as a series of
correlation blobs, each of size ξc. In shear flow, this chain of smaller correlation blobs breaks
up into a sequence of larger Pincus blobs, each with a size ξS. See text for explanation.

of m correlation blobs. As a result, random walk statistics dictate that,

ξS = ξcm1/2. (7.16)

One can obtain an estimate of m, and its dependence on the shear rate as follows.

We know that the stretching energy of chain segment within a Pincus blob is of

order kB T. As a result,

f ξS = kB T, (7.17)

where, f is the stretching force on the chain. The stretching force arises due to

the drag exerted by the flowing solvent on the segment within the Pincus blob.

The drag force is equal to the velocity difference across a Pincus blob times the

friction coefficient of a Pincus blob, ζS. The velocity difference is equal to (γ̇ξS)

and ζS = mζc, since the correlation blobs obey Rouse dynamics. As a result, from

Equation 7.10,

f = (γ̇ξS)mηs ξc. (7.18)

Substituting Equation 7.18 into Equation 7.17 leads to,

mξ2
Sηs ξcγ̇ = kB T. (7.19)
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From Equation 7.16, it follows that,

m2ξ3
Sηs γ̇ = kB T, (7.20)

or

m =

[(
kB T
ηs ξ3

c

)
1
γ̇

] 1
2

. (7.21)

Using the result in Equation 7.12, we get,

m = (τcγ̇)
−1
2 . (7.22)

The number of correlation blobs within a Pincus blob decrease with increasing

shear rate, as might be expected, since the size of the Pincus blob decreases with

increasing shear rate.

The recognition of the inverse shear rate dependence of the Pincus blob size

is responsible for the development of a scaling model to explain shear thinning in

polymer melts by Colby and coworkers (Colby et al., 2007). We adopt their argu-

ments (with some important differences) to develop an expression for the shear

rate dependence of ηp in semidilute solutions, and by this means, come up with

the choice of an appropriate concentration dependent relaxation time.

According to Rouse theory, the shear viscosity in a polymer melt is given by the

expression,

η = kB T
(

c̃
N

)
τchain

N

∑
p=1

1
p2 (7.23)

for (τchainγ̇) < 1, where, the sum is carried out over the N normal modes of the

chain. It is appropriate to recall here that the ‘p’th mode corresponds to a seg-

ment of the chain containing (N/p) monomers. Colby and coworkers (Colby et al.,

2007) argue that in a shear flow, the chain breaks up into a series of Pincus blobs

that are aligned in the flow direction, i.e., the chain forms a ‘blob’ pole, unlike in

the case where the chain ends are separated by a stretching force (which was the

original Pincus (1976) scenario), where the chain is a directed random walk of Pin-

cus blobs. Since the stretching energy is less than kB T within the Pincus blob, the
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conformation of the chain segment within the blob is unperturbed from its equilib-

rium configuration. According to Colby and coworkers, the Rouse expression for

the viscosity (Equation 7.23) only applies to chain segments within the Pincus blob,

since they are the ones contributing to viscous dissipation, while the segments on

larger length scales are stretched and store energy elastically. Colby et al. (2007)

derive an alternative expression for the viscosity by changing the lower bound of

the summation in Equation 7.23 to the mode number corresponding to the length

scale of the Pincus blob. They use (Req/ξS) as a measure of this mode number, and

by using the shear rate dependence of ξS, they obtain a expression for the viscosity

that depends on the shear rate.

In the case of semidilute solutions, Equation 7.23 takes the form (using Equa-

tion 7.3 for c̃/N),

η = kB T
(

1
Ncξ3

c

)
τchain

Nc

∑
p=1

1
p2 (7.24)

for (τchainγ̇) < 1 where, τchain is given by Equation 7.15. For Nc � 1, this implies,

η =
kB T
Ncξ3

c

ηs ξ3
c

kB T
N2

c

or,
η

ηs
Nc ∼

( c
c∗
) 1

3ν−1
, (7.25)

in agreement with the expression derived by Jain et al. (2012a) for the zero shear

rate viscosity of semidilute solutions.

For strong flows, as argued by Colby et al. (2007), τpγ̇ < 1 only for the modes

‘p’ that lies within a Pincus blob. Rather than (Req/ξS) we suggest that it is more

appropriate to use the number of Pincus blobs in a chain, X, as the lower bound of

the sum in Equation 7.24, since the chain is divided in ‘X’ segments by the action of

the flow. For low shear rates, X → 1, since the entire chain is contained in a Pincus

blob, while at high shear rates, X → Nc. Note that,

X =
Nc

m
. (7.26)



112 Shear Flow of Semidilute and Dilute DNA Solutions

At high shear rates consequently, Equation 7.24 becomes,

η = kB T
(

1
Ncξ3

c

)
τchain

Nc

∑
p=X

1
p2 . (7.27)

Converting the sum to an integral, and carrying out the integral in the limit Nc � 1,

we get,

η =
kB T
Ncξ3

c
· ηs ξ3

c N2
c

kB T
· 1

X
= ηs · Nc ·

m
Nc

or,
η

ηs
= m. (7.28)

From Equation 7.22, this implies that at high shear rates, for semidilute solutions,

η

ηs
= [τcγ̇]

−1
2 . (7.29)

Using the expression for τc from Equation 7.14, we get,

η

ηs
= τ0N3ν

( c
c∗
) 3ν

1−3ν
. (7.30)

We have seen from our experimental observations that the shear thinning exponent

is typically less than (1/2). Nevertheless, Equation 7.30 suggests that the depen-

dence of the relaxation time on concentration should be (c/c∗)3ν/(1−3ν), rather than

the (c/c∗)(2−3ν)/(3ν−1) dependence of λη .

The scaling analysis here suggests that data collapse may be achieved by using

the relaxation time,

λ = τ0N3νeff

( c
c∗
) 3νeff

1−3νeff , (7.31)

where, νeff is used to account for differences in solvent quality. This hypothesis is

tested in the results presented in the next subsection.

7.2.3 Universal shear thinning of semidilute solutions

The viscosity data discussed earlier, is reinterpreted in terms of the scaling variables

suggested by the analysis of the previous subsection, and plotted in Figures 7.19,
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Figure 7.19: Concentration and z collapse for 25 kbp DNA at very high shear rates, when
represented in terms of an Wi that depends on a relaxation time based on the Rouse theory,
as shown in Equation 7.31. A terminal slope of -0.47 has been obtained by least-squares
fitting of the data. The value of the νeff corresponding to the particular value of z has been
used.

7.20 and 7.21 for 25 kbp, λ-DNA and T4 DNA, respectively. It is immediately ap-

parent that in each case, for ληγ̇ � 1, the viscosity collapses on to master curves,

independent of c/c∗ and the solvent quality z. It should be noted that the value

of νeff corresponding to the particular value of z has been used in these plots. The

slope of the shear thinning region seems to vary with molecular weight, with the

magnitude decreasing as the molecular weight increases. This can be seen more

clearly in Figure 7.22, where representative data for all the three DNA molecular

weights are plotted side by side. It is possible that the experimental data lies in a

crossover region, and that the Weissenberg numbers at which the asymptotic shear

thinning with exponent -0.5 is observed, have not been explored. This is in line

with the simulation results of Huang et al. (2010) for semidilute solutions, and of

Schroeder et al. (2005) and Jendrejack et al. (2002), for dilute solutions. In the latter

case, Wi exceeding 104 were required to observe the predicted exponent of -2/3.
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Figure 7.20: Concentration and z collapse for λ-DNA at very high shear rates, when repre-
sented in terms of an Wi that depends on a relaxation time based on the Rouse theory, as
shown in Equation 7.31. A terminal slope of -0.4 has been obtained by least-squares fitting
of the data. The value of the νeff corresponding to the particular value of z has been used.
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Figure 7.21: Concentration and z collapse for T4 DNA at very high shear rates, when rep-
resented in terms of an Wi that depends on a relaxation time based on the Rouse theory, as
shown in Equation 7.31. A terminal slope of -0.33 has been obtained by least-squares fitting
of the data. The value of the νeff corresponding to the particular value of z has been used.
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Figure 7.22: Representative data from Figures 7.19–7.21 for all three DNA molecular
weights. The terminal slope at very high shear rates seems to decrease with increasing
molecular weight.

An attempt to use the relaxation time given by Equation 7.31 to collapse the

data for the two polystyrene solutions is shown in Figures 7.23 (a) and (b). Clearly,

all the data is in the regime prior to the onset of significant shear thinning, and no

conclusions can consequentially be drawn from the lack of data collapse, which is

expected only in the power law regime. More data at higher shear rates is necessary

to resolve this issue.
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Figure 7.23: No concentration collapse for linear polystyrene in DOP at Tθ (22◦C) for two
different M: (a) 1.1 M and (b) 15.4 M, when represented in terms of an Wi that depends on
a relaxation time based on the Rouse theory, as shown in Equation 7.31. A ν value of 0.5
has been used (for a θ-solvent) corresponding to the particular value of z = 0. In order to
see a collapse, we probably need to go to still higher shear rates.
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7.2.4 Dilute DNA solutions in shear flow

We have also accumulated data for the three DNA samples at concentrations corre-

sponding to the dilute regime. In this case, it is well established that the appropriate

Weissenberg number Wi to use is,

Wi = λZγ̇

where λZ is a large scale relaxation time based on the intrinsic viscosity (same as

λη,z), as defined in Equation 6.5. Data for [η], for the various conditions consid-

ered here, has been tabulated previously in Chapter 5 for 25 kbp and T4 DNA (see

Table 5.2). For λ-phage DNA, the intrinsic viscosity at Tθ was determined from

the estimated zero shear rate viscosities from the measured viscosity data in dilute

regime following the procedure discussed in Chapter 5. The [η] values at all other

temperatures have been calculated as: η = [η]θα3
η . The values of αη for λ-DNA

at different temperatures (or z) have been obtained analytically using the same ex-

pression and fitting parameters as in Table 5.4.

Plots of the scaled viscosity ηp/ηp0 versus λZ γ̇, for each of the three DNA

samples (25, 48.5 and 165.6 kbp) at a range of solvent qualities and c/c∗ in the

dilute regime are displayed in Figures 7.24, 7.25 and 7.26, respectively. Both a time-

temperature superposition, and a collapse of data across concentrations is observed

in all three cases.

When all the three sets of data (25 kbp, λ-phage and T4 DNA) are plotted to-

gether in Figure 7.27, we observe that the onset of shear thinning does not occur

at the same Wi, and that the slope in the power law regime is different in the three

cases. Both these points have been noted previously by Hua and Wu (2006) in their

experiments on dilute polystyrene solutions.

Hua and Wu (2006) observed that the value of γ̇ at which shear thinning was

initiated scaled as M1.7±0.09, while λZ ∼ M1.52±0.02. This suggests that the onset of

shear thinning is related to finite-extensibility effects, and that the relaxation time

for capturing shear thinning is more Rouse like at high shear rates, where non-
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Figure 7.24: Shear dependence of normalized polymer contribution to viscosity for dilute
25 kbp DNA solutions. When represented in terms of an Wi based on a concentration inde-
pendent relaxation time (λZ), data for different concentrations (or c/c∗) and temperatures
(or z) can be collapsed for a particular molecular weight in the dilute regime. The z and
corresponding c/c∗ values have been bracketed against each symbol. The terminal slope
was obtained to be -0.23, by a least-squares fitting of the data at very high shear rates.
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Figure 7.25: Shear dependence of normalized polymer contribution to viscosity for dilute
λ-DNA solutions. The z and corresponding c/c∗ values have been bracketed against each
symbol. The terminal slope was obtained to be -0.3, by a least-squares fitting of the data at
very high shear rates.
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Figure 7.26: Shear dependence of normalized polymer contribution to viscosity for dilute
T4 DNA solutions. The z and corresponding c/c∗ values have been bracketed against each
symbol. The terminal slope was obtained to be -0.4, by a least-squares fitting of the data at
very high shear rates.
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Figure 7.27: Representative data from Figures 7.24–7.26 for dilute DNA solutions in shear
flow. The data for 25, λ and T4 DNA are represented by open, half-filled and filled symbols,
respectively. The terminal slope at very high shear rates seems to increase with increasing
molecular weight. The onset of shear thinning shows a molecular weight dependence.
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linear effects such as HI and EV interactions are weak due to chain extension.

The values of the shear thinning exponent that are observed suggest that the

data is probably in the crossover region, and much higher shear rates would be

required before the asymptotic shear thinning exponent is attained.

7.3 Conclusions

Experimental results on semidilute unentangled DNA solutions far from equilib-

rium are reported across a range of molecular weights, temperatures and concen-

trations. Away from equilibrium, in shear flow, the shear behaviour of unentangled

DNA molecules in the semidilute regime can be understood in terms of character-

istic concentration dependent Weissenberg number Wi. The shear data at different

absolute concentrations do not collapse by using either the longest relaxation time

(λ1) or the zero shear rate viscosity dependent relaxation time (λη) dependent Wi,

though a temperature collapse is observed for all the molecular weights used in the

current work. By using an alternative scaling based on Rouse theory and deriving

a suitable concentration dependence, the collapse for different absolute concentra-

tions could be achieved at very high shear rates. Also, a master plot with collapse of

all the molecular weights at different temperatures (or z) and concentrations (c/c∗)

can be achieved by representing the data through this alternate concentration based

Wi.

The focus of the current work to characterize semidilute polymer solutions was

extended to investigate dilute DNA solutions as well. The dynamics of dilute DNA

solutions in shear flow could be well captured based on an Wi that depends on an

intrinsic viscosity based relaxation time. Represented this way, we get a collapse

of different concentrations and temperatures irrespective of the molecular weight.

Also, the shear behaviour of dilute DNA solutions is in agreement with that of

dilute polystyrene solutions, as observed by Hua and Wu (2006).

The results obtained in the current work validates the anticipation that in ad-

dition to the flow-induced variable Wi, two other scaling variables, the excluded

volume parameter z, and the scaled concentration c/c∗, are equally important in



7.3 Conclusions 121

order to aptly characterize the concentration and temperature dependent dynamics

of the nonlinear viscoelastic properties of semidilute and dilute polymer solutions.

The current work provides benchmark experiential data that can be used for the

validation of theoretical studies and predictions.





8
Extensional Flow of Semidilute DNA

Solutions

8.1 Introduction

The rheological behaviour of polymer melts and dilute polymer solutions in elon-

gational flow have been extensively examined through experiments, simulation

studies and theoretical predictions. This is primarily because we can focus on the

single chain dynamics and consequently have a reasonable understanding of the

polymer solution behaviour in both these regimes. However, an elaborate experi-

mental study to understand the extensional rheological properties of polymer solu-

tions in the semidilute regime is currently lacking in terms of a systematic examina-

tion of the effects of concentration and molecular weight. The semidilute regime of

polymer solutions is important because it involves multi-particle effects and many-

body interactions, leading to complex behavior requiring systematic rheological

characterization. In Chapter 6, we have shown experimentally that a rational the-

oretical understanding of both static and dynamic properties of polymer chains in

a semidilute unentangled solution close to equilibrium can be obtained from scal-

ing theories based on correlation blobs. Our experiments on semidilute solutions

123
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have revealed that a clear understanding of the concentration and temperature de-

pendent dynamics of the nonlinear viscoelastic properties of semidilute and dilute

polymer solutions in shear flow can be achieved in terms of Weissenberg number

Wi, scaled concentration c/c∗, and the solvent quality parameter z, as shown in

Chapter 7. It is anticipated that these effects will be even more pronounced in ex-

tensional flows, which play a critical role in a number of industrial contexts, and

therefore it is important to study the extensional rheological behaviour of semidi-

lute polymer solutions.

Till date, significant progress has been achieved to measure and analyze the

elongational or extensional deformation of polymer solutions (Tirtaatmadja and

Sridhar, 1993; Gupta et al., 2000; Bhattacharjee et al., 2003; Sunthar et al., 2005). Sev-

eral significant industrial processes like fiber spinning, ink-jet printing, extrusion

of polymeric materials and applications like coatings, turbulent drag reduction and

lubrication highlight the predominant involvement of the extensional mode of de-

formation (McKinley and Sridhar, 2002). Also, unlike shear flows, which are weak

and encounter problems related to vorticity; extensional flows are irrotational and

highly proficient at unravelling and orienting flexible macromolecules (McKinley

and Sridhar, 2002). Considerable advancement has been made in extensional vis-

cosity measurements for both dilute polymer solutions (Gupta et al., 2000; Sunthar

et al., 2005) and polymer melts (McKinley and Hassager, 1999; Bach et al., 2003).

Effective uniaxial elongational viscosities of dilute DNA solutions have been deter-

mined in cross-slot cells (Smith and Chu, 1998; Schroeder et al., 2004) and the con-

formational behavior of DNA molecules have been theoretically predicted (Hsieh

et al., 2003; Sunthar et al., 2005; Shaqfeh, 2005). It is not easy to measure the true

elongational viscosity of a polymer solution and for this; a filament stretching

rheometer (FSR) is the best solution (McKinley and Sridhar, 2002). An extensive

review of the filament stretching rheometry has been given by McKinley and Srid-

har (2002). In our group, FSR has been rigorously used so far to characterize di-

lute polystyrene solutions at various concentrations and molecular weights (Gupta

et al., 2000) and to quantify the elongational stress of dilute solutions of stained
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DNA (Sunthar et al., 2005). It is worth noting that very scarce experimental obser-

vations have been reported from extensional flow studies on semidilute polymer

solutions (Juarez and Arratia, 2011).

In addition to experiments, theoretical predictions of the extensional behaviour

of polymer solutions in both dilute and entangled regimes has also been carried

out (Yao and McKinley, 1998; Rasmussen and Hassager, 1999; Larson et al., 1999).

Of late, Brownian Dynamics simulations have been carried out for DNA and poly-

styrene systems in extensional flow that are in agreement with experimental ob-

servations (Jendrejack et al., 2002; Sunthar et al., 2005; Shaqfeh, 2005). A proce-

dure termed successive fine graining (SFG) has recently been introduced (Prab-

hakar et al., 2004; Sunthar et al., 2005) by our group by which it is possible to carry

out parameter-free predictions. An attempt to predict the extensional flow proper-

ties in terms of solvent quality has also been made (Sunthar et al., 2005). Recently

Stoltz et al. (2006) have predicted the behaviour of dilute and semidilute solutions

of λ-DNA in planar extensional flow. However, this has not been validated by ex-

periments. So, a systematic experimental characterization of semidilute polymer

solutions in extensional flow in terms of concentrations and molecular weights is

still lacking.

In this work, we have investigated the extensional rheology of linear DNA

molecules in a wide range of molecular weights (25 to 289 kbp) and concentra-

tions. The reasons for using DNA as our investigating polymer system has been

explained in Chapter 1. The objectives of the current work are two-fold: first, we

want to generate a set of benchmark data for semidilute DNA solutions across a

range of molecular weights and concentrations in elongational flow and second,

we want to find out that if the concentration dependence for the extensional vis-

cosities in the semidilute regime can be interpreted according to some generic prin-

ciples for the demonstration of universal behaviour, which will help in developing

predictive models.

In this chapter, the shear characteristics and the extensional properties are dis-

cussed in Section 8.3. In Section 8.4, we summarize the principal conclusions of the

present work.
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8.2 Methodology

8.2.1 Preparation of DNA solutions

Four linear double stranded DNA samples were used in the current work: 25 kbp

DNA, λ-phage DNA, T4 DNA and 289 kbp DNA. Details regarding the procure-

ment of the λ and T4 DNA and procurement, synthesis and purification of the 25

and 289 kbp DNA are mentioned in Section 2.1.

For all the extensional viscosity measurements, the final DNA solutions for 25

kbp and 289 kbp were prepared by adding desired volumes of a viscous solvent

(see Table 2.3), which is predominantly sucrose; and evaporating the excess water

out, to ensure efficient dissolving of the DNA in this solvent. The same solvent and

procedure was used for preparing final solutions for λ-DNA and T4-DNA too, by

dissolving the DNA pellet after precipitation and for preparing subsequent dilu-

tions.

For T4 and λ-DNA, company specified values of concentrations were used as

maximum concentrations (see Section 2.1). For 25 kbp and 289 kbp linear DNA, the

maximum concentrations were determined to be 0.272 mg/ml and 0.012 mg/ml,

respectively.

8.2.2 Shear rheometry

As a part of the study, steady state shear viscosities for all the DNA samples were

also measured in the viscous solvent at different temperatures (15 to 30◦C) and

concentrations (0.012 to 0.3 mg/ml). Details about the rheometer used, measuring

principle, temperature sensitivity, shear rheometry procedure, precautions taken

while measurements, instrument calibration, shear rate range employed and avoid-

ance of shear ramp, sample equilibration time, dependence on rheometer geometry

etc., are mentioned in Section 2.4. At each shear rate, a delay of 5 to 15 minutes was

employed so that the DNA chains get ample time to relax to their equilibrium state.

The shear rate dependence of the measured steady state shear viscosity η of the so-

lutions are shown in Figure 8.1.
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Figure 8.1: Determination of the zero shear rate solution viscosity η0. The shear rate de-
pendence of solution viscosity η in the region of low shear rate is extrapolated to zero shear
rate (a) for λ-DNA at a fixed concentration, for a range of temperatures and (b) for T4 DNA
at a fixed temperature, for a range of concentrations. The extrapolated values in the limit
of zero shear rate are indicated in the legends.
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8.2.3 Extensional rheometry

The extensional rheometry procedure using a filament stretching rheometer has

been discussed in Section 2.5. The steady state uniaxial extensional viscosities for

all the DNA samples along with the concentrations are listed in Table 8.1.

8.3 Results and Discussion

8.3.1 Shear characterization

The shear viscosities were measured at different finite shear rates at different tem-

peratures and the estimated zero shear rate viscosities η0, for all the DNA solu-

tions in the viscous solvent, determined using the same procedure as discussed in

Section 5.2, are listed in Table 8.1. The experimental data covers a high range of

molecular weights (1.6×107 to 1.9×108 g/mol) and concentrations (see above sec-

tion), which is ideal for investigating scaling laws. As predicted by the blob model,

the polymer contribution to the zero shear rate viscosity, ηp0 is highly dependent

on polymer concentration c in the semidilute unentangled regime and grows as a

power law with c (Rubinstein and Colby, 2003). The concentration range of DNA

samples used in this work is characterized in terms of overlap concentration, c∗.

The c∗ values have been calculated based on analytical Rθ
g values from Table 2.1 in

Chapter 2 using Equation 1.8. Close to equilibrium, the absolute concentration de-

pendence of the specific viscosity for different molecular weights at room temper-

ature is shown in Figure 8.2 (a). The substantial difference observed in the concen-

tration dependence for the different molecular weights disappears when the data

is reinterpreted in terms of the non-dimensional ratio (c/c∗), and we see a master

plot, as shown in Figure 8.2 (b). The determination of these shear parameters will

help us in evaluating the response of these DNA solutions to a uniaxial extensional

flow field.



8.3 Results and Discussion 129

1 0 - 2 1 0 - 1

1 0 0

1 0 1  2 5  k b p
 4 8 . 5  k b p
 1 6 5 . 6  k b p
 2 8 9  k b p

S

0p
�
�

c  ( m g / m l )
(a)

1 0 0 1 0 1

1 0 0

1 0 1

*/ cc

S

0p
�
�

 2 5  k b p
 4 8 . 5  k b p
 1 6 5 . 6  k b p
 2 8 9  k b p

(b)

Figure 8.2: (a) Molecular weight dependence of the specific viscosity ηsp (defined in Equa-
tion 5.3) when plotted as a function of absolute concentration c. (b) Molecular weight de-
pendence disappears when ηsp is plotted as a function of the normalized concentration,
c/c∗.
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Table 8.1: Steady state zero shear viscosities (η0), uniaxial extensional viscosities (ηE) , Trou-
ton ratio (Tr) and Weissenberg number (Wi) for all the DNA samples used in this work
along with concentrations. All measurements were done at 21 ± 0.5◦C. The c∗ values are
calculated based on analytical Rθ

g values from Table 2.1 using Equation 1.8. The Trouton ra-
tios Tr are calculated using Equation 8.2. The solvent viscosity ηs at 21◦C was measured to
be 61±0.4 mPa.s. An indicative range of Weissenberg numbers (between Wimin and Wimax)
is shown for various strain rates used. Here, Wi = λη ε̇, where λη have been estimated
from ηp0 = η0 − ηs values in this solvent using Equation 1.9.

Size c c∗ c/c∗ η0 ηE Tr Wimin Wimax
(kbp) (mg/ml) (mg/ml) (Pa.s) (Pa.s)

25 0.096 0.123 0.78 0.1215 54.2 446.4 148 247
0.17 1.38 0.1535 106.3 692.6 65 180

0.272 2.21 0.2035 143.1 698.2 37 169
48.5 0.09 1.01 0.144 55.2 393.3 292 629

0.2 2.25 0.2132 128.8 604.2 246 392
0.3 3.37 0.6933 508.9 734.1 75 1090

165.6 0.033 0.048 0.69 0.111 56.4 508.3 1280 3850
0.059 1.23 0.133 114.2 858.6 422 1880
0.107 2.23 0.195 218.7 1121.4 414 1620
0.156 3.25 0.382 709.2 1856.5 332 1500

289 0.012 0.036 0.33 0.091 20.2 221.7 12200 14200
0.03 0.83 0.2334 86.2 369.3 2570 7850

8.3.2 Extensional properties

It is now well-established that a reasonable understanding of polymer solution be-

havior in uniaxial extensional flow can be obtained by analyzing the data in terms

of dimensionless parameters (Gupta et al., 2000). We have analyzed the results of

the current study in terms of strain and Trouton ratio as the governing dimension-

less parameters. Strain (ε) is expressed as a product of the strain-rate (ε̇) and time

(t), and the transient Trouton ratio Tr, is defined as the ratio of the extensional stress

growth coefficient to the steady zero shear rate viscosity

Tr+ =
η+

E (ε̇, t)
η0

. (8.1)

and the steady state (t → ∞) Trouton ratio is given by the corresponding steady

state extensional viscosity ηE:

Tr =
ηE

η0
. (8.2)
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The Trouton ratios for all the DNA samples along with the concentrations are

listed in Table 8.1. In the current work, a procedure is implemented by which a

pre-determined strain-rate can be imposed on the fluid, based on a ‘master-plot’,

as suggested and shown earlier by our group (for an elaborate discussion, see the

text by Gupta et al. (2000)). Briefly, for each fluid, there is an exclusive relationship

between the filament length (L) and the mid-filament diameter (D) and can be

expressed as:
L
L0

= f
(

D
D0

)
, (8.3)

Here L0 and D0 are the initial values of the length and diameter, respectively. It has

been shown that for any desired record of strain-rate and the equivalent diameter-

time profile, the length-time profile can be obtained using Equation 8.3. The use

of these master plots compensate for the non-ideality in the extensional flow due

to end effects and makes data analysis considerably simpler (Gupta et al., 2000).

Figure 8.3 (a) shows the results of using such a technique and the same is used

extensively in the current work. Figure 8.3 (b) shows the time dependence of the

transient Tr+ at different strain rates. Figure 8.3 (c) shows the extensional stress

growth data in terms of transient Tr+, indicating the attaining of steady states at

high strains as shown in Figure 8.4.

This strain-hardening and deviation from linear-viscoelastic behavior for the

semidilute DNA solutions are observed for all the DNA molecular weights when

subjected to uniaxial extensional deformations. The existence of a unique steady

state independent of strain rate (see Figure 8.4) also suggests that all the DNA

molecules at all the molecular weights are in a state of near full extension and the

average conformations of the linear DNA molecules do not change with time. This

assumes that there are no other impediments to extension such as knots. The ab-

solute concentration dependence of steady state uniaxial extensional viscosities ηE,

for semidilute DNA solutions at various concentrations, are shown in Figure 8.5.

To our knowledge, this is the first time that steady state uniaxial extensional vis-

cosities have been reported for semidilute DNA solutions. Figure 8.5 suggests that

ηE is dependent on molecular weight, and has a power law dependence on c.
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Figure 8.3: (a) Diameter profile obtained using the master plot for a strain rate of 4 s−1 for
linear λ-DNA (absolute concentration indicated in the legend)(b) Dimensionless transient
Trouton ratio Tr+ for a semidilute solution of linear T4 DNA at different strain rates (at c
= 0.107 mg/ml). The strain rates are indicated in the legend. (c) Asymptotic nature of the
experimental normalized elongational stress growth coefficient for a semidilute solution
of linear 25 kbp DNA as a function of strain (at c = 0.272 mg/ml). The strain rates are
indicated in the legend.
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Figure 8.4: Tr as a function of strain rate for different concentrations at 21.5◦C for (a) 25 kbp
(b) λ-DNA (c) T4 DNA and (d) 289 kbp DNA. The absolute concentrations are indicated in
the legends and the percentage errors calculated for each strain rate from the steady state
time averaged Tr are indicated on the data.
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tration c for DNA of different molecular weights.
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We now attempt to collapse the data shown in Figure 8.5, by choosing appro-

priate scaling variables. We first note that in a suspension of polymers, which is

semidilute at equilibrium, the parameter c/c∗ is no longer the relevant scaling vari-

able for the steady state elongational viscosity when it is subjected to strong elon-

gational flows (Wi � 1). This is because all the polymers are very likely stretched

out to a length of the order of the contour length L0, as seen from the high viscosity

in Figure 8.5, and its independence on Wi in Figure 8.4. The parameter c∗ reflects

more of the coiled state properties through its dependence on the equilibrium gy-

ration radius as ∼ R−3
g which is no longer a relevant variable at the fully stretched

state (c/c∗ may however be an important parameter in the transient Trouton ratio

as the coils stretch out, as observed in the BD simulations of Stoltz et al. (2006).

Even in these simulations, no explicit dependence on various molecular weights

was studied).

Batchelor (1971) has derived an expression for the elongational viscosity for a

suspension of non-dilute slender rods. Assuming the stretched out polymers to be

slender rods, we can attempt to collapse the data based on this theory. Batchelor

(1971) provides expressions for the elongational viscosity in the dilute as well as the

concentrated limit. There is also a simple interpolation formula for the intermediate

regimes.

For a given number density of the polymer n, each of stretched length L0, and

a cross-sectional radius R0, the volume fraction is given by

φ = π R2
0 L0 n.

For DNA, the diameter is taken to be R0 = 1 nm, and the contour length of a base

pair is taken as l0 = 0.34 nm (Berg et al., 2002). In the non-dilute regime, from

Equation 5.2 of Batchelor (1971), a dimensionless elongational viscosity is given by

ηE

3ηs
ε2 =

1
9

φ

log π/φ
. (8.4)

Here, ε = R0/L0. This formula is applicable for
√

φ � 1 and
√

φ/ε � 1. For the



8.3 Results and Discussion 135

DNA molecular weights and concentrations employed in the current work, both

these limits are satisfied, suggesting the suspensions are not dilute. From the above

argument, a plot of LHS of Equation (8.4) against φ should collapse all the data for

rods of various lengths and number densities (concentrations), and therefore we

may expect a similar behaviour for the non-dilute suspension of DNA.

The attempted collapse by Batchelor’s theory is shown in Figure 8.6, where

we compare our experimental data for four different molecular weights with the

predicted values from Batchelor (1971). The figure shows that apart from λ-DNA

(48.5 kbp), which is in close agreement with the theoretical prediction, all the other

DNA are widely separated from the expected behaviour of rods. All the data how-

ever seem to have the same slope with varied shift factors. We considered for

possible errors in the estimation of the ratio ε = R0/L0—assuming that the DNA

molecule could be effectively of a larger diameter owing to counter-ion condensa-

tion. But an increase in R0 to up to 4 nm only marginally shifted the data, because

of a weak dependence going as ∼ 1/ log R0. More experiments and analysis need

to be carried out with DNA and other polymer-solvent systems to investigate data

collapse further.
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8.4 Conclusions

In this work, semidilute unentangled DNA solutions of four different molecular

weights were investigated by subjecting them to uniaxial extensional flows for

a wide range of concentrations at room temperature, using a filament stretching

rheometer in a solvent which is predominantly sucrose. To our knowledge, this is

the first time that steady state uniaxial extensional viscosities have been reported

for semidilute DNA solutions. The experimental results were compared with the

theoretical predictions by Batchelor (1971) for non-dilute suspension of slender

rods. While the data showed the expected scaling with the volume fraction of DNA

φ, the data for various molecular weights and concentrations could not be collapsed

as per the slender rod theory. More experimental and numerical investigations are

required to confirm this.





9
Conclusions and Future Work

9.1 Equilibrium Characterization

We have found several evidences that support the claim that double stranded DNA

(ds-DNA), in the presence of excess salt, can be used as a model neutral polymer.

They are:

1. The existence of a θ-temperature and the scaling of the hydrodynamic radius

with molecular weight, in Sections 3.4 and 4.3.

2. The scaling of the second virial coefficient, which is static property at equilib-

rium, in Section 3.4.

3. The solvent quality scaling of the swelling of the hydrodynamic radius αH, in

Section 4.3.

4. The solvent quality scaling of the swelling of the viscosity radius αη , in Sec-

tion 5.3.

5. The scaling of the viscosity with concentration in semidilute solutions, in Sec-

tion 6.3.
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Thus it can be concluded that ds-DNA can be used as a model polymer for rheolog-

ical studies. In the process of establishing the above scalings, we have determined:

1. The θ-temperature of DNA in Tris-EDTA buffer to be Tθ = 14.7± 0.5◦C.

2. The chemistry dependent constant k in Equation (1.1) to be k = 0.0047± 0.0003

g/mol−1/2.

The solvent quality z for any DNA molecular weight at any temperature is there-

fore known for the Tris-EDTA buffer solution, and can be used to estimate other

equilibrium static and dynamic properties (using the universal scaling functions)

both in the dilute and semidilute unentangled concentration regimes.

9.2 Non-equilibrium characterization

1. In shear flow, the shear rate dependence of the semidilute viscosity data

at different temperatures collapses onto master curves when interpreted in

terms of a concentration dependent Weissenberg number Wi (based on zero

shear rate viscosity dependent relaxation time, λη). Notably, the concentra-

tion data collapse only occurs when Wi is defined based on the relaxation time

of a ‘concentration blob’ (see Section 7.2), and not λη . For dilute DNA solu-

tions, both temperature and concentration data collapses when Wi is based

on a large scale relaxation time from the intrinsic viscosity (see Section 7.2).

2. In extensional flow, it is found that the steady state uniaxial extensional vis-

cosity of semidilute polymer solutions, in the limit of high extensional rates

broadly scales with the volume fraction of the polymers as expected from the

theory of Batchelor (1971), however only one of the experimental data closely

matches with the exact prediction (see Section 8.3).
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9.3 Future scope

Some directions in which the current work can be taken further are listed below.

1. The experimental results reported here will provide benchmark data for vali-

dations of theoretical predictions of polymeric behavior in general and DNA

behavior in particular. It will lead to a better understanding of polymeric

behaviour in the semidilute unentangled regime which has significant indus-

trial applications including extensive polymer processing.

2. One important static equilibrium property we could not establish in this work

is the temperature crossover of the gyration radius, Rg. It is important to

confirm the scaling agrees with that of the neutral polymers using the same z

obtained from the dynamic light scattering measurements of RH.

3. Visualization studies with stained DNA (with YOYO1 dye) can be designed

in a fluorescence microscopy to investigate the diffusivity of unentangled

DNA molecules in the semidilute regime. It will be interesting to find out

whether the concentration dependence of the diffusivity of unentangled DNA

molecules in semidilute solutions, across a range of molecular weights, obey

the power law scaling predicted by blob theory at the θ-temperature. Also,

in the crossover region between the θ-temperature and very good solvents,

whether this concentration dependence also obeys universal scaling behaviour

which can be described by the blob scaling law and in terms of solvent qual-

ity, just as has been shown in the current work with zero shear rate viscosity.

4. The insights gained by identifying ds-DNA (in excess salt) as a neutral poly-

mer and characterising its solvent quality, can be used to design microde-

vices for flow manipulation of DNA. This may lead to significant possibilities

for Biotechnological applications. It is anticipated that in the future, flow in-

duced nucleic acid analysis will provide an economical and faster alternative

to other methods, and serve as a viable technique for diagnostic bio-medical

devices.





A
Thermal Blobs and Measurements in Poor

Solvents

A.1 Size of a thermal blob and polymer, and the excluded
volume parameter

The focus of the experimental measurements in the dilute limit reported in Sec-

tions 2.2 and 2.3 is twofold: (i) determining the θ-temperature, and (ii) describing

the θ to good solvent crossover behaviour of a solution of double-stranded DNA.

The analysis of properties under poor solvent conditions has been carried out es-

sentially only in order to locate the θ-temperature. As is well known, the experi-

mental observation of single chains in poor solvents is extremely difficult because

of the problem of aggregation due to interchain attraction. Nevertheless, in this

section we show that a careful analysis of the dynamic light scattering data, in the

light of the blob picture, enables us to discuss the reliability of the measurements

that have been carried out here under poor solvent conditions.

According to the blob picture of dilute polymer solutions, a polymer chain in a

good or poor solvent can be considered to be a sequence of thermal blobs, where

the thermal blob denotes the length scale at which excluded volume interactions

become of order kBT (Rubinstein and Colby, 2003). Under good solvent conditions,
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the blobs obey self-avoiding-walk statistics, while they are space filling in poor

solvents. As a result, the mean size R of a polymer chain (assumed here to be the

magnitude of the end-to-end vector) is given by (Rubinstein and Colby, 2003),

R = Rblob(T)
(

Nk

Nblob(T)

)ν

, (A.1)

where, Nblob is the number of Kuhn-steps in a thermal blob, and Rblob is the mean

size of a thermal blob. The Flory exponent ν ≈ 0.59 in a good solvent, and 1/3

in a poor solvent. The size of the thermal blob is a function of temperature. For

instance, under athermal solvent conditions, the entire chain obeys self avoiding

walk statistics, so the blob size is equal to the size of a single Kuhn-step. On the

other hand, for temperatures approaching the θ-temperature, the blob size grows

to engulf the entire chain.

It is convenient to define the following dimensionless scaling variable :

ΠH ≡
RH

a
√

M
, (A.2)

where, a is a constant with dimensions of length, which we have set equal to 1 nm.

In general, ΠH should increase with molecular weight for good solvents, remain

constant for theta solvents, and decrease for poor solvents. However, Equation A.1

suggests that on length scales smaller than the blob length scale ΠH must remain

constant, while on length scales large compared to the blob length scale, ΠH must

scale as M0.09 in good solvents, and M−1/6 in poor solvents. Figure A.1 is a plot of

log ΠH versus log M, obtained from the measurements carried out in this study, in

the light of these arguments. It is clear that after an initial regime of constant values,

there is a crossover to the expected scaling laws in both the good and poor solvent

regimes. The crossover from one scaling regime to the next begins approximately

at the blob length scale, an estimate of which can be made as follows.

The requirement that the energy of excluded volume interactions within a ther-

mal blob are of order kBT leads to the following expressions for Nblob and Rblob (Ru-
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binstein and Colby, 2003),

Nblob(T) =
b6

k

v(T)2 (A.3)

Rblob(T) =
b4

k
|v(T)| (A.4)

where, v(T) is the excluded volume at temperature T. The excluded volume can

be shown to be related to the temperature through the relation,

v(T) =



v0

(
1− Tθ

T

)
for good solvents,

−v0

(
1− T

Tθ

)
for poor solvents.

(A.5)

where, v0 is a chemistry dependent constant. These expressions are consistent

with the expectation that v → v0 in an athermal solvent (T → ∞), and v → −v0

in a non-solvent (T → 0) (Rubinstein and Colby, 2003). Since measurements of
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the mean size (via RH) have been carried out here at various temperatures, and we

have estimated both Tθ and bk, it is possible to calculate v0 using Equations A.1–

A.4. As a result the size of a thermal blob as a function of temperature can also be

estimated.

The equations that govern the dimensionless excluded volume parameter v0/b3
k

and the molecular weight Mblob of a chain segment within a thermal blob, in good

and poor solvents, are tabulated in Table A.1, when the hydrodynamic radius RH

is used as a measure of chain size. Here, mk is the molar mass of a Kuhn-step, and

the universal amplitude ratio UR has been used to relate the magnitude of the end

to end vector R to Rg (R = UR Rg), while the universal ratio URD relates Rg to RH

(Rg = URD RH). The values of these ratios are known analytically for the case of

Gaussian chains and Zimm hydrodynamics under θ-conditions (Doi and Edwards,

1986), and numerically in the case of good solvents (Kumar and Prakash, 2003), and

when fluctuating hydrodynamic interactions are taken into account (Sunthar and

Prakash, 2006).

Using the known values of a, ΠH, bk, mk, URD, UR in the appropriate equations

in Table A.1, we find that for sufficiently high molecular weights, v0/b3
k ≈ 5.4± 0.2

in both good and poor solvents. This is significant since an inaccurate measurement

of mean size in a poor solvent (as a consequence of, for instance, chain aggrega-

tion), would result in different values of v0/b3
k in good and poor solvents. Further

evidence regarding the reliability of poor solvent measurements can be obtained

by calculating Mblob(T) in good and poor solvents.

Figure A.2 displays the variation of Mblob with respect to the temperature dif-

ference T− Tθ , calculated using the equations given in Table A.1. The figure graph-

ically demonstrates the temperature dependence of the blob size, and confirms that

essentially the blob size is the same in either a good or poor solvent when the tem-

perature is equidistant from the θ-temperature. The symbols in Figure A.2 denote

values of Mblob, evaluated at the temperatures at which experimental measure-

ments have been made. These values have been represented by the filled red circles

in Figure A.1. As can be seen from Figure A.1, the magnitude of Mblob is roughly
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consistent with the location of the crossover from the scaling regime within a blob,

to the scaling regime that holds at length scales larger than the blob, in both good

and poor solvents. The two scaling regimes, in good and poor solvents, are illus-

trated explicitly in Figure A.3.
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Figure A.3: The variation of hydrodynamic radius (RH) with molecular weight (in bp) in (a)
good solvents at 20◦C and 25◦C and (b) poor solvents at 5◦C and 10◦C. The scaling of RH
with M appears to obey Gaussian statistics within the thermal blob and self-avoiding walk
statistics for M > Mblob in good solvents, and collapsed globule statistics for M > Mblob in
poor solvents.
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A.2 Flory-Huggins χ parameter and the phase diagram

The possibility of phase separation under poor solvent conditions, as polymer-

solvent interactions become less favourable, is the primary reason for the difficulty

of accurately measuring the size scaling of single chains. An approximate estimate

of the thermodynamic driving force for phase separation can be obtained with the

help of Flory-Huggins mean field theory. Since the Flory-Huggins χ parameter

is related to the excluded volume parameter through the relation (Rubinstein and

Colby, 2003) χ =
1
2

[
1− v(T)

b3
k

]
, and we have estimated the value of v(T) in both

solvents, the phase diagram predicted by Flory-Huggins theory for dilute DNA

solutions considered here can be obtained. It is appropriate to note that we are

not interested in accurately mapping out the phase diagram for DNA solutions

with the help of Flory-Huggins theory. This has already been studied in great de-

tail, using sophisticated versions of mean-field theory, starting with the pioneering

work of Post and Zimm (1982), and the problem of DNA condensation is an active

field of research (Yoshikawa et al., 1996, 2011; Teif and Bohinc, 2011). Our primary

interest is to obtain an approximate estimate of the location of the current experi-

mental measurements relative to the unstable two-phase region (whose boundary

is determined by the spinodal curve), since phase separation can occur sponta-

neously within this region. Figure A.4 displays the spinodal curves for the 25 to

289 kbp molecular weight samples, predicted by Flory-Huggins theory. Details of

how these curves can be obtained are given, for instance, in Rubinstein and Colby

(2003). Also indicated on each curve are the critical concentration and temperature.

It is clear by considering the location of the symbols denoting the concentration-

temperature coordinates of the poor solvent experiments, that for each molecular

weight, they are located outside the unstable two-phase region, lending some justi-

fication to the reliability of the present poor solvent measurements. It is appropriate

to note here that mean-field theories do not accurately predict the shape of the bin-

odal curve, and in general concentration fluctuations tend to make the curve wider

close to the critical point (Rubinstein and Colby, 2003). Interestingly, even for the

289 kbp sample, that has a very large molecular weight (≈ 1.9× 108 g/mol), there is
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Figure A.4: Spinodal curves and critical temperatures and concentrations (filled circles)
predicted by Flory-Huggins mean-field theory for a range of molecular weights. Values
of concentrations and temperatures at which the poor solvent experiments have been con-
ducted are also indicated.

still a considerable gap between the critical and θ-temperatures (≈ 4◦C). The reason

for this is because the stiffness of double-stranded DNA leads to a relatively small

number of Kuhn-steps (983) even at this large value of molecular weight, and the

value of the critical temperature predicted by Flory-Huggins theory depends on

the number of Kuhn-steps in a chain rather than the molecular weight.





B
The Viscosity Radius in Dilute Polymer

Solutions: BD Simulations

Here we describe the methodology employed in Ahirwal (2009) and explained

in Pan et al. (2014). The simulations have not been carried out as part of this thesis,

but the results have been used to compare with the experimental data in Chapter 5.

The methodology is described here for convenience of reference.

B.1 Brownian dynamics simulations

The dilute polymer solution is modelled as an ensemble of non-interacting bead-

spring chains, each of which has N beads connected by massless springs. The evo-

lution of the position vector rµ(t) of bead µ as a function of time t is described by

the non-dimensional stochastic differential equation (Öttinger, 1996)

drµ =
1
4 ∑

ν

Dµν · F ˚ dt +
1√
2

∑
ν

Bµν · dWν (B.1)

The length scale lH =
√

kBT/H and time scale λH = ζ/4H have been used for

the purpose of non-dimensionalization, where kB is Boltzmann’s constant, T is the

temperature, H is the spring constant and ζ is the hydrodynamic friction coefficient

associated with a bead. The dimensionless diffusion tensor Dµν is a 3× 3 matrix

153



154 The Viscosity Radius in Dilute Polymer Solutions: BD Simulations

for a fixed pair of beads µ and ν. It is related to the hydrodynamic interaction

tensor, as discussed further subsequently. The sum of all the non-hydrodynamic

forces on bead ν due to all the other beads is represented by Fν, Wν is a Wiener

process, and the quantity Bµν is a non-dimensional tensor whose presence leads to

multiplicative noise (Öttinger, 1996). Its evaluation requires the decomposition of

the diffusion tensor. Defining the matrices D and B as block matrices consisting

of N × N blocks each having dimensions of 3 × 3, with the (µ, ν)-th block of D

containing the components of the diffusion tensor Dµν, and the corresponding block

of B being equal to Bµν, the decomposition rule for obtaining B can be expressed

as

B ·BT = D (B.2)

The non-hydrodynamic forces on a bead µ are comprised of the non-dimensional

spring forces Fspr
µ and non-dimensional excluded-volume interaction forces Fexv

µ ,

i.e., Fµ = Fspr
µ + Fexv

µ . The entropic spring force on bead µ due to adjacent beads can

be expressed as Fspr
µ = Fc(Qµ)− Fc(Qµ−1) where Fc(Qµ−1) is the force between the

beads µ− 1 and µ, acting in the direction of the connector vector between the two

beads Qµ−1 = rµ − rµ−1. Since simulations are carried out at equilibrium, a linear

Hookean spring force is used for modelling the spring forces, Fc(Qµ) = Qµ. The

vector Fexv
µ is given in terms of the excluded volume potential E

(
rµ − rν

)
between

the beads µ and ν of the chain, by the expression,

Fexv
µ = −

N

∑
ν=1
ν 6=µ

∂

∂rµ
E
(
rµ − rν

)
(B.3)

A narrow Gaussian excluded volume potential is used, with E
(
rµ − rν

)
given by,

E
(
rµ − rν

)
=

(
z∗

d∗3

)
exp

[
−

r2
µν

d∗2

]
(B.4)

where, rµν = rµ − rν, is the vector between beads ν and µ, and the parameters

z∗ and d∗ are nondimensional quantities which characterize the narrow Gaussian

potential: z∗ measures the strength of the excluded volume interaction, while d∗
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is a measure of the range of excluded volume interaction. The narrow Gaussian

potential is a means of regularizing the Dirac delta potential since it reduces to a

δ-function potential in the limit of d∗ tending to zero.

The non-dimensional diffusion tensor Dνµ is related to the non-dimensional hy-

drodynamic interaction tensor Ω through

Dµν = δµν δ + (1− δµν)Ω(rν − rµ) (B.5)

where δ and δµν represent a unit tensor and a Kronecker delta, respectively, while

Ω represents the effect of the motion of a bead µ on another bead ν through the dis-

turbances carried by the surrounding fluid. The hydrodynamic interaction tensor

Ω is assumed to be given by the Rotne-Prager-Yamakawa (RPY) regularisation of

the Oseen function

Ω(r) = Ω1 δ + Ω2
rr
r2 (B.6)

where for r ≡ |r| ≥ 2
√

πh∗,

Ω1 =
3
√

π

4
h∗

r

(
1 +

2π

3
h∗2

r2

)
and Ω2 =

3
√

π

4
h∗

r

(
1− 2π

h∗2

r2

)
(B.7)

while for 0 < r ≤ 2
√

πh∗,

Ω1 = 1− 9
32

r
h∗
√

π
and Ω2 =

3
32

r
h∗
√

π
(B.8)

Here, h∗ is the familiar hydrodynamic interaction parameter defined as

h∗ = a
√

H/(πkB T), (B.9)

where a is the dimensional bead radius. In the presence of fluctuating HI, the prob-

lem of the computational intensity of calculating the Brownian term is reduced by

the use of a Chebyshev polynomial representation for the Brownian term (Fixman,

1986; Jendrejack et al., 2000); the details of the exact algorithm are given in Prab-

hakar and Prakash (2004).
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Universal predictions, independent of details of the coarse-grained model used

to represent a polymer, are obtained in the limit of long chains, since the self-

similar character of real polymer molecules is captured in this limit. It is com-

mon to obtain predictions in the long chain limit by accumulating data for finite

chain lengths and extrapolating to the limit N → ∞. This procedure has been used

successfully to calculate universal properties of dilute polymer solutions predicted

by a variety of approaches to treating hydrodynamic and excluded volume inter-

actions, including approximate closure approximations (Öttinger, 1987; Öttinger,

1989; Prakash and Öttinger, 1997; Prakash, 2002), and exact Brownian dynamics

simulations (Kröger et al., 2000; Kumar and Prakash, 2003, 2004; Sunthar et al.,

2005; Sunthar and Prakash, 2006; Bosko and Prakash, 2011). In particular, Sunthar

and Prakash (2006) showed that universal predictions in the non-draining limit

(h∗
√

N → ∞), and at any fixed value of the solvent quality parameter z = z∗
√

N,

could be obtained by simultaneously keeping h∗ and z constant, while taking the

limit N → ∞. Clearly, the parameter z∗ → 0 in this limit. Further, d∗ → 0, since

d∗ is set equal to K (z∗)1/5 in order to use larger step sizes in the numerical inte-

gration scheme (Kumar and Prakash, 2003). As a result, the long chain limit of

the model corresponds to the Edwards continuous chain model with a delta func-

tion excluded volume potential (Doi and Edwards, 1986). As mentioned in the

introduction to the Chapter 5, by accounting for fluctuating hydrodynamic and ex-

cluded volume interactions in this manner, Sunthar and Prakash (2006) were able

to obtain quantitatively accurate parameter free prediction of αH as a function of z.

Here, we show that this approach can also be used to successfully predict universal

properties related to the zero shear rate viscosity of dilute polymer solutions.

B.2 Universal properties derived from the viscosity radius

We focus our attention on two properties that are defined in terms of the vis-

cosity radius (Equation (5.1)) which have been shown to be universal in the sense

that they are independent of the chemistry of the particular polymer-solvent sys-
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tem for sufficiently long polymers. The first of these is the universal viscosity ratio,

UηR (defined in Equation (5.2)), and the second is the swelling ratio αη (defined

in Equation (1.6)). We discuss the evaluation of these properties by Brownian dy-

namics simulations in turn below.

In terms of dimensionless variables, UηR can be shown to be given by

UηR =
9
8
√

πh∗
η∗p0

R∗g
3 (B.10)

where, R∗g is the dimensionless radius of gyration and η∗p0 = ηp0/(npλHkB T) is the

dimensionless zero-shear rate viscosity. Here, np is the number of chains per unit

volume. Kröger et al. (2000) have estimated η∗p0 by carrying out non-equilibrium

BD simulations at finite shear rates, and extrapolating the data to the limit of zero

shear rate. An alternative method is used which is based on a Green-Kubo re-

lation (Fixman, 1981) which gives the viscosity as an integral of the equilibrium-

averaged stress-stress auto-correlation function

η∗p0 =

∞∫
0

dt 〈CS(r1, r2, . . . , rN , t)〉eq (B.11)

where,

CS(r1, r2, . . . , rN , t) = Sxy(t)Sxy(0) (B.12)

The quantity Sxy is the xy-component of the stress tensor given by Kramers ex-

pression Sxy = ∑µ Fµx(rµy − rcy), where Fµx is the x-component of Fµ, rµy is the

y-component of rµ, and rcy is the y-component of the position vector of the center-

of-mass of the bead-spring chain, rc = (1/N)∑µ rµ. The use of the Green-Kubo

method mitigates the problem of the large error bars associated with estimating

polymer solution properties at low shear rates. The noise in measured properties

can be significantly reduced by evaluating the integral in Equation (B.11) with the

help of equilibrium simulations of a large ensemble of trajectories. Additionally, for

some simulations, a variance reduction technique has been employed, as explained

in Section B.3 below.
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Rather than evaluating the swelling of the viscosity radius directly from its def-

inition in Equation (1.6), it is advantageous to use the expression defined in Equa-

tion 5.13 which gives αη in terms of UηR and αg, since the N → ∞ extrapolations of

Uθ
ηR and UηR (at various values of z) are more accurate than the extrapolations for

αη . The swelling of the radius of gyration αg for different values of z is calculated

from Equation 5.15, with values of the fitting parameters, a, b, c, and m as given

in Table 5.4 in Chapter 5. Equation (5.15) has been shown by Kumar and Prakash

(2003) to be an excellent fit to the asymptotic predictions of αg by Brownian dy-

namics simulations of Equation (B.1), in the absence of hydrodynamic interactions.

This corresponds to the pure excluded volume problem, which is adequate for de-

termining αg, since it is a static property unaffected by hydrodynamic interactions.

B.3 Variance reduced simulations

The statistical error in the estimation of the equilibrium-averaged stress-stress auto-

correlation function 〈CS(t)〉eq can be significantly reduced if the fluctuations in

CS(r1, r2, . . . , rN , t) can be made to be small. A variance reduction technique (Öttinger,

1996), based on the use of control variates (Melchior and Öttinger, 1996) has been

used, as described below.

In general, the fluctuations fCS = CS(r1, r2, . . . , rN , t)− 〈CS(t)〉eq, cannot be es-

timated a priori. However, if an approximate estimate of the fluctuations, f̂CS =

ĈS(r̂1, r̂2, . . . , r̂N , t)− 〈ĈS(t)〉eq, can be obtained for a stochastic process r̂ν, for which

the equilibrium-averaged stress-stress auto-correlation 〈ĈS(t)〉eq is known analyti-

cally, then the control variate

ÊCS = CS(r1, r2, . . . , rN , t)− f̂CS (B.13)

can be used to estimate the stress-stress auto-correlation function with reduced sta-

tistical error, since 〈ÊCS〉eq = 〈CS(t)〉eq. The extent of the reduction in statistical

error depends on the extent to which CS and ĈS are correlated, as can be seen from
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the expression for the variance of ÊCS ,

〈[
ÊCS − 〈ECS〉eq

]2
〉

eq
=
〈[

CS − 〈CS〉eq
]2
〉

eq
+
〈[

ĈS − 〈ĈS〉eq
]2
〉

eq

− 2
[
〈CS ĈS〉eq − 〈CS〉eq〈ĈS〉eq

]
(B.14)

The stochastic process r̂ν, governed by the stochastic differential equation,

dr̂µ =
1
4 ∑

ν

Hµν F ˚ dt +
1√
2

∑
ν

Sµν dWν (B.15)

is used as a trajectory-wise approximation to rν, where,

Hµν δ =
〈
Dµν

〉
eq =

[
δµν + (1− δµν) H̄µν

]
δ (B.16)

and,

∑
α

Sµα Sνα = H̄µν , for µ 6= ν (B.17)

Note that, H̄µµ = Sµµ = 1. The equilibrium average of Dµν in Equation B.16 is car-

ried out with the equilibrium distribution function in the absence of excluded vol-

ume interactions, since an analytical solution for the distribution function is only

known under θ-solvent conditions. Fixman (Fixman, 1983, 1981) has previously cal-

culated H̄µν and 〈ĈS(t)〉eq analytically for the RPY tensor, as discussed shortly. By

simulating Equation B.15 simultaneously with Equation B.1, using the same Weiner

process Wν, the fluctuations f̂CS can be estimated, and consequently the mean value

of the control variate,
〈

ÊCS

〉
eq.

Fixman’s expressions for H̄µν and 〈ĈS(t)〉eq has been rewritten with the non-

dimensionalization scheme and notation used here. Fixman (Fixman, 1983) has

shown that the equilibrium averaged hydrodynamic interaction tensor is given by

H̄µν = erf(xµν)−
1√
π

1− exp(−x2
µν)

xµν
(B.18)

where,

xµν ≡

√
2 π h∗2

|µ− ν| for µ 6= ν (B.19)



160 The Viscosity Radius in Dilute Polymer Solutions: BD Simulations

By defining the components of the (N− 1)× (N− 1) matrix Ã, with the expression,

Ãjk = ∑
µ,ν

Bjµ Hµν Bkν (B.20)

where, Bkν = δk+1,ν − δkν, for 1 ≤ k ≤ (N − 1); 1 ≤ ν ≤ N, Fixman (Fixman, 1981)

has derived the following analytical expression for the stress-stress auto-correlation

function of the stochastic process r̂ν,

〈ĈS(t)〉eq = tr
(

exp
[
−1

2
Ã t
])

(B.21)

Clearly, if the RPY tensor is replaced with the Oseen tensor in the definition of Dµν,

then Ãjk is nothing but the modified Kramers matrix (Bird et al., 1987).

The efficacy of the variance reduction procedure used here is demonstrated in

Figure B.1, where the various auto-correlation functions obtained from the simula-

tion of a bead-spring chain under θ-conditions, with N = 18, and h∗ = 0.25, are

displayed. The positive correlation between the two functions CS and ĈS, and the

reduction in the variance in ÊCS can be clearly observed.

Variance reduction was used here only for simulations with z = 0 (θ-solvent),

z = 0.01, and z = 0.1. For higher z, the correlation between the two stochastic

processes was lost and there was no benefit in using ÊCS in place of CS. This is

not unexpected since the equilibrium averaging of Dµν in Equation B.16 is carried

out with the equilibrium distribution function in the absence of excluded volume

interactions.

B.4 Integration of the correlation functions

The stress-stress auto-correlation function must be integrated to obtain the intrinsic

viscosity, as can be seen from Equation B.11, where, when appropriate, the control

variate ÊCS(t) is used instead of CS(t). In spite of the reduced variance, the numer-

ical integration of this function is subject to errors. Consequently, a non-linear least

square fit of the auto-correlation function is used instead, and the integral of the
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Figure B.1: Reduction in the variance of the stress auto-correlation function. The two auto-
correlation functions, CS (red curve) calculated with fluctuating hydrodynamic interac-
tions, and ĈS (blue curve) calculated with pre-averaged hydrodynamic interactions, can
be seen visually to be positively correlated. The control variate ÊCS (green curve), on the
other hand, has significantly lower fluctuations. The analytical function 〈ĈS(t)〉eq (black
curve) is obtained from Equation B.21. The range of the axes have been chosen to magnify
the noise at small values of CS. In this simulation λ1 = 38.2, is the longest relaxation time,
estimated from Thurston’s correlation (Thurston, 1974) for N = 18, and h∗ = 0.25. The
averages have been obtained over roughly 57000 independent trajectories.
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fitting function has been evaluated from that. The time correlation function ĈS(t)

is expected to decay as a sum of exponentials (Fixman, 1981),

ĈS(t) = ∑
k

ake−t/τk (B.22)

so that,
∞∫

0

dt ĈS(t) = ∑
k

ak τk (B.23)

Similar behaviour is expected for CS(t), although the relaxation spectrum need not

be discrete. It was found sufficient to use a small number of discrete modes (typ-

ically three to six in number) to fit the data with an acceptable error (determined

by a χ2 test of fit). A Levenberg-Marquardt least square regression algorithm pro-

vided as part of GNU-octave package (version 3+) was used to carry out the fitting.

Initial guesses for the relaxation times τk have been obtained from estimates of the

relaxation spectrum using the Thurston correlation (Thurston, 1974).
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