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Abstract

In this study, a computational method based on multiscale simulation is used to

understand the role of viscoelasticity on transient free surface flows of dilute polymer

solutions. Two different multiscale simulation strategies, namely, a conformation

tensor based approach [M. Pasquali and L. E. Scriven, J. Non-Newtonian Fluid

Mech., 108, 363-409, 2002] (which is a macroscopic description that yet provides

averaged information on the stretch and orientation of polymer molecules) and a

micro-macro approach based on combining the Brownian configuration fields (BCF)

method [M. A. Hulsen, A. P. G. van Heel and B. H. A. A. van den Brule, J. Non-

Newtonian Fluid Mech., 70, 79–101, 1997] with macroscopic conservation equations,

have been developed and implemented for this purpose.

In the BCF method used in this work, polymer molecules are represented by

a dumbbell model with both linear and non-linear springs, and hydrodynamic in-

teractions between beads has been incorporated. An unconditionally stable fully

implicit simulation algorithm for linear dumbbell models, and a novel semi-implicit

predictor-corrector scheme for non-linear microscopic constitutive models is devel-

oped for time-integration of the non-linear stochastic differential equations governing

the dynamics of dumbbells in complex flows. The computational method developed

in this work is first validated by comparing with published results for Couette flow

problem. The computational method is then applied to study a free surface flow,

i.e., a slot coating flow.

Slot coating flow computations for linear dumbbell models i.e. infinitely extensi-

ble (Hookean) and pre-averaged finitely extensible (FENE-P) dumbbell models using

the micro-macro approach, are in excellent agreement with their equivalent closed-

form constitutive equations in the conformation tensor formulation. We observe that
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the computations using the BCF approach are stable at much higher Weissenberg

numbers. For non-linear dumbbells, we show that the semi-implicit time integration

algorithm is fast and computationally efficient when compared to both an explicit

scheme and a fully implicit scheme involving the solution of the non-linear equations

with Newton’s method for each configuration field. Moreover, we found significant

differences between the stretch of polymers (a microscopic property) at the free sur-

face for different microscopic constitutive models while the macroscopic properties

(i.e. velocity and stress profile) are almost unaffected.

Besides micro-macro computations, macroscopic simulations based on the con-

formation tensor approach have been performed for a wide range of dimensionless

parameters and for different constitutive models to compute slot coating flows. We

show that the flow behavior of dilute polymer solutions is dramatically different from

that of ultra-dilute solutions studied previously by Pasquali and Scriven [2002]. The

results show that elastic stresses due to the viscoelastic nature of the fluid reduce

the size of the recirculation zone under the die. The stagnation point moves from

the free surface to the die wall as Wi increase, and leads to a positive hoop stress

when it reaches the static contact line. This is shown to be the mechanism by which

viscoelasticity destabilizes the flow, in line with the stability analysis by Graham

[Phys. Fluids, 15, 1702–1710, 2003]. Elimination of recirculation close to the static

contact line exposes the geometric singularity that exists in slot coating flows to

a relatively strong flow, and field variables such as the velocity gradient and the

conformation tensor become singular.

With the micro-macro method developed in this work, it is possible to capture,

at least qualitatively, the behavior of real polymer molecules in solution. Given

adequate computational resources, this method can in principle be used for solving

complex flow problems by incorporating most accurate models presently available,

which are based on bead-rod and bead-spring models with non-linear interactions

and many degrees of freedom.
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Chapter 1

Introduction

Free surface flows occur when one or more layers of liquid meet a gas or interact with

a deformable elastic solid at one or more interfaces. Such flows abound in coating

technology (e.g. slot coating, roll coating, knife coating etc.), polymer processing,

cell engineering (deformation of blood cells) and marine engineering. The majority

of the free surface problems include various physical phenomena such as mass trans-

fer through the interface, interfacial and capillary hydrodynamics, air entrainment

as the liquid displaces air from the moving web, evaporation of volatile matters from

the free surface, hydrodynamic instabilities caused by the presence of the free sur-

face, instabilities due to the presence of the surfactant, and sensitivity of the flow

due to the viscoelastic nature of the processed fluids. Hence, modeling free sur-

face flows is a multi-disciplinary problem comprising fluid mechanics, mathematics,

rheology, wetting, spreading, interfacial phenomenon etc. While the interaction of

all these various physical phenomena and the competition between various forces

associated with them decide the quality of the final product, a mathematical model

accounting for all the phenomena can be too complex to deal with a analytically

or even numerically. Alternatively, the effect of each physical phenomena can be

investigated separately which can then be combined to draw a multi-dimensional di-

agram for various dimensionless parameters giving information on dominant forces

in a particular process. In this work, the combined effect of rheology and capillary

forces on coating flows has been investigated.

Due to the existence of a variety of industrial applications of coating flows e.g.

1
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the paper industry, magnetic and optical storage media etc., numerous researchers

have focused their attention on coating flow of Newtonian fluids in an effort to bet-

ter understands and prevent interfacial instabilities [Carvalho and Kheshgi, 2000;

Carvalho and Scriven, 1997a,b, 1999; Christodoulou and Scriven, 1992; Coyle et al.,

1990; Gates, 1999; Greener et al., 1980; Mill and South, 1967; Musson, 2001; Pearson,

1960; Pitts and Greiller, 1961; Ruschak, 1976; Saito and Scriven, 1981; Sartor, 1990;

Savage, 1984; Silliman and Scriven, 1980]. However, most of the coating fluids in

commercial applications are polymeric liquids which show strong viscoelastic behav-

ior i.e. they do not obey a simple linear relationship between the stress and the rate

of strain and the fluid behaviour cannot be captured simply by Navier-Stokes equa-

tions. The polymer concentration in coating application ranges from a few parts

per million to almost a pure polymer, as in a hot melt coating of low-molecular

weight adhesives. The addition of a small amount of polymer to a Newtonian sol-

vent can dramatically change the flow behaviour for example the shear viscosity

of most polymer solutions falls with shear rate [Bird et al., 1987a]. The strange

behaviour shown by viscoelastic liquids can be attributed to the finite time scale

associated with these fluids which can be vastly different from that of the flow time

scale. Experiments on various viscoelastic coating flows [Bauman et al., 1982; Don-

tula, 1999; Glass, 1978a,b,c; Grillet et al., 1999; Ning et al., 1996; Romero et al.,

2004] reveal that coating flows are extremely sensitive to the viscoelastic nature of

coating fluid. These experiments demonstrate that a minute amount of viscoelastic-

ity leads to various instabilities, reduces the size of the stable coating window and

can change the operating conditions of the process depending on the viscoelasticity

of the processed fluid.

In spite of a variety of industrial applications, modeling viscoelastic free surface

flows remains a scientific challenge largely due to the difficulties and computational

cost associated with the large scale simulations of such flows. While computations of

Newtonian coating flows abound in literature [Carvalho and Kheshgi, 2000; Carvalho

and Scriven, 1997a,b, 1999; Christodoulou and Scriven, 1992; Gates, 1999; Mill and

South, 1967; Musson, 2001; Pearson, 1960; Pitts and Greiller, 1961; Ruschak, 1976;

Saito and Scriven, 1981; Sartor, 1990; Silliman and Scriven, 1980] etc., studies on

viscoelastic coating flows are very recent and limited [Bhatara et al., 2004, 2005; Lee
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et al., 2002; Pasquali and Scriven, 2002; Romero et al., 2004; Zevallos et al., 2005].

The pioneer work of Lee et al. [2002] and Pasquali and Scriven [2002] unarguably led

to an improved qualitative understanding of experiments on coating flows of dilute

polymer solutions. While Lee et al. [2002] investigated the effect of viscoelasticity

on the Hele-Shaw flow of dilute solutions, Pasquali and Scriven [2002] computed the

slot and knife coating flow of ultra-dilute solutions.

In general, viscoelastic flows are modeled by adding a closed-form constitutive

equation to the conservation laws of mass and momentum. The closed-form consti-

tutive equation relates the elastic stress to the rate of stain and thus, describes the

behaviour of polymer molecules in flow. The behaviour of polymer molecules have

been shown to be completely different in shear and extensional flows [Bird et al.,

1987a,b]. Coating flows, which are more complex than simple shear and extensional

flow, are almost always a combination of shear and extensional kinematics. For in-

stance in slot coating flows, in the vicinity of the web, the flow is dominated by shear

kinematics and close to the free surface, the flow is extensional in nature. The basic

properties of polymer such as length, molecular weight, stiffness and architecture sig-

nificantly affect the shear and extensional behaviour of polymer solutions. Hence, it

is appropriate to say that a theory that accurately predicts the shear and extensional

behaviour of polymer solutions is ideally the minimum requirement for simulating

complex flows where process flow kinematics departs substantially from both sim-

ple shear and extensional flows. The most accurate models presently available are

kinetic theory based bead-rod and bead-spring models with non-linear interactions,

such as the finite extensibility of polymer molecules and solvent polymer interac-

tions e.g. hydrodynamic and excluded volume interactions. Computations using

these models have been shown to be in excellent agreement with various predictions

of the rheological properties of dilute polymer solutions in homogeneous shear and

extensional flows [Cifre and De la Torre, 1999; DE Gennes, 1979; Hsieh et al., 2003;

Knudsen et al., 1996; Larson et al., 1999, 1997; Magda et al., 1988; Prabhakar, 2005;

Schroeder et al., 2003, 2004; Sunthar and Prakash, 2005]. It is found that the inclu-

sion of above mentioned non-linear interactions are extremely important in accurate

theoretical predictions.

At this point it is worth noting that typically, Brownian dynamics simulations
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are used to solve the kinetic theory based constitutive models. The use of Brown-

ian dynamics simulations avoids the need for closed-form constitutive equations.

However, as it is well known that closed-form equations cannot be written for these

accurate kinetic theory based models, which are essential for carrying out large scale

simulations of viscoelastic or other complex fluids within a macroscopic description

of a fluid. Closed-form constitutive equations can only be written when either all

the non-linear effects are neglected or their linearized approximations are used.

While most approximate theories, obtained by approximating various non-linear

interactions, are quantitatively inaccurate, they have been of vast interest in sim-

ulating industrial flows over the years. The reason for this continued interest in

approximate theories is largely due to the fact that calculations with approximate

models are much faster compared to calculations using accurate models. As a result,

approximate models can be used to explore a much larger parameter space and hence

provide invaluable insight into the various physical phenomena. An added advantage

of these approximate closed-form equations over phenomenological equations derived

from continuum mechanics is that they provide information on average stretch and

orientation of polymer molecules. In this work, a conformation tensor based con-

stitutive equation is used to investigate the effect of viscoelasticity of free surface

flows [Beris and Edwards, 1994; Grmela and Carreau, 1987; Grmela and Öttinger,

1997; Jongschaap et al., 1994; Pasquali and Scriven, 2004]. The conformation tensor

based constitutive equation can in principle be derived by approximating the most

coarse-grained molecular model, namely, the dumbbell model. Simulations for two

different constitutive models, namely, Oldroyd-B and FENE-P models are carried

out for a wide range of parameters for both dilute and ultra-dilute solutions of slot

coating flow. The most important result of these simulations is a clear distinction

between the flow computations of dilute and ultra-dilute polymer solutions.

Although viscoelastic flow simulations using a closed-form constitutive model has

been of great interest, failure of numerical computations at low to moderate fluid’s

viscoelasticity has been a long standing problem in computational rheology. It is

found that various viscoelastic flow computations either fail to converge or give un-

physical results beyond a certain Weissenberg number. The maximum Weissenberg

number, Wi = λγ̇ (where λ is the characteristic relaxation time of polymer, and γ̇ is
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the characteristic rate of strain) that can be obtained appears to depend upon the

flow geometry and the constitutive equation. Until recently, it has not been clear

whether the failure of computations at high Wi is a numerical artifact or due to the

use of a closed-form constitutive model. Only recently, Fattal and Kupferman [2004]

have confirmed, by using a log-conformation approach, that the failure of numer-

ical computations at high Wi is purely a numerical artifact which can be avoided

by a change of variable. However, it remains to be seen whether computations for

equivalent microscopic models using Brownian dynamics simulations coupled with

conservation equations remain numerically stable at high Wi.

The use of Brownian dynamics simulation to solve large scale viscoelastic flow

problems was pioneered by Laso and Ottinger [1993]. The CONNFFESSIT method

developed by Laso and Ottinger [1993] couples the solution of conservation equa-

tions with Brownian dynamics simulations to evaluate the polymer contribution to

stress and hence avoids the need for a closed-form constitutive equation. As the

CONNFFESSIT approach combines the idea of a description of the microstructure

of polymer molecules with a macroscopic description of flow, this type of simulation

technique is typically called as micro-macro approach. While the computation of

large scale viscoelastic flows using bead-spring and bead-rod models are still beyond

currently available computational resources, a coarser representation of polymer

molecule, namely, a dumbbell model, can be be used to (i) compare the micro-macro

results with macroscopic results when no non-linear interactions are incorporated,

and (ii) to investigate qualitatively the effect of various non-linear effects when they

are included. Micro-macro schemes can provide direct insight into the relationship

between the flow and flow induced microstructure.

In this work, a more advanced micro-macro scheme, the Brownian configuration

fields (BCF) method proposed by Hulsen et al. [1997] is used. While the BCF

method is known from quite sometime, its application has been mostly limited to

confined flows of linear dumbbell models. In this work, we have applied the BCF

method to solve viscoelastic free surface flows. A dumbbell model with both linear

and non-linear forces has been used to represent polymer molecules. Within the

framework of large scale viscoelastic flow simulations, for the first time fluctuating

hydrodynamic interactions between beads has been incorporated. A highlight of this
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work is the demonstration of numerical stability of viscoelastic flow computations

at high Wi using the micro-macro approach for both linear and non-linear dumbbell

models.

The present thesis is organized as follows. A detailed description of conformation

tensor based constitutive models and the finite element formulation of the governing

equations has been discussed in Chapter 2. The microscopic constitutive equations

and the micro-macro scheme used here are discussed in Chapter 3. Chapter 4

presents the validation of micro-macro approach developed in this work by solving

a Couette flow problem. In Chapter 5, results for macroscopic simulation of slot

coating flow has been presented. Chapter 6 compares the micro-macro computations

with macroscopic results for linear dumbbell models. Results for non-linear dumbbell

models and for transient free surface flows are also discussed in Chapter 6. The major

conclusions of this work are finally summarized in Chapter 7.



Chapter 2

Viscoelastic Free Surface Flow

Modeling Using the Macroscopic

Approach

This chapter summarizes the governing equations, boundary conditions, and compu-

tational method for solving two dimensional (2-D) free surface flows of viscoelastic

liquids within the framework of the macroscopic description of fluid. The finite

element method used to discretize the governing equations is discussed, and the

corresponding weighted residuals and Jacobian matrices are presented in this chap-

ter. The problem formulation presented in this chapter can in general be applied

to solve any viscoelastic flow (i.e., confined or free boundary flow problems) using a

closed-form constitutive equation.

Viscoelastic flows are usually modeled by adding an extra closed-form constitu-

tive equation for the elastic stress. Hence, simulations of such flows require solving

simultaneously the hyperbolic transport equation of elastic stress together with the

momentum and mass conservation equations. Most of the constitutive equations

used in modeling complex flows can be classified in to two classes. (i) Macroscopic

models such as conformation tensor based models, rate-type models [Bird et al.,

1987a,b]. (ii) Mesoscopic models based on bead-spring or bead-rod models of poly-

mer solutions, where the microstructure is represented by micromechanical objects

governed by stochastic differential equations [Bird et al., 1987a,b].

7
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While, the mesoscopic models incorporate a richer degree of molecular detail,

they are still limited to fairly simple flows because of computational cost [Bird

et al., 1987a,b; Feigl et al., 1995; Halin et al., 1998; Hulsen et al., 1997; Laso and

Ottinger, 1993; Laso et al., 1997]. Currently macroscopic models are considered the

most appropriate for large-scale simulation of complex flows of complex fluids.

Within the framework of the macroscopic models, the rate-type equations used in

computational rheology are mainly differential constitutive equations. Differential

constitutive equations have a distinct advantage over integral constitutive equa-

tions in that they require a knowledge of current velocity and stress fields rather

than the entire deformation history [Bird et al., 1987a]. In conformation tensor

based approach the microstructure is modeled by means of one or more continuum

variables representing the expectation value of microscopic features [Beris and Ed-

wards, 1994; Grmela and Carreau, 1987; Grmela and Öttinger, 1997; Jongschaap

et al., 1994; Pasquali and Scriven, 2004]. These rate-type and conformation tensor

based constitutive equations for elastic stress e.g. Oldroyd-B, FENE-P etc. are ob-

tained typically by approximating kinetic theory based constitutive equations with

the help of closure approximations. For instance, the FENE-P model is obtained by

pre-averaging the fluctuating non-linear FENE model.

Computational models based on the conformation tensor approach are no more

expensive than models based on rate-type equations for viscoelastic stress, yet are

much cheaper than models based on more detailed microstructural representations

of the liquid based on bead-spring-rod models (e.g., stochastic methods such as

CONFFESSIT, Adaptive Lagrangian Particle, and Brownian Configuration Fields)

[Bird et al., 1987a,b; Feigl et al., 1995; Halin et al., 1998; Hulsen et al., 1997; Laso and

Ottinger, 1993; Laso et al., 1997]. However, compared to the rate-type equations,

conformation tensor models allow a much richer description of liquid microstructure

and also ensure that microscopic models have thermodynamic consistency [Beris and

Edwards, 1994; Grmela and Carreau, 1987; Grmela and Öttinger, 1997; Jongschaap

et al., 1994; Pasquali and Scriven, 2004]. Recently viscoelastic flows have been

successfully computed with conformation tensor models [Bhat et al., 2005; Pasquali

and Scriven, 2002; Xie and Pasquali, 2004].

We have carried out viscoelastic flow computations using both macroscopic and
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mesoscopic approaches. The problem formulation based on mesoscopic approach

is discussed in detail in next chapter. In the framework of macroscopic approach,

we have used the conformation tensor based constitutive models for modeling vis-

coelastic flows as it provides information on the microstructure of the flowing fluid

(averaged configuration of flowing polymer molecules) in addition to the information

on macroscopic properties of fluid.

The addition of constitutive equations for elastic stress to conservation equations

considerably complicates the analytical and numerical tractability of the viscoelastic

flow problem. While the analytical tractability of viscoelastic flow problems is out-

of-question due to the severe non-linearities associated with it, the numerical solution

of non-linear governing equations using the finite element method is still an open

area of research and a major challenge specially for highly elastic liquids.

In this section, we have briefly summarized of various developments in the field of

viscoelastic free surface flow modeling. Various state-of-art methods for solving the

set of equations, governing viscoelastic flows, have been proposed in literature. Baai-

jens [1998] provides an extensive review on various developments of finite element

techniques used to solve viscoelastic flows. The interesting feature of viscoelastic

problems is that they involve a mixed elliptic-hyperbolic system which considerably

complicates the mathematical analysis. The traditional Galerkin method is well

suited for elliptic equations but produces inaccurate approximations in the solution

of hyperbolic equations. Thus, a loss of convergence at quite modest value of Wi has

been observed when the Galekin method is applied to mixed problems. Attempts

to maintain the elliptic character of the set of governing equations and obtaining a

numerically stable and converged solution at high Wi have been the major driving

force in developing various solution strategies to solve viscoelastic flow problems.

Most of the advances in the use of finite element method to solve viscoelastic

flows are based on several paradigms. These include,

1. Splitting the problem formulation into; (i) solution of the momentum and

continuity equations for the calculation of the velocity and pressure fields, and

(ii) the calculation of the extra stress field from the hyperbolic constitutive

equation.

2. Reformulating the momentum and constitutive equation to make explicit the



10

elliptic character of this equation with respect to the velocity field.

3. Introducing accurate and smooth interpolation of velocity gradients for addi-

tional numerical stability in the solution of the constitutive equation.

4. Introducing a concept of adaptive viscosity to retain the elliptic character of

the momentum equation even at high Weissenberg numbers (Wi = λγ̇, where

λ is the characteristic relaxation time of polymer, and γ̇ is the characteristic

rate of strain).

5. Applying numerically stable and accurate methods for the solution of the hy-

perbolic equations in order to obtain an accurate representation of the complex

boundary layer structure that seems inherent in the solution of such flows.

Various methods proposed in literature, based on the above paradigms, have

originated from the EVSS (Elastic Viscous Split Stress) formulation of Rajagopalan

et al. [1990]. The EVSS and its successive variants DEVSS (Discrete Elastic Vis-

cous Stress Split) [Guénette et al., 1992], DEVSS-G (Discrete Elastic Viscous Stress

Split with interpolated velocity gradient) [Guénette and Fortin, 1995], DAVSS-G

(Discrete Adaptive Elastic Viscous Stress Split with interpolated velocity gradient)

[Sun et al., 1999] and DEVSS-TG (Discrete Elastic Viscous Stress Split with Trace-

less velocity gradient) [Pasquali and Scriven, 2002] give a converged and accurate

solution at low and moderate values of Wi. However, at present, it is not clear

whether the failure of these methods at higher Wi is due to the constitutive model

used to represent the behavior of polymers solutions, or due to the imposition of

an incorrect boundary condition at geometric singularities or due, to the lack of

mesh refinement. Another shortcoming of EVSS based formulations is that the

selection of the interpolating functions for the various unknowns are restricted by

compatibility conditions (e.g., the Babuska-Brezzi condition in flows of incompress-

ible Newtonian fluids and the compatibility condition between velocity gradient and

viscoelastic stress for viscoelastic liquids) [Babuska, 1971; Brezzi, 1974; Szady et al.,

1995]. A Galerkin/Least-Square (GLS) based finite element method can be shown

to overcome these compatibility conditions. Various forms of the GLS method have

been successfully used to solve viscoelastic flows [Behr et al., 1993; Fan et al., 1999b;
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Oscar et al., 2004]. Like EVSS based methods, the GLS method is also not numeri-

cally stable at high Wi. Fattal and Kupferman [2004, 2005] and Hulsen et al. [2005]

have recently addressed the mystery of the high Wi problem and have developed a

so-called Log-Conformation method. Although the stability of numerical solutions

at high Wi can be obtained by using the Log-Conformation method of Fattal and

Kupferman [2004], obtaining mesh convergence of results at high Wi is still an open

challenge. In this work, viscoelastic flow is computed by the DEVSS-TG finite ele-

ment method proposed by Pasquali and Scriven [2002] primarily because it has been

successfully used to solve a larger variety of viscoelastic flows when compared to the

GLS or the Log-Conformation methods.

Modeling viscoelastic free surface flows adds another challenge to an already

complicated problem, as the free surface location is unknown a priori and describ-

ing its evolution is a part of the solution of the problem. The computational method

used to analyze such flows is required not only to explain the effect of viscoelasticity

but also to accurately compute the free surface shape. Different ways of handling

free surface flows using domain mapping methods (e.g., elliptic mesh generation and

domain deformation) are discussed in more detail by Benjamin [1994]; Christodoulou

and Scriven [1992]; DE Almeida [1995, 1999]; Kistler and Schweizer [1997]; Kistler

and Scriven [1984]; Sackinger et al. [1996] and DE Santos [1991]. Apart from do-

main mapping methods, boundary mapping methods such as volume of fluid (VOF)

[Hirt and Nichols, 1981; Maronnier et al., 2003], marker-and-cell (MAC) [Harlow

and Welch, 1965], and spine technique [Ruschak, 1980] have also been used in liter-

ature. Although boundary mapping methods are computationally cheap compared

to domain mapping techniques, they are not appropriate for flows where capillary

forces are dominant and the free surface is significantly distorted. Domain mapping

methods have been used successfully to solve various 2-D Newtonian and viscoelastic

free boundary flow problems [Bhat et al., 2005; Bhatara et al., 2004, 2005; Carvalho

and Kheshgi, 2000; Carvalho and Scriven, 1997a,b, 1999; Christodoulou and Scriven,

1992; Lee et al., 2002; Pasquali and Scriven, 2002; Romero et al., 2004; Xie, 2005;

Zevallos et al., 2005]. In the domain mapping technique, the problem can be easily

solved in a fully coupled way to give the boundary location and the value of the

field variables simultaneously and hence reduce convergence problems for capillary
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dominant flows. An elliptic mesh generation method proposed by DE Santos [1991]

is used in this work to compute viscoelastic free surface flows. More details on the

elliptic mesh generation method will be discussed in a subsequent section.

The equations governing viscoelastic free surface flows are well known. However,

they are briefly reviewed here primarily to introduce the notation that will be used

in the rest of the thesis.

2.1 Governing Equations

In this section we review the set of governing equations required to describe the

viscoelastic free surface flow problem.

2.1.1 Transport Equation

The transport equations for mass and momentum in an unsteady, isothermal and

incompressible flow of a dilute polymer solution, in the absence of any external

forces, are :

0 = ∇ · v (2.1)

0 = ρ

(

∂v

∂t
+ v · ∇v

)

− ∇ · T (2.2)

where v is the liquid velocity, and ρ is the liquid density. T is the total stress tensor,

which is expanded as: T = −pδ + τs + σ where p is the pressure, δ is the identity

tensor, τs is the viscous stress tensor and σ is the polymer contribution to the total

stress tensor. The viscous stress is given by Newton’s law of viscosity: τs = 2ηsD

where D is the rate of strain tensor, given by D = 1
2
(∇v + ∇vT) and ηs is the

Newtonian viscosity.

2.1.2 Macroscopic Constitutive Equation

In conformation tensor based models an independent variable, the conformation

tensor M, which carries information on local average stretch and orientation of

a polymer molecule is related to the polymer contribution to stress through an
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algebraic constitutive equation. Mathematically the conformation tensor can be

written as the second moment of the end to end distance of polymer molecule as:

M =

∫

QεR3

QQP (Q, t)dQ (2.3)

Where Q is the end to end distance, and P (Q, t) is the configurational distribution

function which gives the number of polymer molecules whose end to end distance lies

between Q and Q+dQ at any given instant. Conformation tensor based models have

been shown to be thermodynamically consistent [Beris and Edwards, 1994; Grmela

and Carreau, 1987; Grmela and Öttinger, 1997; Jongschaap et al., 1994; Pasquali and

Scriven, 2004] and invariants of the conformation tensor provide useful information

on the microstructural state of polymer in various flow regions. The eigenvectors

of the conformation tensor represent the principal direction along which polymer

chains are stretched, contracted or oriented and its eigenvalues represent the square

of principal stretch ratio. The time evolution of the dimensionless conformation

tensor is [Pasquali and Scriven, 2002]:

0 =
∂M

∂t
+ v · ∇M − 2ξ

D : M

I : M
M − χ(M · D + D · M − 2

D : M

I : M
M)

−M ·$ −$T · M +
1

λ
(g0I + g1M + g2M

2) (2.4)

where $ is the vorticity tensor, and λ is the characteristic relaxation time of poly-

mer. The constitutive function ξ(M) represents the polymer resistance to stretching

along their backbone, χ(M) represents the polymer resistance to rotation with re-

spect to neighbors and g0(M), g1(M), and g2(M) define the rate of relaxation of

polymer segments. We use R2
e/3 as the length scale to normalize the conformation

tensor where Re is end to end distance of the polymer segment.

The elastic stress, σ, is related to the conformation tensor as [Pasquali and Scriven,

2002]:

σ = 2(ξ − ζ)
M

I : M
M :

∂a

∂M
+ 2ζM · ∂a

∂M
(2.5)

where a(M), is the Helmholtz free energy per unit mass of the polymeric liquid.

Although the computational algorithm is independent of the choice of constitu-

tive functions (ξ(M), χ(M), g0(M), g1(M), g2(M), and a(T,M)), particular forms
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of these functions are chosen to represent a particular constitutive model for the

liquid. Pasquali and Scriven [2002, 2004] have discussed conformation tensor based

constitutive equations in detail. Two different conformation tensor based constitu-

tive models used in this work are describe below.

� Infinitely extensible molecules (Oldroyed-B model) The constitutive

function for the Oldroyd-B model are ξ = 1, χ = 1, g0 = −1, g1 = 1, g2 = 0.

With these model parameters, the evolution equation of the dimensionless

conformation tensor becomes

∂M

∂t
+ v · ∇ M = ∇ vT · M + M · ∇ v − 1

λ
(M − I) (2.6)

and the constitutive equation for stress reduces to

σ =
G

2ρ
M (2.7)

where G is the elastic modulus of polymer liquid and is related to the polymer

relaxation time, λ, and polymer viscosity, ηp, as G ≡ ηp/λ.

� Finitely extensible molecules (FENE-P model) The constitutive function

for the FENE-P model are ξ = 1, χ = 1, g0 = −1, g1 = (bM − 1)/(bM −
TrM/3), g2 = 0.

The parameter bM controls the molecular extensibility, and is defined as the

ratio of the maximum length square of polymer molecules to their average

length square at equilibrium. Note that the parameter bM used in conforma-

tion tensor based models is different from the finite extensibility parameter b

commonly used in FENE-P formulations [Bird et al., 1987b] as elaborated in

the next chapter. The evolution equation of the dimensionless conformation

tensor for the FENE-P model can be written as:

∂M

∂t
+ v · ∇ M = ∇vT · M + M · ∇v − 1

λ

(

bM − 1

bM − TrM/3
M − I

)

(2.8)
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and the constitutive equation for polymer stress is given by:

σ =
G

2ρ

(

bM − 1

bM − TrM/3
M − I

)

(2.9)

The constitutive parameters are the polymer elastic moduls (G), the relaxation time

(λ), and the ratio of maximum length square of the polymer to their average length

square at the equilibrium (bM) in the FENE-P model.

2.1.3 Mesh Generation

In order to solve free boundary problems by means of standard techniques, the

set of differential equations posed in the unknown domain has to be transformed

to an equivalent set defined in a known reference domain. This transformation is

made by a mapping x = x(ξ) which connects the known and the unknown domains.

Here the unknown physical domain is parametrized by the position vector x and the

reference domain by ξ. A common approach is to use a simple quadrangular domain

tessellated into unit squares. In many situations, however, the physical domain

cannot be mapped into a simple quadrangular reference domain. In these situations

the physical domain can be subdivided into subdomains (also called regions), each of

which can be mapped to quadrangular reference regions. The mapping is arbitrary,

except that boundaries of the reference domain have to be continuously mapped

onto the boundaries of the physical domain and the mapping has to be invertible.

Theoretical research on mesh generation have addressed issues of existence and

uniqueness of such mappings. The key idea in developing such a mapping technique

is either to parameterize the free boundary as a mathematical curve or surface in

space so that boundary conditions may be applied precisely at interfaces with well

represented location, orientation and curvature, or to solve a system of equations

for generating boundary fitted finite elements which are characterized by dimen-

sional homogeneity, orthogonality and smoothness. A boundary fitted elliptic mesh

generation method proposed by DE Santos [1991] and Benjamin [1994] is used here

to construct the mapping between the physical domain and the reference computa-

tional domain. It relies on elliptic partial differential equations to relate points of
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the physical domain to points of the reference domain. The mapping obeys:

∇ · D̃ · ∇ξ = 0 (2.10)

where ξ is the position in the computational domain and the dyadic D̃, the diffusion

coefficient, is a symmetric positive definite tensor which controls the spacing of the

coordinate lines [Benjamin, 1994; Pasquali and Scriven, 2002]. Boundary conditions

are needed in order to solve the second-order partial differential equation that de-

scribes the mapping from the reference domain to the physical domain. Boundary

conditions used here will be discussed shortly.

In the area of time dependent free surface flow calculations, the Lagrangian

and Eulerian based continuum mechanics approaches exist in literature. In purely

Lagrangian calculations, a fluid region is subdivided into a finite-element grid which

is then convected by the fluid motion. Therefore, the computational domain and the

fluid region move identically at all times. The governing equation of flow have no

non-linear advection term as there is no relative motion between mesh and the fluid.

This method, however, produces large distortion of the mesh and hence, a automatic

grid generator is required to correct mesh distortion. In Eulerian approach, the grid

remains fixed and there is a net relative motion between the movement of the grid

and that of the fluid. In this case no expensive remeshing is required but the

equation of motion contains advection terms. There also exist mixed methods, so

called arbitrary Lagrangian Eulerian (ALE) methods, between the two extremes

represented by the Eulerian and the Lagrangian approaches. In ALE methods the

grid is modified by the fluid flow. Grid nodal points move, although with a velocity

different from that of the fluid. In order to ensure consistency, the equation of motion

is modified by introducing a velocity of the grid while using the ALE approach.

The time dependent free surface flow problem is solved in this work by the

ALE algorithm [Huerta and Liu, 1988; Lewis et al., 1997; Masud and Hughes, 1997;

Ramaswamy, 1990] in which the time derivatives of any scalar, vector or a tensor

quantity Φ are transformed to time derivatives at fixed iso-parametric coordinates

(denoted by
◦

Φ) as
∂Φ

∂t
=

◦

Φ − ◦
x · ∇Φ (2.11)
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where
◦
x is the mesh velocity. Hence, (∂v/∂t) in Eq. 2.2 and (∂M/∂t) in Eq. 2.4 are

replaced with
(

∂v/∂t− ◦
x · ∇v

)

and
(

∂M/∂t− ◦
x · ∇M

)

respectively.

2.1.4 Velocity Gradient Interpolation Equation

The interpolated velocity gradient variable L is introduced to improve the stability

and convergence of the computational method. Szady et al. [1995] have suggested

that close to stagnation regions and solid surfaces, the conformation transport equa-

tion relating the conformation tensor and velocity gradient reduces to an algebraic

equation. Therefore, an additional variable called the interpolated velocity gradient

should be used in the conformation transport equation in place of the raw velocity

gradient and both the conformation dyadic and the interpolated velocity gradient

should be represented by the same basis functions. Hence, the rate of strain tensor

D and the vorticity tensor $ should be expressed in terms of L.

D =
L + LT

2
; $ =

L − LT

2
(2.12)

In incompressible flows, the velocity gradient should be traceless i.e. ∇ · v =

tr(∇v) = 0, but the approximated velocity field computed with the finite element

method is not exactly divergence free. Pasquali and Scriven [2002] suggested that

inaccurate computations of (∇ · v) and hence, trL can lead to a larger error in the

computations of conformation tensor and thus, the following equation should be

used for the interpolated velocity gradient,

0 = L − ∇v +
1

trI
(∇v) I (2.13)

This equation ensures that trL remains zero everywhere in the flow regardless of the

value of (∇ · v). For two dimensional flow computations carried out in this work

tr I = 2.
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2.2 Finite Element Formulation of The Problem

The finite element method is used for spatial discretization of the system of equa-

tions. The DEVSS-TG (Discrete Elastic Viscous Stress Split) finite element formu-

lation [Pasquali and Scriven, 2002] which is based upon the successive variations

of EVSS (Elastic Viscous Stress Split) [Rajagopalan et al., 1990] DEVSS (Discrete

Elastic Viscous Stress Split) [Guénette et al., 1992] and DEVSS-G (Discrete Elastic

Viscous Stress Split with interpolated velocity gradient) [Guénette and Fortin, 1995]

is used. The conformation tensor equation is solved using the SUPG (Streamline

Upwind Patrov-Galerkin) finite element formulation. In DEVSS-TG formulation an

additional equation for the traceless velocity gradient L is added to the set of equa-

tions and also a stabilization term is added to the momentum equation [Pasquali

and Scriven, 2002]. The viscous stress term in equation 2.17 is rewritten as:

σ = ηs

(

L + LT
)

+ ηa

(

∇v + ∇vT − L − LT
)

(2.14)

where ηa is a numerical parameter. Pasquali and Scriven [2002] have shown that

changing the value of ηa has no effect on the solution of the problem as long as

ηa ≡ ηs + ηp,0 where ηp,0 is the polymer contribution to the zero shear rate viscosity.

The finite element formulation of the governing equations is discussed below.



2.2. Finite Element Formulation of The Problem 19

2.2.1 Weighted Residual Form of Governing Equations

The coupled set of transport equations for mass, momentum, interpolated velocity

gradient and conformation tensor along with the mesh equations is:

0 = ∇ · D̃ · ∇ξ (2.15)

0 = ∇ · v (2.16)

0 = ρ

(

∂v

∂t
+ v · ∇v

)

− ∇ · T − Θ (2.17)

0 = L − ∇v +
1

TrI
(∇v) I (2.18)

0 =
∂M

∂t
+ v · ∇M − 2ξ

D : M

I : M
M − χ(M · D + D · M − 2

D : M

I : M
M)

−M ·$ −$T · M +
1

λ
(g0I + g1M + g2M

2) (2.19)

The weighted residual form of above set of equations is obtained by multiplying the

governing equations with appropriate weighting functions and then integrating over

the flow domain, as follows:

R
x,α =

∫

Ω

ψα
x(∇ · D̃∇ξ) dΩ (2.20)

R
c,α =

∫

Ω

ψα
c (∇ · v) dΩ (2.21)

R
m,α =

∫

Ω

ψα
m

[

ρ

(

∂v

∂t
+ v · ∇v

)

− ∇ · T − Θ

]

dΩ (2.22)

R
L,α =

∫

Ω

ψα
L

[

L − ∇v +
1

TrI
(∇v) I

]

dΩ (2.23)

R
M,α =

∫

Ω

ψα
M

[

∂M

∂t
+ v · ∇M − 2ξ

D : M

I : M
M − χ

(

M · D + D · M − 2
D : M

I : M
M

)]

dΩ

−
∫

Ω

ψα
M

[

M ·$ + $T · M − 1

λ
(g0I + g1M + g2M

2)

]

dΩ (2.24)

where Ω is the unknown physical domain, ψα
x ....ψ

α
M are the weighting functions with

subscript denoting the relevant independent variable and superscript α varies from

1 to the number of independent weighting functions to be chosen for a particular

equation.

The higher order derivatives in Eqs. (2.20) and (2.22) can be lowered by one
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Table 2.1: Basis functions and weighting functions used for various field variables
and governing equations

Field Variables Basis Functions Weighting Functions
x ψx: Quadratic φx=ψx

(Mesh Equation)
v ψv: Quadratic φm=ψv

(Momentum Equation)
p ψp: Linear Discontinuous φc=ψp

(Continuity Equation)
L ψL: Linear Continuous φL=ψL

(Velocity Gradient Equation)
M ψM: Linear Continuous φM=ψM

(Conformation Tensor Equation)

order using the divergence theorem as below

R
x,α =

∫

Γ

(n · D̃ · ∇ξ)ψα
x dΓ −

∫

Ω

(∇ψα
x · D̃ · ∇ξ) dΩ (2.25)

R
m,α =

∫

Ω

ψα
mρ

(

∂v

∂t
+ v · ∇v

)

dΩ +

∫

Ω

∇ψα
m · T dΩ −

∫

Γ

ψα
m(n · T) dΓ (2.26)

where Γ is the boundary of the physical domain and n is the outward pointing

normal to the boundary.

Each independent variable in Eqs. (2.20)-(2.24) is represented by finite ele-

ment basis functions as: Φ =
∑

β

Φβϕβ, where Φ is a vector, dyad or scalar

[v, p, x, L, M], ϕβ are the basis functions
[

ϕβ
v, ϕ

β
p , ϕ

β
x, ϕ

β
L, ϕ

β
M

]

and Φβ are the

unknown coefficients
[

vβ, pβ, xβ, Lβ, Mβ
]

. β is a dummy index ranging from 1 to

the number of basis functions for various variables.

The basis functions used to represent the variables and the weighting functions

used in the residual equations are listed in Table 2.1. The particular choice of the

basis functions for the velocity, velocity gradient and conformation tensor listed in

Table 2.1 have been widely used in the finite element literature and have been shown

to satisfy compatibility conditions [Babuska, 1971; Brezzi, 1974; Szady et al., 1995].
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2.3 Boundary Conditions

In order to complete the mathematical formulation of viscoelastic free surface flows,

appropriate boundary conditions must be specified. Here, we discuss the general

boundary conditions for free surface flows. For the two dimensional free surface flow

considered in this work, Eqs. (2.1), (2.2), (2.4), and (2.10) form a set of 9 scalar

equations in 9 unknowns. Boundary conditions on momentum and mesh equations

[Eqs. (2.2),(2.10)] are specified on all boundaries due to the elliptic nature of these

equations. However, as the conformation tensor equation is hyperbolic in nature;

it is required that the boundary condition is applied only at the inflow boundary

where n · v < 0. The boundary conditions on transport and mesh equations are

discussed below.

2.3.1 Boundary Conditions on Transport Equations:

In the finite element method, boundary conditions are classified in two different ways

as essential boundary conditions or as natural boundary conditions. The essential

boundary condition is imposed by replacing the governing equation at the boundary

with the boundary condition. The essential boundary condition can be applied

either in a strong sense (field variables are replaced with the prescribed value of the

field variable at the boundary) or in a weak sense (the boundary condition is applied

in the weighted residual form). Natural boundary conditions are imposed on the

additional boundary terms of the governing equations in its integral form. In the

present work,

1. A no slip boundary condition is applied at the solid walls: v = vw. This

condition is applied by replacing the momentum residual (i.e., as an essential

boundary condition).

2. The force balance at the free surface is imposed as a boundary condition on

the momentum equation through the following traction boundary condition:

n · T = −pa n + ς n (∇q · n) (2.27)

where ∇q denotes the surface divergence operator and is defined as ∇q =
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(I−nn) · ∇ [Slattery, 1990]. This boundary condition is discussed and derived

in Appendix A. pa is the ambient pressure in the gas phase and ς is the

surface tension. n is the unit vector normal to the free surface. The tangential

component of Eq. (2.27) is the vanishing shear stress, at the free surface t n :

T = 0 because the shear stress exerted by gas on the liquid is negligible; and

the normal component of Eq. (2.27) is the traction inside the liquid which must

balance the sum of the pressure in the gas and the capillary pressure induced by

the curvature of the free surface. This boundary condition is applied naturally

through the boundary integration of the traction term (n·T) in the momentum

equation.

As the normal vector n is discontinuous on the free surface, Eq. (2.27) can not

be inserted directly in its present form into the traction term of the momentum

equation. Ruschak [1985] proposed that the term n (∇q ·n), which is measure

of the inverse of the radius of curvature, can be replaced by dt/ds, where

dt/ds is the surface derivative of the local tangent vector with s as the arc

length along the boundary. Hence, the boundary condition in Eq. (2.27) can

be rewritten as

n · T = −pa n + ς
dt

ds
(2.28)

As a result, the traction boundary condition imposed through the weighted

residual integral of the traction n · T at a boundary Γ is as follows:

∫

Γ

ψα
m (n · T) dΓ =

∫

Γ

ψα
m(−pa n + ς

dt

ds
)dΓ

= −
∫

Γ

(paψ
α
mn + ς

dψα
m

ds
)dΓ + ςψα

mt|s2

s1

(2.29)

where s1 and s2 are the start and the end point of boundary, and ψα
m is the

weighting functions of the momentum equation.

3. The flow rate at the inflow boundary is imposed by specifying a velocity profile

v = f(x). This boundary condition is imposed by replacing components of

the momentum equation with the prescribed velocity field.

4. The fully developed flow condition n · ∇v = 0 at the outflow boundary is
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imposed naturally as:
∫

Γ

(n · ∇v)ψv dΓ = 0 (2.30)

5. The conformation transport equation [Eq. (2.4)] is a hyperbolic equation and

the boundary condition on this equation is imposed weakly only at the inflow

boundary. In fully developed flow, the polymer conformation does not change

along a streamline [Pasquali and Scriven, 2002; Xie and Pasquali, 2004] and

thus,

v · ∇M = 0 (2.31)

holds at the inflow boundary. More detailed discussion on the boundary con-

dition for conformation tensor based models can be found in [Pasquali and

Scriven, 2002; Xie and Pasquali, 2004].

For steady state flow computations in this work, Eq. (2.33) is substituted

in Eq. (2.4) and hence, the following algebraic equation holds at the inflow

boundary

0 = −2ξ
D : M

I : M
M − ζ(M · D + D · M − 2

D : M

I : M
M)

−M · W − WT · M +
1

λ
(g0I + g1M + g2M

2) (2.32)

Eq. (2.4) is replaced by Eq. (2.32) at the inflow boundary (i.e. applied es-

sentially in strong sense). However, for unsteady state flow computations

Eq. (2.33) is applied essentially in a weak sense:

∫

Γ

(v · ∇M)ψM dΓ = 0 (2.33)

2.3.2 Boundary Conditions on Mesh Equations

The following boundary conditions are used to solve the mesh equation [Eq. (2.10)]:

1. At the fixed boundaries, positions are fixed at the initial values i.e., x = x0.

This boundary condition is applied essentially by replacing the mesh residual

with fixed nodal positions. The location of nodes on the boundary is fixed at

the inflow and on the two solid walls.
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2. At the free surface, the kinematic boundary condition

n ·
(

v − ◦
x
)

= 0 (2.34)

is applied essentially in the weak form as:

∫

Γ

n ·
(

v − ◦
x
)

ψα
x dΓ = 0 (2.35)

3. The nodes are distributed on the boundary of the physical domain according

to a stretching function that controls the spacing of the nodes.

It is important to note that the same boundary conditions must be applied at the

boundaries between subregions of the computational domain. Appropriate boundary

conditions must be imposed at the contact line at which the free surface meets the

solid wall. In this work we fixed the position of the static contact line. More details

on mesh boundary conditions for elliptic mesh equations can be found in Pasquali

[2000].

2.4 Dimensionless Numbers

Dimensional analysis of the system of equations suggests that it is convenient to

introduce four dimensionless numbers, which are the combinations of the various

macroscopic model parameters ρ, ηs, ς, ηp,0, λ etc. These dimensionless numbers

are:

1. The Reynolds number Re = ρvL/(ηs +ηp,0) where v is the characteristic veloc-

ity, L is the characteristic length of the problem and ηp,0 is the zero shear rate

solvent viscosity. The Reynolds numbers represents the ratio between inertial

and viscous forces.

2. The Capillary number Ca = (ηs + ηp,0)v/ς. The Capillary numbers measures

the relative importance of viscous to the surface forces.

3. The viscosity ratio β = ηs/(ηs+ηp,0). β is the ratio of the polymer contribution

to the total viscosity of the solution.
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4. The Weissenberg number Wi = λv/L, where λ is the characteristic relaxation

time of polymer. Wi is the ratio of characteristic time scale of polymer to the

characteristic time scale of the flow. A more detailed discussion on Wi defined

in terms of the microscopic properties of the polymer molecules is presented

in the next chapter.

5. The Elastocapillary number Ec=Wi/Ca=λς/(ηs+ηp,0)L. The Elastocapillary

number is a ratio of elastic and surface forces.

All simulations are preformed at Re = 0, by choosing ρ = 0 and at a dimensionless

flow rate less then 0.33, for which a recirculation region is always present in the flow

domain [Pasquali and Scriven, 2002]. The dimensionless numbers that are varied in

this work are Ca, β, Wi and Ec.

2.5 Computational/Physical Domain Mapping

As the physical domain is unknown a priori, the weighted residual integrals, Eqs. (2.20)-

(2.24) are first mapped from the unknown physical domain (Ω) to the known com-

putational domain (Ω0) as follows:

R
x,α = −

∫

Ω0

(∇ψα
x · D̃ · ∇ξ)f dΩ0 +

∫

Γ0

(n · D̃ · ∇ξ)ψα
x l dΓ0 (2.36)

R
c,α =

∫

Ω0

ψα
c (∇ · v)f dΩ0 (2.37)

R
m,α =

∫

Ω0

ψα
mρ

(

∂v

∂t
+ v · ∇v

)

f dΩ0 +

∫

Ω

(∇ψα
m · T)f dΩ0 −

∫

Γ0

ψα
m(n · T)l dΓ0

(2.38)

R
L,α =

∫

Ω0

ψα
L

[

L − ∇v +
1

TrI
(∇v) I

]

f dΩ0 (2.39)

R
M,α =

∫

Ω0

ψα
M

[

∂M

∂t
+ v · ∇M − 2ξ

D : M

I : M
M − χ

(

M · D + D · M − 2
D : M

I : M
M

)]

f dΩ0

−
∫

Ω

ψα
M

[

M ·$ + $T · M − 1

λ
(g0I + g1M + g2M

2)

]

f dΩ0 (2.40)
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where f (the Jacobian of the mapping) and l represent the change in area and length

respectively.

f =
dΩ

dΩ0

= detF (2.41)

l =
dΓ

dΓ0

= f
√

n0 · KT · K · n0 (2.42)

Here, F is the mapping deformation gradient defined as,

F ≡ �x ≡ ∂x

∂ξ
(2.43)

� denotes a gradient in the computational domain. K is the inverse of the mapping

deformation gradient, K = F−1 and the relation between gradients in the physical

and computational domain is,

∇Φ = K ·�Φ (2.44)

n0 in Eq. 2.42 is the unit normal pointing outwards from the computational do-

main. It can be shown that the unit normal (n) and unit tangent vector (t) in the

physical domain are related to the unit normal (n0) and unit tangent vector (t0) in

computational domain as,

n =
f

l
(K · n0); t = t0 · F (2.45)

For more details on the mapping from the physical to the computational domain,

see Pasquali [2000].

2.6 Time Integration of Governing Equation

The DEVSS-TG/SUPG spatial discretization results in a large set of differential-

algebraic equations, f(t,Φ, Φ̇) = 0, for the vector of time dependent unknowns

Φ = [v, p, x, L, M]. A fully implicit predictor-corrector scheme is used for time

integration [Gresho et al., 1979]. A first order forward Euler predictor with first order

backward Euler corrector step is used for the first few time steps to ensure time
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smoothing [Luskin and Rannacher, 1982]. Subsequently, a second order Adams -

Bashforth predictor with second order trapezoidal rule corrector is used [Gresho

et al., 1979]. The algorithm for the time dependent scheme is

IF (TimeIter<NEXPLICIT)

� Predictor Step: Forward Euler Scheme

Φn+1 = Φn + Φ̇n ∆t (2.46)

� Corrector Step: Backward Euler Scheme

Φ̇n+1 =
1

∆t

(

Φn+1 −Φn

)

(2.47)

ELSE

� Predictor Step: Second Order Adam - Bashforth

Φn+1 = Φn +
∆t

2

[

3Φ̇n − Φ̇n-1

]

(2.48)

� Corrector Step: Second Order Trapezodial

Φ̇n+1 =
2

∆t

(

Φn+1 −Φn

)

− Φ̇n (2.49)

The fully coupled algorithm to solve the time dependent flow problem is illus-

trated in Fig 3.1. The simulation starts with given initial conditions for the field

variables. The time derivatives of field variables are assumed to be zero initially. At

the predictor step of the simulation, only field variables are updated according to

the numerical integration schemes listed above. However, the time derivatives are

not updated at the predictor step. At the corrector step, first the time derivatives

are updated using the predicted values of the field variables and then a fully implicit

scheme is used to solve the set of non-linear equations. The predicted values of field

variables and the corrected values of the time derivatives of field variables are used

as the initial guess for Newton’s method. The set of coupled nonlinear equations are
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solved using a frontal solver algorithm with Newton’s method and analytical Jaco-

bian at each time step [Pasquali and Scriven, 2002]. During the course of Newton’s

iteration, the time derivatives are also updated based on the updated field variables.

For steady state simulations the strategy to choose the initial guess for Newton’s

method will be discussed shortly.

2.7 Solution of Problem with Newton’s Method

The system of non-linear Eqs. (2.36) - (2.40) is solved with the Newton’s method at

each time step. Thus, the weighted residual form (R = [Rx,α,Rc,α,Rm,α,RL,α,RM,α])

of the equations and the Jacobian matrix (J) are required for solving

Jδu = −R (2.50)

where δu = u− u0 with u denoting the solution vector (u = [v, p, x, L, M]) at the

current Newton iteration and u0 denoting the solution vector at the previous Newton

iteration. The Jacobian matrix (J) is obtained by differentiating Eqs. (2.36) - (2.40)

with respect to the various field variables, J =
∂R

∂u
. The residual vector and Jacobian

matrix is assembled and the linear system of equations is solved by a frontal solver

[DE Almeida, 1995; Duff et al., 1989; Pasquali, 2000]. The tolerance on the 2 - norm

of the Newton update and the residual were both set to 10−6 as the convergence

criterion for Newton’s method.

Pasquali [2000] has developed a general framework to analytically derive the Ja-

cobian entries for viscoelastic flows. Pasquali [2000] provides the analytical Jacobian

entries for steady free surface flows and hence it will not be discussed here. How-

ever, following the results of Pasquali [2000], derivatives of time dependent terms

in Eqs. (2.22) and (2.24) with respect to the various fields variables are discussed

in Appendix B. Note that the time dependent terms are in Eqs. (2.22) and (2.24)

updated according to the Eq. (2.11).
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Predictor Step: Update u

Corrector Step: Update u / t

Solve the set of governing 
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Figure 2.1: Time integration and Newton’s algorithm to solve a set of non-linear
differential-algebraic equations.
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2.8 Initialization of Newton’s Method for Steady

State Flow Simulations

The Newton’s method to solve a non-linear set of equations requires a good initial

guess of the independent variables. The initial guess, i.e. the guessed values of the

free surface location, velocity profile, pressure, velocity gradient and conformation

tensor, should be close to the actual solution of the problem.

The strategy used here to generate a good initial guess for the Newton’s method is

the same as the strategy used by Pasquali [2000]. The initial shape of the free surface

is approximated by a combination of straight lines and curves. The intertialess

Newtonian flow (Eqs. 2.1 & 2.2 with σ = 0) is first computed by treating the free

surface as a perfectly slippery wall by imposing n · v = 0 and nt : T = 0 on the

free boundary. The initial guess for velocity and pressure is used as: v, p = 0. The

solution of this problem is used as the initial guess to solve the non-linear set of

equations for Newtonian free surface flows.

The interpolated velocity gradient L, Eq. 2.13, is then solved by fixing the posi-

tion of the free surface, velocity and pressure. The Newton’s method converges in

two iterations as the equation for L is a linear equation.

The conformation tensor equation (Eq. 2.4) is then solved for a very small value of

Wi (Wi ∼ 0.01) by fixing the position, velocity, pressure and the interpolated velocity

gradient. The initial guess for conformation tensor is set to be M = I. The values of

field variables computed so far are for an ultra-dilute polymer solution (β = 1) where

there is no coupling between the momentum equation and the polymer conformation.

The solution of the conformation tensor equation provides a very robust initial guess

for a fully coupled free surface flow problem of dilute polymer solutions (β < 1).

The first order arc-length continuation method is used to compute the solution of

the problem at different values of parameters [Pasquali and Scriven, 2002]. The step-

size of the continuation algorithm depends upon the number of Newton’s iterations

required to get a convergent solution at the previous continuation step, failure of

convergence, whether or not the mesh remained unfolded at the previous step, and

whether or not the conformation tensor remained positive definite everywhere in the

flow domain at the previous step.
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2.9 Conclusion

In this chapter a computational method is described to solve 2-D viscoelastic time

dependent free surface flows. A conformation tensor based formulation is presented

to evaluate viscoelastic stresses. The governing equations and boundary conditions

for both the flow field and mesh are presented and explained. The finite element

method is applied and its corresponding formulations are presented. The Newton’s

method is applied to solve the non-linear equations. The residuals and analytical

Jacobian matrix have also discussed in this chapter.



Chapter 3

Viscoelastic Free Surface Flow

Modeling Using the Micro-Macro

Approach

This chapter summarizes the micro-macro approach to solve viscoelastic free surface

flows. The set of governing equations for a dumbbell model with a linear and non-

linear spring force with hydrodynamic interactions is presented. A novel computa-

tional algorithm is discussed to compute complex flows with non-linear microscopic

constitutive models.

In chapter 2, we discussed an approach to solve viscoelastic flows within the

framework of a macroscopic description of the fluid. The macroscopic approach of

modeling viscoelastic flows complements the set of governing equations (continuity

and momentum equations) with a closed-form equation for the viscoelastic stress,

relating either stress or the conformation tensor to the deformation history. In many

flow situations, this approach provides a good qualitative understanding of various

flow phenomena. However, a closed-form representation of the behavior of polymer

molecules in solution is not sufficient to predict quantitative agreement with experi-

ments even in simple homogeneous flows, such as shear and extensional flow. There-

fore, it is necessary to use more sophisticated models capable of providing reliable

predictions of various important flow phenomena such as, shear thinning, extensional

hardening, universal properties and scaling laws [Bird et al., 1987a,b; Öttinger, 1996]

32
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by understanding the interaction between flow and the flow induced microstructure.

A recent review by Keunings [2001] on modeling of polymer solutions, described a

number of levels, such as quantum mechanics, atomistic modeling, kinetic theory

and continuum mechanics, that can be used for the description of fluid. However, the

level of sophistication used is primarily governed by its analytical and computational

tractability (numerical technique and computational resources). While the use of

a quantum level description is out-of-question due to the requirements of excessive

computational resources, atomistic modeling (molecular dynamics simulation) has

been used to some extent to predict rheological properties in simple flows. However,

the intense computational requirement makes such techniques, at least for another

decade, inappropriate for complex flow simulations.

A kinetic theory based fluid description, although significantly more expensive

than a macroscopic description of the fluid provides a good alternative to closed-

form constitutive models for large scale simulation of viscoelastic flow. There are

a number of ways in which a polymer can be represented within the framework

of kinetic theory, providing a description of the polymer conformation (e.g., stretch

and orientation) based on coarse-grained micro-mechanical molecular models. These

micro-mechanical molecular models form a natural hierarchy in terms of the level of

sophistication (e.g., bead-rod → bead-spring → dumbbell model) [Bird et al., 1987b;

Öttinger, 1996]. Such models can incorporate important physics such as the finite

extensibility of the polymer molecules and the presence of solvent mediated inter-

actions such as hydrodynamic (HI) and excluded volume (EV) interactions between

parts of the polymer chain. The incorporation of these effects is necessary to explain

experimentally observed features such as shear thinning and bounded extensional

viscosity in homogeneous flows of dilute polymer solutions [Bird et al., 1987a,b;

Doyle and Shaqfeh, 1998; Hsieh et al., 2003; Kumar and Prakash, 2003; Öttinger,

1989; Prabhakar and Prakash, 2002, 2004; Prakash, 2002; Schäfer, 1999; Zylka and

Öttinger, 1991]. In particular, inclusion of HI is shown to be extremely important in

explaining various experimentally observed scaling laws, universal behavior of poly-

mer solutions transport coefficients (e.g., diffusivity) [Cifre and De la Torre, 1999;

DE Gennes, 1979; Hsieh et al., 2003; Knudsen et al., 1996; Larson et al., 1999, 1997;

Magda et al., 1988; Öttinger, 1987; Prabhakar, 2005; Sunthar and Prakash, 2005].
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Although the bead-rod and bead-spring models (for number of beads & 10) are

assumed to be accurate representations in capturing the behavior of real polymer

molecules in solution, their application to solve complex flows is still beyond avail-

able computational resources. A dumbbell representation of a polymer molecule,

although it does not accurately predict quantitative features, can be used to quali-

tatively investigate the effect of various non-linear phenomena for which no closed-

form constitutive equation can be derived. A dumbbell consists of two Brownian

beads with a friction coefficient ζ. Kinetic theory allows one to write the so-called

diffusion or Fokker-Plank equation, which is a partial differential equation in the

probability density function describing the probability of finding a dumbbell with a

given configuration. The solution of Fokker-Plank equation namely, the probability

density function, can be used to evaluate macroscopic properties of interest such as

the elastic stress. However, the Fokker-Plank equation is analytically intractable for

non-linear dumbbells. An alternative technique called Brownian dynamics simula-

tion or stochastic simulation is widely used to solve for the configuration of dumb-

bells without even solving for the probability density function which can then be

subsequently used to evaluate elastic stress and other macroscopic properties.

Although the solution of kinetic theory based models via a so called Brownian

dynamics simulation is known from quite sometime and has been explored success-

fully (specially in homogeneous flows) to predict various experimentally observed

rheological properties, its application to solve complex viscoelastic flows has been

somewhat limited. The idea of using stochastic simulations in solving complex vis-

coelastic flow was pioneered by Laso and Ottinger [1993]. The original work by Laso

and Ottinger [1993], termed CONNFFESSIT (Calculation of Non-Newtonian Flow:

Finite Elements and Stochastic Simulation Technique), combines the finite element

solution of macroscopic flow equations with stochastic simulations to compute elas-

tic stress. As the CONNFFESSIT approach combines the idea of description of

microstructure of polymer molecule with the macroscopic description of flow, this

type of simulation technique is called a micro-macro approach. This approach avoids

the need for a closed-form constitutive model and hence, can be used for models for

which no closed-form equation exist (e.g., FENE dumbbells, dumbbells with HI and
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EV effects). CONNFFESSIT has been used extensively in literature to simulate vis-

coelastic flows [Cormenz et al., 2002; Feigl et al., 1995; Laso and Ottinger, 1993; Laso

et al., 1997, 2004]. The major problem with CONNFFESSIT is that a large number

of particles must be tracked as they move in the flow field which is CPU intensive

and cumbersome. Apart from particle tracking, a feature of the CONNFFESSIT

scheme (also of most other schemes involving stochastic simulation) is the presence

of temporal and spatial fluctuations in computed velocity and stress fields. While

the temporal fluctuations arises from the statistical error in calculating ensemble

averages using a finite number of dumbbells, spatial fluctuations arise due to the

divergence of the non-smooth stress field in the momentum equation. The tem-

poral fluctuations can be controlled by increasing the number of dumbbells which

in turn lead to an increase in the computational cost. Spatial fluctuations can be

completely eliminated by using more advanced micro-macro schemes such as the La-

grangian particle method (LPM) by Halin et al. [1998] and Brownian Configuration

Fields (BCF) method proposed by Hulsen et al. [1997].

While the LPM avoids the spatial fluctuations using correlated local ensembles,

particle tracking still remains a problem. The problems of both particle tracking and

spatial fluctuations are circumvented in the Brownian configuration fields method

which also provides an efficient variance reduction in terms of temporal fluctuations.

In the BCF approach, an ensemble of continuous configuration fields replaces the

discrete particles. Each configuration field is subjected to the same Brownian force

throughout the flow domain and hence, provides a smooth spatial representation of

configuration fields. Another advantage of the BCF method over CONNFFESSIT

and LPM is that the ensemble size is the same at each point of the flow domain

even for locally very refined meshes. However, with CONNFFESSIT and LPM, it

is difficult to work with locally refined meshes as smaller elements might end up

without any dumbbell in them. The BCF method has been successfully applied to

solve confined viscoelastic flows [Hu et al., 2005; Hulsen et al., 1997; Somasi and

Khomami, 2000].

A micro-macro approach based on combining the BCF method with a Galerkin

finite element method, using elliptic mesh generation equations coupled with time -

dependent conservation equations, is used in this work to solve 2-D viscoelastic
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free surface flows. Although, BCF based microscopic constitutive equations and

Brownian dynamics simulations are well known and widely used in literature, they

are briefly reviewed here.

3.1 Governing Equations

In this section we briefly review the basic equations required to describe the rhe-

ological behavior of dilute polymer solutions based on kinetic theory. Restricting

ourself to the dumbbell representation of polymer molecules, a dumbbell has two

Brownian beads connected with a massless spring. The massless spring takes into

account entropic effects which describe the resistance of the polymer molecule to

stretching. The bead friction coefficient, ζ, is taken to be a constant and it is re-

lated to the Stokesian drag force as ζ = 6πηsa for spherical beads with radius a in a

solvent with viscosity ηs. In kinetic theory based models, the solvent is considered

to be Newtonian and treated as a continuum. The polymer solution consists of np

dumbbells per unit volume suspended in a sea of Newtonian solvent. In dilute poly-

mer solutions, polymer molecules or dumbbells are assumed not to have any explicit

interactions and therefore, all the intermolecular interactions are excluded from the

model formulation.

In homogeneous flows (i.e., the velocity gradient is independent of spatial posi-

tions), the configurational state, stretch and orientation, of a dumbbell are specified

by the dumbbell connector vector Q (Q = r2 − r1) with r1 and r2 being the spa-

tial position vectors of two beads. Using kinetic theory, it can be shown that the

configurational probability distribution function, P (Q, t), of a dumbbell obeys the

following Fokker-Planck or diffusion equation [Bird et al., 1987b]:

∂P

∂t
= − ∂

∂Q
·
{

∇vT · Q − 2

ζ
A · ∂U

∂Q

}

P +
2kBT

ζ

∂

∂Q
· A · ∂P

∂Q
(3.1)

where T is the temperature of the solution and kB the Boltzmann’s constant. Equa-

tion (3.1) describe the way in which the probability distribution function changes

in time because of the change in the configuration of a polymer molecule by an

imposed homogeneous flow field, the intramolecular potential and by the thermal
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fluctuations in the solvent.

The dimensionless tensor A in the above equation is the diffusion tensor which

is related to the hydrodynamic interaction tensor Ω as

A = I − ζΩ (3.2)

The hydrodynamic interaction tensor accounts for the change in the solvent flow

field at one bead resulting from the movement of the other bead. The form of Ω

will be discussed in more detail shortly.

The intermolecular potential energy U is the sum of the spring potential ac-

counting for the polymer chain connectivity, and other local non-hydrodynamic in-

tramolecular interactions such as excluded volume. In this work we have neglected

excluded volume interactions and have only considered different spring potentials,

which are related to the spring force Fs by

Fs = −∂U
∂Q

(3.3)

Three different spring force laws, all having the same following form, are used in

this work.

Fs = ΛQ (3.4)

For the Hookean dumbbell model, representing an infinitely extensible polymer

molecule with the spring force varying linearly with molecular extension, Λ = H;

for the FENE-P dumbbell model, representing a finitely extensible polymer mole-

cule with the spring force varying linearly with molecular extension, Λ = H/(1 −
〈Q2〉/Q2

0); and for the non-linear FENE dumbbell model, representing a finitely ex-

tensible polymer molecule with the spring force varying non-linearly with molecular

extension, Λ = H/(1 − Q2/Q2
0). Where, H is the spring constant, Q0 is the maxi-

mum extensibility (contour length) of the spring and 〈Q2〉 is the end-to-end distance

of the dumbbell averaged over all the configurations of the dumbbell. The angular

brackets denote an ensemble average with respect to the configurational probability

distribution function, i.e.,

〈g〉 =

∫

Pg d3Q (3.5)
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where g is any physical quantity.

The FENE spring force captures the essential features of the more accurate

force law namely, the inverse Langevin expression [Bird et al., 1987b]. The singular

behavior of the non-linearity of the FENE force as Q = |Q| → Q0 causes the force to

diverge which ensures that the spring is not stretched beyond its maximum contour

length Q0. It is well known that the parameters in force laws (H, Q0) used in this

work are related to the more fundamental properties of polymer molecules such as

the number of Kuhn segments and the Kuhn length [Bird et al., 1987b; Prabhakar,

2005]. As Q0 → ∞, both the FENE and FENE-P spring force law expressions

reduce to the Hookean force law.

In this work, a regularized form of the Oseen-Burgers tensor proposed by Zylka

and Öttinger [1989] is used as the HI tensor. The original form of the Oseen-Burgers

tensor [Bird et al., 1987a] has a singularity at Q = 0. As a result of this singularity,

the diffusion tensor A looses its positive definiteness for small values of Q [Öttinger,

1996]. Regularization of the Oseen-Burger tensor removes this singularity and en-

sures the positive definitiness of A for any value of Q. An important motivation in

using this particular form of the Oseen-Burgers tensor is that the square root of A

(which is used in Brownian dynamics simulations) can be obtained analytically.

The functional form of the regularized Oseen-Burgers tensor Ω is given by:

Ω (Q) =
3
√

3ω

8χQ (Q2 + ω2)3

(

M I +N
QQ

Q2

)

(3.6)

where ω = 2h∗
√

πkT/3H, and,

M = Q6 +
7

2
ω2Q4 +

9

2
ω4Q2

N = Q6 +
3

2
ω2Q4 − 3

2
ω4Q2

(3.7)

Here, h∗ is the hydrodynamic interaction parameter defined as:

h∗ =
ζ

ηs

√

H

36π3kBT
(3.8)

To be consistent with the length scale used to normalize the conformation tensor,
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√

R2
e/3 is used here as the length scale for the dumbbell connector vector Q, where

R2
e = 〈Q2〉eqm/3 with 〈Q2〉eqm representing the ensemble average of the end-to-end

distance of a polymer molecule at equilibrium. With the choice of
√

R2
e/3 as the

length scale, the FENE parameter b is b = 3Q2
0/R

2
e . In all our simulations we set

R2
e/3 = 1 and hence b = Q2

0.

Note that the definition of the FENE parameter used in this work is different

from the one based on the length scale
√

kBT/H defined by Bird et al. [1987b]. The

relation between three different b parameters (b, bM and bbird) is:

b = 3 bM ; b = bbird + 5 (3.9)

Once the configurational distribution function P (the solution of the Fokker-

Plank equation) is known, the polymer contribution to the stress σ, which is a

macroscopic property, can be calculated using the Kramers expression [Bird et al.,

1987b]:

σ = −npkBT I + np〈QFs〉 (3.10)

the angular brackets denote a ensemble average with respect to the configurational

distribution function.

3.2 Brownian Dynamics Simulation and Micro-

Macro Approach

The previous section has summarized the key features of the dumbbell model of

dilute polymer simulations incorporating FENE and HI. It was shown in the pre-

vious section that the macroscopic properties of interest, such as the stress tensor,

are related only to the expectations (averaged quantities) of the dumbbell config-

urations. Although, in principle the expectation values can be calculated once the

probability distribution function is known, the use of a non-linear spring force and

a configuration dependent hydrodynamic interaction tensor makes Eq. (3.1) ana-

lytically unsolvable and therefore, closed form equations for expectation values are

unavailable. Equation (3.1) can be solved numerically to obtain the configurational

distribution function but it is not practically viable to solve Eq. (3.1) because it
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requires numerical integration over six dimensional space for a dumbbell model. In

most of the cases, it is not actually required to solve Eq. (3.1) explicitly for P .

Brownian dynamics simulation (BDS) provides an alternative approach to calculate

the expectation values without actually evaluating the probability density function.

BDS is based on a formal procedure of writing a stochastic differential equa-

tion which is equivalent to the Fokker-Plank equation. Öttinger [1996] has exten-

sively reviewed the relationship between a Fokker-Planck equation and its equivalent

stochastic differential equation. The stochastic differential equation equivalent to

Eq. (3.1) can be written as [Öttinger, 1996]:

dQ =

[

∇vT · Q − 2

ζ
A · Fs

]

dt+

√

4kBT

ζ
(B · dW) (3.11)

where W is a time-uncorrelated Brownian force (Wiener process) which accounts

for the random displacement of the beads due to thermal motion. W is a three

dimensional vector whose components are three independent Wiener processes.

The components of the tensor B(Q), which corresponds to the diffusion term in

Eq. (3.1), are chosen such that they satisfy

B · BT = A (3.12)

The equation above calculates the components B once the components of A are

known. To obtain the components of B, a scheme proposed by Öttinger [1996]

is implemented. This scheme, which has been successfully used by Prabhakar and

Prakash [2002] for simulating Hookean dumbbells with HI and EV, relies on a specific

form of the HI tensor, and avoids matrix inversion and other matrix manipulations

in order to evaluate the components of B. It can be seen from Eqs. (3.2) and (3.6)

that the tensor A has the form g(Q) I + g̃(Q)QQ/Q2. Therefore, the tensor B,

assuming B is symmetric, can be chosen to be [Öttinger, 1996]

B(Q) =
√

g(Q) I +
(

√

g(Q) + g̃(Q) −
√

g(Q)
) QQ

Q2
(3.13)

Evaluation of B completes Eq. (3.11) and BDS can be performed.

In BDS, Eq. (3.11) is integrated numerically (there exist no analytical solutions
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of stochastic differential equations for non-linear models) to calculate the dumbbell

configurations at discrete times. Because of the stochastic nature of Eq. (3.11),

a large number of discrete dumbbells (also known as trajectories) are required to

be convected in flow in order to reduce the error (stochastic variance) on averaged

quantities. Once the configurations are known, the stress tensor is obtained by

taking an ensemble average over all different trajectories. In the case of homogeneous

flows, various trajectories are subjected to the same hydrodynamic force. However,

they differ in terms of the random Brownian force acting on them.

The estimation of the ensemble average of any property, f , is accomplished by

calculating the arithmetic mean of f across all NT trajectories:

〈f〉 =
1

NT

NT
∑

j=1

fj (3.14)

where fj is the property of interest for the j-th trajectory at any time t. The

standard error in the estimate of the ensemble average of any property is calculated

by
√

Var(f)/NT where Var(f) is the variance of f [Öttinger, 1996].

To solve complex viscoelastic flows using stochastic simulations, various micro-

macro schemes have been developed in literature [Halin et al., 1998; Hulsen et al.,

1997; Laso and Ottinger, 1993]. The first such micro-macro scheme, the CON-

NFFESSIT approach, combines the finite element solution of macroscopic flow equa-

tions with stochastic simulations to compute the elastic stress [Laso and Ottinger,

1993]. CONNFFESSIT uses Eqs. (3.10) and (3.11) to evaluate the polymer contribu-

tion to stress by convecting a large number of discrete particles with flow. However,

as mentioned above, the BCF approach circumvents the problems associated with

the CONNFFESSIT method. In the BCF method, instead of discrete particles an

ensemble of continuous configuration fields is convected with the flow and the (La-

grangian) stochastic ordinary differential Eq. (3.11) is converted into the (Eulerian)

stochastic partial differential equation [Hulsen et al., 1997] as:

dQ =

[

−v · ∇Q(x, t) + ∇vT · Q − 2

ζ
A · Fs

]

dt+

√

4kBT

ζ
(B · dW) (3.15)

Eq. (3.15) is very similar to the equation for the evolution of the connector vector
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of a single dumbbell. The additional first term on the right-hand side of Eq. (3.15)

accounts for the convection of the configuration field by flow. Here, W is a time-

uncorrelated but spatially homogeneous Brownian force which makes the spatial

gradients of configuration fields well defined throughout the flow domain. The ex-

pression for stress calculation remains as Eq. (3.10).

3.3 Boundary Condition

The stochastic differential equation used in the CONNFFESSIT algorithm is an

ordinary differential equation and therefore, only an initial condition on dumbbell

configuration is sufficient to solve Eq. (3.11). However, the configuration fields

equation is hyperbolic in nature and hence, a boundary condition on configuration

fields must be imposed at the inflow boundary where n·v < 0. As the configurations

of fields are not known in general, the inflow configuration profile depends upon the

type of spring force and the presence or absence of hydrodynamic interactions for a

given inflow velocity profile. In literature, most of the non-homogeneous viscoelastic

flow calculations using the BCF method [Hu et al., 2005; Hulsen et al., 1997] are

carried out either by imposing periodic boundary conditions or by calculating the

configuration fields for a given velocity field (typically a linear or parabolic flow

profile). Here, we propose a new way of imposing the inflow boundary condition on

the BCF equation by assuming that the entry length is long enough to have a fully

developed flow at the inlet boundary of the slot coater. Due to the fully developed

flow between two parallel plates (Couette-Poiseuille flow in the slot coating die), the

velocity and the velocity gradient do not change along streamlines. As a results, the

evolution of configuration fields Q along the streamlines is independent of the flow

field. The spatially correlated fields ensure that the gradient of Q remains zero i.e.,

v · ∇Q = 0 (3.16)

must hold at the inflow boundary. Equation (3.16) is independent of the microscopic

constitutive model and initial condition on configuration fields. This boundary con-

dition has the same form as the boundary condition on conformation tensor discussed
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in chapter 2. This boundary condition is applied weakly as a vector boundary condi-

tion by replacing the configuration fields residual at the inflow boundary. Although

the boundary condition itself is independent of spring force or other potentials such

as EV, imposition of the boundary condition depends upon the numerical method

used to solve the configuration field equation.

3.4 Dimensionless Numbers

The various dimensional numbers used in this work for micro-macro computations

are identical to those for the macroscopic case defined in chapter 2. Except for Wi,

all dimensionless numbers are functions of macroscopic properties. Wi is a function

of a microscopic property, namely, the relaxation time of the polymer (λη). The

definition of λη used in this work is based on the zero shear rate viscosity.

In micro-macro simulations λη is related to microscopic parameters, such H, ζ, h∗

etc, with a relationship that depends on the particular microscopic model. In order

to compare results of different models at identical values ofWi, it becomes important,

consequently, to choose appropriate values for these microscopic parameters. The

scheme used here to determine these parameters is discussed in detail in Appendix C.

3.5 Computational Method

Most of the numerical methods used in literature, to solve viscoelastic flow problems

using the micro-macro approach, decouple the solution of macroscopic flow equations

from the solution of the stochastic differential equation to evaluate the polymer

contribution to stress. The decoupled micro-macro algorithm proceeds as follows:

� Using the initial or given field’s configurations (i.e. for a known elastic stress),

a finite element solution of the macroscopic flow equations (mesh, continu-

ity, momentum etc.) is computed using a standard finite element method

by treating the elastic stress term as a fixed source term in the momentum

equation.

� The computed field variables (velocity, pressure, mesh etc.) are then used to
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compute updated configurations of Brownian fields as in BCF, or the con-

figurations of dumbbells as in CONNFFESSIT by integrating the stochastic

differential equation for fixed flow kinematics.

� The polymer stress is then evaluated using Kramer’s expression in each ele-

ment.

These 3 steps are carried out until a desired convergence is obtained. The decou-

pled scheme used in this work is shown schematically in Fig. (3.1). In the BCF

based micro-macro approach, the Galerkin finite element method is used to spa-

tially discretize the mesh, continuity and momentum equations together with the

SUPG [Brooks and Hughes, 1982] formulation of the BCF equation [Somasi and

Khomami, 2000]. The linear continuous basis functions (ϕQ) for configuration fields

and the SUPG finite element weighting function with ψQ ≡ ϕQ+huv ·∇ϕQ are used

to solve Eq. (3.24) where hu is the upwind parameter [Brooks and Hughes, 1982].

It is worth mentioning that the interpolated velocity gradient equation is not solved

in the micro-macro formulation.

The set of governing equations in the micro-macro formulation is:

0 = ∇ · D̃ · ∇ξ (3.17)

0 = ∇ · v (3.18)

0 = ρ

(

∂v

∂t
+ v · ∇v

)

− ∇ · T − Θ (3.19)

0 = dQ −
[

−v · ∇Q + ∇vT · Q − 2

ζ
A · Fs

]

dt−
√

4kBT

ζ
(B · dW) (3.20)

The numerical method used to solve the macroscopic flow equations have been dis-

cussed in chapter 2 and hence, will not be repeated here.

Two different time integration schemes, namely, a fully implicit time integration

scheme for linear dumbbell models without hydrodynamic interactions and a semi-

implicit time integration scheme for non-linear dumbbell models (FENE) or linear

dumbbells with hydrodynamic interactions, are used to integrate the BCF equation.

These two schemes are discussed below.
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Initialize the polymer configuration Q
(equilibrium or a given non-equilibrium
configuration), the field variables (x, v, p) 
and its derivatives

Solve continuity, momentum and mesh 
equations for a fixed stress to compute 
velocity, pressure and positions

Solve evolution equation for 
polymer configuration with 
fixed velocity, pressure and 
positions

Use fully implicit 
scheme

Use semi-implicit predictor 
- corrector scheme. Solve 
non-linear cubic equation 
using:

Compute new stress field

Collocation with 
least-square

Newton’s method for 
each configuration
field with exact or 
inexact Jacobian.

Convergence criterion satisfied 
for steady state

Linear spring 
force without HI

Non-linear spring 
force with HI

NO YES
Exit

Figure 3.1: Algorithm of Micro-Macro Scheme.
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3.5.1 Fully Implicit Scheme: Linear Spring Force Without

Hydrodynamic Interactions

Micro-macro computations for various viscoelastic flow calculations using a fully

explicit scheme to integrate the stochastic differential equation have been extensively

used in literature [Cormenz et al., 2002; Feigl et al., 1995; Hu et al., 2005; Hulsen

et al., 1997; Laso and Ottinger, 1993; Laso et al., 1997]. The exceptions are work

the by Laso et al. [2004] within the CONNEFFSSIT framework and by Somasi et al.

[2002] for homogeneous flows within the BCF framework. Both Laso et al. [2004]

and Somasi et al. [2002] have used an implicit formulation. Use of an explicit scheme

requires a small time step size in-order to have a stable numerical time integration

algorithm making micro-macro schemes computationally inefficient. In this work,

we use a fully implicit scheme by taking advantage of the fact that the BCF equation

is linear in configuration fields for a linear spring force. The fully implicit scheme

used here is as follows:

For the linear spring force without hydrodynamic interactions (i.e., with the

diffusion tensor replaced with a unit tensor, A = B = δ) Eq. (3.15) can be rewritten

as:

dQ =

(

−v · ∇Q + ∇vT · Q − 2 Λ

ζ
Q

)

dt+

√

4kBT

ζ
dW (3.21)

where, as mentioned previously, Λ = H for Hookean dumbbells and Λ = H/(1 −
〈Q2〉/Q2

0) for FENE-P dumbbells. Equation (3.21) can be discretized temporally

using an implicit Euler scheme as:

Qn+1 = Qn +

(

−vn · ∇Qn+1 + ∇vT
n · Qn+1 −

2 Λn

ζ
Qn+1

)

∆t+

√

4kBT

ζ
∆Wn

(3.22)

where n is the previous time step and (n + 1) is the current computational time

step. By definition, the Wiener process W is a Gaussian random variable with mean

〈∆Wn〉 = 0 and variance 〈∆W2
n〉 = ∆t [Öttinger, 1996]. However, as the generation

of Gaussian random variables is computationally expensive, non-Gaussian random

variables are used to obtain approximate Gaussian random variables by equating

the first two moments of the non-Gaussian random variables to those of the Wiener
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process.

Eq. (3.22) can be rearranged as:

Qn+1 +

(

vn · ∇Qn+1 −∇vT
n · Qn+1 +

2 Λn

ζ
Qn+1

)

∆t = Qn +

√

4kBT

ζ
∆Wn (3.23)

The finite element method is used to solve Eq. (3.23). The weighted residual

form of Eq. (3.23) is

∫

Ω

[

Qn+1 +

(

vn · ∇Qn+1 −∇vT
n · Qn+1 +

2 Λn

ζ
Qn+1

)

∆t

]

ψα
Q dΩ

−
∫

Ω

[

Qn +

√

4kBT

ζ
∆Wn

]

ψα
Q dΩ = 0

(3.24)

where, ψQ is the weighing function for the configuration fields equation. The configu-

ration field Q can be expanded using finite element basis functions as Q =
∑

β

Qβϕβ
Q

where Qβ represents the basis function coefficients and ϕβ
Q are the basis functions

for the configuration field.

Eq. (3.24) is a linear equation in Qn+1 and can be rearranged to obtain the

following equation
∑

β

K
αβ

Υ
β
n+1 = f

α (3.25)

where the components of the matrix K
αβ for Hookean dumbbell are

K
αβ
ij =

∫

Ω

[

ϕβ
Q δij +

{

(vn · ∇ϕβ
Q) δij − ϕβ

Q (∇jvi
T)n +

2ϕβ
QH

ζ
δij

}

∆t

]

ψα
Q dΩ

(3.26)

and for FENE-P dumbbell are

K
αβ
ij =

∫

Ω

[

ϕβ
Q δij +

{

(vn · ∇ϕβ
Q) δij − ϕβ

Q (∇jvi
T)n +

2ϕβ
QH

ζ(1 − 〈Q2
n〉/b)

δij

}

∆t

]

ψα
Q dΩ

(3.27)
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δij representing the Kronecker delta. In Eq. (3.25) Υ
β
j, n+1 is a vector of the coeffi-

cients of configuration fields
(

Qβ
j, n+1

)

and

f
α
i =

∫

Ω

[

Qi,n +

√

4kBT

ζ
∆Wi,n

]

ψα
Q dΩ (3.28)

Equation (3.25) is assembled to obtain a global set of equations which in matrix

vector form can be written as

KΥn+1 = f (3.29)

where K, Υn+1 and f are the assembled K
αβ, Υβ

n+1 and f
α matrices respectively.

The set of linear Eqs. (3.29) can be solved using LU decomposition of the matrix K

followed by back substitution. It is clear from Eq. (3.26) that for Hookean dumbbells,

the matrix K is independent of the configurations of the dumbbells. However, for

FENE-P dumbbells, the matrix K is a function of the configurations of the dumbbells

evaluated at the previous time step [see Eq. (3.27)]. It should be noted that the

LU decomposition of the matrix K is performed at each time step because the mesh

changes at each time step and K depends on the mesh. Equation (3.29) is the global

equation set for a single configuration field. However, as the configuration fields

are independent of each other, Eq. (3.29) holds for all the fields except that the

Brownian force term and Qi,n in Eq. (3.28) is different for each field.

For linear springs, the boundary condition is implemented by replacing the

weighted residual of the configuration field equation, Eq. (3.24), with the weak

form of Eq. (3.16).

3.5.2 Semi-Implicit Predictor-Corrector Scheme: Non-Linear

Spring Force With Hydrodynamic Interactions

This scheme was originally developed by Öttinger [1996] for FENE dumbbells in

homogeneous flows and has been recently extended to finitely extensible bead-spring

chain models with and without hydrodynamic interactions in homogeneous flows

[Hsieh et al., 2003; Prabhakar and Prakash, 2004; Somasi et al., 2002]. The semi-

implicit formulation leads to greater stability of the numerical algorithm [Öttinger,
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1996; Prabhakar and Prakash, 2004; Somasi et al., 2002] when compared to the

explicit Euler scheme, and allows the use of larger time steps, which in turn leads to

a reduction in the CPU time required for the microscopic computations. An explicit

Euler scheme with a rejection algorithm [Hu et al., 2005; Öttinger, 1996] can also be

used for non-linear dumbbell models. However, a large number of these rejections,

occurring very frequently at high Wi, can significantly alter the true evolution of

these dumbbells [Somasi et al., 2002]. Somasi et al. [2002] further demonstrated that

for a given accuracy the semi implicit predictor-corrector scheme is three to four

times faster than the explicit Euler scheme with a rejection algorithm. Somasi and

Khomami [2000] have used the semi-implicit scheme for micro-macro simulations of

FENE dumbbells in homogeneous flows. Here, we extend the same scheme to solve

inhomogeneous flows of non-linear dumbbells with hydrodynamic interactions.

In the predictor step, the configuration fields are updated explicitly using a

forward Euler time integration scheme as:

Q∗
n+1 = Qn +

[

−vn · ∇Qn + ∇vT
n · Qn −

2

ζ
An · Fs

n

]

∆t+

√

4kBT

ζ
(Bn · ∆Wn)

(3.30)

where Q∗
n+1 are the predicted configuration fields. Since Qn is known from the

previous time step, components of hydrodynamic interaction tensor An, diffusion

tensor Bn, and the force vector Fn can be determined in the above equation. The

finite element discretization of Eq. (3.30), by weighting Eq. (3.30) with a weighting

function ψα
Q and then integrating over the whole flow domain results in a set of

linear equations. The set of linear equation in matrix vector form can be written as

∑

β

M
αβ

Υ
β,∗
n+1 = f

α (3.31)

where M
αβ is the mass matrix

M
αβ =

∫

Ω

ψα
Q ϕ

β
Qδ dΩ (3.32)

Υ
β, ∗
n+1 is a vector of the coefficients of configuration fields basis functions

(

Qβ, ∗
n+1

)
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and f
α is

f
α =

∫

Ω

[

Qn +

(

−vn · ∇Qn + ∇vT
n · Qn −

2

ζ
An · Fs

n

)

∆t

]

ψα
Q dΩ

+

∫

Ω

√

4kBT

ζ
(Bn · ∆Wn)ψ

α
Q dΩ

(3.33)

Equation (3.31) is assembled into a global set of linear equations which is solved

using LU decomposition of the global mass matrix performed at each time step.

The weighting function and the basis functions used for the configuration fields

equation are the same as those used in the fully implicit scheme for linear dumbbell

models.

The boundary condition on the configuration fields equation is not imposed while

solving Eq. (3.31) because the term (v · ∇Q) is treated explicitly. However, a

semi-implicit scheme, treating either (v · ∇Q) or both (v · ∇Q), and (∇vT · Q)

implicitly, can be developed to impose the boundary condition. It should be noted,

however, that there is additional computational time required to factorize the mass

matrix at the corrector step if the semi-implicit scheme is used. We have used

the fully explicit scheme at the predictor step to reduce the computational cost.

The slightly inaccurate predicted configuration fields have virtually no effect on the

actual solution obtained using the corrected step.

Estimates of configuration fields generated at the predictor step (Q∗
n+1) are used

in constructing the following corrector step:

Qn+1 =Qn −
∆t

2

(

vn · ∇Q∗
n+1 + vn · ∇Qn

)

+
∆t

2

(

∇vT
n · Q∗

n+1 + ∇vT
n · Qn

)

−∆t

ζ
An ·

(

FS
n + FS

n+1

)

+

√

4kBT

ζ
(Bn · ∆Wn)

(3.34)

In this equation, the values of the An and Bn tensors are the same as those used in

Eq. (3.30) and hence, treated explicitly. As discussed previously by Öttinger [1996]

and Prabhakar and Prakash [2004], the explicit treatment of the diffusion tensor is

necessary in order to retain the Îto interpretation of the diffusion term B · ∆W.

The force term, however, is treated implicitly, with the term FS
n+1 being evaluated

using the unknown Qn+1. Following the work by Prabhakar and Prakash [2004],
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Eq. (3.34) can be simplified further

Qn+1 +
∆t

ζ
FS

n+1 = Qn −
∆t

2

(

vn · ∇Q∗
n+1 + vn · ∇Qn

)

+
∆t

2

(

∇vT
n · Q∗

n+1 + ∇vT
n · Qn

)

− ∆t

ζ
(An · FS

n) + ∆t (Ωn · FS
n) +

√

4kBT

ζ
(Bn · ∆Wn)

(3.35)

The term An · FS
n+1 in Eq. (3.34) has been expanded as

An · FS
n+1 = (I − ζΩn) · FS

n+1 (3.36)

= FS
n+1 − ζ(Ωn · FS

n+1) (3.37)

to write Eq. (3.35). The first term on the R.H.S. of Eq. (3.37) is transformed to the

L.H.S of Eq. (3.34) and treated implicitly. However, the second term in Eq. (3.37)

is retained on the R.H.S of Eq. (3.34) and treated explicitly.

For FENE dumbbells, FS = HQ/(1−Q2/Q2
0) can be substituted into the equa-

tion above, which can then be rearranged into the following form

[

1 +
H ∆t

ζ
(

1 −Q2
n+1/b

)

]

Qn+1 = Γ (3.38)

where Γ is the R.H.S of Eq (3.35). Γ is a known function of the predicted values

of the connector vector and of quantities whose values at the previous time step

are known. However, the L.H.S is only a function of the unknown Qn+1. Equation

(3.38) can be rearranged to get

(

1 − Q2
n+1

b
+
H ∆t

ζ

)

Qn+1 −
(

1 − Q2
n+1

b

)

Γ = 0 (3.39)

The equation above is a non-linear equation in Qn+1 for each configuration field.

Within the frame work of the finite element method, Eq. (3.39) is solved in two

distinct ways, as discussed below.
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3.5.2.1 Newton’s Method With a Rejection Algorithm

The finite element discretization of Eq. (3.39) results in a set of non-linear equations

for each configuration field which can then be solved with Newton’s method. Thus,

for each configuration field:

∑

β

J
αβ ∆Υ

β
n+1 = −R

α
Q (3.40)

where ∆Υ
β
n+1 = Υ

β
n+1 − Υ

β
0, n+1 with Υ

β
n+1 denoting a vector of the coefficients of

configuration fields
(

Qβ
n+1

)

at the current Newton iteration and Υ
β
0, n+1 is a vector

of the coefficients of configuration fields
(

Qβ
0, n+1

)

at the previous Newton iteration.

R
α is the residual vector given by

R
α
Q,i =

∫

Ω

[(

1 − Q2
n+1

b
+
H ∆t

ζ

)

Qi, n+1 −
(

1 − Q2
n+1

b

)

Γi

]

ψα
Q dΩ (3.41)

evaluated using the configuration fields at the previous Newton iteration. The previ-

ous time step values of configuration fields are used as the initial guess for Newton’s

method.

J
αβ is the Jacobian matrix obtained by differentiating Eq. (3.39) with respect to

Qβ
n+1 (see Appendix D for a derivation of the Jacobian matrix). The components of

the J
αβ are

J
αβ
ij =

∫

Ω

[(

1 − Q2
n+1

b
+
H ∆t

ζ

)

δij −
2

b
Qi, n+1Qj, n+1 +

2

b
ΓiQj, n+1

]

ψα
Qϕ

β
Q dΩ

(3.42)

evaluated using the configuration fields at the previous Newton iteration.

Equation (3.40) can be assembled to obtain a global matrix vector equation sys-

tem. The solution of the resulting set of equations using Newton’s method with the

exact analytical Jacobian given by Eq. (3.42) can be very expensive for calculations

with FENE dumbbells because of the large number of configuration fields and be-

cause the Jacobian matrix is a function of the field’s configuration. However, an

approximate analytical Jacobian can be derived by replacing the FENE force with
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the Peterlin approximation (FENE-P), which has the following form:

J
αβ
ij =

∫

Ω

(

1 − 〈Q2
n〉
b

+
H ∆t

ζ

)

ψα
Qϕ

β
Q δij dΩ (3.43)

Equation (3.43) can be derived by replacing Q2
n+1 in Eq. (3.39) by 〈Q2

n〉 only in the

derivation of the Jacobian matrix. Although Eq. (3.43) couples the configurations

of all the fields through the term 〈Q2
n〉, note that 〈Q2

n〉 is evaluated at the previous

time step; thus, Eq. (3.43) is independent of the configurations of the fields at the

current time step and the LU factorization of the Jacobian matrix is done only once

per time step for all the fields. Equation (3.43) was used as an approximate Jacobian

except for those fields for which the desired convergence (10−5) was not achieved in

a given number of Newton iterations. For such cases, the exact Jacobian was used.

During the course of Newton iterations any field whose magnitude stretched beyond

its maximum length (
√
b) for FENE dumbbells, was reset to 0.98

√
b.

An alternative Jacobian can also be derived which ensures a fast convergence and

thus completely avoids the need for an exact Jacobian. In this work an approximate

Jacobian based on an averaged exact Jacobian is used. The approximate Jacobian

has the following form:

Japproximate ≈〈Jexact〉

=

∫

PJexact d
3Q

=

∫

Ω

[(

I − trMn

b
+
H ∆t

ζ
I

)

− 2

b
Mn +

2

b
〈Γn Qn〉

]

ψα
Qϕ

β
Q dΩ

(3.44)

where M is the conformation tensor. Japproximate is independent of the unknown

configuration of fields and hence required to be factorized only once per time step

for all the configuration fields.

The boundary condition on the configuration field equation is imposed by re-

placing Eq. (3.41) with the week form of Eq. (3.16) at the inflow boundary.
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3.5.2.2 Least-Squares Collocation method (LSC)

Using the implicit formulation in order to solve for Qn+1 leads to greater stability

of the numerical algorithm [Öttinger, 1996], which in turn permits the use of larger

times steps leading to a reduction in the CPU-time required for the simulation us-

ing the micro-macro approach. Iterative methods for the numerical solution of the

nonlinear set of equations for the components of Qn+1, such as Newtons method

described above, involve the calculation and inversion of large Jacobian matrices.

Somasi et al. [2002] show that the computational overhead from Newton’s method

can outweigh the gains achieved by the increase in the time-step size. In addition, in

the course of the iterations, it is possible that some springs have lengths greater than

the maximum stretchable length of the spring, which could lead to unphysical results.

Such effects are handled by replacing the unnatural spring lengths obtained during

the course of a Newton iteration by values slightly less than maximum stretchable

length [Öttinger, 1996]. However, Somasi et al. [2002] and Prabhakar and Prakash

[2004] show that these problems are circumvented and considerable gains in compu-

tational efficiency over the Newton method can be achieved by using a novel cubic

solution based scheme as described below.

Equation (3.38) can be rearranged into a cubic equation for the magnitude of

Qn+1.

|Q|3n+1 − |Γ||Q|2n+1 − b

(

1 +
H ∆t

ζ

)

|Q|n+1 + |Γ|b = 0 (3.45)

where |Q|n+1 is the magnitude of Qn+1 and |Γ| is the magnitude of Γ. Given the

values of H, ζ, b and ∆t, the roots of this equation are functions of the parameter |Γ|.
It can be shown that this equation has exactly one root in the domain (0,

√
b) when

0 < |Γ| < ∞, and this root can be obtained analytically using standard formulae

for solutions of cubic equations [Öttinger, 1996] or numerically.

In the LSC method, the cubic equation (3.45) is first solved at collocation points,

which here coincide with the Gauss integration points. Eq. (3.45) can be solved at

these collocation points in each element either analytically or numerically. The

collocation point solution is then projected onto the computational nodes using a

least-square projection. Details of this scheme are discussed below:

Let the solution of the cubic equation be |Q|n+1 = y. It can be seen from Eq. 3.38



3.5. Computational Method 55

that the direction of Q is same as the direction of Γ, then, at each collocation (Gauss)

point:

Q̃n+1 =

(

Γ

|Γ|

)

y (3.46)

The least square projection algorithm is used to evaluate the nodal values of

Qn+1 by solving the following equations

∫

Ω

(Qn+1 − Q̃n+1)ψ
αdΩ = 0 (3.47)

The finite element discretization of Eq. (3.47) results in a set of linear equations

which in matrix vector form can be written as:

∑

β

M
αβ

Υ
β
n+1 = f

α (3.48)

where M
αβ is the mass matrix given by (3.32), Υ

β
n+1 is the vector of coefficients of

the configuration fields and

f
α =

∫

Ω

Q̃n+1ψ
α
Q dΩ (3.49)

which can be evaluated trivially by Gauss quadrature because Q̃n+1 is known at all

Gauss points. Equation (3.48) is assembled to obtain a global set of linear equations

which is solved using LU decomposition of the global mass matrix followed by back

substitution. The global mass matrix in Eq. (3.48) is the same as the mass matrix

evaluated at the predictor step and hence there is no extra computational cost

involved in computing and decomposing the mass matrix at the corrector step.

The boundary condition on the configuration field equation is imposed by re-

placing Eq. (3.47) with the weak form of Eq. (3.16) at the inflow boundary.

For linear dumbbells with hydrodynamic interactions (which is treated explic-

itly), Eq. (3.35) is linear in the connector vector Qn+1 and can be written as:

Qn+1 =
Γ

1 + (Λ ∆t/ζ)
(3.50)

where Γ is the right hand side of Eq. (3.35) with a linear spring force. It can be
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shown analytically that for linear dumbbell models both the Newton’s method and

the LSC method are identical (see Appendix E). As a result, the latter method can

be used to evaluate the nodal values of Qn+1 from Eq. (3.50). The fully implicit

scheme discussed earlier is not appropriate for linear dumbbells with hydrodynamic

interactions because of the non-linear terms in the hydrodynamic interaction tensor

Ω.

Equation 3.50 can be formulated in the form of Eq. (3.48), with

f
α =

∫

Ω

Γ

1 + (Λ ∆t/ζ)
ψα

Q dΩ (3.51)

The global mass matrix is the same as the mass matrix evaluated at the predictor

step.

3.6 Conclusion

In this chapter a Brownian configuration fields based micro-macro approach has

been formulated to solve viscoelastic free surface flows. A new way of the imposing

boundary condition on the BCF equation has been discussed. Within the frame-

work of micro-macro schemes present in literature, we show that it is now possible

to include more appropriate molecular models (e.g., FENE and HI) in complex vis-

coelastic flow simulations although the computational time still remains a challenge.

Two novel unconditionally stable time integration schemes to numerically integrate

the BCF equation have been presented.



Chapter 4

Micro-Macro Code Validation

In this chapter, the micro-macro approach developed in chapter 3 is validated by

carrying out simulations for the steady and start-up flow of polymer solutions con-

fined between two parallel plates of infinite length (Couette Flow) and steady flow in

a pipe (Poiseuille Flow). The results for various microscopic constitutive equations

for both steady and start-up flows are compared with published results for a range

of dimensionless parameters for the various cases listed in Table 4.1. In particular,

� the steady state results for homogeneous shear flow (Couette flow) using the

micro-macro approach are compared for different Wi with the analytical solu-

tion for Hookean dumbbells, the published results of Herrchen and Ottinger

[1997] for FENE-P and FENE dumbbells and those of Prabhakar and Prakash

[2002] for Hookean dumbbells with HI. Since the simulation results of Prab-

hakar and Prakash [2002] were reported for only a few shear rates, additional

data were generated for the purpose of the present chapter with the same

code used by Prabhakar and Prakash [2002]. The conformation tensor based

approach has been successfully implemented to solve steady confined flows by

Pasquali and Scriven [2002] and hence, results using the macroscopic approach

are presented only for unsteady flows.

� the steady state results for Poiseuille flow are compared with results for homo-

geneous shear flow. In a Poiseuille flow, the shear rate varies with position. In

this chapter material functions at various positions with Poiseuille flow, where

the shear rates are different, are compared with simulations carried out in a

57
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Table 4.1: The confined flow cases investigated for micro-macro code validation.

Flow → Couette Flow Poiseuille Flow
Solution Method

↓
Micro-Macro Approach Steady & Unsteady Steady
Macroscopic Approach Unsteady -

Homogeneous BDS Steady
(Extension of data from (Hydrodynamic interactions -

Prabhakar and Prakash [2002]) for ultra-dilute solutions only)

homogeneous Couette flow at the same shear rates. Thus, a single Poiseuille

flow simulations corresponds to several Couette flow runs at different Wi.

� the results for start-up of Couette flow are presented and compared with the

published results of Tomea et al. [2002] for Hookean dumbbells using the micro-

macro approach and an Oldroyd-B fluid using the macroscopic approach. The

transient results of Tomea et al. [2002] are also used to validate the time

integration scheme developed for macroscopic flow equations in chapter 2. The

results for FENE-P and non-linear dumbbells are compared with the published

results for start-up of Couette flow by Laso and Ottinger [1993].

Homogeneous Couette flows for all the models considered here have been ex-

amined previously with BDS algorithms developed specifically for these flows. The

algorithms developed here are more versatile since they are applicable to more com-

plex flows. However in this chapter, for the purpose of validation, micro-macro and

macroscopic results are presented for simple flows.

4.1 Flow Situations and Material Functions

In this section we review the flow situations, boundary conditions and material

functions in simple shear flow.

Figs. 4.1 shows the flow geometry and boundary conditions for the Couette

[Figs. 4.1(a)] and Poiseuille flow [Figs. 4.1(b)] computations. For steady flow of
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Figure 4.1: Flow domain and boundary conditions for the Couette and Poiseuille
Flow.



4.1. Flow Situations and Material Functions 60

ultra-dilute solutions (β = 1), the conformation tensor and configuration fields equa-

tions are decoupled from the macroscopic conservation equations. The steady state

velocity profile for a Newtonian liquid, vx = U(y/H), with H being the distance

between two plates, and vx = (−∇p/2ηsL)(1−y2), with L being the length domain,

is used for Couette and Poiseuille flow computations of polymer liquids, respectively.

The flow is generated by imposing a constant velocity, U , to the top plate in case

of Couette flow and by imposing a constant pressure gradient per unit length of

(−∇p/L) in case of Poiseuille flow.

For the start-up of Couette flow of dilute polymer solutions (β < 1), the fluid

and both the plates are assumed to be at rest for time t < 0. In this case, the

macroscopic conservation equations are coupled with the constitutive equations for

polymer stress. At time t = 0, the upper plate starts moving in the x-direction with

a constant velocity, U . A no-slip boundary condition, n · v = 0, is imposed on both

the plates. The fully developed flow boundary condition, n ·∇v = 0, is imposed at

inflow and outflow boundaries.

The velocity gradient for these flows has the following form:

κ = γ̇(x, t)









0 1 0

0 0 0

0 0 0









(4.1)

where, γ̇(x, t) is constant with γ̇ = U/H for steady Couette flow, a function of

spatial position, with γ̇ = −(−∇p/ηsL)y for Poiseuille flow, and a function of time

for the start-up of Couette flow.

For these flows, the polymer contribution to the rheological properties, such as

the viscosity, ηp, and the first normal stress difference coefficient, Ψ1, are given in

dimensionless form by the following relations [Bird et al., 1987a]:

η∗p =
ηp

nkBTλη

= − σxy

nkBTληγ̇
(4.2)

Ψ∗
1 =

Ψ1

nkBTλ2
η

= − σxx − σyy

nkBTλ2
ηγ̇

2
(4.3)

It should be noted that the relaxation time based on zero shear viscosity, λη, is
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used here to non-dimensionalize various properties as opposed to the conventional

use of λH . As the results for steady shear flow by Herrchen and Ottinger [1997] and

Prabhakar and Prakash [2002] for FENE-P, FENE and Hookean dumbbells with HI

are presented in terms of λH as the characteristic time, their results are converted

in terms of λη using the relations between λη and λH given Table C.1. For Hookean

dumbbells, λη = λH . For dumbbells with HI, the relation between λη and λH is a

function of h∗ and cannot be written in a closed-form as in the case of dumbbells

without HI. However, the Green-Kubo formula [Diaz et al., 1990; Doi and Edwards,

1986], discussed in Appendix C, is used here to convert results in terms of λη.

4.2 Steady Couette Flow

In this section, the steady state results for various microscopic constitutive equations

are presented.

Fig. 4.2 shows the steady state values of shear viscosity and first normal stress

difference coefficient for Hookean dumbbells. A mesh of 200 elements and a total

of 4000 configuration fields is used for all the results presented in this chapter. For

Hookean dumbbells, the analytical expression for both the shear viscosity and first

normal stress are given by [Bird et al., 1987b]:

η∗p =
ηp

nkBTλη

= 1 (4.4)

Ψ∗
1 =

Ψ1

nkBTλ2
η

= 2 (4.5)

It is evident from Eqs. 4.4 and 4.5 that both the shear viscosity and the first

normal stress difference coefficient are independent of shear rate. The micro-macro

computations for Hookean dumbbells [see Fig. 4.2] indicate that both η∗p and Ψ∗
1 are

independent of shear rate.

Figures 4.3 and 4.4 show the shear rate dependent viscosity and first normal stress

difference coefficient for FENE-P and FENE models, respectively. The results are

plotted for a finite extensibility parameter bM = 18.33 which is equivalent to b = 50

used by Herrchen and Ottinger [1997]. The results in both Figures 4.3 and 4.4 show
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Figure 4.2: Steady shear viscosity (a) and first normal stress difference coefficient
(b) for Hookean dumbbells as a function of Wi using the Micro-Macro approach.
Re = 0.0, β = 1.0, Nf = 4000, ∆t = 0.01.
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a good agreement with the homogeneous results of Herrchen and Ottinger [1997].

As can be seen from Figs. 4.3 and 4.4, FENE and FENE-P models exhibit

very similar steady state response in shear flow. Both material functions, η∗ and

Ψ∗
1, approach a constant value at low shear rates and decrease at high shear rates

according to a power law. The rate of decline for the first normal stress coefficient

is greater than for the viscosity.

Figure 4.5 shows the response of material functions for Hookean dumbbells with

hydrodynamic interactions with HI parameter h∗ = 0.15. We find a good agreement

between the micro-macro computations and BDS results by Prabhakar and Prakash

[2002]. It is evident from Figs. 4.3-4.5 that the FENE-P and FENE model show

greater shear thinning compared to the Hookean dumbbells with HI.

In this section we have shown that the response of material functions for a steady

shear flow computed using the micro-macro method are in good agreement with the

published results for different microscopic constitutive models.

4.3 Steady Poiseuille Flow

For Poiseuille flow, the pressure drop per unit length (−∇p/L) was always main-

tained as −∇p/L = 1. Various Wi at different locations in the y-direction, were

obtained by varying the value of λη. The steady state computations of Poiseuille flow

at different Wi is then compared with the steady state Couette flow computations

carried out at all these Wi.

Figures 4.3-4.5 compare results of Poiseuille flow with Couette flow using the

FENE-P, FENE and Hookean dumbbells with HI constitutive models. It is evident

from these figures that, given a Wi, identical results are obtained in Poiseuille and

Couette flow.

4.4 Start-Up of Couette Flow

In this section, the transient results for various microscopic constitutive equations

are presented for the start-up of Couette flow. For dilute solutions, both the velocity

and the stress profile are monitored as a function of time. For ultra-dilute solutions,
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Figure 4.3: Steady shear viscosity (a) and first normal stress difference coefficient (b)
for FENE-P dumbbells as a function of Wi using Micro-Macro approach. Re = 0.0,
β = 1.0, Nf = 4000, ∆t = 0.01, bM = 18.333.
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Figure 4.4: Steady shear viscosity (a) and first normal stress difference coefficient
(b) for FENE dumbbells as a function of Wi using the micro-macro approach. The
Collocation method is used to compute results using the micro-macro method. Re =
0.0, β = 1.0, Nf = 4000, ∆t = 0.01, bM = 18.33.
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Figure 4.5: Steady shear viscosity (a) and first normal stress difference coefficient
(b) for Hookean dumbbells with hydrodynamic interactions as a function of Wi using
micro-macro approach. The Collocation method is used to compute results using
the micro-macro method. Re = 0.0, β = 1.0, Nf = 4000, ∆t = 0.01, h∗ = 0.15.



4.4. Start-Up of Couette Flow 67

though it is in principal possible to impose a time dependent velocity profile, we

have monitored the development of the stress profile for a velocity profile that is

maintained constant at the steady state value from time t = 0.

Figure 4.6 shows the development of velocity and polymer stress profiles for

different dimensionless parameters used earlier by Tomea et al. [2002] for a dilute

solution of an Oldroyd-B fluid. The results obtained here using the macroscopic and

micro-macro approached are displayed in Fig. 4.6 along with the results of Tomea

et al. [2002]. The results clearly demonstrate the validity of the time integration

numerical schemes developed for both the micro-macro and macroscopic approaches

for different dimensionless parameters.

For FENE dumbbells, computations of start-up of Coeutte flows using the BCF

method is tested with the published CONFFESSIT results by Laso and Ottinger

[1993] for a set of dimensionless parameters, Re = 1.2757, β = 0.0521, Wi = 49.62,

bM = 18.33. The FENE-P results are compared with the results obtained using

the conformation tensor based constitutive models. Though results for Hookean

dumbbell with HI are not available, simulations are carried out for the same set of

dimensionless parameters for the sake of comparison. Figures 4.7 and 4.8 display

the development of velocity profiles at three different locations between the plates

for different microscopic constitutive models used in this work. While the results

from Hookean dumbbells [see Fig. 4.7(a)] are in good agreement with the equivalent

conformation tensor based models, Hookean dumbbells with HI do not show any

different behaviour from Hookean dumbbells without HI [see Fig. 4.7(b)]. Similarly

for the FENE-P dumbbell, as seen in Fig. 4.8(a), results for both the macroscopic

and micro-macro computations are in good agreement. It is also evident from the

development of velocity for FENE dumbbells in Fig. 4.8(b) that the BCF method

is as accurate as the CONFFESSIT method.

It can seen from Figs. 4.7 and 4.8 that the dynamic response of various consti-

tutive equations is totally different from each other except for the dumbbells with

and without HI. Especially the response of the linearized FENE model, namely,

the FENE-P model, is dramatically different from that of the FENE model. Both

the duration of the velocity overshoot, number of overshoots and the time at which

the maximum in velocity overshoot is reached are overestimated by the FENE-P
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Figure 4.6: Development of velocity and stress profiles for an Oldroyd-B fluid using
the micro-macro and macroscopic approaches. (a) Re = 0.5, β = 0.1, Wi = 1.0, (b)
Re = 0.5, β = 0.1, Wi = 10, (c) Re = 5, β = 0.1, Wi = 1.0. Nf = 4000, ∆t = 0.01.
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approximation. The FENE-P linearization leads to more oscillatory behavior in the

velocity, which is also the case with the Oldroyd-B model. It should be noted that

as the zero shear rate viscosity of both FENE and FENE-P fluids is different, dif-

ferent ηs and ρ are used in order to keep the dimensionless parameters same. These

different features of FENE-P and FENE dumbbells have been earlier pointed out

by Laso and Ottinger [1993] in their CONFFESSIT computations of start-up of

Couette flow.

Figures 4.9 and 4.10 shows the development of shear stress on the bottom plate

as a function of time for different constitutive models. The difference between the

stress evolution computed using different models is striking. While for the Oldroyd-

B model, the stress is still growing (as in the case of Hookean dumbbells with HI),

the FENE-P model shows larger overshoot compared to the FENE model. The max-

imum shear stress predicted by the FENE-P model is roughly two times more than it

is for FENE dumbbells. The comparison between the micro-macro and macroscopic

results for linear dumbbell are excellent. The asymptotic values for the stress for

start-up flow calculations are identical to the steady-state values of homogeneous

flow for ultra-dilute solutions with time independent velocity field, although it takes

considerably longer for the FENE-P dumbbells to reach the steady state. The oscil-

lations that appear in the start-up problem for dilute solutions through the coupling

of inertial and elastic effects are absent for ultra-dilute solutions. The difference in

behavior between steady and start-up of Couette flow is more pronounced for the

more oscillatory FENE-P model.

Figures 4.11 and 4.12 displays the time evolution of first normal stress difference

for different constitutive models. Once again, while for the Hookean dumbbells the

stress difference increases with time due to the unbounded length of the molecule,

for both FENE and FENE-P models, the normal stress difference seems to reached

their final steady state values. Similar to the shear stress, there are two additional

peaks in the FENE-P model and a much larger overshoot in the value of normal

stress difference.



4.4. Start-Up of Couette Flow 70

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

V
x

Ultra−Dilute
Macroscopic
Micro−Macro

y=0.20

y=0.50

y=0.80

(a) Hookean Dumbbells

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

V
x

Ultra−Dilute
Micro−Macro
(Dilute)

y=0.20

y=0.50

y=0.80

(b) Hookean Dumbbells with HI

Figure 4.7: Development of velocity profile Hookean dumbbells (a) and dumbbells
with hydrodynamic interactions (b) using the micro-macro and macroscopic ap-
proach. The Collocation method is used to compute results using the micro-macro
method for HI. Re = 1.2757, β = 0.0521, Wi = 49.62, h∗ = 0.15, ∆t = 0.01,
Nf = 4000.
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Figure 4.8: Development of velocity profile for FENE-P (a) and FENE (b) fluid.
For FENE-P fluid results are presented using both micro-macro and macroscopic
approach. The Collocation method is used to compute results using the micro-
macro method for FENE dumbbell model. Re = 1.2757, β = 0.0521, Wi = 49.62,
bM = 55, ∆t = 0.01, Nf = 4000
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Figure 4.9: Development of shear stress on the bottom plate for Hookean dumbbell
(a) and Hookean dumbbells with HI (b) fluid. For Hookean dumbbells results are
presented using both micro-macro and macroscopic approach. Re = 1.2757, β =
0.0521, Wi = 49.62, ∆t = 0.01, Nf = 4000 h∗ = 0.15
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Figure 4.10: Development of shear stress on the bottom plate for FENE-P (a) and
FENE (b) fluid. For FENE-P fluid results are presented using both micro-macro and
macroscopic approach. The Collocation method is used to compute results using
the micro-macro method for FENE dumbbell model. (a) Re = 1.2757, β = 0.0521,
Wi = 49.62, bM = 55, ∆t = 0.01, Nf = 4000
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Figure 4.11: Development of normal stress on the bottom plate for Hookean dumb-
bell (a) and Hookean dumbbells with HI (b) fluid. For Hookean dumbbells results
are presented using both Micro-Macro and Macroscopic approach. Re = 1.2757,
β = 0.0521, Wi = 49.62, ∆t = 0.01, Nf = 4000 h∗ = 0.15
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Figure 4.12: Development of normal stress on the bottom plate for FENE-P (a) and
FENE (b) fluid. For FENE-P fluid results are presented using both micro-macro and
macroscopic approach. The Collocation method is used to compute results using
the micro-macro method for FENE dumbbell model. (a) Re = 1.2757, β = 0.0521,
Wi = 49.62, bM = 55, ∆t = 0.01, Nf = 4000
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4.5 Conclusion

In this section, we have compared the results for flow between two parallel plates

computed using the micro-macro algorithms developed in this work. We have found

excellent agreement between the micro-macro and macroscopic results for linear

dumbbell models. For FENE dumbbells the results of Laso and Ottinger [1993] has

been reproduced with the algorithms developed in this work.



Chapter 5

Computation of Steady

Viscoelastic Free Surface Flow

Using the Macroscopic Approach

In this chapter, the macroscopic approach developed in chapter 2 is used to solve

an example of a free surface flow. Free surface flows occur when a layer of liquid

meets a gas at an interface. Such flows arise in a variety of commercial applications,

such as coating (e.g. slot coating, roll coating etc.), ink-jet printing, fiber spinning,

and micropipetting. The free surface flow studied in this work is the flow in the

downstream section of a slot coater. The results presented in this chapter address

some problems that have not been considered in the earlier work on viscoelastic slot

coating flow by Lee et al. [2002]; Pasquali and Scriven [2002] and Romero et al.

[2004].

Slot coating belongs to a class of coating flows known as pre-metered coating,

where the thickness of the coated layer is predetermined. In pre-metered coating,

all the liquid fed into the coating die by a metering device e.g., a displacement

pump, is deposited on the substrate (see Fig. 5.1). As a result, the average film

thickness is predetermined for a given feed flow rate, coating width in the cross-web

direction, and substrate speed, and is consequently ideal for high precision coating.

The average film thickness is independent of the rheological properties of the coating

liquid.

77
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Figure 5.1: Flow domain and boundary conditions used in analyzing the flow of
viscoelastic liquid in the downstream section of a slot coater.

Frequently, coating applications involve liquids that are viscoelastic due to the

presence of polymer as final product or as rheology modifier (e.g. ink-jet printing).

Most of these flows are time dependent and their dynamics are controlled by the

elasticity and capillarity of the liquid. The competition among viscous, capillary

and elastic forces (also inertial forces if the Reynolds number Re >> 0) determine

the range of parameters in which the flow is stable and steady. Although the coating

thickness is independent of the non-Newtonian nature of the liquid, the flow in the

coating bead and subsequently, the uniformity of the liquid layer can be affected by

the rheological properties of the liquid [Romero et al., 2004].

Due to the existence of a variety of industrial applications of coating flows,

numerous researchers have focused their attention on steady Newtonian coating flows

[Carvalho and Kheshgi, 2000; Carvalho and Scriven, 1997a,b, 1999; Christodoulou

and Scriven, 1992; Gates, 1999; Musson, 2001; Ruschak, 1976; Saito and Scriven,

1981; Sartor, 1990; Silliman and Scriven, 1980] and on understanding the dynamics

of stable Newtonian coating flows [Coyle et al., 1990; Greener et al., 1980; Mill

and South, 1967; Pearson, 1960; Pitts and Greiller, 1961; Savage, 1984]. However,

studies related to viscoelastic coating flows have only recently been attempted and

are limited [Bajaj et al., 2004, 2005; Bhatara et al., 2004, 2005; Lee et al., 2002;

Pasquali and Scriven, 2002; Romero et al., 2004; Zevallos et al., 2005]. For slot

coating flow in particular, calculations of steady Newtonian [Carvalho and Kheshgi,

2000; Gates, 1999; Musson, 2001; Saito and Scriven, 1981; Sartor, 1990; Silliman

and Scriven, 1980] and viscoelastic flows [Lee et al., 2002; Pasquali and Scriven,

2002; Romero et al., 2004] have been reported in literature. To some extent, the
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limited number of studies in the area, specially for viscoelastic coating flow, can be

attributed to the presence of a free surface in such flows. The computational method

discussed in detail in chapter 2 is used here to solve viscoelastic free surface flows.

A careful investigation of the work by Pasquali and Scriven [2002] and Lee et al.

[2002] reveal the following aspects of slot coating flows:

Pasquali and Scriven [2002] found that for an ultra - dilute polymer solution,

recirculation under the die strongly affects the computations at high Wi. In ultra-

dilute solutions, the presence of polymer molecules doesn’t affect the flow field and

the conservation equations are decoupled from the conformation tensor equation.

Pasquali and Scriven [2002] observed that when the recirculation under the die lip

was absent, all models failed at a relatively low value of Wi number because of the

singularity in the velocity gradient at the contact line [Salamon et al., 1995, 1997a,b].

However, when recirculation was present, much higher Wi could be achieved. The

mode of failure was found to be independent of the model details i.e. the smallest

eigenvalue of the conformation tensor reached zero in the region of strong extensional

flow under the stretching section of the free surface. An important observation was

that in the presence of recirculation, the maximum Wi achieved in all calculations

was shown to increase as the model used to represent the polymer molecules captured

the underlying physics more accurately. This suggests that shortcomings of these

models could be due to the use of approximate non-linear kinetic theory based

relations leading to a poor physical description of polymer molecules in solution.

Lee et al. [2002] observed that for dilute polymer solutions (in which case the con-

servation equations are coupled with the conformation tensor equation), viscoelas-

ticity increases the meniscus invasion and thus, reduces the angle of separation at

the static contact line. They identified meniscus invasion as a possible mechanism

for the onset of ribbing instabilities. A recent study by Romero et al. [2004] has

verified experimentally and theoretically that the viscoelastic nature of the fluid

significantly reduces the contact angle due to meniscus invasion, leading to a non-

uniform coating. Both Lee et al. [2002] and Pasquali and Scriven [2002] observed

the formation of elastic stress boundary layers under the free surface and the failure

of the numerical method at high Wi.

While the coupling between flow and the flow induced microstructure in slot
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coating flow is yet to be examined, a recent study on roll coating flow of dilute poly-

mer solutions by Zevallos et al. [2005] has revealed that the presence of polymers can

dramatically change the nature of the flow field (e.g. velocity field, recirculation etc.)

which ultimately leads to flow instabilities. This kind of behaviour is not expected

for ultra-dilute solution as the flow field is independent of the elastic stress. The

strange behavior shown by dilute polymer solutions can be attributed to the strong

coupling between the velocity field and the elastic stress. Zevallos et al. [2005] have

established that for a given flow condition and Wi in viscoelastic roll coating flows,

there is always a critical Capillary number (defined as the ratio of viscous to surface

forces) beyond which the normal stress difference at the stagnation point becomes

positive and recirculation, which is present at low Ca, completely disappears. Due

to the disappearance of recirculation, the flow close to the stagnation point becomes

stronger and consequently, the normal stress difference at the free surface increases

dramatically. This explains how liquid elasticity makes roll coating flow unstable

at a much lower Ca than the Ca achieved in the Newtonian case [Graham, 2003;

Zevallos et al., 2005].

Although the flow computations by Pasquali and Scriven [2002], Lee et al. [2002]

and Zevallos et al. [2005] are significant contributions to the understanding of the

role of viscoelsaticity on slot coating flows and in general on free surface flows, the

following questions remain unanswered:

� How does the behaviour of ultra-dilute polymer solutions differ from that of

dilute solutions, for instance with regard to the mode of failure of numeri-

cal simulations at high Wi number, the effect of static contact line on flow

computations etc.?

� How do the viscoelastic properties of the fluid affect the macroscopic properties

of flow such as, the velocity field, recirculation under the die, the location of

the stagnation point etc.?

� Does the change in the flow behaviour affect the stability of slot coating flow?

� How does the ratio of polymer to solvent viscosity affect the flow behaviour?

In order to examine the above listed issues arising from the study of Pasquali

and Scriven [2002] and Lee et al. [2002], simulations for both dilute and ultra-dilute
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Table 5.1: Meshes used for slot coating flow computations.

Mesh Number of Number of Degrees of Freedom
Elements Nodes Macroscopic Simulations

(x,v, p,M, L)
M1 550 2311 15712
M2 1096 4539 30836
M3 2100 8611 58392
M4 4105 16717 113215

solutions are carried out here for a wide range of parameters. The results presented

in the next few sections are an attempt to clearly identify the role of viscoelasticiy on

slot coating flows. In particular, we have extended the earlier work on slot coating

flow by Pasquali and Scriven [2002] and Lee et al. [2002] to investigate the effect

of viscosity ratio on both macroscopic and microscopic properties. The computed

flow and stress fields are analyzed to understand the role of viscoelasticity on the

stability of slot coating flows using the stability criteria proposed by Graham [2003].

All simulations are preformed at Re = 0 and at a dimensionless flow rate less then

0.33, for which a recirculation region is always present in the flow domain [Pasquali

and Scriven, 2002]. The dimensionless numbers that are varied in this work are Ca,

β, Wi and Ec.

5.1 Mesh Convergence

The numerical solutions were tested for convergence on four different meshes. Details

of the meshes, namely M1, M2, M3 and M4, are given in Table 5.1. The most

important distinction between the four meshes is the density of element distribution

in the vicinity of the static contact line and in the region of the air/fluid interface.

Figure 5.2 displays the zoomed images of the meshes near the contact line.

As the viscosity ratio is an important parameter in this study, we show the mesh

convergence for all 4 values of β namely, β = 0.25, 0.51, 0.75 and 1.0 used in this

work. While for β < 1 the evolution equations for the conformation tensor are cou-

pled with the mass, momentum and mesh equations, for β = 1 (which corresponds
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Figure 5.2: Meshes used in analyzing the downstream section of slot coater
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to an ultra-dilute solution), obtained by setting ηp = 0, the evolution equation for

the conformation tensor is decoupled from conservation and mesh equations. The

molecular conformation is computed by solving the coupled set of equations for both

the Oldroyd-B and FENE-P constitutive equations in the case of dilute solutions

and by solving only the conformation tensor equation for a given flow field in the

case of ultra-dilute solutions.

All the mesh convergence results are presented in terms of the eigenvalues of the

conformation tensor. The orthonormal eigenvectors mi of the conformation dyadic

M represent three orthonormal directions along which molecules are stretched or

contracted. The corresponding eigenvalues represents the square of the principal

stretch ratios of flowing polymer molecules. Eigenvalues of the conformation ten-

sor are always real and positive because the conformation tensor is symmetric and

positive definite [Pasquali and Scriven, 2002].

Figures 5.3 and 5.4 show the largest and the smallest eigenvalues of the confor-

mation tensor in the flow domain as a function of Wi for an Oldroyd-B fluid for

different values of β. While the largest eigenvalue (stretch of the molecule) grows

rapidly with increasing Wi, the minimum eigenvalue decreases with increasing Wi.

As shown in Fig. 5.4, computations using different meshes breakdown at different

values of Wi i.e., the smallest eigenvalue of the conformation tensor becomes nega-

tive in certain regions of the flow field [Pasquali and Scriven, 2002]. Figure 5.4 also

demonstrates an important difference between the computations for ultra-dilute so-

lutions and those for dilute solutions. For an ultra-dilute solution, the maximum

Wi at which the smallest eigenvalue becomes negative increases significantly with

mesh refinement as shown in Fig. 5.4(d). However, the maximum Wi for dilute so-

lutions remains relatively insensitive to mesh refinement and decreases significantly

with reducing viscosity ratio β. The reason for the decrease in maximum Wi with

viscosity ratio will be discussed shortly. It is also evident from Fig. 5.4 that mesh

convergence is obtained at least up to Wi = 2.0 for all β values.

Mesh convergence for the FENE-P model is depicted in Figs. 5.5 and 5.6 for

different values of β in terms of the largest and the smallest eigenvalues of the

conformation tensor, respectively. The behaviour of the FENE-P model is similar to

that of the Oldroyd-B model except that the largest eigenvalues reaches its maximum



5.1. Mesh Convergence 84

0 0.5 1 1.5 2
10

0

10
1

10
2

10
3

Wi 

La
rg

es
t E

ig
en

va
lu

e 
of

 C
on

fo
rm

at
io

n 
Te

ns
or M1 Mesh

M2 Mesh
M3 Mesh
M4 Mesh

0 0.5 1 1.5 2 2.5
10

0

10
1

10
2

10
3

Wi

La
rg

es
t E

ig
en

va
lu

e 
of

 C
on

fo
rm

at
io

n 
Te

ns
or

M1 Mesh
M2 Mesh
M3 Mesh
M4 Mesh

(a) β = 0.25 (b) β = 0.51

0 0.5 1 1.5 2 2.5 3 3.5
10

0

10
1

10
2

10
3

Wi

La
rg

es
t E

ig
en

va
lu

e 
of

 C
on

fo
rm

at
io

n 
Te

ns
or

M1 Mesh

M2 Mesh

M3 Mesh

M4 Mesh

0 1 2 3 4 5 6
10

0

10
1

10
2

10
3

10
4

Wi 

La
rg

es
t E

ig
en

va
lu

e 
of

 C
on

fo
rm

at
io

n 
Te

ns
or

M1 Mesh

M2 Mesh

M3 Mesh

M4 Mesh

(c) β = 0.75 (d) β = 1.0

Figure 5.3: Largest eigenvalues of the conformation tensor in the flow domain for
an Oldroyd-B fluid. Ca = 0.1, Q = 0.3.
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Figure 5.4: Smallest eigenvalues of the conformation tensor in the flow domain for
an Oldroyd-B fluid. Ca = 0.1, Q = 0.3.
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value (which is equal to bM, the finite extensibility parameter) at a higher Wi.

A striking difference between the computations of ultra-dilute and dilute solu-

tions is that while the maximum Wi strongly depends upon the constitutive model

for ultra-dilute solutions, for dilute solutions, however, the constitutive model has

little or no effect on the maximum Wi for the set of parameters studied here. The

maximum Wi for an ultra-dilute solution of an Oldroyd-B fluid is ∼ 5.45, it in-

crease to ∼ 10 for the FENE-P model [see Figs. 5.6(d) & Figs. 5.6(d)] which is

quantitatively consistent with the finding of Pasquali and Scriven [2002].

The FENE-P model also predicts that the out-of-plane eigenvalue of the confor-

mation tensor can be driven away from its equilibrium value in a two dimensional

flow as depicted in Fig. 5.7 [Pasquali and Scriven, 2002]. Basically, the out-of-plane

eigenvalue contacts much more slowly than the in-plane eigenvalue. The mesh con-

vergence is evident from Fig. 5.7.

Figure 5.8 shows that for both the Oldroyd-B and the FENE-P fluid, stress

boundary layers are formed under the stretching section of the free surface at higher

Wi. While moving from the web to the free surface, the elastic stress grows sharply

at high Wi number in the vicinity of the free surface. Figures 5.9 and 5.10 are

further evidence of the formation of stress boundary layers. Figures 5.9 and 5.10

show the evolution of the xx component of elastic stress with increasing Wi for both

the Oldroyd-B and the FENE-P fluid. More refined meshes are required to resolve

stress boundary layers close to the free surface at higher Wi.

5.2 Effect of Viscosity Ratio on the Stretch of

Polymer Molecules

In the previous section we showed the mesh convergence of our results for different

values of β in terms of the eigenvalues of the conformation tensor. In this section,

we present the effect of viscosity ratio on the stretch of polymer molecules. We show

that the β dependence of the rate of stretching is a function of Wi.

Figures 5.11 and 5.12 show the effect of the viscosity ratio β on the stretch of the

polymer molecules as a function of Wi for an Oldroyd-B fluid. It is worth mentioning

that these figures display the largest and smallest stretch in the whole flow domain
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Figure 5.5: Largest eigenvalues of the conformation tensor in the flow domain for
the FENE-P fluid. Ca = 0.1, Q = 0.3, bM = 50.



5.2. Effect of Viscosity Ratio on the Stretch of Polymer Molecules 88

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Wi

S
m

al
le

st
 E

ig
en

va
lu

e 
of

 C
on

fo
m

at
io

n 
Te

ns
or M1 Mesh

M2 Mesh
M3 Mesh
M4 Mesh

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Wi

S
m

al
le

st
 E

ig
en

va
lu

e 
of

 C
on

fo
rm

at
io

n 
Te

ns
or

M1 Mesh
M2 Mesh
M3 Mesh
M4 Mesh

(a) β = 0.25 (b) β = 0.51

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Wi

S
m

al
le

st
 E

ig
en

va
lu

e 
of

 C
on

fo
rm

at
io

n 
Te

ns
or

M1 Mesh

M2 Mesh

M3 Mesh

M4 Mesh

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Wi

S
m

al
le

st
 E

ig
en

va
lu

e 
of

 C
on

fo
rm

at
io

n 
Te

ns
or

M1 Mesh
M2 Mesh
M3 Mesh
M4 Mesh

(c) β = 0.75 (d) β = 1.0

Figure 5.6: Smallest eigenvalues of the conformation tensor in the flow domain for
the FENE-P fluid. Ca = 0.1, Q = 0.3, bM = 50.
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Figure 5.7: Out-of-plane eigenvalues of the conformation tensor in the flow domain
for the FENE-P fluid. Ca = 0.1, Q = 0.3, bM = 50.



5.2. Effect of Viscosity Ratio on the Stretch of Polymer Molecules 90

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

Distance from the Web

σ xx

Wi=1.0

Wi=2.0

Wi=3.0

(a) Oldroyd-B

0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

10

12

14

16

18

Distance from the Web

σ xx

Wi=1.0

Wi=2.0

Wi=3.0

(b) FENE-P

Figure 5.8: xx component of elastic stress (a) for Oldroyd-B and (b) for FENE-P
fluid. Distance is measured from the web to the free surface. Ca = 0.1, Q = 0.3,
β = 0.75, bM = 50



5.2. Effect of Viscosity Ratio on the Stretch of Polymer Molecules 91

0 0.5 1 1.5

0.5

1

1.5

2.64
2.40
2.16
1.92
1.68
1.44
1.20
0.96
0.72
0.48

(a) Wi=1.0

0 0.5 1 1.5

0.5

1

1.5

8.63
7.78
6.93
6.07
5.22
4.37
3.52
2.67
1.82
0.97

(b) Wi=2.0

0 0.5 1 1.5

0.5

1

1.5

31.99
28.80
25.61
22.42
19.22
16.03
12.84

9.65
6.46
3.27

(c) Wi=3.0

Figure 5.9: Evolution of the xx component of the elastic stress (σxx) as a function
of Wi for an Oldroyd-B fluid. Ca = 0.1, Q = 0.3, β = 0.75.
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(irrespective of the actual position where it occurs). Because of the number of subtle

features in Fig. 5.11, Fig. 5.12 displays the same data broken up into different regimes

of magnitude of Wi. It is evident from the Fig. 5.11(a) that for a Wi smaller than

∼ 1.5, the rate of stretching (the largest eigenvalue of the conformation tensor) is

independent of the viscosity ratio β [more clearly shown in Fig. 5.12(a)]. Beyond

Wi=1.5, a dependence on β kicks in. As can be seen from Fig 5.12(b), the rate of

stretching appears to decrease with increasing concentration (which correspondence

to decreasing β). For Wi > 2, curves for different β diverge sharply. The curves for

smaller β diverge more rapidly [see Fig. 5.12(e)]. Figure 5.11(b) which shows the

change in smallest eigenvalue with Wi for different β reveals that Wi at which the

rate of stretching diverges corresponds to minimum eigenvalue becoming zero and

the conformation tensor eventually loosing its positive definiteness [see Fig. 5.12(f)].

This implies that the Wi at which the stretch starts to diverge, the gradient in the

stress at the free surface becomes too steep to be captured with the most refined

mesh (M4) used in this study. Hence, it can be concluded that for a Wi < 1.5,

stretch of molecules is independent of viscosity ratio and for a Wi > 1.5 the rate of

stretching decreases with increasing Wi as the polymer solution become more and

more concentrated (viscosity ratio β goes from 1 to 0.25).

A careful investigation of Fig. 5.11(b) reveals that similar to the largest eigen-

value, the rate of change of the smallest eigenvalue with Wi is different on the

either side of Wi ∼ 0.7 [more clearly shown in Figs. 5.12(b) & 5.12(d)] . The values

Wi ∼ 1.5 and Wi ∼ 0.7, around which rate of stretching (i.e. the largest and smallest

eigenvalue of the conformation tensor respectively) is different, are independent of

the constitutive equation as shown in Figs. 5.13(a) and 5.13(b) for FENE-P model.

Figure 5.13(c) shows that the rate of change of the out-of-plane eigenvalue of

the conformation tensor, predicted by the FENE-P model, becomes β dependent

around Wi ∼ 1.7.

The two different regimes of the rate of stretching near the critical Wi, for a

given β, can be explained by looking at the actual spatial position of the largest and

smallest eigenvalues of the conformation tensor in the flow domain [Figs. 5.14(a)-

5.14(d)]. The y-coordinate of the location of the largest and smallest eigenvalue in

the flow domain [Figs. 5.14(a)-5.14(b)] reveals why the rate of stretching is different
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around Wi ∼ 1.5 and Wi ∼ 0.7 for largest and smallest eigenvalues respectively. For

Wi < 1.5, the largest eigenvalue remains at Y = 0 (on the moving web) independent

of the viscosity ratio. On the web, the stretch of the molecules is dominated by

shearing flow kinematics. With an increase in Wi beyond 1.5, the largest eigenvalue

abruptly jumps from Y = 0 to the free surface as shown in Fig. 5.14(d). The free

surface profile in Fig. 5.14(d) is plotted for β = 0.25, Wi = 2.0. On the free surface,

the flow kinematics is extensional in nature. Different flow kinematics at the web

and the free surface lead to the different rates of stretching around Wi ∼ 1.5 for a

given β.

The transition in position of the smallest eigenvalue from the web to the free

surface occurs at Wi ∼ 0.7. However, the position of the smallest eigenvalue once

more abruptly changes [see Fig. 5.14(b)] from the free surface to the static contact

line when the smallest eigenvalue becomes very close to zero in strong extensional

flows. The conformation tensor always losses it positive definiteness at the static

contact line for β < 1 which is different from simulation of ultra-dilute solutions β =

1 where the conformation tensor losses it positive definiteness under the stretching

section of the free surface as predicted earlier by Pasquali and Scriven [2002]. The

behaviour of position of eigenvalues for FENE-P model with bM = 50 virtually

coincides with those obtained with the Oldroyd-B model.

The contours plots displayed in Fig. 5.15 also demonstrate that for Wi < 1.5,

molecules are predominantly stretched on the moving web [see Figure 5.15(a)] and

for Wi > 1.5, molecules are stretched under the free surface [see Figure 5.15(b)].

Similar observations for smallest eigenvalue are evident from Figs. 5.15(c) & 5.15(d)

The x-coordinate of the largest [Figs. 5.16(a)] and the smallest [Figs. 5.16(b)]

eigenvalues indicate that the position of both the eigenvalues on the free surface

moves back (towards the die wall) as Wi increase for all β values. This can be

understood by considering the position of the maximum molecular extension rate

as shown in Fig. 5.17. Pasquali and Scriven [2002] have defined the mean ensemble

molecular extension and shear rates as

ε̇ ≡ |m3m3 : D|; γ̇ ≡ |m1m3 : D| (5.1)

where m1 and m3 are the eigenvectors associated with the smallest and largest
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eigenvalues of the conformation tensor, respectively. For an Oldroyd-B fluid, the

maximum molecular shear rate always remains on the web for all Wi as previously

shown by Pasquali and Scriven [2002] and Romero et al. [2004] and as shown in

Fig. 5.17(a).

Figure 5.17(b) shows the evolution of the location of the maximum molecular

extension rate as a function of Wi. At low Wi, the molecules stretch predominantly

near the web where the rate of strain is highest and the flow is dominated by shear

flow. At high Wi, the polymer molecules becomes more and more stretched and

a thin layer of high molecular extension grows at the free surface. The maximum

molecular extension rate always occur under the stretching section of the free surface

i.e. downstream to the stagnation as shown in Fig. 5.18. An abrupt change in

the position of the molecular extension rate explains why the largest and smallest

eigenvalues of conformation tensor unexpectedly changes their positions from the

moving web to the free surface.

An another observation from Figure 5.17(b) is that the molecular extension rate

moves back towards to the static contact line, which explains behavior of the the

x-position of the largest and smallest eigenvalues of the conformation tensor in

Fig. 5.16.

5.3 Effect of Viscosity Ratio on Macroscopic Flow

Properties

The strong extensional nature of flow close to the free surface strongly affects the

flow field in the vicinity of the static contact line. The change in the flow behavior

is analyzed here in terms of the stability criterion proposed by Graham [2003] and

later used by Zevallos et al. [2005]. Although in a more conventional approach to the

analysis of the stability of two dimensional flows, conservation equations are solved

with respect to infinitesimal three-dimensional perturbations, we have restricted our

discussion to the simple stability criteria proposed by Graham [2003] which analyzes

the flow field close to the free surface in order to extract critical conditions.

Zevallos et al. [2005] combined the stability criteria proposed by Pitts and Greiller

[1961] for Newtonian film splitting flow with the stability mechanism proposed by
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Graham [2003] for viscoelastic free surface flows. The combined stability criteria

proposed by Zevallos et al. [2005] is

dTrr

dr
− ρgr = H(σθθ − σrr) − ρgr < ς(

dH

dr
+N2) (5.2)

where, H is the in-plane curvature of the film splitting meniscus, r is the coordinate

along the normal to the free surface (as shown in Fig. 5.19), σθθ is component of

elastic stress along the free surface, σrr is component of elastic stress along the

normal to the free surface and N is the wave number of the perturbation. The

key idea of this analysis is the introduction of a local coordinate system at the

free surface, allowing the incorporation of the normal stress difference at the free

surface in the radial component of the momentum balance equation. This criteria

correctly identifies the competition of forces at the free surface. While the large

normal stress difference at the free surface destabilizes the flow, the capillary forces

and the meniscus curvature variation with free surface position counteract this effect

to stabilize the flow. Note that the dH/dr term is irrelevant in slot coating flows.

Zevallos et al. [2005] studied viscoelastic roll coating flows in terms of Eq. (5.2)

by assuming dH/dr and N to be zero, which implies that the the sign of normal

stress difference dictates the flow stability in the absence of gravity. They showed

that for given flow conditions, an increase in Wi leads to a positive normal stress

difference at the stagnation point causing recirculation to completely disappear.

The evolution of the difference between the normal stress components in the

streamline direction Ttt and perpendicular to streamline direction Tnn along the free

surface, as a function ofWi, is portrayed in Fig. 5.20. Fig. 5.20(b), the zoomed image

of Fig. 5.20(a), is presented in order to show the normal stress difference behavior

close to the static contact line. The normal stresses are a combination of pressure,

normal viscous stresses and normal viscoelastic stresses. As discussed above the

normal stress difference is the driving force for the meniscus instability [Graham,

2003; Romero et al., 2004]. With an increase in Wi number, the normal stress

difference along the free surface grows. An important observation from Fig. 5.20(b)

is that close to the static contact line, the normal stress difference is negative (Tnn >

Ttt) for smallWi number. An increase inWi beyond ∼ 1 eventually makes the normal

stress in the streamline direction higher than the normal stress perpendicular to
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the streamlines. As a result, the normal stress difference close to the contact line

becomes positive. This flow state is the one at which the stagnation point moves

from the free surface to the die wall. Romero et al. [2004] have predicted that in roll

coating flows, for a given Ca, there is always a Wi at which the value of (Ttt − Tnn)

becomes positive which leads to a complete elimination of the recirculation present

in the flow domain for a Newtonian liquid. Figure 5.21 shows the normal stress

difference for the FENE-P model at Wi = 2.0. As expected the normal stress

difference for the FENE-P model is smaller than for the Oldryod-B model because

of the finite extensibility of molecules.

Figure 5.22 displays the effect of the viscosity ratio on normal stress difference

at two different Wi (Wi = 0.5, 2.0), for an Oldroyd-B liquid. Figures 5.22(c) and

5.22(d) are the zoomed images of Figures 5.22(a) and 5.22(b), respectively, and are

presented here to show the stress field close to the static contact line. It is evident

from Figs. 5.22(a) and 5.22(b) that for a given Wi, the normal stress difference

increases with decreasing β. However, Fig. 5.22(c) indicates that for a given Wi, a

reduction in β leads to a positive normal stress difference in the vicinity of the static

contact line. Similar behavior was observed for the FENE-P model.

Figure 5.23(a) shows the effect of viscosity ratio on the shape of the free sur-

face (more clearly shown in Fig. 5.23(b) & Figure 5.23(c), the zoomed images of

Fig. 5.23(a)). For the parameters studied in this work, the shape of the free surface

is not significantly affected by the viscoelasticity. However we find, as Lee et al.

[2002] and Romero et al. [2004] have predicted previously, the free surface moves

into the die as viscoelasticity increases, close to the static contact line. Movement

of the free surface causes a reduction in the contact angle and ultimately the de-

tachment of the free surface from the die wall. A more detailed discussion on the

effect of viscoelascity on contact angle will be presented shortly.

Figure 5.24 shows the effect of viscosity ratio on the largest eigenvalue of the

rate of strain tensor. By decreasing the viscosity ratio, the largest eigenvalue of the

rate of strain tensor decreases which explains the decrease in the rate of stretching

with decreasing viscosity ratio [see Figs. 5.11 and 5.13].

Figure 5.25 shows the position of the stagnation point for an Oldroyd-B liquid

as a function of Wi number. For Wi < 1, the stagnation point is always on the
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free surface. At Wi ∼ 1, the stagnation point moves to the static contact line and

with further increase in Wi (Wi > 1), the stagnation point moves to the die wall.

It is worth mentioning that as long as (Tnn − Ttt) is negative [see Fig. 5.20 (b)], the

stagnation point is on the free surface and when the (Tnn−Ttt) becomes positive, the

stagnation point jumps to the die wall. The strong extensional stresses arising from

the viscoelastic nature of the fluid pulls the liquid out of the recirculation region and

the recirculation zone shrinks as depicted in Fig. 5.26. For Wi > 1, the recirculation

region attached to the static contact line completely disappears.

The effect of the viscosity ratio and the constitutive model on the size of the

recirculation zone is shown in Fig. 5.27. Due to the higher normal stress difference

at smaller β, the recirculation zone size is much smaller for β = 0.25 than it is for

β = 0.75. For Wi = 2.0, the stagnation point has moved to x = −0.5 at β = 0.25

from x = −0.24 at β = 0.75 as shown in Fig. 5.27. Similar behavior can be seen for

the FENE-P model.

The consequence of the shrinking of the recirculation zone is that it exposes the

geometric singularity that is present in slot coating flows. In slot coating flows,

a geometric singularity arises due to the imposition of an inappropriate boundary

condition on the die wall and the free surface. While moving from the die wall

to the free surface, the boundary condition changes from a no-slip boundary at

the die wall to the shear-free condition on the free surface. Pasquali and Scriven

[2002] predicted that for an ultra-dilute solution, the geometric singularity at the

static contact line does not affect viscoelastic flow calculations when recirculation is

present under the die (which occurs for Q < 0.33). An analysis of the flow field for

an Oldroyd-B liquid near corners (formed by the intersection of a slip surface with

either a no-slip or a shear-free boundary) by Salamon et al. [1997a] revealed that

for dilute and ultra-dilute solutions both stress and flow fields have a singularity

at the point of intersection of the free surface and the solid surface in the absence

of the recirculation. They found that the strength of the singularity depends upon

the dimensionless solvent viscosity (defined as β in this work) and in particular, for

dilute solutions, the singularity in the rate-of-strain and elastic stress fields scale

with 1/β

At high Wi, the recirculation region close to static contact line disappears and
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thus exposes the geometric singularity to a recirculation free flow which is relatively

strong. Both the field variables the rate-of-strain and the conformation tensor for the

Oldroyd-B and the FENE-P liquids are plotted in Figs. 5.28 and 5.29, respectively,

as a function of the x-position along the free surface. It is evident that the field

variables become singular as the static contact line is approached. It should be noted

that at Wi = 2.0, the recirculation has completely disappeared from the vicinity of

the static contact line for all values of β studied in this work [see Fig. 5.27]. It is

also clear from the Fig. 5.28 that the strength of singularity is much higher for a

smaller β value which is consistent with the findings of Salamon et al. [1997a].

The relatively higher strength of the singularity in field variables and the re-

quirement of refined meshes to capture higher normal stresses along the free surface

explains why the conformation tensor becomes negative definite at a much smaller

Wi for decreasing values of β [see Fig. 5.4 & 5.6].
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Figure 5.11: Effect of viscosity ratio (β) on the stretch (largest eigenvalue on top and
smallest eigenvalue at the bottom) of the molecule for an Oldryod-B fluid. Ca = 0.1,
Q = 0.3.
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Figure 5.12: Effect of viscosity ratio (β) on the stretch of the molecule for an
Oldroyd-B fluid. Zoomed images of Fig. 5.11 Ca = 0.1, Q = 0.3.
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Figure 5.13: Effect of viscosity ratio (β) on the stretch of the molecule for a FENE-P
fluid. For β = 1, the stretch is plotted up to Wi = 5. Note that the maximum Wi
for β = 1 is ∼ 10 as shown in Fig. 5.4. Ca = 0.1, Q = 0.3, bM = 50.
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Figure 5.14: Change in spatial position of the location of the largest (a & c) and
smallest (b & d) eigenvalues of the conformation tensor as a function of Wi for an
Oldroyd-B fluid. Ca = 0.1, Q = 0.3.
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Figure 5.15: Contours of the stretch of the polymer molecules (largest eigenvalue in
a & b and smallest eigenvalue in c & d) for an Oldroyd-B fluid. Ca = 0.1, Q = 0.3,
β = 0.75.
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Figure 5.16: Change in the X position of the location of the largest (Top) and
smallest (Bottom) eigenvalues of the conformation tensor as a function of Wi for an
Oldroyd-B fluid. Ca = 0.1, Q = 0.3.
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Figure 5.17: Change in the spacial position of the maximum molecular shear (top)
and extension rate (bottom) with Wi number for different values of β. Ca = 0.1,
Q = 0.3.
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Figure 5.18: Molecular extension rate as a function of Wi number for Oldroyd-B
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Figure 5.19: Schematic of the local coordinates (r, θ) used by Graham [2003] to
analyze free surface flow instabilities. Figure also shows the contact angle (the
angle between the die wall and the free surface).
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Figure 5.20: Normal stress difference along the free surface as a function of Wi for
an Oldroyd-B fluid. Figure (b) shows the zoomed image of (a) closed to the static
contact line. Ca = 0.1, Q = 0.3, β = 0.75.
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Figure 5.22: Normal stress difference along the free surface as a function of viscosity
ratio for an Oldroyd-B fluid. Ca = 0.1, Q = 0.3.
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Figure 5.23: Effect of polymer viscosity on the shape of the free surface for an
Oldroyd-B fluid. Wi = 2.0, Ca = 0.1, Q = 0.3 .
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Figure 5.24: Effect of viscosity ratio on the largest eigenvalue of the rate of strain-
rate tensor along the free surface for an Oldryod-B fluid. Wi = 2.0, Ca = 0.1,
Q = 0.3.
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Figure 5.26: Change in velocity profile by changing the Wi for Oldroyd-B. Ca = 0.1,
Q = 0.3, β = 0.75.
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Figure 5.27: Change in velocity profile by changing the viscosity ratio for the
Oldroyd-B and the FENE-P fluid. Wi = 2.0, Ca = 0.1, Q = 0.3, bM = 50.
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Figure 5.28: Components of velocity gradient (Left) and conformation tensor (Right)
for an Oldroyd-B fluid. X-axis shows the x-coordinate of the position while moving
from the die wall to the free surface. X = 0 is static contact line. Wi = 2.0,
Ca = 0.1, Q = 0.3.
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5.4 Effect of Ca Number

Here, we analyze the effect of Ca on various microscopic and macroscopic flow

properties. Two different Capillary number namely, Ca = 0.1 and Ca = 0.5 are

chosen for this.

Figure 5.30 shows the effect of Ca on the free surface shape for a Newtonian

liquid. An increase in Ca, from 0.1 to 0.5, causes an increase in adverse pressure

gradient at the meniscus. Hence, for a given surface tension, the free surface curves

more in order to balance the increased pressure gradient and the free surface moves

into the die (meniscus invasion).

The meniscus invasion cause the rate of strain or the velocity gradient to increase

as shown in Fig. 5.31(a). Figures 5.31(b) & 5.31(c) show the contours of the largest

eigenvalue of the rate of strain tensor for a Newtonian liquid. It is evident from

Figs. 5.31(b) & 5.31(c) that the maximum rate of strain is always on the moving

web under the stretching section of the free surface.

The increase in the rate of strain by increasing the Ca significantly affects the

flow behaviour of viscoelastic liquid. Figure 5.32 shows the effect of Ca on the

stretch of polymer molecules and the normal stress difference along the streamlines

on the free surface for an Oldroyd-B fluid. As expected, because of the higher rate

of strain, both the stretch and the stress are much higher for Ca = 0.5 compared to

those for Ca = 0.1.

The normal stress difference arising because of the viscoelastic nature of the fluid

contributes to the net pressure gradient at the free surface. In order to balance the

increased pressure gradient due to the viscoealasticiy of the fluid, the free surface has

to curve more compared to that for a Newtonian liquid. The effect of viscoelasticity

on meniscus invasion is displayed in Fig. 5.33 for two different Ca. While at smaller

Ca, the surface forces are high enough to balance the increased pressure difference

without much change in the curvature of the free surface [shown in Fig. 5.33 (a)],

at high Ca number (smaller surface forces), the free surface has to curve more for

viscoelastic liquids compared to that for Newtonian fluids [shown in Fig. 5.33 (b)].

The effect of the Ca on the size of the recirculation zone is displayed in Fig. 5.34.

It is clear from the figure that the reduction in the size of the recirculation zone for

viscoelastic liquids at high Ca is much more compared to its size reduction for smaller
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Figure 5.29: Components of velocity gradient (Left) and conformation tensor (Right)
for the FENE-P fluid. X-axis shows the x-coordinate of the position while moving
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Figure 5.30: Effect of Ca number on the free surface shape for Newtonian fluid.
Q = 0.3.

Ca which can be attributed to the higher normal stress difference for Ca = 0.5.

5.5 Low Flow Limit of Slot Coating Flows

The viscoelastic nature of the coating fluid not only affects the flow behavior but

also the so called low-flow limit of slot coating. The low-flow limit is an important

operating limit in designing the coating window, and is defined as the minimum

thickness that can be coated at a given substrate speed [Carvalho and Kheshgi,

2000; Higgins and Scriven, 1980; Romero et al., 2004; Ruschak, 1976]. Knowledge of

the coating window is necessary in order to predict whether the coating operation can

be used at a given production rate for uniform coating. Carvalho and Kheshgi [2000]

and Romero et al. [2004] have discussed the design of a stable coating window for slot

coating flows. The threshold on the low-flow limit is described by the viscocapillary

model first proposed by Landau and Levich [1942]. Ruschak [1976] extended the

work of Landau and Levich [1942] and showed that the critical gap to thickness ratio

is given by
tmin

H0

=
1

1 + 1.49Ca−2/3
(5.3)
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Figure 5.32: Effect of Ca number on the stretch and the normal stress difference for
an Oldroyd-B fluid. Wi = 2.0, Q = 0.3, β = 0.75.
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Figure 5.33: Effect of Ca number on free surface shape for and Oldyod-B fluid.
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Figure 5.34: Change in velocity profile by changing the Ca number for an Oldroyd-B
fluid. Q = 0.3.

According to the viscocapillary model, above the critical gap to thickness ratio,

two-dimensional steady flow cannot exist. Equation (5.3) is strictly valid only when

Ca << 1, Re << 1. Carvalho and Kheshgi [2000] have extended the work on

the low-flow limit of Landau and Levich [1942] and Ruschak [1976] by conducting

experiments and by carrying out numerical simulations for much higher values of

Re and Ca for a Newtonian liquid. Both experiment and numerical results predict

that the viscocapillary model is useful for low Ca and Re. However, it becomes

increasingly ineffective for higher values of Ca and Re. Carvalho and Kheshgi [2000]

found that at higher Ca, the viscocapillary model proposed by Landau and Levich

[1942] underpredicts the low flow limit for inertialess flows. Romero et al. [2004]

further extended the work of Carvalho and Kheshgi [2000] to viscoelastic liquids and

predicted that the critical conditions for the onset of the low-flow limit are strong

functions of the viscoelasticity of the fluid and the viscosity ratio. They demonstrate

that viscoelasticity reduces the size of the coating window. Romero et al. [2004] used

a power-law constitutive equation in their model to accurately capture the behaviour

of the viscoelastic liquid used in performing their experiments. However, in this work
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two more traditional and widely used constitutive models, namely Oldroyd-B and

FENE-P, are used to investigate the effect of viscoelasticity on the low-flow limit in

terms of the Elastocapillary number, Ec = Wi/Ca=λς/(ηs + ηp,0)L. The advantage

of the Elastocapillary number is that it is a function of only fluid properties and

slot width and is independent of the web velocity. This is unlike the Ca and Wi,

which both depend on the web velocity, making it difficult to hold one of them

constant while varying the other through a variation in the web velocity. Hence, to

investigate the effect of viscoelasticity on low flow limit of inertialess slot coating

flow, the parameter space which is to be explored is either a combination of Ec, Ca

and β or a combination of Ec, Wi and β. Both of these equivalent combinations

ensure that all the necessary forces have been taken into account and the web velocity

is related solely to a single parameter. The use of Ec in this work is similar to the

use of the property number (Pp = Re/Ca) defined by Carvalho and Kheshgi [2000]

to investigate the effect of inertial forces on the low flow limit.

Figure 5.35 shows the evolution of streamlines as a function of dimensionless

coating thickness for a Newtonian and an Oldroyd-B liquid for Ca = 0.75, Ec = 2.0

and β = 0.75.

It is clear from Fig. 5.35 that as the dimensionless coating thickness (H0/t)

falls, the free surface becomes more curved and the contact angle (θ) between the

free surface and the die wall diminishes. The contact (θ) is pictorially shown is

Fig. 5.19. Figure 5.35 shows that viscoelasticity can lead to a significant reduction

in the coating thickness. However, the steepness in the reduction in the contact

angle for viscoelastic liquids is a function of Ca for a given β and Ec as shown

in Figure 5.36. For a given dimensionless coating thickness, β, and Ec, the static

contact angle θ decreases as Ca increases for both Newtonian and Oldroyd-B liquids

as predicted earlier by Carvalho and Kheshgi [2000]; Saito and Scriven [1981] and

Romero et al. [2004]. At low Ca surface tension forces are strong and hence, the

free surface does not need to curve much in order to balance the adverse pressure

gradient at the free surface even for viscoelastic liquids with Ec of the order of

∼ 2. At higher Ca (lower surface forces), as the normal stresses arising due to the

viscoelastic nature of the fluid (Ec > 0) contribute to the net pressure gradient at the

free surface, the free surface curves more for viscoelastic liquids in order to balance
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Figure 5.35: Evolution of streamlines with the change in the dimensionless coating
thickness (H0/t). The Newtonian flow profile is on the left for Ca = 0.75 and flow
profile for an Oldroyd-B liquid is on the right for Ca = 0.75, Ec = 2.0 and β = 0.75.
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limit. β = 0.75.

the adverse pressure gradient as compared to the Newtonian liquid. Romero et al.

[2004] have suggested that the mechanism responsible for a change in the static

contact angle is the formation of stress boundary layers at the free surface. We

have also observed the formation of stress boundary layers in our simulations (see

Fig. 5.8). An increase in Ec or decrease in the viscosity ratio β, increases the normal

stresses close to the free surface at a given Ca and dimensionless coating thickness

and hence, the computed contact angle decreases more rapidly. The effect of β is

portrayed in Figure 5.37.

Figure 5.38 shows the effect of finite extensibility of the polymer molecules on

the contact angle. For the FENE-P model the normal stresses at the free surface

are smaller (due to shear thinning) than the stresses predicted by the Olydroyd-B

model, and hence the change in contact angle for the FENE-P model is less steep

compared to the change in contact angle for the Oldroyd-B model.

It has been established earlier by Romero et al. [2004] that the critical conditions

for the low-flow limit obtained by solving only the downstream section of a slot

coater are virtually the same as those predicted for the full slot coater [Carvalho
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and Kheshgi, 2000; Romero et al., 2004] for Ca of order ∼ 1 and inertialess flows

(Re = 0). As only the downstream section of the slot coater has been analyzed

in this work, the low-flow limit computed here is limited to the range of Ca from

Ca = 0.1 up to 1 and for inertialess flows.

Following Romero et al. [2004], the onset of the low-flow limit at a given Ca is

determined theoretically by predicting the dimensionless coating thickness at which

the static contact angle falls below 200 as shown in Fig. 5.36. Figure 5.39 displays

the critical conditions for low-flow limit. For the Oldroyd-B model, the onset of the

low-flow limit occurs at a smaller dimensionless coating thickness for all values of

Ec and β studied in work [see Fig. 5.39 and 5.40]. The minimum film thickness

that can be coated increases as the liquid becomes more viscoelastic. A reduction

in the size of the coating window has been reported earlier by Romero et al. [2004]

for extensional thickening liquids both experimentally and theoretically.

Rheological properties of liquids, such as shear thinning strongly the affects size

of the coating window. Figure 5.41 compares the critical conditions for different

constitutive models. As predicted, for the FENE-P model the onset of the low flow

limit occurs at a higher dimensionless coating thickness compared to the Oldroyd-B
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Figure 5.40: Effect of viscosity ratio β for an Oldroyd-B fluid on the size of the
Coating window.

model because of smaller normal stresses.

5.6 Conclusion

In this chapter, we have investigated the flow behavior of Oldroyd-B and FENE-

P liquids in the downstream section of a slot coating flow using the DEVSS-TG

finite element method coupled with elliptic mesh generation methodology developed

in chapter 2. We have found that the flow behavior of the ultra-dilute solution

is dramatically different from that of dilute solutions. Our simulation indicates

that at low Wi (Wi < 1.5), polymer molecules are predominantly stretched at the

web in shear dominated flow. At higher Wi (Wi > 1.5), the extensional nature

of flow at the free surface governs the rate of stretching of polymer molecules. It

is found that the change in the flow kinematics governing the rate of stretching of

polymers is independent of the viscosity ratio and constitutive equation i.e. largest

eigenvalue changes its position from the web to the free surface at roughly the same

Wi for all viscosity ratios. The extensional nature of the flow in the stretching

section of the free surface leads to the formation of normal stress boundary layers
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Figure 5.41: Coating window for different constitutive models. β = 0.75, bM = 50

at the free surface. The high normal stresses at the free surface tends to pulls the

liquid away from the recirculation region present in a Newtonian flow. As a result

the recirculation zone diminishes in size, and flow close to the static contact line

becomes stronger. The stagnation point moves from the free surface to the die wall

and the normal stress difference close to the static contact line becomes positive.

Reduction in the size of the recirculation zone exposes the singularity present in

slot coating flows, which causes the velocity gradient and the conformation tensor

to become singular. The strength of the singularity in the field variables grows with

decreasing viscosity ratio. We have also investigated the effects of viscoelasticity

and viscosity ratio on the low-flow limit of slot coating flows. We have found that

for viscoelastic liquids, the minimum coating thickness is higher than the coating

thickness for Newtonian liquids. As a result the coating window for a uniform

coating shrinks in size compared to Newtonian liquids.



Chapter 6

Computation of Viscoelastic Free

Surface Flow Using the

Micro-Macro Approach

In this chapter, the micro-macro approach developed in chapter 3 is used to solve

the slot coating flow of viscoelastic liquids. The results presented in this chapter are

compared with the steady state results presented in chapter 5 for linear dumbbell

models. Computations are also carried out for non-linear dumbbells and detailed

comparison between transient computations using the micro-macro and macroscopic

approaches is presented.

In recent years, macroscopic methods for computing viscoelastic flows have at-

tracted considerable interest. Basically, their computational requirements are com-

paratively less intense than micro-macro methods, which enables a more thorough

exploration of parameter space to be carried out. However, as it well known, and has

been demonstrated in chapter 5, macroscopic methods either fail to converge or give

unphysical results beyond a certain Wi. In this regard, micro-macro methods have

been considered a breakthrough since they permit the use of non-linear constitutive

models (for which no closed-form equations exist) that have been shown recently

to accurately describe experimentally observed features in homogeneous flows [Cifre

and De la Torre, 1999; DE Gennes, 1979; Hsieh et al., 2003; Knudsen et al., 1996;

Larson et al., 1999, 1997; Magda et al., 1988; Prabhakar, 2005; Schroeder et al.,

131
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2003, 2004; Sunthar and Prakash, 2005].

Despite the potential for micro-macro methods to incorporate such non-linear

models, their use so far has largely been limited to examining the predictions of

linear dumbbell models (for which an exact closed-form equation exist) in confined

flow [Fan et al., 1999a; Feigl et al., 1995; Halin et al., 1998; Hu et al., 2005; Hulsen

et al., 1997; Laso and Ottinger, 1993; Laso et al., 1997; Somasi and Khomami, 2000,

2001; Van Heel et al., 1990]. The exception is the application of the CONNFFESSIT

method to solve transient free surface problems by Cormenz et al. [2002] andGrande

et al. [2003]. In particular, the validity of micro-macro methods in a variety of

flows, for Weissenberg numbers that are approximately similar in magnitude to

those explored in macroscopic simulations, has been established. Although Hulsen

et al. [1997] have shown that the micro-macro method remains numerically stable

at a higher Wi in the flow-around a cylinder problem compared to the macroscopic

approach, mesh convergence of the high Weissenberg number solution has not yet

been established.

It is clearly worthwhile to examine the performance of advanced and efficient

micro-macro methods such as BCF, using accurate constitutive models that incor-

porate FENE force, hydrodynamic interactions etc. in complex flows. While the

computation of large scale viscoelastic flows using bead-spring and bead-rod models

are still beyond currently available computational resources, a coarser representation

of polymer molecule, namely, a dumbbell model, can be used address the following

questions:

� Can the BCF method predict the basic macroscopic features of viscoelastic

flows discussed in chapter 5 (using equivalent microscopic constitutive equa-

tions) for free surface flows?

� Do the micro-macro simulations using the BCF method remain numerically

stable and mesh converged at high Wi for complex free surface flows?

� What is the effect of non-linearities in various microscopic constitutive models

on free surface flows within the framework of the BCF approach?

In this chapter, these issues have been examined.
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Table 6.1: Meshes used for slot coating flow computations using the Micro-Macro
approach.

Mesh Number of Number of Degrees of Freedom for
Elements Nodes Micro-Macro Simulations

M1 550 2311 10894 (x,v, p) and 1818 (Q)
M2 1096 4539 21444 (x,v, p) and 3522 (Q)

6.1 Linear Dumbbell Models

As this work represents the first attempt to extend the BCF method to solve com-

plex free surface flows, we validate our numerical scheme by comparing results for

linear dumbbell models using the macroscopic and the micro-macro method for both

ultra-dilute and dilute polymer solutions. The Hookean and FENE-P dumbbell rep-

resentation of polymer molecules in the micro-macro approach are equivalent to the

Oldroyd-B and FENE-P constitutive equations in macroscopic approach. Hence, we

anticipate that results using both methods should agree for linear dumbbell models.

An important aspect of macroscopic simulations is that steady states can be com-

puted directly by dropping the time derivatives of velocity and conformation tensor

in the momentum and conformation tensor equations, respectively. However, this is

not possible with the micro-macro approach. Except where explicitly indicated, all

steady-state micro-macro computations (obtained with actually running transient

simulations for the given parameters) are compared with the macroscopic steady

computations obtained by dropping time derivative terms.

The convergence of the numerical solutions using the micro-macro approach is

tested on two different meshes (M1 and M2). Details of the meshes M1 and M2 are

given in Table 6.1. These meshes are the same as the ones used for macroscopic

computations.

Figures 6.1 and 6.2 compare the largest and smallest eigenvalues of the con-

formation tensor for a Hookean dumbbell model using the micro-macro and the

macroscopic approaches for different viscosity ratios. The micro-macro results are

computed with the M1 mesh and the macroscopic results are computed using the

M4 mesh. The steady state values reported using the micro-macro approach are
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a time and ensemble-average over all the Brownian configuration fields after the

system reaches a stationary state. The error bars are smaller than the size of the

symbols. Figure 6.2 for the smallest eigenvalues, clearly indicates that computations

using the micro-macro method are numerically stable at much higher Wi than those

for the macroscopic method for all β values. The minimum eigenvalue computed by

the macroscopic approach becomes negative at high Wi in certain regions of flow

leading to a negative definite conformation tensor. However, the inherent positive

definiteness of the conformation tensor in the micro-macro approach ensures a pos-

itive smallest eigenvalue at all Wi. Although results have been reported using the

mesh M2 in Figs. 6.1(d) and 6.2(d) for an ultra-dilute solution, the computations

at much higher Wi and with more refined meshes were not attempted primarily

because of the intense computational requirements.

The computations using the micro-macro approach for Hookean dumbbells de-

part from the macroscopic computations at different Wi for different viscosity ratios,

i.e. for β = 1 (ultra-dilute solution), the micro-macro results depart from the macro-

scopic computations at Wi ∼ 3, while for β = 0.25, the results start departing at

Wi ∼ 2, beyond which the smallest eigenvalue using the macroscopic method drops

quickly to zero. Figures 6.1(d) and 6.2(d) also show the mesh convergence of the

micro-macro results for specific case of ultra-dilute solutions (β = 1).

The micro-macro simulations of FENE-P dumbbells (see Fig. 6.3, 6.4 and 6.5)

show a qualitative behavior similar to Hookean dumbbells in terms of the numerical

stability at high Wi. For ultra-dilute solutions of FENE-P dumbbells, a numerically

stable and mesh converged solution at Wi as high as ∼ 12 is achieved compared

to the solution using the macroscopic approach which fails at Wi ∼ 8 for the M4

mesh and at Wi ∼ 3 for the M1 mesh. For all values of β, a good agreement is seen

between the results using the macroscopic and the micro-macro approach.

For ultra-dilute solutions (β = 1), an increase in Wi beyond 3 significantly in-

creases the computational cost for Hookean dumbbell models and several relaxation

times must be computed before a steady state is achieved irrespective of the initial

condition on the configuration fields. However, for FENE-P dumbbells, a zero order

continuation in Wi (where the initial condition for dumbbell configurations at high

Wi is chosen to be the non-equilibrium configurations of dumbbells at low Wi) is
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Figure 6.1: Largest eigenvalue of the conformation tensor in the flow domain for
Hookean dumbbells using the Macroscopic and Micro-Macro approach. Macroscopic
results are obtained using the M4 mesh and Micro-Macro results are obtained using
the M1 mesh. The results for β = 1.0 are also reported for the M2 mesh. Ca = 0.1,
Q = 0.3, Nf = 2000.
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Figure 6.2: Smallest eigenvalue of the conformation tensor in the flow domain for
Hookean dumbbells using the Macroscopic and Micro-Macro approach. Macroscopic
results are obtained using the M4 mesh and Micro-Macro results are obtained using
the M1 mesh. The results for β = 1.0 are also reported for the M2 mesh. Ca = 0.1,
Q = 0.3, Nf = 2000.
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Figure 6.3: Largest eigenvalue of the conformation tensor in the flow domain for
FENE-P dumbbells using the Macroscopic and Micro-Macro approach. Macroscopic
results are obtained using the M4 mesh and Micro-Macro results are obtained using
the M1 mesh. The results for β = 1.0 are also reported for the M2 mesh. Ca = 0.1,
Q = 0.3, bM = 100, Nf = 2000.
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Figure 6.4: Smallest eigenvalue of the conformation tensor in the flow domain for
FENE-P dumbbells using the Macroscopic and Micro-Macro approach. Macroscopic
results are obtained using the M4 mesh and Micro-Macro results are obtained using
the M1 mesh. The results for β = 1.0 are also reported for the M2 mesh. Ca = 0.1,
Q = 0.3, bM = 100, Nf = 2000.
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Figure 6.5: Out-of-plane eigenvalues of the conformation tensor in the flow domain
for FENE-P dumbbells using the Macroscopic and Micro-Macro approach. Macro-
scopic results are obtained using the M4 mesh and Micro-Macro results are obtained
using the M1 mesh. The results for β = 1.0 are also reported for the M2 mesh.
Ca = 0.1, Q = 0.3, bM = 100, Nf = 2000.
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found to speed up computations at high Wi. The significant reduction in the com-

putational cost for FENE-P dumbbells is due to the finite extensibility of polymer

molecules which ensures that at high Wi there is a relatively smaller change in the

almost fully stretched dumbbells by increasing Wi. The zero order continuation has

no effect on computations using Hookean dumbbells, specially at high Wi.

For dilute solutions (β < 1.0), computations are far more expensive compared

to the computational cost for ultra-dilute solutions. The computational cost for

dilute solutions depends strongly on the viscosity ratio (β). An important difference

between the computations of dilute and ultra-dilute solutions is that the micro-macro

computations of dilute polymer solutions result in temporal fluctuations in all field

variables such as velocity, coating thickness etc. The intensity of these fluctuations

is very high at initial times and strongly depend upon the initial conditions used

for configurations fields. The fluctuations at initial times grow as the viscosity ratio

decreases and it takes longer time to reach a stationary state for lower β values.

Figure 6.6 shows the fluctuations in the coating thickness for Hookean dumbbells

at Wi = 2.0 for different values of the viscosity ratios. It is clear from the figure

that the coating thickness at β = 0.25 shows much more pronounced fluctuations

compared to β = 0.75. For β = 1.0, the evolution of polymer conformation is not

coupled with other field variables and hence, the coating thickness doesn’t show any

fluctuations.

Figure 6.7 shows the contours of the xx component of elastic stress for a Hookean

dumbbell model. An increase in Wi results in the formation of stress boundary

layers under the free surface, similar to the earlier predictions of the macroscopic

approach. The stress contours in Fig. 6.7 are similar to the ones in Fig. 5.9, except

that contours in Fig. 6.7 are not as smooth due to the coarseness of the mesh

used for micro-macro computations. The maximum stress level at different Wi is

also slightly smaller for micro-macro computations, due also to the difference in the

meshes used for the two approaches.

Figure 6.8 compares contour plots of the largest and smallest eigenvalues of

the conformation tensor with the results for the macroscopic method on the same

mesh (M1). Clearly, the results for the micro-macro method agree closely with

macroscopic results for the same mesh.
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Figure 6.6: Temporal fluctuations in the coating thickness for different viscosity
ratios using the Micro-Macro approach for Hookean dumbbells. Computations are
carried out with the M1 mesh. Wi = 2.0, Ca = 0.1, Q = 0.3, Nf = 2000, ∆t = 0.02.

Figure 6.9 examines the time step convergence of steady state results obtained

with the micro-macro method for Hookean dumbbells in terms of the largest eigen-

value of the conformation tensor. It is clear that within statistical error bars the

largest eigenvalue of the conformation tensor at steady state, for a time step of 0.02

is identical to that obtained for a time step of 0.0075. The eigenvalue for both time

steps eventually coincide with the final steady state value obtained using the macro-

scopic Oldroyd-B model. The steady state value for the higher time step (0.05)

settles down to a lower value than the one obtained using the Oldroyd-B model,

but it remains within error bars. Error bars in Figs. 6.1-6.5 are smaller than those

displayed in Fig. 6.9, because error bars for steady state averages in these figures

are evaluated by carrying out time and ensemble-averages over all the configura-

tion fields compared to the error bars for transient averages in Fig. 6.9 which are

evaluated only by ensemble-averaging.

Hereafter, all reported micro-macro simulations have been carried out with ∆t =

0.02 unless otherwise specified.

Figure 6.10 displays the sensitivity of the micro-macro solution to ensemble size.

Ensemble sizes of 500, 1000 and 2000 dumbbells are chosen to run simulations for a
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Figure 6.7: Evolution of the xx component of the elastic stress (σxx) as a function
of Wi for Hookean dumbbells. Ca = 0.1, Q = 0.3, β = 0.75, Nf = 2000.
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Figure 6.8: Comparison of contours of the largest (Left) and smallest (Right) eigen-
values of the conformation tensor. The Macroscopic results are represented by grey
lines and the Micro-Macro results are by red lines. [(a) & (b)] Oldroyd-B and [(c)
& (d)] FENE-P. Wi = 2.0, Ca = 0.1, Q = 0.3, β = 0.75, bM = 100, Nf = 2000.



6.1. Linear Dumbbell Models 144

80 85 90 95 100

10

20

30

40

50

60

70

80

90

100

Time

La
rg

es
t E

ig
en

va
lu

e 
of

 C
on

fo
rm

at
io

n 
Te

ns
or

0 5 10 15 20
10

0

10
1

10
2

∆t=0.0075

∆t=0.02

∆t=0.05

Figure 6.9: Time step convergence of the Micro-Macro method for Hookean dumb-
bells for an ultra-dilute solution. Inset shows the change in the eigenvalue at initial
times. Computations are carried out with the M1 mesh. Wi = 2.0, Ca = 0.1,
Q = 0.3, β = 1.0, Nf = 2000

particular case of Wi = 2.0 and β = 1.0. As expected, the solution gets increasingly

more accurate as the ensemble size increases i.e. the number of dumbbells or the

number of trajectories increases. The temporal fluctuations in the largest eigenvalue

of the conformation tensor are more pronounced for an ensemble size of 500 than

for an ensemble size of 1000 or 2000. Here, an ensemble size of 2000 dumbbells is

chosen for all the micro-macro computations in order to have a smaller variance in

the field variables.

The mesh convergence of the evolution of the largest eigenvalue of the conforma-

tion tensor for Hookean dumbbells for two different ensemble sizes using the micro-

macro approach is shown in Figs. 6.11. Note that Figs. 6.1(d)-6.5(d) demonstrate

the mesh convergence of the steady state results. It is evident that in order to the

address the issue of mesh convergence, a sufficiently large ensemble of configuration

fields must be chosen. For Nf = 1000, the presence of large fluctuations prevents

a clear demonstration of mesh convergence. For Nf = 2000, mesh convergence is

evident.

Figure 6.12 shows the numerical stability of the proposed fully implicit scheme
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Figure 6.10: Effect of the ensemble size (Micro-Macro approach) on the largest
eigenvalue of the conformation tensor for Hookean dumbbells in an ultra-dilute so-
lution. Computations are carried out with the M1 mesh. Error bars are shown for
Nf = 500 and Nf = 2000. Ca = 0.1, Q = 0.3, Wi = 2.0, β = 1.0, ∆t = 0.02.
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Figure 6.11: Mesh convergence of Micro-Macro approach for Hookean dumbbells for
an ultra-dilute solution. Figures shows mesh convergence for two different ensemble
sizes. Ca = 0.1, Q = 0.3, Wi = 2.0, β = 1.0, ∆t = 0.02, Nf = 2000.
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Figure 6.12: Comparison of the solution obtained using the explicit Euler scheme
and the fully implicit scheme for Hookean dumbbells Wi = 2.0, Ca = 0.1, Q = 0.3,
β = 0.75, Nf = 2000. Computations are carried out with the M1 mesh.

compared to the explicit Euler scheme at Wi = 2.0 and β = 0.75 for three different

time steps, namely ∆t = 0.01, 0.02 & 0.05. It is clear that both implicit and explicit

schemes are stable for ∆t = 0.01. However, when the time step is increased to 0.02

or 0.05, only implicit scheme remains stable.

Figure 6.13 displays the effect of the upwind parameter (which appears in the

SUPG finite element scheme used to spatially discretize the conformation tensor

[Eq. (2.4)] and configuration fields [Eq. (3.15)] equations) on the largest eigenvalue of

the conformation tensor. The computation using the macroscopic approach depends

strongly on h when h > 0.01 and is virtually independent of h when h < 0.01. In

contract to the macroscopic approach, micro-micro computations seem to be almost

independent of h, reflecting the stability and accuracy of micro-macro computations.

Figure 6.14 shows the components of the conformation tensor Mxx,Mxy and Myy

along the free surface for Hookean and FENE-P dumbbells. We see that the results

of micro-macro method compare very well with the macroscopic method.

Table 6.2 has comparisons of the memory and the CPU time requirements for

steady state slot coating flow computations using the macroscopic and micro-macro

methods for a Hookean dumbbell model. It is evident from Table 6.2 that the CPU
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Figure 6.13: Effect of SUPG parameter (h) on the largest eigenvalue of the confor-
mation tensor using the Macroscopic and Micro-Macro computations for Hookean
dumbbells. Wi = 2.0, Ca = 0.1, Q = 0.3, β = 1.0, Nf = 2000, ∆t = 0.02.

time requirements for the micro-macro approach are much more demanding than

the macroscopic approach especially when compared on a single processor and on

the same Mesh. However, the micro-macro method can easily be parallelized and

the wall time drops significantly after parallelization. Table 6.2 also compares the

memory and the CPU time requirements to solve the BCF equation using the explicit

Euler scheme and the proposed fully implicit scheme for the Hookean dumbbell

model. Note that explicit computations are done with a time step 0.01, as the

explicit scheme is unstable for time step size 0.02. Although the CPU time required

for a single time step is the same for both the explicit scheme and the fully implicit

scheme, the total CPU time required to reach steady state is much smaller for

the implicit scheme as a relatively much higher time step size can be used while

maintaining the same accuracy as the explicit scheme.

It is worth mentioning that the CPU time and memory requirements are in-

dependent of the type of microscopic constitutive equation (for a linear dumbbell

model) for free surface flow computations using the fully implicit scheme. How-

ever, for confined flow problems (fixed mesh), the CPU time required depends upon

the type of microscopic constitutive equation used i.e. computations using Hookean
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Figure 6.14: Comparison of the components of conformation tensor Mxx, Mxy and
Myy along the free surface. Macroscopic results are for M4 mesh and Micro-Macro
results are for M1 mesh. Wi = 2.0, Ca = 0.1, Q = 0.3, β = 0.75, bM = 100,
Nf = 2000.
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Table 6.2: Comparison of CPU time and memory requirements for the macroscopic
and the micro-macro method. Wi = 2.0, β = 0.75, Nf = 2000. The Micro-Macro
values are for M1 mesh.

Constitutive Number of Time CPU Wall Memory
Equation Processors Steps Time Time (Mb)

Macroscopic (M1 Mesh) 1 Steady State 90 sec 90 sec 147
Macroscopic (M4 Mesh) 1 Steady State 90 mins 90 mins 2000

Micro-Macro 1 Unstable - - -
(Exp. Euler - ∆t = 0.02)

Micro-Macro 1 1000 32 hrs 32 hrs 150
(Exp. Euler - ∆t = 0.01)

Micro-Macro 1 1000 32 hrs 32 hrs 150
(Imp. Euler - ∆t = 0.02)

Micro-Macro 8 1000 32 hrs 4 hrs 150
(Imp. Euler - ∆t = 0.02)

dumbbells are less expensive compared to a FENE-P model because the mass-matrix

[Eq. (3.32)] is independent of the configurations of the dumbbells and hence it is not

required to be factorized at each time step [see Eqs. (3.26) and (3.27)].

Recall the discussion in section 5 regarding the rate of stretching of polymer

molecules being different around Wi ∼ 1.5 due to the movement of the largest and

the smallest eigenvalue from the web to the free surface. It is evident from Fig. 6.25

that the micro-macro computations show a similar behavior. Figure 6.25 displays

the contours of largest and smallest eigenvalue at two different Wi namely Wi = 0.5

and Wi = 2.0 for Hookean dumbbells. We see that both the eigenvalues change their

spatial position with an increase in Wi from Wi = 0.5 to Wi = 2.0. Clearly Fig. 6.25

is in excellent agreement with the macroscopic results portrayed in Fig. 5.15.

Another observation from macroscopic computations in chapter 5 is that the

rate of stretching decreases with decreasing viscosity ratio beyond Wi ∼ 1.5. A

similar behaviour can also be observed from Fig. 6.16 for micro-macro computations.

Figure 6.16 shows the effect of the viscosity ratio (β) on the stretch of molecules

along the free surface. As expected, the Hookean dumbbell model predicts higher

stretch along the free surface when compared to the FENE-P model. The behavior
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Figure 6.15: Contours of the stretch of the polymer molecules (largest eigenvalue
in a & b and smallest eigenvalue in c & d) for dumbbells dumbbells. Ca = 0.1,
Q = 0.3, β = 0.75, Nf = 2000.
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Figure 6.16: Effect of viscosity ratio on stretch of the molecules for Hookean and
FENE-P dumbbells using the Micro-Macro approach. Computations are carried out
with the M1 mesh. Wi = 2.0, Ca = 0.1, Q = 0.3, bM = 100, Nf = 2000.

of the smallest eigenvalue is similar to that of the largest eigenvalue.

The failure of macroscopic computations for dilute solutions at high Wi is due to

the singular behaviour of various field variables at the static contact line (discussed

in detail in chapter 5). The micro-macro computations, however, remain numerically

stable at all values of Wi and β as displayed in Figs. 6.1-6.5. Figure 6.17 compares

the strength of singularity at the static contact line for Wi = 2.0 and β = 0.25 for the

macroscopic and micro-macro computations. It is evident from Fig. 6.17 that the

singularity in both the conformation tensor and the velocity gradient is much more

pronounced for macroscopic computations. The micro-macro computations show a

much smoother velocity gradient close to the static contact line. In recirculation free

flows near corners, Salamon et al. [1997a] argue that the strength of singularities

grow by mesh refinement [also shown by Pasquali and Scriven [2002]]. It can be

seen from Fig. 6.17 that for macroscopic computations the singular nature of field

variables are stronger for M4 mesh than is for M1 mesh. At this point it is not

clear how the flow computations using the micro-macro approach circumvent the

problems associated with the presence of the geometric singularity at the static
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contact line in slot coating flow. A careful investigation with much more refined

meshes needs to be carried out to fully understand the source of stability provided

by micro-macro methods.

In this section we have compared computations of linear dumbbell models using

the micro-macro approach with computations of their equivalent constitutive mod-

els in the conformation tensor based macroscopic approach. We have shown that

the results using the micro-macro method remain numerically stable at higher Wi

compared to the flow computations using the macroscopic method even on a much

coarser mesh (mesh M1 in the micro-macro approach compared to the M4 mesh in

the macroscopic approach) with the same accuracy.

6.2 Non-Linear Dumbbell Models

In this section, we present results using non-linear dumbbell models. Since there are

no equivalent constitutive equations for FENE dumbbells and models with hydro-

dynamic interactions, we only compare results for the non-linear dumbbell models

with the results for linear dumbbell models.

Figure 6.18 shows the change in the largest and the smallest eigenvalue of con-

formation tensor with Wi for two different values of the viscosity ratio (β = 0.75,

and β = 1) for FENE dumbbells. The results for FENE-P dumbbells are also pre-

sented for comparison. For non-linear dumbbells, flow computations for smaller β

values were not carried out purely because of computational requirements. As will

be discussed shortly, computations for non-linear dumbbells are significantly more

expensive than for linear dumbbell models.

For β = 1, we have also reported results for an M2 mesh to show mesh conver-

gence of our computations [see Figs. 6.18(c) and 6.18(d)]. For any given value of Wi,

the FENE model predicts a smaller molecular stretch compared to the stretch of

FENE-P dumbbells for both dilute and ultra-dilute solutions. Similar to the results

for linear dumbbell models, results for non-linear dumbbells remain numerically sta-

ble for all values of Wi, i.e. the conformation tensor remains positive definite in the

entire flow domain. It is worth mentioning that FENE dumbbells are simulated
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Figure 6.17: yy component of the conformation tensor and rate of strain tensor for
a Hookean dumbbell model. Results for Oldroyd-B model on two different meshes
are also presented for comparison. Micro-Macro results are carried out with the M1
mesh. Wi = 2.0, Ca = 0.1, Q = 0.3, β = 0.25, Nf = 2000.
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using the collocation method discussed in chapter 3. The equivalence of the collo-

cation method and the Newton’s method for non-linear dumbbells will be discussed

shortly.

Figure 6.19 shows that similar to the FENE-P model, the FENE model also

predicts that the out-of-plane eigenvalue of the conformation tensor can be driven

away from its equilibrium value in two dimensional flows [Pasquali and Scriven,

2002]. The out-of-plane eigenvalue for FENE dumbbells contracts much more slowly

than for FENE-P dumbbells. Mesh convergence is evident from Fig. 6.19(b).

Figure 6.20 displays the change in the largest and smallest eigenvalue of the con-

formation tensor with Wi for Hookean dumbbells with hydrodynamic interactions

for two different values of viscosity ratio (β = 0.75, and β = 1). The mesh conver-

gence of the computations are evident from Figs. 6.18(c) and 6.18(d). For any given

value of Wi, Hookean dumbbells with hydrodynamic interactions are predicted to

have smaller stretch compared to the stretch of Hookean dumbbells without hydro-

dynamic interactions, for both dilute and ultra-dilute solutions.

As in the case of linear dumbbell models, stress boundary layers are formed

under the free surface at high Wi. The growth of stress boundary layers with Wi is

shown in Figs. 6.21 and 6.22. The FENE model predicts smaller maximum stress

compared to the FENE-P model [see Fig. 5.10] and the Hookean dumbbell model

with hydrodynamic interactions predicts a smaller maximum stress compared to the

Hookean dumbbells without hydrodynamic interactions [see Fig. 5.9].

Figure 6.23 shows the components of the conformation tensor Mxx,Mxy and Myy

along the free surface computed using Newton’s method and the collocation method

for FENE dumbbells and Hookean dumbbells with hydrodynamic interactions. It is

observed that both methods give identical results. The local values of components

of the conformation tensor differ by less than 10−5 between the two methods.

Figure 6.24 displays the ratio of CPU times using the Newton’s method and the

collocation method as a function of Wi for non-linear dumbbell models. We observe

that for Hookean dumbbells with hydrodynamic interactions, the collocation method

is approximately 3 times faster than the Newton’s method at any given time step

and is independent of Wi. For FENE dumbbells, the ratio of CPU times is a strong

function of Wi. For Wi < 1.5, the collocation method is approximately 3 times faster
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Figure 6.18: Largest (top) and smallest eigenvalue (bottom) of the conformation
tensor in the flow domain for non-linear FENE dumbbells. Results for FENE-
P dumbbells are also reported for comparison. For FENE dumbbells results are
obtained with the M1 mesh using the Collocation method. The results for β = 1.0
are also reported for the M2 mesh using the Collocation method. Ca = 0.1, Q = 0.3,
bM = 100, Nf = 2000.
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Figure 6.19: Out-of-plane eigenvalues of the conformation tensor in the flow domain
for non-linear FENE dumbbells. Results for FENE-P dumbbells are also reported
for comparison. For FENE dumbbells results are obtained with the M1 mesh using
the Collocation method. The results for β = 1.0 are also reported for the M2 mesh
using the Collocation method. Ca = 0.1, Q = 0.3, bM = 100, Nf = 2000.



6.2. Non-Linear Dumbbell Models 157

0.5 1 1.5 2 2.5 3 3.5 4
10

0

10
1

10
2

10
3

10
4

Wi

La
rg

es
t E

ig
en

va
lu

e 
of

 C
on

fo
rm

at
io

n 
Te

ns
or

Hookean Dumbbells (M1 Mesh)

Hookean Dumbbells With HI (M1 Mesh)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Wi

M
ax

im
um

 E
ig

en
va

lu
e 

of
 C

on
fo

rm
at

io
n 

Te
ns

or

Hookean Dumbbell (M1 Mesh)
Hookean Dumbbell (M2 Mesh)
Hookean Dumbbell With HI (M1 Mesh)
Hookean Dumbbell With HI (M2 Mesh)

(a) Largest Eigenvalue (β = 0.75) (b) Largest Eigenvalue (β = 1.0)

0.5 1 1.5 2 2.5 3 3.5 4
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Wi

S
m

al
le

st
 E

ig
en

va
lu

e 
of

 C
on

fo
rm

at
io

n 
Te

ns
or

Hookean Dumbbells (M1 Mesh)

Hookean Dumbbells With HI (M1 Mesh)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Wi

S
m

al
le

st
 E

ig
en

va
lu

e 
of

 C
on

fo
rm

at
io

n 
Te

ns
or

Hookean Dumbbell (M1 Mesh)

Hookean Dumbbell (M2 Mesh)

Hookean Dumbbell with HI (M1 Mesh)

Hookean Dumbbell with HI (M1 Mesh)

(c) Smallest Eigenvalue (β = 0.75) (d) Smallest Eigenvalue (β = 1.0)

Figure 6.20: Largest (top) and smallest eigenvalue (bottom) of the conformation
tensor in the flow domain for Hookean dumbbells with hydrodynamic interactions.
Results for Hookean dumbbells without HI are also reported for comparison. For
dumbbells with hydrodynamic interactions results are obtained with the M1 mesh
using the Collocation method. The results for β = 1.0 are also reported for the M2
mesh using the Collocation method. Ca = 0.1, Q = 0.3, Nf = 2000.
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Figure 6.21: Evolution of the xx component of the elastic stress (σxx) as a function
of Wi for FENE dumbbells. Ca = 0.1, Q = 0.3, β = 0.75, bM = 100, Nf = 2000.
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Figure 6.22: Evolution of the xx component of the elastic stress (σxx) as a function
of Wi for Hookean dumbbells with hydrodynamic interactions. Ca = 0.1, Q = 0.3,
β = 0.75, Nf = 2000, h∗ = 0.14.
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Figure 6.23: Comparison of the components of conformation tensor: Mxx, Mxy and
Myy computed using the Newton’s method and the collocation method. FENE
Dumbbells (Left) and Hookean Dumbbells with hydrodynamic interactions (Right).
Wi = 2, Ca = 0.1, Q = 0.3, β = 0.75, bM = 100, Nf = 2000, h∗ = 0.14.
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than the Newton’s method. As Wi increases beyond 1.5 the collocation method

becomes much more CPU efficient. It is worth mentioning that the CPU time

required for the collocation method is relatively insensitive to the values of Wi and

the constitutive models for the parameters used in this work. For stiffer dumbbells

(bM ∼ 20−30), the time required for FENE dumbbells using the collocation method

might differ significantly from that of the non-FENE dumbbells (Hookean dumbbells

with HI) as the number of iterations to solve the cubic equation using the Newton’s

method increase as dumbbells gets stiffer. A look up table scheme proposed by

Somasi and Khomami [2000] to solve cubic equation in the case of stiff dumbbells

would be more appropriate.

For FENE dumbbells, the CPU time required for the Newton’s method increases

with increasing Wi (and hence the ratio of CPU times) since it takes more and more

Newton iterations for the Newton’s method to converge. The increase in the time

required for Newton’s method to converge by increasing Wi can be attributed to the

finite extensibility of the molecules which makes the system of equations stiffer at

high Wi. It is also observed in our simulations that in the case of FENE dumbbells,

many of the dumbbells are stretched beyond the maximum length
√
b for Wi > 2

during the course of Newton’s iterations requiring the configuration vectors of these

dumbbells to be reset in order to get a physically meaningful spring force law.

Table 6.3 compares the memory and the CPU time requirements for the micro-

macro computations using linear and non-linear dumbbell models. The computa-

tions for non-linear dumbbell models using the collocation method are almost twice

as expensive as computations for linear dumbbell models both in terms of the CPU

time and memory requirements. The memory and CPU time required for non-linear

dumbbell models are controlled by storage and evaluation of the configuration fields

at the predictor step which is not required in the scheme used for linear dumbbell

models in this work. For non-linear dumbbell models, while the required CPU time

depends upon the numerical scheme (either the collocation or Newton’s method),

the memory requirements are the same (independent of the numerical method).

Figure 6.25 shows the effect of Wi on the relative positions of largest and smallest

eigenvalues of the conformation tensor in the flow domain for FENE dumbbells. As

in the case of a linear dumbbell model, the non-linear constitutive models also show
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Figure 6.24: Comparison of CPU time requirement for the computations of FENE
dumbbells and Hookean dumbbells with hydrodynamic interactions using the New-
ton’s method and the Collocation method. Computations are carried out with the
M1 mesh. Ca = 0.1, Q = 0.3, β = 0.75, bM = 100, Nf = 2000, h∗ = 0.14, ∆t = 0.02.

Table 6.3: Comparison of CPU time requirements for linear and non-linear dumbbell
models for M1 mesh. Wi = 2.0, β = 0.75, ∆t = 0.02, Nf = 2000

Constitutive Equation Number of Time CPU Wall Memory
Processors Steps Time Time (Mb)

Linear dumbbells 8 1000 32 hrs 4 hrs 147
Non-linear dumbbells 8 1000 224 hrs 28 hrs 285
with Newton’s method
Non-linear dumbbells 8 1000 64 hrs 8 hrs 285

with Collocation method
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that at smaller Wi (Wi ∼< 1.5), molecules are stretched predominantly on the

web and at higher Wi (Wi ∼< 1.5), the largest stretch is on the free surface. The

contours for Hookean dumbbells with hydrodynamic interactions show virtually the

same behaviour.

Figure 6.26 displays the effect of the viscosity ratio on the stretch of polymer

molecules along the free surface. Qualitatively, the behavoiur shown by the non-

linear dumbbells are similar to that of linear dumbbell models. An increase in the

viscosity ratio increases the stretch of the molecules for both FENE and the Hookean

dumbbells with hydrodynamic interactions.

Figures 6.27 examines the effect of different constitutive models used in this study

on the largest eigenvalue of the dimensionless stress tensor along the free surface.

The stress, a macroscopic property, appears relatively unaffected by the presence of

different non-linear phenomenon (except perhaps for FENE model, which has max-

imum difference of about 40% from other models). In other words, Hookean dumb-

bells, Hookean dumbbells with hydrodynamic interactions, and FENE-P dumbbells

exhibit nearly similar stresses along the free surface. A similar conclusion can be

drawn from Fig. 6.28 which shows the velocity contours (a macroscopic property)

of viscoelastic liquids for different constitutive models. As discussed in section 5,

the viscoelasticity of the coating fluid pulls the liquid out of the recirculation zone

(present under the die for Newtonian liquids) because of a positive hoop stress. Sim-

ilar behavior is observed with the micro-macro method using different constitutive

models. It is evident from Fig. 6.28 that the velocity is relatively independent of

constitutive models.

On the other hand, the stretch of the polymer, a microscopic property, is signifi-

cantly different for different constitutive models as shown in Fig. 6.29. The Peterlin

approximation to the FENE dumbbell model over-predicts the stretch. The in-

clusion of hydrodynamic interactions appears to reduce the stretch in comparison

with the pure Hookean dumbbell model. The inaccurate prediction of stretch and

orientation of polymer molecules might lead to a conclusion of the existence of var-

ious instabilities such as non-uniform coating in slot coating flows, which are not in

actuality.



6.2. Non-Linear Dumbbell Models 164

0 0.5 1 1.5

0.25

0.5

0.75

1

1.25

1.5

1.75

3.69
3.42
3.15
2.88
2.61
2.34
2.07
1.79
1.52
1.25

(a) Wi=0.5 (Largest Eigenvalue)

0 0.5 1 1.5

0.25

0.5

0.75

1

1.25

1.5

1.75

35.26
31.83
28.41
24.98
21.56
18.13
14.71
11.29

7.86
4.44

(b) Wi=2.0 (Largest Eigenvalue)

0 0.5 1 1.5

0.25

0.5

0.75

1

1.25

1.5

1.75

0.94
0.90
0.86
0.82
0.79
0.75
0.71
0.67
0.63
0.60

(c) Wi=0.5 (Smallest Eigenvalue)

0 0.5 1 1.5

0.25

0.5

0.75

1

1.25

1.5

1.75

0.95
0.88
0.82
0.76
0.69
0.63
0.57
0.50
0.44
0.38

(d) Wi=2.0 (Smallest Eigenvalue)

Figure 6.25: Contours of the stretch of the polymer molecules (largest eigenvalue in
a & b and smallest eigenvalue in c & d) for FENE dumbbells. Ca = 0.1, Q = 0.3,
β = 0.75, bM = 100, Nf = 2000.
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Figure 6.26: Effect of viscosity ratio on the stretch of the molecules for Hookean
dumbbells with hydrodynamic interactions and FENE dumbbells. Wi = 2.0, Ca =
0.1, Q = 0.3, bM = 100, Nf = 2000.
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Figure 6.27: Largest eigenvalue of the dimensionless stress tensor (λσ/ηp,0) along
the free surface for different constitutive models. Wi = 2.0, Ca = 0.1, Q = 0.3,
β = 0.75, bM = 100, Nf = 2000, h∗ = 0.14
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Figure 6.28: Velocity contours for different constitutive models. Wi = 2.0, Ca = 0.1,
Q = 0.3, β = 0.75, bM = 100, Nf = 2000.
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Figure 6.29: Stretch (Largest eigenvalue of the conformation tensor) of polymer
molecules along free surface for different constitutive models. Wi = 2, Ca = 0.1,
Q = 0.3, β = 0.75, bM = 100, Nf = 2000, h∗ = 0.14.

6.3 Transient Free Surface Flow

In this section, the evolution of molecular conformation in the downstream section

of a slot coater is studied as the flow evolves from one steady state to another after

a gradual change of the dimensionless flow rate from 0.3 to 0.27 at Wi=2.0 and

β = 0.75. The initial condition for all the transient simulations is the solution of the

flow equations at dimensionless flow rate 0.3, Wi = 2.0 and β = 0.75. The flow rate

is gradually changed over a period of 3λ while keeping all other parameters fixed.

The gradual change in flow rate ensures a divergence free velocity at each time step

which is necessary to calculate the flow field at a subsequent time step [Gresho et al.,

1979].

Figure 6.30 displays the change in the largest eigenvalue of the conformation

tensor by changing the flow rate for an Oldroyd-B fluid and Hookean dumbbell

model. Changing the flow rate from 0.30 to 0.27 increases the local velocity gradient

under the die lip because the free surface moves inward for a constant web velocity.

As a result molecules at a lower flow (0.27) rate are more stretched compared to

the those at a higher flow rate (0.30). The results using the macroscopic Oldroyd-B
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Figure 6.30: Change in the largest eigenvalues of the conformation tensor by chang-
ing the flow rate for the Hookean dumbbell model. Wi = 2.0, Ca = 0.1, Q = 0.3,
β = 0.75, Nf = 2000, ∆t = 0.01. Micro-Macro and Macroscopic computations are
carried out with the M1 and M4 mesh, respectively

model in Figure 6.30 are for a time step ∆t = 0.01. The time step convergence of

macroscopic results are shown in Fig. 6.31. Hereafter, ∆t = 0.01 for macroscopic

results unless otherwise specified.

The mesh convergence of the transient results are shown in Figure 6.32. It is

evident that results using the mesh M1 are significantly different from M2, M3 and

M4 meshes, specially the evolution of smallest eigenvalue of the conformation tensor

as shown in Fig 6.32b.

Transient results calculated using the micro-macro method are subject to statisti-

cal fluctuations due to the finite ensemble size of the configuration fields. Figure 6.30

shows that by increasing the size of the ensemble from 500 to 2000, the statistical er-

ror bar gets smaller as the variance is inversely proportional to the square root of the

number of trajectories. The results show good comparison between the macroscopic

and micro-macro method within statistical error.

Figure 6.33 shows the time step convergence of the micro-macro results reported

in Fig. 6.30. It is evident from the Fig. 6.33 that as the time step size gets smaller, the

solution gets increasingly more accurate. The results using a time step of ∆t = 0.01



6.3. Transient Free Surface Flow 169

0 10 20 30 40 50
70

80

90

100

110

120

130

140

Time

La
rg

es
t E

ig
en

va
lu

e 
of

 C
on

fo
rm

at
io

n 
Te

ns
or

∆ t = 0.01

∆ t = 0.025

∆ t = 0.05

Figure 6.31: Time step convergence of the change in the largest eigenvalues of the
conformation tensor by changing the flow rate for Oldroyd-B model. Wi = 2.0,
Ca = 0.1, Q = 0.3, β = 0.75. Computations are carried out with the M1 mesh.

are very close to the results using ∆t = 0.0075. Hence, ∆t = 0.01 is used hereafter.

Figure 6.34 displays the change in the smallest eigenvalue of the conformation

tensor by changing the flow rate for an Oldroyd-B fluid and Hookean dumbbell

model. The results using the macroscopic approach for the smallest eigenvalue are

obtained with the M4 mesh since the smallest eigenvalue computed using the M1

mesh at Wi = 2.0 is significantly different from the computed using M4 mesh [see

Fig. 6.32]. It is evident from Fig. 6.34 that the micro-macro computations are more

accurate than than the macroscopic computations on coarse meshes i.e. the smallest

eigenvalue predicted by the M1 mesh using macro-macro approach is as accurate as

the smallest eigenvalue predicted by the macroscopic approach using the M3 and

M4 meshes.

Figure 6.35 shows the change in the coating thickness with time at the outflow

plane. It should be noted that although the flow rate is changed at t = 0 the coating

thickness starts changing only after t ∼ 30. This in explained in Fig. 6.36 which

shows the change in y-position of the free surface with time at different x-positions

along the free surface. As shown in the Fig. 6.36, a front develops at the contact

line and propagates downstream like a wave. Figure 6.36 shows that we have a good
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Figure 6.32: Mesh convergence of transient results for macroscopic computations.
Wi = 2.0, Ca = 0.1, Q = 0.3, β = 0.75.
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Figure 6.33: Time step convergence of the change in the largest eigenvalues of
the conformation tensor by changing the flow rate for Hookean dumbbell model.
Wi = 2.0, Ca = 0.1, Q = 0.3, β = 0.75, Nf = 2000. Computations are carried out
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Figure 6.34: Change in the smallest eigenvalues of the conformation tensor by chang-
ing the flow rate for the Hookean dumbbell model. Wi = 2.0, Ca = 0.1, Q = 0.3,
β = 0.75, Nf = 2000, ∆t = 0.01. The Micro-Macro computations are carried out
with the M1 mesh and Macroscopic are carried out with the M4 mesh.
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Figure 6.35: Change in the coating thickness by changing the flow rate for the
Hookean dumbbell model. Wi = 2.0, Ca = 0.1, Q = 0.3, β = 0.75, Nf = 2000,
∆t = 0.01. Computations are carried out with the M1 mesh.

agreement between the micro-macro and macroscopic methods for transients flows.

Figure 6.37 displays snap shots of the contours of velocity at different times.

The contours in Fig. 6.37 are not as smooth as the one displayed in Figs. 5.27 and

5.26 which can be attributed to the coarseness of the mesh (M1 mesh is used for

Fig. 6.37 and M4 mesh is used for Figs. 5.27 and 5.26). As the flow decrease from

Q = 0.3 to 0.27, recirculation under the die increase. At a given Wi and viscosity

ratio, the strength of recirculation is much higher for a smaller flow rate. As shown

in Fig. 6.37, the micro-macro results compare very well with the macroscopic results.

The transient results for FENE-P model using the macroscopic and micro-macro

approach are shown in Fig. 6.38. The FENE-P model shows almost the same be-

havior as the Hookean dumbbell model and good agreement is observed between

macroscopic and micro-macro results.

6.4 Conclusion

In this chapter, we have computed the transient free surface flow using the BCF

based micro-macro approach. This method involves Brownian dynamics simulation
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Figure 6.36: Change in the Y-position of the free surface at different X-positions
along the free surface. Solid lines are for Oldroyd-B model (Macroscopic) and dotted
lines are for the Hookean dumbbell model (Micro-Macro). Wi = 2.0, Ca = 0.1,
Q = 0.3, β = 0.75, ∆t = 0.01, Nf = 2000. Computations are carried out with the
M1 mesh.

of the motion of polymer molecules coupled together with a time dependent finite

element algorithm for the solution of the macroscopic conservation equations. We

have validated our method by comparing the flow behavior in the downstream sec-

tion of a slot coater for linear dumbbell models i.e. Hookean and FENE-P dumbbell

with their equivalent macroscopic closed form constitutive equations in a conforma-

tion tensor based formulation. We found excellent agreement between the results

from the BCF approach and the results using the macroscopic approach. An im-

portant observation was that the computations using the BCF method were stable

at higher Wi and on a relatively coarser mesh when compared to the computations

using the macroscopic approach. We have shown that the proposed fully implicit

scheme is more stable than the explicit Euler scheme used in literature with no

additional computational and memory requirements for the solution of free surface

flows.

We have further computed the complex free surface flow problem by using FENE

dumbbells and dumbbells with hydrodynamic interactions, for which no closed-form
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Figure 6.37: Change in velocity profile by changing the dimensionless flow rate from
Q = 0.3 to Q = 0.27 for an Oldroyd-B fluid using the Macroscopic (left) and Micro-
Macro approach (right). Computations are carried out with the M1 mesh. Wi = 2.0,
Ca = 0.1, β = 0.75, Nf = 2000, ∆t = 0.01.
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Figure 6.38: Change in the largest eigenvalue of the conformation tensor and the
coating thickness for the FENE-P model. Computations are carried out with the
M1 mesh. Wi = 2.0, Ca = 0.1, β = 0.75, bM=100, Nf = 2000, ∆t = 0.01.
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constitutive equations exist. Two different algorithms to solve the non-linear dumb-

bell models namely, Newton’s method and a novel least-squares and collocation

method discussed in chapter 3, were examined. We have shown that both algorithms

give identical results. However, the collocation method is fast and computation-

ally efficient when compared to Newton’s method. We found significant differences

between the stretch of the polymers at the free surface for different microscopic

constitutive models.



Chapter 7

Conclusions

The objective of this work has been to use a multiscale simulation strategy to

compute transient viscoelastic free surface flows of dilute and ultra-dilute polymer

solutions. Two different multiscale methods, namely, conformation tensor based

approach and micro-macro approach based on the Brownian configuration fields

method, have been used for this purpose. In general, multiscale methods for mod-

eling viscoelastic flows are superior to conventional macroscopic methods as they

account for the microstructure of flowing polymer molecules. However, a distinct

advantage of the micro-macro method over other methods is that it avoids the need

for a closed-form constitutive model and hence, more accurate polymer models that

incorporate effects such as finite extensibility and other non-linear solvent medi-

ated interactions like hydrodynamic and excluded-volume interactions (for which no

closed-form equations exist) can be simulated. This work is the first ever application

of the BCF method to solve viscoelastic free surface flows.

In the conformation tensor based approach, two different constitutive models,

namely, an Oldroyd-B and a FENE-P model, were used for viscoelastic flow com-

putations. In the BCF method used in this work, polymer molecules were repre-

sented by a dumbbell model with both linear and non-linear springs, and hydrody-

namic interactions between beads was incorporated. The linear dumbbell models

i.e. Hookean and FENE-P dumbbells, are equivalent to the Oldroyd-B and FENE-P

constitutive models in the conformation tensor based formulation.

The following different solutions strategies were developed and implemented to

177
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compute viscoelastic flow with the micro-macro and conformation tensor based ap-

proaches:

� The DEVSS-TG finite element method coupled with the elliptic mesh gener-

ation methodology was implemented to study steady state free surface flow

using the conformation tensor approach.

� An unconditionally stable fully implicit time integration scheme was imple-

mented to study transient free surface flow using the conformation tensor

approach.

� For micro-macro flow computations, the Galerkin finite element method was

implemented for macroscopic conservation and mapping equations.

� An unconditionally stable fully implicit simulation algorithm was developed

for linear dumbbell models.

� Two different algorithms to solve non-linear dumbbell models, namely, New-

ton’s method and a novel least-squares and collocation method, were de-

veloped. The least-squares and collocation scheme is an extension of the

predictor-corrector scheme proposed by Somasi and Khomami [2000] to solve

nonhomogeneous flows.

� A new way of imposing boundary conditions on the BCF equation was devel-

oped. The new boundary condition is independent of the initial condition on

configuration fields and the microscopic constitutive model.

Simulations for a wide range of parameters were carried out to understand the

role of viscoelasticity on slot coating flows using both the micro-macro and confor-

mation tensor based approach. The key findings of this work are as follows:

� The computations of both dilute and ultra-dilute solutions suggest that the

flow behaviour of a dilute polymer solution is completely different from that

of an ultra-dilute solution, for instance with regard to the mode of failure of

numerical simulations at high Wi number, the effect of the static contact line

on flow computations etc. We found that flow computations of ultra-dilute
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polymer solutions are very strongly dependent on mesh refinement and consti-

tutive model, i.e., the maximum Wi which corresponds to a stable numerical

solution increases with mesh refinement and with the use of a more accurate

constitutive equation. On the contrary, the simulations for dilute polymer

solutions are independent of mesh refinement and constitutive equation. Out

study has clearly demonstrated the difference between dilute and ultra-dilute

flow computations.

� It was found that for Wi < 1.5 the rate of stretching of polymer molecules is

independent of viscosity ratio. The rate of stretching decreases with viscosity

ratio as Wi goes beyond 1.5. Two different regimes of rate of stretching in our

simulations indicate the existence of two different flow kinematics governing

the rate of stretching. At low Wi (Wi < 1.5), polymer molecules are predomi-

nantly stretched at the web in shear dominated flow. At higher Wi (Wi > 1.5),

the extensional nature of flow at the free surface governs the rate of stretching

of polymer molecules. It is found the value Wi = 1.5, around which different

flow kinematics govern the rate of stretching, is independent of the viscosity

ratio and constitutive equation i.e. largest eigenvalue changes its position from

the web to the free surface at roughly the same Wi for all viscosity ratios.

� For dilute polymer solutions, at highWi, the position of the smallest eigenvalue

of the conformation tensor abruptly jumps to the static contact line (which

is a geometric singularity in slot coating) at high Wi just before numerical

simulations fail. On the other hand, the position of the smallest eigenvalue

always remains on the free surface at high Wi for ultra-dilute solutions. This

is an important observation as it suggests that the mode of failure in the case

of dilute polymer solutions is the presence of the static contact line and for

ultra-dilute solutions, it is the inability of the mesh to capture stress boundary

layers close to the free surface.

� The extensional nature of the flow in the stretching section of the free surface

leads to the formation of normal stress boundary layers at the free surface.

While the formation of these stress boundary layers can be captured with

mesh refinement in the case of ultra-dilute solutions, a completely different
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flow behaviour under the die and close to the static contact line accounts

for the independence of flow computations with mesh refinement for dilute

solutions. For ultra-dilute solutions the flow field is not affected by the presence

of polymer molecules. For dilute solutions, the high normal stresses at the free

surface tends to pulls the liquid away from the recirculation region present in

a Newtonian flow. As a result the recirculation zone diminishes in size, and

flow close to the static contact line becomes stronger. The stagnation point

moves from the free surface to the die wall and the normal stress difference

close to the static contact line becomes positive. The reduction in the size

of the recirculation zone exposes the singularity present in slot coating flows,

which causes the field variables such as the velocity gradient and conformation

tensor to become singular. It was found that the strength of the singularity

in the field variables grows with decreasing viscosity ratio.

� At a given Ca and viscosity ratio, the increased normal stress difference along

the free surface at high Wi causes the free surface to move into the die (menis-

cus invasion) and hence reduce the contact angle for dilute polymer solutions.

An increase in Ca was found to increase the normal stresses due to the increase

in the rate of strain tensor along the free surface which consequently results

in a further reduction in the contact angle.

� A reduction in the contact angle at high Wi affects the low-flow limit of slot

coating flows. We have found that for viscoelastic liquids, the minimum coat-

ing thickness is higher than the coating thickness for Newtonian liquids. As a

result the coating window for a uniform coating shrinks in size compared to

Newtonian liquids.

� Unlike conformation tensor based computations, the micro-macro computa-

tions were found to be numerically stable at much higher Wi for both dilute

and ultra-dilute solutions. One of the key features of micro-macro simula-

tions in this work is that the stability and accuracy of the computations were

obtained on relatively coarse meshes making the micro-macro simulations vi-

able for large scale complex flow simulations with more accurate microscopic

constitutive equations. In principle the micro-macro approach can be used as
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an alternative numerical method to overcome the high Weissenberg number

problem.

� Excellent agreement was found for different parameters between the micro-

macro results for linear dumbbell models and their equivalent conformation

tensor based constitutive models. The fully implicit scheme developed for

linear dumbbell models was found to be stable and accurate at much higher

time steps compared to micro-macro simulations using an explicit scheme,

with no additional computational and memory requirements for the solution

of free surface flows.

� Two different algorithms to solve non-linear dumbbell models, namely, New-

ton’s method and a novel least-squares and collocation method were examined

for viscoelastic free surface flows of FENE dumbbells and dumbbells with hy-

drodynamic interactions. We have shown that both algorithms give identical

results and remain numerically stable for all Wi studied in this work. The col-

location method was found to be fast and computationally efficient compared

to Newton’s method.

� We found that there were significant differences between the stretch of poly-

mers (a microscopic property) at the free surface for different microscopic

constitutive models while the macroscopic properties (i.e. velocity and stress

profile) are almost unaffected. The inaccurate predictions of stretch and ori-

entation of polymer molecules might lead to inaccurate predictions of the exis-

tence of various instabilities such as non-uniform coating in slot coating flows.

� The computations of transient free surface flows in this work further estab-

lished the accuracy, stability and viability of micro-macro methods for large

scale simulations.

This work provides a comprehensive study of the effect of viscoelasticy on slot

coating flows. Although with the micro-macro method developed in this work, it is

possible to capture, at least qualitatively, the behavior of real polymer molecules in

solution, several further improvements and future research is possible.
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� The stability and the accuracy of micro-macro methods at high Wi needs to be

investigated much more closely before such schemes are claimed to resolve the

solution of the high Weissenberg number problem encountered in viscoelastic

flow simulations.

� The ability of the micro-macro approach to overcome problems associated

with the presence geometric singularity is required to be investigated with

more refined meshes.

� While with adequate computational resources, this method can in principle

be used for solving complex flow problems by incorporating the most accurate

models presently available (which are based on bead-rod and bead-spring mod-

els with non-linear interactions and many degrees of freedom) it is yet to be

shown that micro-macro methods can lead to significantly better predictions

of industrial flows.

� Due to the intense computational requirement of micro-macro methods com-

pared to macroscopic methods, computational and memory efficient methods

such as closure approximations for bead-spring models [Prabhakar, 2005; Sig-

iner et al., 1999] can be used in the context of large scale simulations.



Appendix A

Interfacial transport phenomena

and Differential geometry

In this appendix, we discuss a systematic procedure to derive free surface boundary

conditions outlined in chapter 2. Although these boundary conditions have been

discussed in details in literature, here we summarize the elements that go into the

derivation of these boundary conditions in a concise manner. The text book by

Slattery [1990] has been used to derive most of the equations presented in chapter.

In addition, we have also discussed, in brief, the basics of differential geometry

which is a preliminary requirement to understand mass and momentum balance at

interface.

Phase interface is defined as the region separating two phases in which proper-

ties and behavior of the material differ from those of adjoining phases. There are

two continuum models for the phase interface. One model represents it as three

dimensional region and other as a two dimensional surface.

A.1 Three-dimensional interfacial region

Density and concentration of various species are observed to be appreciably differ-

ent in the neighborhood of an interface than that of away from the interface. In

three dimensional interfacial region model, as critical point approaches, the density

is observed to be a continuous function of position in the direction normal to the

183
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Figure A.1: Gibbs dividing surface

interface. Thus, the interface can be regarded as a three-dimensional region, the

thickness of which may be of several molecular diameters or more. The stress defor-

mation behavior in such a region could be described by assuming that stress tensor

is a function of the rate of deformation tensor, the gradient of density and the second

gradient of density. As the thickness of the region approaches zero, the results take

the same form as that obtained when uniform tension is assumed to act on a two

dimensional surface separating the two phase. The problem with this model is that

there is no way by which one can study the stress and velocity distributions in a

very thin interfacial region.

A.2 Two dimensional model or Dividing surface

In two dimensional model, the phase interface is assumed to ba a hypothetical

two dimensional dividing surface that lies within or near the interfacial region and

separates two homogeneous phases. Effects of adjoining phases on the interface are

taken into account by assigning excess mass or energy to the interface.
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A.2.1 Concept of Surface Excess Properties

In a system of two phases α and β, while moving from one phase to the other through

the interface zone, all extensive properties vary in a smooth way from the values in

α phase to corresponding values in the β phase. Gibbs modelled the above system

by considering it to consist of three parts [Gupta, 2000].

1. Part one consists of pure α phase.

2. Part two consists of pure β phase.

3. Part three consists of an imaginary surface separating the two phases.

This imaginary dividing surface is a mathematical surface of zero thickness.

Properties of the bulk phases in these models are considered to be identical to

those of the bulk phases without any interface. The deficit or the excess property

compared to the actual value of the property is assigned to the interface to ensure

that an extensive property remains the same in the two representation. Thus, for a

profile shown in the figure for unit cross-sectional area, if the actual amount present

for species i is Mi, then the quantity assigned to the interface, Γσ
i , per unit area is

given by,

Γσ
i = Mi − [xnα

i + (a− x)nβ
i ] (A.1)

where nα
i and nβ

i are the densities of species i in α and β phases respectively.

A.2.2 Gibbs equation

For a small change in the total energy of a system shown in Fig. A.1,

dE = T dsα + T dsβ + T dsσ

+
∑

i

µi dn
α
i +

∑

i

µi dn
β
i +

∑

i

µi dn
σ
i

− P α dV α − P β dV β + σ dA

(A.2)

where Si {i = α, β} is the entropy associated with the phases α and β, Sσ is the

entropy associated with the dividing surface, P i{i = α, β} is the pressure in two

bulk phases, T is the temperature of the system. µi is the chemical potential of the
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system, σ is the surface tension, V α and V β are the volumes of two bulk phases, A

is the interfacial area and E is the total energy of the system. Here, P α is taken to

be different from P β to allow for pressure jump across a curved interface. For pure

phases,

dEα = T dsα +
∑

i

µi dn
α
i − P α dV α

and

dEβ = T dsβ +
∑

i

µi dn
β
i − P β dV β

since

dE = dEα + dEβ + dEσ

where dEi {i = α, β} is the energy change associated with the α and β phases

respectively. Thus, we can say that

dEσ = T dsσ +
∑

i

µi dn
σ
i + σ dA (A.3)

From Eq. (A.3), the Gibbs-Duhem equation can be written as,

Sσ dT +
∑

i

nσ
i dµi + Adσ = 0 (A.4)

For a binary system at constant temperature, Eq. (A.4) reduces to

dσ = −Γσ
1 dµ1 − Γσ

2 dµ2

where Γσ
i = ni/A (excess concentration per unit area)

The mathematical dividing surface is located in such a way that Γσ
1 is zero which

implies that the excess concentration of species 1 on interface is zero and hence,

species 1 remains entirely in bulk. In other words, it requires that the shaded area

on either side of dividing surface to be equal, which means that rate of mass transfer

from the interface is equal and nothing accumulates on the interface implying

dσ = −Γ
(1)σ
2 dµ2 (A.5)
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Here, Γ
(1)σ
2 represents the excess concentration of solute 2 on the interface where the

dividing surface is located such that the excess quantity of species 1 in the interface

zone is zero. As

µ2 = µ0
2 +RT log a2 (A.6)

Γ
(1)σ
2 can be written as

Γ
(1)σ
2 = − 1

RT

(

∂σ

∂log a2

)

T

(A.7)

Equation (A.7) is the Gibbs equation which relates the change in interfacial tension

per unit change in log a2 to the excess concentration of solute 2 on the interface. In

the limit of dilute solutions of species 2 in 1, log a2 can be replaced by log c2 [Gupta,

2000]. Thus,

Γ
(1)σ
2 = − 1

RT

(

∂σ

∂log c2

)

T

(A.8)

The above equation is used to calculate the excess concentration per unit inter-

facial area associated with the interface and can be use in context of the interfacial

mass density.

A.3 Introduction to differential geometry

A surface is the locus of a point whose position is a function of two parameters y1

and y2. Thus,

z = pσ(y1, y2) (A.9)

where z is the position vector. Since two numbers y1 and y2 uniquely determine a

point on the surface, these are called surface coordinates. A y1 coordinate curve is

a line on the surface along which y1 varies while y2 takes a fixed value. Similarly, y2

coordinate curve is the one along which y2 varies while y1 assumes a constant value.

Eq. (A.9) can be represented as three scalar equations. By eliminating y1 and y2

from two of these and substituting in third equation gives one scalar equation,

f(z) = 0
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These surface coordinates can be related to the cuvilinear coordinetes of a point in

three dimensional space as

zi = zi(x
1, x2, x3)

and

zi = zi(y
1, y2)

it can be written as

xr = xr(y1, y2)

where xr are the curvilinear coordinates.

A.3.1 Natural basis

In space a spatial vector field is nothing but the spatial vector-valued function of

position in space. Spatial vector fields on the surface is defined as spatial vector-

valued functions of position on a surface. The natural basis is defined as,

aα =
∂pσ

∂yα
=

∂z

∂yα
=
∂xi

∂yα
gi (A.10)

At every point on the surface, the values of these spatial vector fields are tangent

to the yα coordinate curves and therefore tangent to the surface. Definition of aα

on the surface is parallel to the definition of gi in space. If ξ is the unit normal to

the surface, then vector fields a1,a2 and ξ are linearly independent and thus, form

a basis for the spatial vector fields on the surface. We can define

aαβ = aα · aβ

=
∂xi

∂yα

∂xj

∂yβ
gi · gj

=
∂xi

∂yα

∂xj

∂yβ
gij

(A.11)
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where aαβ are the covariant components of the surface metric tensor. The determi-

nant can also be constructed as

a = det(aαβ) (A.12)

It can be written that

aαβ aβγ = aγβ a
βα = δα

γ (A.13)

Where δα
γ is the Kronecker delta.

A.3.2 Surface gradient of scalar field

The surface gradient of a scaler field φ is a tangential vector field denoted by ∇σ φ

and specified by defining its inner product with an arbitrary tangential vector field

c:

∇σφ(y1, y2) · c = cα
∂φ

∂yα
(y1, y2) (A.14)

If c is an arbitrary vector field and if c = aβ

∇σφ · aβ =
∂φ

∂yβ
(A.15)

Since ∇σφ is defined as a tangential vector field, it can be written that

∇σφ =
∂φ

∂yα
aαβ aβ (A.16)

A.3.3 Dual basis

The dual tangential vector fields aα are defined as the surface gradients of the surface

coordinates as

aα ≡ ∇σy
α (A.17)

Thus, using the definition of surface gradient it can be written

aα = aαβ aβ

aα = aαβ aβ
(A.18)
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A.3.4 Projection tensor

The projection tensor P is a tangential second-order tensor field that transforms

every tangential vector field into itself. Hence,

P · aβ = aβ (A.19)

P = aβ aβ = aαβ aα aβ (A.20)

Since a1, a2, and ξ are linearly independent vectors, they form a basis for spatial

vector field on the surface. If v is any spatial vector field on the surface, v can be

written as

v = vα aα + v(ξ) ξ (A.21)

which implies

v = (v · aα) aα + v(ξ) ξ (A.22)

or

I · v = v · P + (v · ξ) ξ

or

I · v = (P + ξ ξ) · v

Since v is any spatial vector field on the surface

I = P + ξ ξ

or the alternative interpretation of the projection tensor is

P = I − ξ ξ
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The projection tenser plays the role of an identity tensor for the set of all tangential

vector fields and its dot product with any spatial vector field gives the tangential

component of the spatial vector field.

A.3.5 Surface gradient of vector field

The surface gradient of a spatial vector field v is a tangential vector field denoted by

∇σ v and specified by defining its inner product with an arbitrary tangential vector

field c:

∇σv · c = cα
∂v

∂yα
(A.23)

if c is an arbitrary vector field and we take c = aβ

∇σv · aβ =
∂v

∂yβ
(A.24)

Since ∇σv is defined as the tangential vector field, we can write

∇σv =
∂v

∂yβ
aβ (A.25)

For instance, the surface gradient of the position vector field p(σ) is

∇σ p(σ) =
∂p(σ)

∂yβ
aβ = aβ aβ = P (A.26)

Equation (A.26) gives an alternative expression for the projection tensor.

A.3.6 Surface divergence of vector field

Surface divergence of a spatial vector field is defined as

divσv = tr(∇σv) (A.27)
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The trace of ∇σv can be evaluated as

tr(∇σv) =
∂vα

∂yβ
tr(aα aβ)

=
∂vα

∂yβ
tr(P β

α )

=
∂vα

∂yα

(A.28)

Thus, from Eqs. (A.27) and (A.37)

divσv =
∂vα

∂yα
(A.29)

or

divσv =
∂v

∂yα
. aα

A.3.7 Vector field is explicit function of position in space

Here we find out that how the surface gradient is expressed in terms of the com-

ponents of v where v is an explicit function of curvilinear coordinates (x1, x2, x3),

v = v(x1, x2, x3)

The surface gradient of v is

∇σv =
∂v

∂xi

∂xi

∂yα
aα

=
∂v

∂xi
(gi . aα) aα

= ∇v .P

(A.30)
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v can be written as v = vi gi, which can be substituted in Eq. (A.30)

∇σv =
∂(vi gi)

∂xj

∂xj

∂yα
aα

=
∂vi

∂xj

∂xj

∂yα
gi a

α + vi ∂gi

∂xj

∂xj

∂yα
aα (A.31)

By the definition of christoffel symbol of second kind

∂gi

∂xj
=

{

m

j i

}

gm (A.32)

From Eqs. (A.31) and (A.32)

∇σv =
∂vi

∂xj

∂xj

∂yα
gi a

α + vi ∂x
j

∂yα

{

m

j i

}

gm aα

= vi
, j

∂xj

∂yα
gi a

α

(A.33)

where vi
, j is given by

vi
, j =

∂vi

∂xj
+

{

m

j i

}

vm (A.34)

also surface divergence of v can be written as

divσv = tr(∇σv)

= tr(∇v · P)
(A.35)

It is necessary to convert surface basis vector to spatial basis vector in order to

derive Eq. (A.35). Following results are useful in deriving Eq. (A.35):

aα =
∂p(σ)

∂yα

=
∂xj

∂yα
gj

aα = aαβ ∂x
i

∂yα
gi

gi a
α = aαβ ∂x

i

∂yα
gigj

(A.36)
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Thus, we can write

tr(gi a
α) = aαβ ∂x

i

∂yα
tr(gigj)

= aαβ ∂x
i

∂yα
(gi .gj)

= aαβ ∂x
i

∂yα
gij

(A.37)

So from Eqs. (A.33), (A.35) and (A.37), it can be shown that

divσv = vi
, j gjk a

αβ ∂x
i

∂yα

∂xj

∂yβ
(A.38)

where vi
, j is given by Eq. (A.34).

A.3.8 Vector field is explicit function of position on surface

In this section, we find out that how the surface gradient is expressed in terms of

the components of w where w is an explicit function of positions (y1, y2) on surface:

v = v(x1, x2, x3)

If w is given in terms of natural basis fields for some natural curvilinear coordinate

system, then

w = wi g
i

The surface gradient takes the following form:

∇σw =
∂(wi gi)

∂yα
aα

=
∂wi

∂yα
gi a

α + wi ∂gi

∂xj

∂xj

∂yα
aα

(A.39)

Using Eq. (A.32), the above equation can be simplified as

∇σw = wi
, αgi a

α (A.40)
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where wi
, α, known as surface covariant derivative of wi and defined as

wi
, α =

∂wi

∂yα
+

{

i

j m

}

wm ∂xj

∂yα
(A.41)

w can be written in terms of tangential and normal components as follows:

w = wα aα + w(ξ) ξ (A.42)

The surface gradient consequently, becomes

∇σw =
∂wα

∂yβ
aα aβ + wα ∂aα

∂yβ
aβ +

∂w(ξ)

∂yβ
ξ aβ + w(ξ)

∂ξ

∂yβ
aβ (A.43)

Equation (A.43) can be written in a more convenient form using the following results.

1. The second term of Eq. (A.43) can be written as

∂aα

∂yβ
=

∂

∂yβ

(

∂xi

∂yβ
gi

)

=

(

∂2xi

∂yβ ∂yβ
+
∂xj

∂yβ

∂xm

∂yα

{

i

j m

})

gi

(A.44)

Equation (A.32) has been used to derive the above result.

2. Natural basis function can also be represent in terms of surface basis function

and normal to surface ξ

gi = I .gi

= (P + ξ ξ) .gi

= (aµ aµ + ξ ξ) .gi

=

(

aµ a
µν ∂x

k

∂yν
gk + ξ ξ

)

.gi

= aµν ∂x
k

∂yν
gikaµ + ξi ξ

(A.45)
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Substituting Eq. (A.45) into Eq. (A.44)

∂aα

∂yβ
=

{

µ

β α

}

a

aµ +Bβα ξ (A.46)

where

{

µ

β α

}

a

=

(

∂2xi

∂yβ ∂yα
+
∂xj

∂yβ

∂xm

∂yα

{

i

j m

})

aµν ∂x
k

∂yν
gik (A.47)

is the surface Christoffel symbol of the second kind and

Bβα =

(

∂2xi

∂yβ ∂yβ
+
∂xj

∂yβ

∂xm

∂yα

{

i

j m

})

ξi (A.48)

are the components of the symmetric second groundform tangential tensor

field which is related to the radius of curvature of the surface.

B ≡ Bβα aα aβ (A.49)

3. The last term of Eq. (A.43):

aγ . ξ = 0

and

ξ . ξ = 1 (A.50)

Differenting these equations with respect to the surface coordinate yβ, we get

aγ .
∂ξ

∂yβ
= −Bγβ (A.51)

and

ξ .
∂ξ

∂yβ
= 0 (A.52)
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from above equations it can be concluded that (∂ξ/∂yβ) is a tangential vector

field and hence
∂ξ

∂yβ
= −Bγβ aγ (A.53)

Substituting Eqs. (A.46) and (A.53) in Eq. (A.43),

∇σw =
∂wα

∂yβ
aα aβ + {}wα aµ aβ +Bβαw

αξaβ +
∂w(ξ)

∂yβ
ξ aβ + w(ξ)Bγβa

γaβ

= wα
,βaα aβ + ξ (B .w) + ξ∇σw(ξ) − w(ξ)B

(A.54)

where wα
,β is the surface covariant derivative of wα and is defined as,

wα
, β =

∂wα

∂yβ
+

{

µ

β α

}

a

wµ (A.55)

It can be proved by simple algebra that

P .∇σ(P .w) = wα
,βaα aβ

Using the above result, Eq. (A.54) can be written as

∇σw = P .∇σ(P .w) + ξ (B .w) + ξ∇σw(ξ)
− w(ξ)B (A.56)

Surface divergence of w is

divσw = tr(∇σw)

It is useful to find the trace of the different components of Eq. (A.56).

tr(ξ (B .w) + ξ∇σw(ξ)) = tr(Bβαw
αξaβ +

∂w(ξ)

∂yβ
ξ aβ)

= (Bβαw
α +

∂w(ξ)

∂yβ
) tr(ξ aβ)

= (Bβαw
α +

∂w(ξ)

∂yβ
) (ξ . aβ)

= 0

(A.57)
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also from the definition of projection tensor, it can be written that

tr(P .∇σ(P .w)) = divσ(P .w) = wα
, α (A.58)

Thus, surface divergence of w is

divσw = divσ(P .w) − tr(w(ξ)B)

= divσ(P .w) − w(ξ)tr(B)

= wα
, α − w(ξ)tr(B)

(A.59)

The mean curvature of the surface is defined as

H =
1

2
tr(B) (A.60)

If w is a unit vector normal to the surface w = ξ then, from Eq. (A.59), it can be

written as

B = −∇σξ (A.61)

A.3.9 Surface divergence theorem

At any point on the surface Σ, the surface integral is

∫

Σ

F dA =

∫ ∫

Σ

F (y1, y2)
√
a dy1 dy2 (A.62)

If w is any tangential vector field, w = wα aα, then from Eq. (A.59),

divσw = wα
, α

The above equation can be substituted in Eq. (A.62),

∫

Σ

divσw dA =

∫ ∫

Σ

wα
, α

√
a dy1 dy2

=

∫ ∫

Σ

∂(
√
awα)

∂yα
dy1 dy2

=

∫ ∫

Σ

[

∂(
√
aw1)

∂y1
+
∂(
√
aw2)

∂y2

]

dy1 dy2

(A.63)



A.3. Introduction to differential geometry 199

Green’s theorem for a surface states that if P (y1, y2) and Q(y1, y2) are continuous

function having continuous partial derivatives on the surface, then

∫ ∫

Σ

[

∂P

∂y1
+
∂Q

∂y2

]

dy1 dy2 =

∫

C

[

P
dy1

ds
−Q

dy2

ds

]

ds (A.64)

Here, C is the piecewise smooth simple closed curve bounding Σ; s indicate the arc

length measured along the curve. From Eqs. (A.63) and (A.64), it can be written

that
∫

Σ

divσw dA =

∫

C

√
a

[

w1dy
1

ds
− w2dy

2

ds

]

ds

=

∫

C

εαβw
αdy

β

ds
ds

(A.65)

If λ is a unit tangent vector to the curve C and µ is a tangential vector field normal

to the curve C, then

λ ≡ dp

ds
=

dp

dyβ

dyβ

ds
=

dp

dyβ
aβ (A.66)

and

µ ≡ ε · λ = εαβ
dyβ

ds
aα (A.67)

From Eqs. (A.65) and (A.67),

∫

Σ

divσw dA =

∫

C

(w · µ)ds (A.68)

If v is any spatial vector field defined on the surface, it can be written that P.v = w.

From Eq. (A.59)

∫

Σ

divσv dA =

∫

Σ

divσ(P · v)dA−
∫

Σ

2H(v · ξ)dA

=

∫

C

(w · µ)ds−
∫

Σ

2H(v · ξ)dA

=

∫

C

(v · µ)ds−
∫

Σ

2H(v · ξ)dA

(A.69)

Equation (A.69) uses the fact that

∫

C

(w · µ)ds =

∫

C

(v · µ)ds (A.70)



A.4. Kinematics of dividing surface 200

because (vξ ·µ) = 0. Equation (A.69) is referred as the surface divergence theorem.

A.4 Kinematics of dividing surface

A dividing surface is the locus of a point whose position is a function of two para-

meters y1 and y2 on the surface.

z = pσ(y1, y2) (A.71)

The two surface coordinates y1 and y2 uniquely determine a point on the surface.

Each surface particle is a set of material particles occupying any particular point on

the surface. If the set of material particles is ζσ then

yα = Xα(ζσ) α = 1, 2 (A.72)

ζσ is also a surface particle. Surface particle has one to one mapping with sur-

face coordinates but the material particles has many to one mapping with surface

coordinates

ζσ = X−1(y1, y2) (A.73)

and hence,

z = pσ(X1(ζσ), X2(ζσ)) (A.74)

A moving and deforming dividing surface Σ is the locus of a point whose position

is a function of two surface coordinates and time,

z = pσ(y1, y2, t) (A.75)

The intrinsic motion of surface particles on Σ can be written as

yα = Xα(ζσ, t) α = 1, 2

ζσ = X−1(y1, y2, t)
(A.76)

Equation (A.76) tells how the surface particles move from point to point on the

surface independently of how the surface itself is moving. Thus, the motion of the
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surface particles can be written as

z = pσ(X1(ζσ), X2(ζσ), t) (A.77)

If A is any scalar, vector, or tensor quantity and an explicit function of position on

the surface and time, then

A = A(y1, y2, t) (A.78)

The time derivative of the A following the motion of a surface particle is,

dsA

dt
≡

(

∂A

∂t

)

ζσ

(A.79)

The surface velocity vσ is the time rate of change of position of a surface particle,

vσ =
dsz

dt
(A.80)

Since all the materials particles are confined to the dividing surface, they must move

at all times with a normal component of velocity equal to the normal component of

velocity of surface.

At some reference time tκ the dividing surface A.75 takes the following form:

zκ = κσ(y1
κ, y

2
kappa) (A.81)

which can be called as the reference dividing surface. Thus, surface particles can be

identified by there reference configuration or their position on the reference dividing

surface. Also,

yα
κ = Xα(ζσ, tκ)

ζσ = X−1(y1
κ, y

2
κ, tκ)

(A.82)

From Eqs. (A.76) and (A.82), we can write that

yα = Xα
κ (y1

κ, y
2
κ, tκ) (A.83)
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From Eq. (A.79), the surface material derivative of A can be written as,

dsA

dt
≡

(

∂A

∂t

)

ζσ

≡
(

∂A

∂t

)

(y1
κ,y2

κ)

=

(

∂A

∂t

)

(y1,y2)

+

(

∂A

∂yα

)

t

∂Xα
κ

∂t

=

(

∂A

∂t

)

(y1,y2)

+ ∇σA · ẏ

(A.84)

where ẏ is defined as the intrinsic surface velocity. From Eqs. (A.75), (A.80) and

(A.84)

vσ =

(

∂pσ

∂t

)

(y1,y2)

+ ∇σp
σ · ẏ (A.85)

If we defined u to be the time rate of change of spatial position following a surface

point (y1, y2),

u ≡
(

∂pσ

∂t

)

(y1,y2)

(A.86)

then Eqs. (A.85) and (A.86) can be combined to give

vσ = u + ẏ (A.87)

The definition of projection tensor and Eq. (A.26) have been used in writing the

above equation.

A.5 Conservation of mass

The conservation of mass states that if we follow a portion of material body through

any number of translation, rotation, and deformation, the mass associate with it will

not vary in time. Thus, mass M of the body B can be written as,

M =

∫

B

dm (A.88)
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because the mass is independent of time, it follows that

∂M

∂t
=

∂

∂t

∫

B

dm = 0 (A.89)

Let us consider a body consisting of two phases occupying regions R1 and R2 with

mass density of each phase i (i=1,2) is ρi which is a continuous function of position

in the phase i. There is no equation of state which describe the thermodynamic

behaviour of of each phase accounting the mass distribution in the interfacial region.

However, if we assign a mass density ρ(σ:1,2) having a units of mass per unit area on

the Gibbs dividing surface Σ1,2, the mass of the body can be written as,

M =

∫

R1

ρ1 dV +

∫

R2

ρ2 dV +

∫

Σ1,2

ρ(σ:1,2) dA (A.90)

Using Eq. (A.89), Eq. (A.90) can be written as

dM

dt
=

d

dt

∫

R1

ρ1 dV +
d

dt

∫

R2

ρ2 dV +
d

dt

∫

Σ1,2

ρ(σ:1,2) dA = 0 (A.91)

Eqs. (A.90) and (A.91) can, in principle, be generalized for a body consisting of M

phases. If Σi,j be the dividing surface separating the phase i and j and the mass

density assigned to this interface is ρ(σ:i,j), the conservation of mass can be written

as
dM

dt
=

d

dt

M
∑

i=1

∫

Ri

ρi dV +
M−1
∑

i=1

M
∑

j=i+1

d

dt

∫

Σi,j

ρ(σ:i,j) dA = 0 (A.92)

If ρ is a piecewise continuous function defined by ρi in each phase i, then

∫

R

ρ dV =
M

∑

i=1

∫

Ri

ρi dV (A.93)

where R is the reason occupied by the body.

R =
M

∑

i=1

Ri

Similarly, if the surface mass density ρσ is a piecewise continuous function defined
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by ρ(σ:i,j) on the dividing surface Σi,j , it can be written that

∫

Σ

ρσ dA =
M−1
∑

i=1

M
∑

j=i+1

∫

Σi,j

ρ(σ:i,j) dA (A.94)

Hence, the conservation of mass is

dM

dt
=

d

dt

[∫

R

ρ dV +

∫

Σ

ρσ dA

]

= 0 (A.95)

A.5.1 Surface transport theorem

The surface transport theorem is useful to evaluate the second integral on right side

of Eq. (A.92). If ψσ is any scalar, vector , or tensor valued function of time and

position on the surface, then

∫

Σ

ψσ dA =

∫

Σ

[

dsψ
σ

dt
+ ψσ divσv

σ

]

dA (A.96)

where (dsψ
σ/dt) is surface material derivative defined in section A.5. Using the

surface divergence theorem [Eq. (A.69)], Eqs.(A.87), and (A.84), an alternative form

of the surface transport theorem can be written as

∫

Σ

ψσ dA =

∫

Σ

(

∂ψσ

∂t
− ∇σψ

σ · u − 2Hψσ(v · ξ)

)

dA+

∫

C

ψσ(vσ · µ)ds (A.97)

A.5.2 Transport theorem for a body containing dividing

surface

For a body consisting of a single phase, the transport theorem says that

d

dt

∫

R

ψ dV =

∫

R

∂ψ

∂t
dV +

∫

S

ψ(v · n) dA (A.98)

where ψ is a scalar, vector or tensor valued function of time and position in the

region R with a closed bounding surface S, n is the outward directed unit normal

vector to the closed bounding surface.

If we consider a body R, bounded by a closed surface S, consisting of multiple
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phases, we can define Si to be the portion of S bounding phase Ri. The velocities

of the boundaries of phase i are

on Si : vi

on Σ(i,j) : u(i,j)

Eq.(A.98) for the each phase is

d

dt

∫

Ri

ψi dV =

∫

Ri

∂ψi

∂t
dV +

∫

S

ψi(vi · n) dA

−
M

∑

j=1
j 6=i

∫

Σi,j

ψi (u(i,j) · ξ(i,j)) dA
(A.99)

where ξ(i,j) is the unit normal to Σ(i,j) pointing into Ri. If ψi is continuous within

Ri, then

d

dt

∫

R

ψ dV =
d

dt

M
∑

i=1

∫

Ri

ψi dV (A.100)

It follows from the above equation that

d

dt

∫

R

ψ dV =
M

∑

i=1

∫

Ri

∂ψi

∂t
dV +

M
∑

i=1

∫

S

ψi(vi · n) dA

−
M

∑

j=1
j 6=i

∫

Σi,j

ψi (u(i,j) · ξ(i,j)) dA

(A.101)

If ψ and v denote piecewise continuous function defined by ψi and vi and that u is

a piecewise continuous function defined by u(i,j), Eq. (A.101) reduces to

d

dt

∫

R

ψ dV =

∫

R

∂ψ

∂t
dV +

∫

S

ψ(v · n) dA

−
∫

Σ

[ψ u · ξ] dA

(A.102)

where
[ψ ξ] = ψi ξ(i,j) + ψj ξ(j,i)

= (ψi − ψj) ξ(i,j)
(A.103)
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The divergence theorem for a single phase

∫

R

div(ψv) dV =

∫

S

ψ(v · n) dA (A.104)

The divergence theorem for the body consisting of multiple phases can be written

as
∫

R

div(ψv) dV =

∫

S

ψ(v · n) dA−
∫

Σ

[ψv · ξ] dA (A.105)

From Eqs. (A.102), (A.104) and A.105, we can write that

d

dt

∫

R

ψ dV =

∫

R

{∂ψ
∂t

+ div(ψv)} dV +

∫

Σ

[ψ(v · ξ − u · ξ)] dA (A.106)

Combining Eqs. (A.97) and (A.97)

d

dt

∫

R

ψ dV +
d

dt

∫

Σ

ψσ dA =

∫

R

{∂ψ
∂t

+ div(ψv)} dV

+

∫

Σ

[

dsψ
σ

dt
+ ψσ divσv

σ + [ψ(v · ξ − u · ξ)]

]

dA

(A.107)

Equation (A.107) is the transport theorem for a body containing a dividing surface.

A.5.3 Jump mass balance

If ψ = ρ, then from Eq. (A.107)

d

dt

∫

R

ρ dV +
d

dt

∫

Σ

ρσ dA =

∫

R

{∂ρ
∂t

+ div(ρv)} dV

+

∫

Σ

[

dsρ
σ

dt
+ ρσ divσv

σ + [ρ(v · ξ − u · ξ)]

]

dA

(A.108)

From Eq. (A.95), we can write that

∫

R

{∂ρ
∂t

+ div(ρv)} dV +

∫

Σ

[

dsρ
σ

dt
+ ρσ divσv

σ + [ρ(v · ξ − u · ξ)]

]

dA = 0 (A.109)
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For a body consisting of single phase, the integral over region R is zero (equation of

continuity), which implies
∂ρ

∂t
+ div(ρv) = 0

Thus, Eq. (A.109) can be written as

∫

Σ

[

dsρ
σ

dt
+ ρσ divσv

σ + [ρ(v · ξ − u · ξ)]

]

dA = 0 (A.110)

Equation (A.122) must be true for any portion of the dividing surface which implies

that
dsρ

σ

dt
+ ρσ divσv

σ + [ρ(v · ξ − u · ξ)] dA = 0 (A.111)

This is called the jump mass balance equation. It expresses the requirement that

mass should be conserved at every point on the dividing surface. Two special cases

of the jump mass balance equations are

1. If there is no mass transfer from the interface,

v · ξ = u · ξ (A.112)

If interface is stationary then

v · ξ = 0 (A.113)

Equation (A.113) is called as the kinematic boundary condition for steady free

surface flows.

2. If there is no mass transfer from the interface and surface mass density is

constant on the dividing surface, Eq. (A.123) simplified to

divσv
σ = 0 (A.114)

This means that there is no local dilation of phase interface.
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A.6 Conservation of momentum

Conservation of momentum states that time rate of change of the momentum of a

body is equal to the applied force. Mathematically it can be written as

d

dt

∫

B

v dm = Fa (A.115)

or it can be written as

d

dt

[∫

R

ρv dV +

∫

Σ

ρσvσ dA

]

= Fa (A.116)

The applied force on a body can be separated into two classes:

1. Body forces, F a
b : Body forces are assumed to be related to the mass of the

bodies and are describe as though they are acting on each material particle.

F a
b =

∫

R

ρb dV +

∫

Σ

ρσbσdA (A.117)

here b the body force per unit mass acting on the material within a phase,

and bσ the body force per unit mass exerted on the dividing surface.

2. Contact forces, F a
c : Contact forces are those forces that appear to be exerted

on one body or another through their common surface of contact. They are

independent of the masses of the bodies on either side. If C is the curve formed

by the intersection of Σ with S, we can write

F a
c =

∫

S

t(z, S) dA+

∫

C

tσ(z, S)ds (A.118)

Here, t(z, S) is the stress vector, the contact force per unit area exerted upon

a body by its bounding surface S: it is a function of position z on S. tσ(z, S)

is the surface stress vector, the contact force per unit length at the curve C:

it is a function of position z on C.

There is a vector-valued function t(z,n) defined for all the unit vectors n at
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any point z within a single phase such that

t(z, S) = t(z,n) (A.119)

where n is the outwardly directed unit normal vector to S at z with respected

the body upon which the contact stress is applied.

There is a vector-valued function tσ(z,µ) defined for all the unit tangent

vectors µ at any point z on a dividing surface Σ such that

tσ(z, C) = tσ(z,µ) (A.120)

Here, µ is the unit tangent vector that is normal to C at z.

From the definition of applied forces, Eq. (A.116) can be written as

d

dt

[∫

R

ρv dV +

∫

Σ

ρσvσ dA

]

=

∫

S

t dA+

∫

C

tσds+

∫

R

ρb dV +

∫

Σ

ρσbσdA (A.121)

If we put ψ = ρv in surface transport theorem, Eq. (A.107), the left side of

Eq. (A.121) is

d

dt

(∫

R

ρv dV +

∫

Σ

ρσvσ dA

)

=

∫

R

ρ{∂v
∂t

+ vdiv(v)} dV

+

∫

Σ

(

ρσ dsv
σ

dt
+ [ρ(v − vσ)(v · ξ − u · ξ)]

)

dA

(A.122)

Thus, from Eqs. (A.121) and (A.122)

∫

R

ρ{∂v
∂t

+ vdiv(v)} dV +

∫

Σ

(

ρσ dsv
σ

dt
+ [ρ(v − vσ)(v · ξ − u · ξ)]

)

dA

=

∫

S

t dA+

∫

C

tσds+

∫

R

ρb dV +

∫

Σ

ρσbσdA

(A.123)

The stress vector t can be expressed in term of the stress tensor by

t = T · n
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also the Green’s transformation allows

∫

S

t dA =

∫

S

(T · n) dA

=

∫

R

divT dA+

∫

Σ

[T · ξ] dA

(A.124)

The surface stress tensor can be expressed in terms of the surface stress tensor as

tσ = Tσ · µ (A.125)

Using the surface divergence theorem, we can write

∫

C

tσ ds =

∫

C

(Tσ · µ)ds

=

∫

Σ

divσT
σ dA

(A.126)

Using Eq. (A.124) and (A.126), Eq. (A.123) can be written as

∫

R

ρ{∂v
∂t

+ vdiv(v) − divT − ρb} dV (A.127)

+

∫

Σ

(

ρσ dsv
σ

dt
− divσT

σ − ρσbσ + [ρ(v − vσ)(v · ξ − u · ξ) − T · ξ]

)

dA = 0

(A.128)

For a body consisting of single phase, the integral over R is zero, which implies

∫

R

ρ{∂v
∂t

+ vdiv(v) − divT − ρb} dV = 0

and also integral over the dividing surface should be true for every portion of the

dividing surface. Hence,

ρσ dsv
σ

dt
− divσT

σ − ρσbσ + [ρ(v − vσ)(v · ξ − u · ξ) − T · ξ] = 0 (A.129)

Equation (A.129) is referred as the jump momentum balance. If there is no mass

transfer through the interface and body force in small compared to other forces,
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then for steady state, Eq. (A.129) is

divσT
σ + [T · ξ] = 0 (A.130)

If the surface stress tensor is isotropic, then

Tσ = σP (A.131)

where σ is the surface tension and P is projection tensor given by Eq. (A.26).

Equation (A.130) can be written as

divσ(σP) + [T · ξ] = 0 (A.132)

It can be prove by simple algebra that

divσ(σP) = ∇σσ − σξ(∇σ · ξ) (A.133)

Hence, from Eqs. (A.132) and (A.133)

[T · ξ] + ∇σσ − σξ(∇σ · ξ) = 0 (A.134)

If there is no spatial variation in surface tension then ∇σσ can be neglected and

[T · ξ] = σξ(∇σ · ξ)

(T2 − T1) · ξ = σξ(∇σ · ξ)
(A.135)

Equation (A.135) is dynamic or stress boundary condition at the interface. It is

same as the Eq. (2.27).



Appendix B

Derivation of the Jacobian Entries

for Time Dependent Terms in the

Momentum and Conformation

Tensor Equations

Here, following the results of Pasquali [2000], derivatives of time dependent terms

in Eqs. (2.22) and (2.24) with respect to the various fields variables are computed.

B.1 Derivatives of Time Dependent Terms in the

Momentum Equation

The modified time dependent term in Eq. (2.38) is

Rm,α
t,i =

∫

Ω0

ψα
mρ

(

∂vi

∂t
− ∂xk

∂t
∇kvi

)

f dΩ0 (B.1)

The subscript t denotes the time dependent terms of the weighted residual integral.
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� Derivatives with respect to the position basis function coefficients

∂Rm,α
t,i

∂xγ
j

=

∫

Ω0

ψα
mρ

(

∂vi

∂t
− ∂xk

∂t
∇kvi

)

∇jϕ
γ
xf dΩ0

+

∫

Ω0

ψα
mρ

(

∂xk

∂t
∇jvi ∇kϕ

γ
x − ϕγ

x∇jvi

∆t

)

f dΩ0

(B.2)

� Derivatives with respect to the velocity basis function coefficients

∂Rm,α
t,i

∂vγ
j

=

∫

Ω0

ψα
mρ

(

ϕγ
vδij
∆t

− ∂xk

∂t
∇kϕ

γ
v δij

)

f dΩ0 (B.3)

Derivatives with respects to p, L and M are zero.

B.2 Derivatives of Time Dependent Terms in the

Conformation Tensor Equation

The modified time dependent term in Eq. (2.40) is

RM,α
t,ik =

∫

Ω0

ψα
Mρ

(

∂Mik

∂t
− ∂xl

∂t
∇lMik

)

f dΩ0 (B.4)

� Derivatives with respect to the position basis function coefficients

∂RM,α
t,ik

∂xγ
j

=

∫

Ω0

ψα
M

(

∂Mik

∂t
− ∂xl

∂t
∇lMik

)

∇jϕ
γ
xf dΩ0

+

∫

Ω0

ψα
M

(

∂xl

∂t
∇jMik ∇lϕ

γ
x − ϕγ

x∇jMik

∆t

)

f dΩ0

(B.5)

� Derivatives with respect to the conformation basis function coefficients

∂RM,α
t,ik

∂Mγ
jn

=

∫

Ω0

ψα
M

(

ϕγ
Mδijδkn

∆t
− ∂xl

∂t
∇lϕ

γ
M δijδkn

)

f dΩ0 (B.6)

Derivatives with respects to p, v and L are zero.
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The following results from Pasquali [2000] are used to derive Eqs. (B.2), (B.3),

(B.5), and (B.6).

� Derivatives of the determinant of mapping deformation gradient f = detF

with respect to position unknowns xγ
j :

∂f

∂xγ
j

= f∇jϕ
γ
x (B.7)

� Derivatives of the direct mapping deformation gradient F with respect to po-

sition unknowns xγ
j :

∂Fik

∂xγ
j

= δjk
∂ϕγ

x

∂ξi
(B.8)

� Derivatives of the inverse mapping deformation gradient K with respect to

position unknowns xγ
j :

∂Kik

∂xγ
j

= −∇iϕ
γ
xKjk (B.9)

� Derivative of the gradient of a scalar, vector component, or tensor component

Φ with respect to position basis function coefficient xγ
j :

∂∇kΦ

∂xγ
j

= −∇jΦ∇kϕ
γ
x (B.10)

The area and line integrals in the weighted residual and analytical Jacobian were

evaluated with a 9-point and 3-point Gaussian integration scheme respectively.



Appendix C

Calculation of Characteristic

Relaxation Times and Microscopic

Parameters For Different

Microscopic Constitutive Models

In this appendix, we discuss the systematic procedure adopted for determining the

microscopic parameters H, ζ, h∗, etc, such that identical values for Wi (or equiv-

alently, λη) are obtained in all the microscopic constitutive models used in micro-

macro computations. The definition of λη is

λη =
[η]θ0Mηs

NAkBT
(C.1)

where, [η]θ0 is the intrinsic viscosity in a θ-solution in the limit of zero shear rate, M

is the molecular weight and NA is the Avogadro number. In can be shown for dilute

solutions [Bird et al., 1987a; Öttinger, 1996] that

λη = lim
n→0

ηp,0

nkT
(C.2)

The relationship of λη to microscopic parameters in models with and without fluctu-

ating hydrodynamic interactions (HI) is discussed separately in turn below. Before

we do so, however, the following points are worth noting.
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In all micro-macro simulations reported here, we set R2
e/3 = 1 and kBT = 1.

R2
e/3 = 1 is maintained in order to be consistent with the length scale used in

conformation tensor based models. Furthermore, for a given values of the viscosity

ratio β and Wi, the zero shear rate viscosity ηp,0 and the relaxation time λη can be

calculated form β = ηs/(ηs + ηp,0) and Wi = ληv/L, respectively. Note that ηs, v

and L are known. Once the values of ηp,0 and λη are known, Eq. (C.2) can be used

to find the polymer density n in all cases.

1. Dumbbells without HI: For constitutive models without fluctuating HI, the

relationship between R2
e/3 and λη, and the microscopic parameters H, b, and

λH = ζ/4H, can be obtained analytically [Bird et al., 1987a,b], and is given

in Table C.1. For the fixed values of R2
e/3, kBT and b chosen here, the spring

constant H can be evaluated from the expression for R2
e/3 (see Table C.1).

For any particular value of λη, the calculated value of H, and the relationship

between λη and λH (Table C.1), can then be used to determine the value of

the drag coefficient ζ to be used in the microscopic model.

2. Dumbbells with HI: The presence of hydrodynamic interactions does not

affect static properties, and as a result, expressions for R2
e/3, and the calcu-

lation of H, remains unaltered from the cases where HI is absent. However,

since λη for dumbbells with fluctuating HI cannot be derived analytically, a

Green-Kubo formula [Diaz et al., 1990; Doi and Edwards, 1986] has been used

to calculate the shear relaxation modulus Gp(t), from which the characteristic

relaxation time can be obtained. Before discussing the Green-Kubo formula

below, it is worth noting that in models with HI, rather than the drag coef-

ficient ζ, it is more common to use the non-dimensional parameter h∗. For

these models, therefore, the parameter h∗ must be chosen such that the desired

value of λη can be obtained.

The Green-Kubo formula relates Gp(t) to the equilibrium autocorrelation of

the quantity Sxy = Qx∂U/∂Qy by the expression

Gp = 〈Sxy(t)Sxy(0)〉eq (C.3)
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Table C.1: End-to-end vector and characteristic relaxation time for different micro-
scopic constitutive models [Bird et al., 1987b]

Constitutive model R2
e/3 λη

Hookean kBT/H λH

FENE-P kBT (b− 3)/Hb λH(b− 3)/b
FENE kBT (b− 5)/Hb λH(b− 5)/b

It can be shown that λη is related to Gp by [Bird et al., 1987b]

λη

λH

=

∫ ∞

0

Gp(t) dt (C.4)

For Hookean dumbbells with HI, λH is related to h∗ by

λH =
3

2

( π

H

)3/2 √

kBT ηsh
∗ (C.5)

Equations (C.4) and (C.5) can be combined to give

2λη

3 (π/H)3/2 √kBT ηs

= h∗
∫ ∞

0

Gp(t) dt (C.6)

The right hand side of the equation above depends only on h∗, and can be

determined once and for all, for any appropriate value of h∗.

Here, the right hand side is determined by carrying out equilibrium Brownian

dynamics simulations. Basically, the product Sxy(t)Sxy(0) is evaluated after

each time step for every equilibrium trajectory, and the average of this product

at any time over the ensemble of trajectories gives the autocorrelation function

in Eq. (C.3). The values of Gp(t) obtained in this manner are then integrated

with respect to t using numerical quadrature. The dependence of the left hand

side of Eq. (C.6) on h∗, determined in this manner, can be plotted as shown

in Fig. C.1. For any given value of λη and ηs and calculated value of H, the

corresponding value of h∗ to be used in a microscopic model with fluctuating

HI, can consequently be determined from the curve in Fig. C.1.
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Figure C.1: Characteristic relaxation time of Hookean dumbbells with hydrody-

namic interaction. C1 =
2

3 (π/H)3/2 √kBT ηs

. The line drawn is for guiding the eye.

The error bars in the Brownian dynamics simulations are much smaller than the
size of the symbols.



Appendix D

Derivation of the Jacobian Matrix

For the Configuration Fields

Equation

Here, analytical Jacobian entries of the configuration field equation for FENE force

are computed. From Eq. (3.39)

G = Qn+1

(

1 − Q2
n+1

b
+
H ∆t

ζ

)

− Γ

(

1 − Q2
n+1

b

)

Gi = Qi, n+1

(

1 − Q2
n+1

b
+
H ∆t

ζ

)

− Γi

(

1 − Q2
n+1

b

)

Gα
i =

∫

Ωe

[

Qi, n+1

(

1 − Q2
n+1

b
+
H ∆t

ζ

)

− Γi

(

1 − Q2
n+1

b

)]

ψαdΩe

(D.1)

The Jacobian entries are obtained by differentiating Eq.(D.1) with the respect to

Qβ
j, n+1. With Qi, n+1 = Qγ

i, n+1 ϕ
γ
Q and J

αβ
ij =

∂Gα
i

∂Qβ
j, n+1

J
αβ
ij =

∫

Ωe

[

(

1 − Q2
n+1

b
+
H ∆t

ζ

)

∂Qi, n+1

∂Qβ
j, n+1

− Qi, n+1

b

∂Q2
n+1

∂Qβ
j, n+1

+
Γi

b

∂Q2
n+1

∂Qβ
j, n+1

]

ψαdΩe

(D.2)
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The first derivative on the RHS of Eq. (D.2) is:

∂Qi, n+1

∂Qβ
j, n+1

= ϕγ
Q

∂Qγ
i, n+1

∂Qβ
j, n+1

= ϕγ
Qδ

γβ
ij = ϕβ

Qδij (D.3)

The derivative appearing in second and third term on the RHS of Eq. (D.2) is:

∂Q2
n+1

∂Qβ
j, n+1

=
∂(Qn+1 · Qn+1)

∂Qβ
j, n+1

= 2Qn+1 ·
∂Qn+1

∂Qβ
j, n+1

=2Qk, n+1
∂Qk, n+1

∂Qβ
j, n+1

= 2Qk, n+1ϕ
γ
Q

∂Qγ
k, n+1

∂Qβ
j, n+1

=2Qk, n+1ϕ
γ
Q δ

γβ
kj = 2Qk, n+1 ϕ

β
Qδkj

=2Qj, n+1 ϕ
β
Q

(D.4)

Combining equations (D.2), (D.3) and (D.4), we get

J
e,αβ
ij =

∫

Ωe

[(

1 − Q2
n+1

b
+
H ∆t

ζ

)

δij −
2

b
Qi, n+1Qj, n+1 +

2

b
ΓiQj, n+1

]

ψα
Qϕ

β
Q dΩe

(D.5)



Appendix E

Equivalence of Newton’s Method

and LSC Method for a Linear

Dumbbell Model

Here, we show analytically that for linear dumbbell models both the Newton’s

method and the LSC method are identical.

For a linear dumbbell model Eq. (3.38) is

Qn+1 =
Γ

1 + (Λ ∆t/ζ)
(E.1)

Equation (E.1) is a linear equation in Qn+1. The finite element discretization of

Eq. (E.1) results in a set of linear equations for each configuration field which can

then be solved with Newton’s method. Thus, for each configuration field:

∑

β

J
e, αβ ∆Υ

e, β
n+1 = −R

e, α
Q (E.2)

R
e, α
Q is the elemental residual vector given by

R
e, α
Q =

∫

Ωe

[

Qn+1 −
Γ

1 + (Λ ∆t/ζ)

]

ψα
Q dΩe (E.3)

evaluated using the configuration fields at the previous Newton iteration. With
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Q =
∑

β

Qβϕβ
Q and Υ

e, β
n+1=

(

Qβ
n+1

)

, the above equation can also be written as

R
e, α
Q =

∑

β

Qβ

∫

Ωe

ψα
Qϕ

β
Q dΩe −

∫
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Γ
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Q dΩe

=
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β
Q dΩe −

∫

Ωe

Γ

1 + (Λ ∆t/ζ)
ψα

Q dΩe

(E.4)

J
e, αβ is the elemental Jacobian matrix obtained by differentiating Eq. (3.39) with

respect to Qβ
n+1. The components of the J

e, αβ are

J
e,αβ =

∫

Ωe

δ ψα
Qϕ

β
Q dΩe (E.5)

independent of the configuration fields.

It can be seen from Eq. (E.5) that the Jacobian matrix is a diagonal matrix.

Eq. E.2 can be rewritten as:

∑

β

(∫

Ωe

δ ψα
Qϕ

β
Q dΩe

)

(

Υ
e, β
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β
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(E.6)

which can be further simplified as:

∑

β

∫

Ωe

Υ
e, β
n+1δ ψ

α
Qϕ

β
Q dΩe =

∫

Ωe

Γ
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∫

Ωe

Qn+1ψ
α
Q dΩe =

∫

Ωe

Γ

1 + (Λ ∆t/ζ)
ψα

Q dΩe (E.8)

Equation (E.8) is same as the Eq. (3.47) with Q̃n+1 as

Q̃n+1 =
Γ

1 + (Λ ∆t/ζ)
(E.9)
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Zylka, W. and Öttinger, H. C. (1991). Calculation of various universal properties

for dilute polymer solutions undergoing shear flow. Macromolecules, 24:484–494.


