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Abstract

A numerical method based on a fluid-structure interaction formulation is used to un-

derstand the role of viscoelasticity on flow in a two-dimensional collapsible channel.

Three different viscoelastic fluid models have been considered - the Oldroyd-B, the

FENE-P and Owens model for blood [R. G. Owens, A new microstructure-based con-

stitutive model for human blood, J. Non-Newtonian Fluid Mech. 140 (2006), 57-70].

Initially the collapsible wall is considered as a zero thickness membrane model. Sub-

sequently the collapsible wall is modelled as an incompressible neo-Hookean solid.

Experiments in micro collapsible channels have also been performed.

At present, there are no models in the literature that simultaneously account for the

elastic nature of the collapsible wall and the non-Newtonian rheology of the flowing

fluid. In this study, for the first time, a viscoelastic fluid-structure interaction model

has been developed that accounts for a viscoelastic fluid and a finite thickness elas-

tic wall, and the resulting governing equations are solved with a sophisticated finite

element method. The rheological behaviour of the viscoelastic fluids is described in

terms of a conformation tensor model. The mesh equation and transport equations are

discretized by using the DEVSS-TG/SUPG mixed finite element method. The compu-

tational method developed in this work is validated by comparing with the available

analytical and numerical results.

While considering viscoelastic flow in a two-dimensional collapsible channel with

a zero-thickness membrane, a distinct difference has been observed in the collapse wall

profile for the Oldroyd-B, FENE-P and Owens model as compared to a Newtonian

fluid at low values of membrane tension. The shape change of the collapsible wall

depends on the Weissenberg number (Wi) for the Oldroyd-B and FENE-P fluids. The

shape change in Owens model is essentially due to its shear thinning property. There is

a limiting Weissenberg number beyond which computations fail, which increases with

mesh refinement and decreases with decrease in membrane tension.

One of the major outcomes of the zero-thickness membrane model study is that the
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significant differences that arise amongst the different viscoelastic fluids in the predicted

value of the tangential shear stress on the membrane surface, has no influence on the

shape of the deformable membrane, because of the boundary condition adopted in the

model. Essentially it is assumed that the shape of the membrane is governed only by the

normal stresses acting on it. In order to use a more realistic model for the collapsible

wall, the zero-thickness membrane model has been replaced by a deformable finite

thickness elastic solid which accounts for the effect of shear stress on membrane shape.

The limiting Weissenberg number beyond which computations fail to converge is found

to be sensitive to the choice of viscoelastic model and depends on a dimensionless solid

elasticity parameter Γ. The shape of the fluid-solid interface and the stress and velocity

fields in the channel, for the three viscoelastic fluids, are compared with predictions

for a Newtonian fluid, and the observed differences are related to individual fluid

rheological behaviour. Predictions with a finite thickness elastic solid model for the

deformable wall differ considerably from those in which it is modelled as a zero-

thickness membrane.

Experiments have been carried out in a micro-collapsible channel made of poly-

dimethysiloxane (PDMS) that mimics the numerically simulated geometry. The exper-

iments show that the channel width perpendicular to the flow must be significant in

order for wall effects to be negligible (an assumption that is made in the 2D simulation).

As a consequence, the commercial software ANSYS has been used to develop a full 3D

model of the channel which captures the deformation of the flexible membrane in the

absence of flow. The elastic properties of PDMS have been extracted by comparing the

load-displacement curves obtained from the FEM simulations with the experiments.

Preliminary comparison has been made between simulations and experiments for the

flow of a Newtonian fluid in the micro-collapsible channel.
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Chapter 1

Introduction

Simulating blood transportation through the human cardiovascular system numeri-

cally is an intense area of research [Robertson et al., 2008], since cardiovascular diseases

are one of the major threats in the modern world. Blood supplies oxygen and nutrients

to tissues and is transported from the ventricles of the heart to capillaries in organs and

tissues of the body by the vessels known as arteries. Different body activities require

constant maintenance of blood pressure in the human body. In response to the vary-

ing flow rate and external forces, an artery changes its diameter to keep the pressure

constant and any deviation from this expected response can cause an increase in blood

pressure or a localized reduction in blood flow. The reduction in blood flow causes

unnatural growth in the arterial wall thickness by facilitating the deposition of choles-

terol on the arterial wall. The thickening of the artery wall promotes cardiovascular

diseases, such as stenosis or arteriosclerosis, circulatory disorders and kidney failure.

This immense importance of blood flow in the human body has motivated many re-

searchers to understand and model the mechanism in both healthy and pathological

cases.

The aim of this work is to lay a foundation for the study of blood flow in small blood

vessels by considering the viscoelastic nature of blood and the elastic nature of blood

vessel walls. In this introduction, we first present brief overviews of blood rheology,

artery wall modelling and fluid-structure interaction. Often many researchers have

modelled the phenomenon of artery wall constriction and expansion by studying flow

through collapsible channels and tubes. A brief literature survey of flow through

collapsible channels is presented. In order to validate our fluid-structure interaction

model through experiments, we have made use of a microfluidic device which we

describe briefly. Finally, a outline of this work concludes the introduction.

1
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1.1 Blood rheology and modelling

Blood is a concentrated suspension of multiple components, with a complex rheological

behaviour, that interacts with the walls of blood vessels both chemically and mechan-

ically to give rise to an intricate fluid-structure interaction. Consequently, obtaining a

quantitative description of physiological blood circulation requires a thorough in-depth

insight into the blood rheology, along with the flow dependence on the architectural

and mechanical properties of the vascular system. Typically the flow of blood in small

vessels, such as arterioles, venules, and capillaries is referred to as the microcirculation,

while flow in larger arteries is referred to as the macrocirculation. From the fluid me-

chanics viewpoint, the distinction between the micro and macrocirculation is generally

based on the Reynolds number, Re. Microcirculation corresponds to flows where Re

is small, and inertial forces can be neglected; while macrocirculation corresponds to

flows where inertial forces are significant. Although blood flow in micro and macro-

circulation share a fundamental common feature: the interaction between blood and

vessel walls, there are still significant differences that require a completely different

approach to model each of them. For instance, in the medium to large arteries of the

macrocirculation, since Reynolds numbers are high, tube diameters large and blood can

be considered to be a Newtonian fluid, it has been well accepted that the Navier-Stokes

equations can be successfully used to predict blood flow [Robertson et al., 2008]. Most

studies in the literature on fluid-structure interaction issues in the context of blood flow

so far have been focused on the macrocirculation. The viscoelastic property of blood

was first measured by Thurston [1972]. Parameters such as plasma viscosity, red blood

cell deformability, aggregation, and hematocrit cumulatively reflect the effects of blood

viscoelasticity. The shear thinning behaviour of blood is well established [Baskurt and

Meiselman, 2003; Popel and Johnson, 2005; Robertson et al., 2008]. At low shear rates

the apparent viscosity is high. This apparent viscosity decreases with increasing shear

and approaches a minimum value under high shear forces [Chien, 1975; Merrill, 1969;

Rand et al., 1964]. It is clear that models for blood flow in the microcirculation cannot

ignore the particulate nature of blood which leads to non-Newtonian behaviour at low

shear rates. This necessitates the consideration of its shear thinning, viscoelastic and

thixotropic nature [Baskurt and Meiselman, 2003; Cristini and Kassab, 2005; Popel and

Johnson, 2005; Robertson et al., 2008; Sequeira and Janela, 2007]. To the best of our

knowledge, so far there have been no studies of fluid-structure interaction issues asso-

ciated with the flow of viscoelastic fluids in vessels with compliant walls. The present
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research aims to examine the flow of a variety of model viscoelastic fluids in a simple

two-dimensional collapsible channel. It is hoped that this preliminary study will lay

the foundation for understanding the interaction of more realistic models of blood and

blood vessels.

The shear thinning behaviour of blood has its origins in the tendency of red blood

cells to aggregate into linear arrays, termed rouleaux, in which they are arranged

like stacks of coins. These aggregates also interact with each other to form three-

dimensional structures. Since reduced shear favours aggregation of red blood cells, the

viscosity of blood increases significantly at low shear rates. However, with increasing

shear rate, the size of the aggregates diminishes, leading to a reduction in the viscosity.

To date, a range of models has been proposed for describing the rheological behaviour of

blood [Anand et al., 2003; Moyers-Gonzalez et al., 2008a; Owens, 2006; Quemada, 1993,

1999; Sun and Kee, 2001; Williams et al., 1993; Yeleswarapu et al., 1998]. Models that

account for the viscoelastic nature of blood are typically generalized Maxwell models.

In these models, the relaxation time and shear viscosity depend on a structural variable

that describes the aggregation/disaggregation of red blood cells. The structural variable

typically obeys an evolution equation. Among the various available models, the recent

models proposed by Owens and co-workers [Moyers-Gonzalez et al., 2008a; Owens,

2006] use a micro-structural framework based on transient polymer network theory

to derive the evolution equation for the structural variable. Apart from the appeal of

the rigorous foundation for the derivation of the evolution equation, predictions of the

models developed by Owens and co-workers also compare very well with a range of ex-

perimental observations of the rheological behaviour of blood [Fang and Owens, 2006;

Moyers-Gonzalez et al., 2008b; Owens, 2006]. Owens’ original model [Owens, 2006]

was derived in the context of homogeneous flows. In order to take into account com-

plex blood flow phenomenon such as the Fåhraeus [Fåhraeus, 1929] and Fåhraeus and

Lindqvist [Fåhraeus and Lindqvist, 1931] effects, Owens and co-workers recently have

extended their model to treat non-homogeneous flows [Moyers-Gonzalez et al., 2008a].

In this study, we have adopted Owens’ original homogeneous flow model [Owens,

2006] as the benchmark model to study the flow of blood in a compliant channel. As in

the case of other models for viscoelastic fluids derived from kinetic theory for homoge-

neous flows, the homogeneous flow model can be applied to non-homogeneous flows

by simply treating the time derivative of stress as a substantial derivative rather than a

partial derivative. This assumption is justified by assuming that the velocity gradients
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do not vary significantly on the length scale of the microstructure. Since this is a pre-

liminary study of fluid-structure interaction issues in the context of viscoelastic fluids,

we have considered the simpler of the two Owens models for blood. Further, since to

the best of our knowledge no viscoelastic model has been examined in this geometry

previously, we have also computed the flows of two other viscoelastic fluids, namely,

the Oldroyd-B and FENE-P fluids, which are also derived on the microscopic scale

for homogeneous flows, and commonly used to compute complex non-homogeneous

flows. Henceforth in this paper, whenever we refer to Owens’ model, we indicate the

homogeneous flow model.

1.2 Artery wall rheology and modelling

In the arterial vascular network, as one moves from the aorta to the capillary beds

of individual organs, the number of arteries becomes larger and the wall thickness to

diameter ratio also becomes larger (approximately 0.125 in aorta and 0.4 in arterioles).

The aorta is the largest artery which has its origin in the heart, while arterioles, the

smallest arteries, carry blood to very thin capillaries in which the exchange of oxygen,

nutrients and metabolites between blood and tissues takes place. There are four major

components which determine the viscoelastic behaviour of the artery walls, smooth

muscle cells, elastin, viscous ground substance and collagen [Hayashi, 2003; Kalita and

Schaefer, 2008]. The inelastic and viscoelastic behaviour of the artery walls remote

from the heart is due to the decrease in the ratio of elastin to collagen [Kalita and

Schaefer, 2008]. In the histological structure of the artery wall, three layers can be

distinguished, in order from the inner most to the outer most: an intima, a media and

an adventitia [Holzapfel, 2003; Kalita and Schaefer, 2008; Quarteroni et al., 2000]. The

media is the thickest layer of the artery wall which is rich in elastin and smooth muscle

cells and is considered as the most significant layer responsible for the elastic properties

of the artery wall [Holzapfel, 2003].

Stephen Hales first considered the elasticity of artery walls. and invented the

Windkessel (air kettle) theory. Lumped models or 0D models based on the Windkessel

model or modified versions of it are represented by electrical circuits, consisting of a

parallel capacitor and a resistor, [Stergiopulos et al., 1999]. Simple 0D or 1D models

are easy to use for numerical computations, however their applicability in predicting

physiological phenomena is restricted, since these models usually neglect the essential

properties of the artery walls, such as nonlinear elasticity. On the other hand some
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2D models (such as a Koiter shell) which considers some of the basic features of the

artery wall are promising in their prediction of physiological phenomena. A detailed

description of different artery wall models can be found in Kalita and Schaefer [2008].

A nonlinear Koiter shell model represents the artery wall as a thin structural wall,

although artery walls are thick and heterogeneous over the thickness. Quarteroni et al.

[2000] have used the equation of a thin rod to represent the artery wall behaviour

in their fluid-structure interaction studies. Canic and Mikelic [2003] and Canic et al.

[2006] proposed a linearly viscoelastic cylindrical axisymmetric Koiter shell model for

artery wall modelling. This model shows excellent agreement with the experimental

results. However the models for artery walls in the microcirculation where artery wall

thickness to vessel diameter ratio is much larger, cannot ignore the non-zero thickness

of the artery wall. In the present study we have represented the artery wall as an

incompressible neo-Hookean solid with finite-thickness.

1.3 Fluid-structure interaction

Fluid flow within a flexible structure is regulated by the stresses imposed upon the

structure by both the fluid and any external forces. Thus, the rheological properties

of both the fluid and the structure significantly influence the fluid flow in the system.

The viscous and elastic stresses and fluid pressure exerted on the boundaries of the

flexible wall cause its deformation. Due to the deformation of the flexible structures,

the flow domain and flow field alters and gives rise to an intricate fluid-structure

interaction problem which requires the solution of a free-boundary problem. Here the

location of the boundary is not known a priori and its evolution completely depends

on the dynamical balance between the fluid flow and structural movement. It is well

known that the numerical simulation of free boundary flows of Newtonian fluids

is a very challenging task. Incorporation of viscoelastic fluid and structure in the

free-boundary problem introduces additional variables and nonlinearities. Although

there has been significant progress on addressing the challenges of the fluid-structure

interaction problem, most of the research in this area has dealt with Newtonian fluids.

Also, the elastic nature of the artery wall has not been addressed accurately. To our

knowledge, no model has been developed to simultaneously consider the elastic nature

of a thick artery wall and the non-Newtonian character of blood. The most significant

and innovative aspect of this research project is the development of a fluid-structure

interaction model capable of describing the flow of shear thinning, viscoelastic blood
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through an elastic artery.

Several techniques have been proposed for the numerical solution of fluid-structure

interaction problems. The Immersed Boundary Method developed by Peskin [1977],

originally developed to study fluid motion in the heart, was successfully used to model

a variety of fluid-structure interaction phenomena (e.g. platelet aggregation during

blood clotting [Fogelson, 1984], aquatic animal locomotion [Fauci, 1988], suspended

particles in three-dimensional Stokes flow [Fogelson and Peskin, 1988], and three-

dimensional heart motion [Peskin and McQueen, 1989], peristaltic pumping of solid

particles [Fauci, 1992], fluid dynamics of the inner ear [Beyer, 1992], sperm motility in

the presence of boundaries [Fauci and McDonald, 1995], bacterial swimming [Dillon

et al., 1995], biofilm processes [Dillon et al., 1996], myogenic response of the arteriolar

wall [Arthurs et al., 1998], spinning of elastic filament in a viscous incompressible

fluid [Lim and Peskin, 2004], biofilm growth [Duddu et al., 2008], blood flow in a

compliant vessel [Kim et al., 2009], flow-induced deformation of three-dimensional

capsules [Sui et al., 2008, 2010]). In the Immersed Boundary Method, usually the

action of the boundary on the fluid arises from a body force included in the Navier-

Stokes equations, and the boundary, as a consequence of the no-slip condition, is

required to move at the local fluid velocity. Generally fluids are described by Eulerian

formulations, whereas structures are expressed by Lagrangian formulations. While

solving for the combined case some kind of mixed description known as the Arbitrary

Lagrangian Eulerian (ALE) formulation is employed frequently to account for the

domain deformability [Bathe et al., 1995; Bathe and Zhang, 2004; Bathe et al., 1999;

Quarteroni et al., 2000]. The ALE-finite element method is based on mapping the

deformed computational domain to a convenient fixed reference domain by means of

a mapping that satisfies elliptic equations [Christodoulou and Scriven, 1992; deSantos,

1991] or the deformation equations of a pseudo-solid [DE Almeida, 1999; Sackinger

et al., 1996a]. To compute Newtonian free surface flow problems ALE-FEM is efficient

and effective [Christodoulou and Scriven, 1992; Sackinger et al., 1996a]. Carvalho and

Scriven [1997] proposed a fluid-structure interaction formulation to solve roll cover

deformation in roll coating flows, where the rubber roll cover was modelled as an

incompressible Mooney-Rivlin solid. In order to solve the problem of blood flow in

the microcirculation, we decided to use the finite thickness neo-Hookean solid model

which would account for the effect of the shear stress on membrane shape [Carvalho,

2003; Carvalho and Scriven, 1997] and realistic constitutive equations for blood [Fang

and Owens, 2006; Owens, 2006].
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Figure 1.1: Geometry of the 2D collapsible channel; the segment BC is an elastic membrane.

Here, Q is the flow rate, pe is the external pressure on the membrane, pd is the pressure on the

wall at the downstream boundary, W is the width of the channel, L the length of the deformable

membrane, and h is the minimum height of the gap between the bottom wall of the channel

and the deformable membrane.

1.4 Flow in collapsible channels

Laboratory experiments performed on flow through collapsible tubes have demon-

strated the complex and nonlinear nature of the dynamics of such a system, with a

multiplicity of self-excited oscillations [Bertram, 1982, 1986, 1987; Bertram and Cas-

tles, 1999; Bertram and Elliott, 2003; Bertram and Godbole, 1997; Bertram et al., 1990,

1991; Brower and Scholten, 1975; Conrad, 1969]. The earliest and simplest theoretical

models of collapsible-tube flow were lumped-parameter [Katz et al., 1969] and one di-

mensional models [Jensen, 1990; Shapiro, 1977], followed by two-dimensional models.

The simplest numerical model discussed so far in the literature, that captures some of

the rich behaviour observed in these experiments, is a 2D model with fluid flowing

in a rigid parallel sided channel, where part of one wall is replaced by a membrane

under tension (Fig. 1.1). This geometry has been studied extensively in the case of

Newtonian fluids, with early models treating the flexible wall as an elastic membrane

of zero thickness, with stretching along the flow direction and bending stiffness of the

membrane neglected [Heil and Jensen, 2003; Lowe and Pedley, 1995; Luo and Pedley,

1995, 1996; Rast, 1994]. While initial studies appeared to suggest that in the range

of Reynolds numbers and transmural pressures considered, a converged numerical

solution could only be achieved for relatively large values of membrane tension [Luo

and Pedley, 1995; Rast, 1994], Luo and Pedley [1996] subsequently found that with the
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help of an algorithm capable of time dependent simulations, converged steady state

solutions could be obtained at arbitrary values of membrane tension, for sufficiently

small values of the Reynolds number. Interestingly, Luo and Pedley [1996] showed

that self-excited oscillations developed when the membrane tension was reduced be-

low a critical value for sufficiently large Reynolds numbers. The membrane model

assumes that the bending stiffness and extensibility of the wall in the flow direction

can be ignored, and that the movement of the elastic wall is only in the direction nor-

mal to the wall. More recently, this basic model has been improved by using a plane

strained elastic beam model for the collapsible wall with a Bernoulli-Euler beam, a

Timoshenko beam and a 2D-solid model [Cai and Luo, 2003; Liu et al., 2009a; Luo et al.,

2007]. It was found that wall stiffness plays a major role in attaining a steady solution,

and for very small wall stiffness, the results of the beam model compare favourably

with those of the membrane model. Research is also in progress on extending these

models to describe 3D compliant tubes [Hazel and Heil, 2003; Jensen and Heil, 2003;

Liu et al., 2009a; Marzo et al., 2005; Xie, 2006; Xie and Pasquali, 2003]. Many of the

complex dynamical features observed experimentally have been reproduced in these

simulations. Attempts to understand the origin of self-excited oscillations have also

been performed [Heil and Waters, 2008; Jensen and Heil, 2003]. However, as mentioned

earlier, in all these studies the fluid has always been treated as Newtonian. In this work,

we focus our attention on the simple 2D model introduced by Pedley and co-workers

as the starting point to investigate the behaviour of fluid-structure interaction issues

that arise with viscoelastic liquids. Using a step-wise approach, initially the elastic wall

has been represented by a zero-thickness membrane model. Subsequently, simulations

have been carried out for flow in a two-dimensional collapsible channel by considering

the deformable wall to be a finite-thickness incompressible neo-Hookean solid and the

channel dimensions to be compatible with those of the microcirculation. Such a study

will hopefully form the basis for more sophisticated explorations of fluid-structure

interactions in the microcirculation.

1.5 Experiments on flow in a collapsible microchannel

Fascinated by microscale fluid dynamics, many researchers have performed experi-

ments on microfluidic systems to characterize fluid flow in them. Hence over the past
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fifteen years, large efforts have been made in developing techniques to fabricate mi-

crofluidic systems in silicon, glass, quartz and polymers. However polydimethysilox-

ane (PDMS) microfluidic devices, fabricated using a soft lithographic technique, are

gaining popularity because of the excellent optical transparency, gas permeability, bio-

compatibility and elasticity of PDMS [Duffy et al., 1998; Leclerc et al., 2003]. The

research work on PDMS microfluidic systems can be broadly divided into two dif-

ferent categories, one where only microchannels are considered for different chemical

and pharmaceutical applications [Leclerc et al., 2003; Whitesides, 2006] and the other

where microchannels with flexible PDMS membranes (membrane-based micropumps)

are employed for controlling fluid flow [Unger et al., 2000; Vestad et al., 2004; Wang

and Lee, 2006]. The characterization of fluid flow in microchannels and comparison

with conventional theories are well established as evidenced by the work of different

researchers [Hrnjak and Tu, 2007; Kandlikar et al., 2005; Kumar et al., 2011; Meinhart

et al., 1999; Peiyi and Little, 1983; Pfund et al., 2000; Vijayalakshmi et al., 2009]. Fur-

thermore, studies on membrane-based micropumps have started recently [Hohne et al.,

2009; Huang et al., 2009; Irimia et al., 2006; Unger et al., 2000] because of the complicated

fabrication process.

In recent years, pneumatically actuated micron size pumps are gaining importance

because of their wide use in fluid manipulation in lab-on-a-chip applications (e.g.,

measuring neutrophil migration [Irimia et al., 2006], precise handling of cell suspen-

sions [Irimia and Toner, 2006], micro filter modulated by pneumatic pressure for cell

separation [Huang et al., 2009] and liquid transport and mixing [Weng et al., 2011]).

Since moving boundaries or surfaces do pressure work on the working fluid in the

most widely reported pneumatic micropumps, they are categorized as reciprocating

displacement pumps. The moving boundary performs the action of a piston. PDMS is

often used as the diaphragm material for these types of pumps because of its wide range

of flexibility [Friend and Yeo, 2010; Fuard et al., 2008; Hohne et al., 2009; Thangawng

et al., 2007]. Unger et al. [2000] first demonstrated the power of multilayer soft lithog-

raphy by fabricating a membrane-based micropump made of elastic polymer. Initially

patterned photoresist molds are created for the fluid channel and pressure chamber

using soft lithography and individual elastomer layers are cast using these molds. Fi-

nally, multilayer pumps consisting of a fluid channel, pressure chamber and flexible

membrane are constructed by bonding these different layers using plasma bonding.

This micropump drives the working fluid through the channel by the continuous pul-

sation of the flexible membrane actuated by the pressure chamber. Because of the
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relatively lower cost and simpler fabrication approach, multilayer soft lithography has

been extensively used to fabricate micropumps for different applications [Hohne et al.,

2009; Studer et al., 2004]. The behaviour of this type of micropump is governed by

several controlling parameters, such as the viscosity of the flowing fluid, the elasticity

of the membrane and dimension of the channel. However in order to investigate fluid-

structure interaction in this type of micropump, it is necessary to first introduce the

conventional theory for predicting the experimentally observed fluid flow behaviour.

The length scale at which fluid flow occurs in microfluidic devices is entirely dif-

ferent from the large-scale flows that are familiar to most industrial engineers. Fluid

flowing in a conventional microfluidic channel with characteristic length scale in the

sub-millimeter range, is identified by low velocity and hence small Reynolds numbers.

Thus in order to understand fluid flow phenomenon at the microscale, successful devel-

opment of fabricated microfluidic devices is necessary. It is widely acknowledged that

the experimental observations conducted in macroscale channels can be well predicted

by the Navier-Stokes equation. Experimental research efforts in the area of microscale

fluid flow have considered various flow rates, different fluids, different cross-sectional

geometries (circular, rectangular, triangular, trapezoidal, hexagonal, etc.) to obtain fric-

tion factor versus pressure drop measurements and compare them with the prediction

of conventional theory. However, discrepancies have been reported in the literature

while comparing the experimental data of pressure drop occurring in microchannel

flow devices with the predictions of conventional theories [Hrnjak and Tu, 2007; Judy

et al., 2002; Kandlikar et al., 2005; Kohl et al., 2005; Meinhart et al., 1999; Peiyi and Little,

1983; Peng et al., 1995; Pfahler et al., 1989; Pfund et al., 2000; Vijayalakshmi et al., 2009].

The discrepancy is related to the different degrees of surface roughness, inaccurate

measurements of channel dimensions and unexplained corrections for inlet and exit

losses [Celata et al., 2009; Kumar et al., 2011; Steinke and Kandlikar, 2006]. Thus, in or-

der to describe fluid flow in microchannels with the help of conventional theories, much

effort is still required in fabricating microfluidic devices effectively. As mentioned ear-

lier most people these days accept the validity of continuum mechanics for describing

microscale flow, however it is the approximations used to simplify and hence solve the

Navier-Stokes equations that are questionable. To the best of our knowledge, most of

the experiments on flow through a collapsible tube [Bertram, 1982, 1986, 1987; Bertram

and Castles, 1999; Bertram and Elliott, 2003; Bertram and Godbole, 1997; Bertram et al.,

1990, 1991; Brower and Scholten, 1975; Conrad, 1969] were carried out in large diameter

tubes (13-15 mm) for high Reynolds number (>100). In the microcirculation, arterioles
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have a diameter in the range of 100 to 300 µm. To the best of our knowledge, there is

no evidence in the literature of the use of a collapsible microchannel. In this study, we

investigate the fluid flow in a collapsible microchannel made of PDMS. To characterize

the elastic properties of PDMS, initially the deformation of the thin PDMS membrane is

measured without fluid flow in the channel. Upon establishing the PDMS properties,

fluid is introduced in the channel and different parameters are studied.

The plan of the thesis is as follows. The finite element formulation of the gov-

erning equations for the viscoelastic fluids and incompressible neo-Hookean solid are

presented in Chapter 2. The results for the flow of the three viscoelastic fluids in a

two-dimensional channel partly bounded by a zero-thickness membrane under con-

stant tension is presented in Chapter 3. Chapter 4 represents the influence of shear

thinning on viscoelastic fluid-structure interaction in a two-dimensional collapsible

channel. Chapter 5 presents steady viscoelastic flow in a two-dimensional channel in

which part of one wall is replaced by a deformable finite thickness elastic solid. The

experimental results on micro-collapsible channel are reported in Chapter 6. Finally,

concluding remarks are drawn in Chapter 7.



Chapter 2

Finite Element Formulation for the

Interaction of a Viscoelastic Fluid and a

Finite-Thickness Elastic Wall

In this chapter, the computational method for solving the interaction of viscoelastic

fluids with an incompressible neo-Hookean solid model is presented. The govern-

ing equations are discretized using the finite element method and the corresponding

weighted residuals and Jacobian matrices are also discussed.

It is well known that in medium-to-large arteries, such as the coronary arteries

(medium) and the abdominal aorta (large), the Navier-Stokes equations for an in-

compressible viscous fluid are a good model for blood flow [Robertson et al., 2008].

However, it is clear that in models for blood flow in the microcirculation, where the

flow rates are low, one cannot ignore the rheological behaviour of blood as a shear-

thinning, viscoelastic fluid [Baskurt and Meiselman, 2003; Cristini and Kassab, 2005;

Popel and Johnson, 2005; Sequeira and Janela, 2007]. A Newtonian constitutive equa-

tion is not completely adequate for the description of viscoelastic fluids because of the

shear rate dependence of viscosity and the presence of elasticity. Viscoelastic fluids

are mainly characterized by the Weissenberg number (Wi), which is the ratio of the

characteristic time scale of the fluid to that of the flow. To model complex viscoelas-

tic fluids a constitutive equation is generally used to obtain the polymer contribution

to the Cauchy stress. The choice of constitutive equation is made to balance com-

putational efficiency, thermodynamic consistency of the models, and microstructural

insight. Most of the constitutive equations are either macroscopic models (conforma-

tion tensor based models, rate-type models [Bird et al., 1987a,b]) or mesoscopic models

12
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(stochastic differential equations based on bead-spring or bead-rod models [Bird et al.,

1987a,b]). The elastic stress tensor obtained by considering a macroscopic model does

not incorporate the detailed microstructural description of the flow. However, finer

details of the microstructure can be acquired by using mesoscopic models. Computa-

tional models based on a conformation tensor are less expensive computationally than

models based on more detailed microstructural representations of the liquid based on

bead-spring-rod models (e.g., stochastic methods such as CONFFESSIT [Feigl et al.,

1995], the Adaptive Lagrangian Particle method [Gallez et al., 1999], and Brownian

configuration fields Hulsen et al. [1997]. Recently viscoelastic flows in complex geome-

tries have been successfully modelled with a conformation tensor model for polymer

solutions [Bajaj et al., 2008; Pasquali and Scriven, 2002, 2004; Xie, 2006; Xie and Pasquali,

2004].

In conformation tensor based models, microstructural features of polymer solutions

can be represented by an independent variable, the conformation tensor (M), which

gives the microstructural state of a polymer molecule, and which is related to the

polymer contribution to the stress through an algebraic constitutive equation [Guenette

et al., 1992; Pasquali, 2000; Pasquali and Scriven, 2002]. The conformation tensor is

used to represent the microstructural state of the complex fluid, and leads to insight

into the stretch and orientation of the microstructure. Once the configuration and the

configurational distribution function is known the stress can be evaluated.

Over the last two decades, the use of the finite element method has dominated the

solution of viscoelastic flow problems. Several methods of solving the partial differen-

tial equations for such flows have been proposed. Baaijens [1998] provides an extensive

review on various developments of finite element techniques used to solve viscoelastic

flows. Additional stability issues arising from the coupling of the momentum equation

with the hyperbolic constitutive equation are addressed by employing the so-called

elastic viscous split stress (EVSS) formulation of Rajagopalan et al. [1990]. Several

successive variations have been proposed along the lines of the EVSS method: the

DEVSS (Discrete Elastic Viscous Split Stress) [Guenette et al., 1992], DEVSS-G (Discrete

Elastic Viscous Split Stress with interpolated velocity gradient) [Guénette and Fortin,

1995], DAVSS-G (Discrete Adaptive Elastic Viscous Stress Split with interpolated ve-

locity gradient) [Sun et al., 1999] and DEVSS-TG/SUPG (Discrete Elastic Viscous Split

Stress-Traceless Gradient, Streamline Upwind Petrov-Galerkin) [Pasquali and Scriven,

2002]. Furthermore, as is well known, most viscoelastic computations based on the con-

formation tensor break down numerically at some limiting value of the Weissenberg
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number due the development of large stresses, and stress gradients in narrow regions

of the flow domain. Recently, an important contribution for improving the conver-

gence of viscoelastic flow at high Weissenberg number has been addressed by Fattal

and Kupferman [2004, 2005], who developed the so-called Log-Conformation method.

It is worth noting, however, that the log-conformation tensor method has so far been

mainly applied to confined flows [Afonso et al., 2009; Coronado et al., 2007; Damanik

et al., 2010; Guńette et al., 2008; Hulsen et al., 2005], and to our knowledge, there are

very few studies of free surface flows with this method [Fortin et al., 2010; Tomé et al.,

2009].

The shape of the collapsible wall, deforming due to both the fluid and any external

forces, is unknown a priori and describing its evolution is a part of the solution.

Several methods have been developed to locate the unknown boundaries while solving

simultaneously the velocity, pressure and stress field in the fluid domain. The volume

of fluid (VOF) [Hirt and Nichols, 1981; Maronnier et al., 2003], boundary element

method (BEM) [Kaur and Leal, 2009; Rallison and Acrivos, 1978; Stone and Leal, 1990]

and the marker-and-cell (MAC) [Harlow and Welch, 1965] are boundary-mapping

techniques which are available to compute the free surface shape. These methods are

computationally cheaper than domain-mapping methods because they do not need to

solve internal mesh points. However, these methods are not suitable for the description

of a free surface where deformation is large, as the boundary shapes produced by

them are not smooth mathematical curves and often subjected to high errors. On the

other hand, domain-mapping methods such as elliptic mesh generation [Benjamin,

1994; Christodoulou and Scriven, 1992; deSantos, 1991; Pasquali and Scriven, 2002]

and domain deformation [DE Almeida, 1995, 1999; Lynch and OŃeill, 1980; Sackinger

et al., 1996b] have been used successfully to solve several complex free surface flow

problems [Bajaj et al., 2008; Pasquali and Scriven, 2002, 2004; Xie, 2006; Xie and Pasquali,

2004]. In this work, a boundary fitted finite element based elliptic mesh generation

method [Benjamin, 1994; Christodoulou and Scriven, 1992; deSantos, 1991] has been

used to simulate viscoelastic fluids. A DEVSS-TG/SUPG finite element method has

been used here to solve for the fluid velocity and stress fields, and the shape of the fluid

boundary using a numerical algorithm which was developed originally by Pasquali

and Scriven [2004].

The model formulation used here follows the seminal work of Carvalho and Scriven

[1997] who proposed a fluid-structure interaction formulation to solve roll cover de-

formation in roll coating flows, with the rubber roll cover modelled as incompressible
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neo-Hookean and Mooney-Rivlin solids. The constitutive equations of all the vis-

coelastic fluids considered here are written in conformation tensor form [Pasquali and

Scriven, 2004]. As is well known, it is possible to map the well known Oldroyd-B and

FENE-P models, which are typically written as constitutive equations for the polymer

contribution to stress, to equivalent conformation tensor models. The original model

by Owens [Owens, 2006] leads to a multi-mode model for the contribution of red blood

cells to the stress. However, with a view to obtaining a tractable model, Owens also

proposed a single mode model, that is believed to capture the contribution of the ag-

gregates containing the largest fraction of red blood cells. In order to incorporate the

Owens model into the numerical algorithm mentioned above, we have rewritten the

single mode constitutive equation for the stress in terms of an equivalent conformation

tensor expression.

2.1 Governing equations

2.1.1 Governing equations for fluid

The equations of motion for steady, incompressible flow in the absence of body forces

are:

∇ · v = 0 (2.1)

ρ v ·∇v = ∇ · T (2.2)

where ρ is the density of the liquid, v is the velocity, ∇ denotes the gradient. The

Cauchy stress tensor is T = −pI + τ s + τ p, where p is the pressure, I is the identity

tensor, τ s is the viscous stress tensor and τ p is the elastic stress tensor. The viscous

stress tensor is τ s = 2ηsD, where ηs is the solution viscosity and D = 1
2 (∇v + ∇vT) is

the rate of strain tensor.

Pasquali and Scriven [2002] derived an expression for the rate of change of conforma-

tion due to internal processes. Considering molecular stretch, rotation and relaxation

as independent processes, taking the vorticity as the average rate of rotation of micro-

structural molecules, and using isotropy and representation theorems, the transport
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equation of the conformation tensor can be written as [Pasquali and Scriven, 2002]:

0 =v ·∇M − 2ξ
D :M
I :M

M
︸        ︷︷        ︸

molecular stretching

− ζ
(
M ·D + D ·M − 2

D :M
I :M

M
)

︸                                  ︷︷                                  ︸
molecular relative rotation

−M ·W −WT ·M︸              ︷︷              ︸
solid-body rotation

+
1
λ0

(
g0I + g1M + g2M2

)
︸                   ︷︷                   ︸

molecular relaxation

(2.3)

where M is the dimensionless conformation tensor, W = 1
2 (∇v −∇vT) is the vorticity

tensor, λ0 is the characteristic relaxation time of the polymer, ξ(M) represents the

polymer resistance to stretching along the backbone, ζ(M) represents the polymer

resistance to rotation with respect to neighbours and g0(M), g1(M) and g2(M) define

the rate of relaxation of polymer segments.

The elastic stress tensor (τ p) is obtained from the conformation tensor (M) by

(Pasquali and Scriven [2002]):

τ p = 2(ξ − ζ)
(M − I)
I :M

M :
∂a
∂M

+ 2ζ(M − I) · ∂a
∂M

(2.4)

where a(M) is the Helmholtz free energy per unit mass of the polymeric liquid. The

constitutive functions (ξ(M), ζ(M), g0(M), g1(M), g2(M) and a(M)) whose forms depend

on the type of the constitutive relation chosen, are listed in Table 2.1 for the viscoelastic

fluids (the Oldroyd-B, the FENE-P and Owens models) used in the present work. Gp is

the polymer elastic modulus and bM is the finite extensibility parameter.

Table 2.1: Constitutive functions in the general conformation tensor model for the
different types of constitutive equations used in this work.

Model ξ(M) ζ(M) g0(M) g1(M) g2(M) a(M)
Oldroyd-B 1 1 -1 1 0 Gp

2 trM

FENE-P 1 1 -1 bM−1
bM− trM

3
0 3Gp(bM−1)

2 ln
(

bM−1
bM− trM

3

)

Owens’ Model 1 1 -1 1 0 Gp

2 trM

2.1.1.1 Viscoelastic fluid models

The three different conformation tensor based constitutive models used in this work

are described below.
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• Infinitely extensible molecules (Oldroyd-B model) Using the values of consti-

tutive functions (ξ = 1, ζ = 1, g0 = −1, g1 = 1, g2 = 0) as listed in Table 2.1, the

evolution equation of the dimensionless conformation tensor for the Oldroyd-B

model becomes

v ·∇M −∇vT ·M −M ·∇v = − 1
λ0
{M − I} (2.5)

The elastic stress for the Oldroyd-B model represented by the dimensionless

conformation tensor takes the form,

τ p =
ηp,0

λ0
{M − I} (2.6)

whereηp,0 is the contribution of the micro-structural elements to the zero shear rate

viscosity, andλ0 is the constant characteristic relaxation time of the microstructure.

• Finitely extensible molecules (FENE-P model) As shown in the Table 2.1, the

constitutive functions for FENE-P model are ξ = 1, ζ = 1, g0 = −1, g1 = (bM −
1)/(bM − trM

3 ), g2 = 0. The evolution equation of the dimensionless conformation

tensor for the FENE-P model is

v ·∇M −∇vT ·M −M ·∇v = − 1
λ0


bM − 1

bM − trM
3

M − I
 (2.7)

The finite extensibility parameter bM is defined as the ratio of the maximum

length squared of the microstructural element to its average length squared at

equilibrium. For the FENE-P model, the dependence of elastic stress on the

dimensionless conformation tensor is well known [Pasquali and Scriven, 2004]; it

takes the form,

τ p =
ηp,0

λ0


bM − 1

bM − trM
3

M − I
 (2.8)

• Owens blood model [Owens, 2006] The Owens blood model [Owens, 2006]

was originally presented in terms of a constitutive equation for the elastic stress

and has not yet been translated into conformation tensor form and studied in

complex flows. A conformation tensor version of the Owens model can be derived

straightforwardly,

v ·∇M −∇vT ·M −M ·∇v = − 1
λ
{M − I} (2.9)
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and the constitutive equation for polymer stress is given by,

τ p =
ηp,0

λ0
{M − I} (2.10)

It is interesting to note that the elastic stress Eq. (2.10) maintains the same form

for Owens’ model as in the Oldroyd-B model (Eq. (2.6)). However, the constant

relaxation time λ0 in Eq. (2.5) is replaced by a function λ in Eq. (2.9), representing

the relaxation time of the elastic stress due to blood cell aggregates. λ depends

on the average size of the blood cell aggregates, n, which is controlled by the

competition of spontaneous aggregation and flow-induced disaggregation. We

assume here n = nst(γ̇) as we are solving for steady flows. This choice preserves

the viscoelastic and shear thinning character of blood but does not capture its

thixotropic behaviour [Owens, 2006]. This simplification makes it unnecessary to

solve an additional equation for the variation of n in the flow domain. Under this

assumption, the relaxation time λ is

λ =

(
λH

ηp,∞

)
ηp(γ̇) (2.11)

where, λH is the relaxation time of individual blood cell aggregates, ηp,∞ is the

infinite shear-rate viscosity, and ηp(γ̇) is their contribution to blood viscosity given

by the Cross model,

ηp(γ̇) = ηp,0

(
1 + θ1γ̇m

1 + θ2γ̇m

)
(2.12)

where m is a power law index, and the ratio of parameters θ1 and θ2 satisfies the

expression, θ1/θ2 = ηp,∞/ηp,0 [Owens, 2006]. The values of all model parameters

are reported in Chapter 3 and Chapter 5.

2.1.2 Governing equations for the solid

Fig. 2.1 displays schematically the approach adopted by Carvalho and Scriven [1997]

while solving roll coating flow considering fluid-structure interaction. Although the

fluid and solid domains are represented as distinct domains, they are coupled at the

interface and the response of the solid is strongly affected by the response of the fluid,

and vice versa. The fluid domain (ΩF) is mapped by the elliptic mesh generation

method [Benjamin, 1994; Christodoulou and Scriven, 1992; deSantos, 1991] to a refer-

ence domain (Ω0F), where the fluid equations are solved. The deformed solid domain



2.1. Governing equations 19

Figure 2.1: Mapping between different domains

(ΩS) is mapped to the stress-free domain (ΩS) where the equations for the solid wall

are solved. Interestingly, the solution of the wall equations itself constitutes a map-

ping, and is consequently not solved separately. The mapping from the computational

domain (Ω0S) to the zero-stress configuration (ΩS) is known and it only requires a

change of domain of integration. If the acceleration and body forces are neglected, the

equilibrium equation in the current (deformed) configuration is simply

∇X · S = 0 (2.13)

where S is the first Piola-Kirchhoff stress tensor and is related to the Cauchy stress

tensor (σ) through

S = F−1 · σ (2.14)

where F is the deformation gradient tensor which relates the undeformed state [X = (X,

Y, Z)] to the deformed state [x = (x, y, z)] and can be expressed as,

F =
∂x
∂X

(2.15)
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The Cauchy stress tensor for a neo-Hookean material can be expressed as

σ = −πI + GB (2.16)

where π is a pressure-like scalar function, G is the shear modulus and B is the left

Cauchy-Green tensor which is expressed as B = F · FT

2.1.3 Mesh generation technique for moving boundaries

In the FEM, interface tracking can be achieved using many methods. To compute

free surface flows, the unknown physical domain is mapped onto a fixed reference

computational domain. This mapping (x = x(ξ)) connects the known and the unknown

domains. As shown in Fig. 2.1, the unknown physical domain is denoted by the

position vector x and the reference domain by ξ. In complex geometries the physical

domain cannot be mapped onto a simpler, quadrangular reference domain. In these

situations, it is usually convenient to subdivide the physical domain into subdomains

and then map each subdomain of the physical domain onto a separate subdomain

of the computational domain. Here we use a boundary fitted finite element based

elliptic mesh generation method [Benjamin, 1994; Christodoulou and Scriven, 1992;

deSantos, 1991; Pasquali and Scriven, 2002] which involves solving the following elliptic

differential equation for the mapping:

∇ · (D̃ ·∇ξ) = 0 (2.17)

where, ξ is a vector of positions in the computational domain and the dyadic, D̃, is

a function of ξ, analogous to a diffusion coefficient, which controls the spacing of the

coordinate lines [Benjamin, 1994].

To solve the above set of governing equations ((2.1), (2.2), (2.3) and (2.17)) with the

DEVSS-TG/SUPG finite element method an additional equation is required whose solu-

tion gives the interpolated velocity gradient, L. Pasquali and Scriven [2002] introduced

the following equation to keep L traceless:

L −∇v +
1

trI
(∇ · v)I = 0 (2.18)

In the transport equations the rate of strain tensor (D) and vorticity tensor (W) are
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calculated from this interpolated velocity gradient (L) as follows:

D =
1
2

(
L + LT

)
; W =

1
2

(
L − LT

)
(2.19)

Pasquali and Scriven [2002] proposed a modified expression for the viscous stress

tensor as a stabilization term to the momentum equation, which is as follows:

τ s = ηs

(
L + LT

)
+ ηa

(
∇v + ∇vT − L − LT

)
(2.20)

where ηa is a numerical parameter, whose value has no effect on the solution of the

problem as long as ηa ≡ ηs + ηp,0 [Bajaj et al., 2008; Pasquali and Scriven, 2002].

2.1.4 Finite element formulation of the problem

2.1.4.1 Weighted residual form of governing equations for fluid

The coupled set of transport equations for mass, momentum, interpolated velocity

gradient and conformation tensor along with the mesh equations is:

0 = ∇ · v (2.21)

0 = ρ v ·∇v −∇ · T (2.22)

0 = L −∇v +
1

trI
(∇ · v)I (2.23)

0 = v ·∇M − 2ξ
D :M
I :M

M − ζ
(
M ·D + D ·M − 2

D :M
I :M

M
)

(2.24)

−M ·W −WT ·M +
1
λ

(
g0I + g1M + g2M2

)
(2.25)

0 = ∇ · (D̃ ·∇ξ) (2.26)

(2.27)

The weighted residual form of governing equations is obtained by multiplying the

governing equations with appropriate weighting functions and then integrating over
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the flow domain, as follows:

rc,α =

∫

ΩF

ψαc ∇ · vdΩF (2.28)

rm,α =

∫

ΩF

ψαm
(
ρ v ·∇v −∇ · T)

dΩF (2.29)

RL,α =

∫

ΩF

ψαL

(
L −∇v +

1
trI

(∇ · v)I
)

dΩF (2.30)

RM,α =

∫

ΩF

ψαM

(
v ·∇M − 2ξ

D :M
I :M

M − ζ
(
M ·D + D ·M − 2

D :M
I :M

M
)

−M ·W −WT ·M +
1
λ

(
g0I + g1M + g2M2

) )
dΩF (2.31)

rx,α =

∫

ΩF

ψαx∇ · D̃ ·∇ξdΩF (2.32)

Here, ΩF is the unknown physical fluid domain, ψαc , ..,ψαx are sets of scalar weighting

functions defined in the physical domain, and rc,α,...,rx,α are the weighted residuals of

the equations. The first superscript (c, ..., x) on the residual denotes the relevant equa-

tion and second superscript α varies from 1 to the number of independent weighting

functions to be chosen for a particular equation.

The second order derivatives in Eqs. (2.29) and (2.32) are reduced to first order

derivatives by applying the divergence theorem and integrating by parts. The resulting

equations are

rm,α =

∫

ΩF

ψαmρ v ·∇v dΩF +

∫

ΩF

∇ψαm · T dΩF −
∫

ΓF

ψαm(n · T) dΓF (2.33)

rx,α =

∫

ΓF

(n · D̃ ·∇ξ)ψαx dΓF −
∫

ΩF

(∇ψαx · D̃ ·∇ξ) dΩF (2.34)

where ΓF is the boundary of the physical fluid domain and n is the outward pointing

normal to the boundary.

Each independent variable (x, p, v, L, M) of above mentioned equations is repre-

sented by finite element basis functions as:

x ≡ xβφβx, p ≡ pβφβp, v ≡ vβφβv, L ≡ LβφβL, M ≡MβφβM (2.35)

where φβ are the basis functions, xβ, ..., Mβ are the unknown coefficients and β is a

dummy index ranging from 1 to the number of basis functions for different independent

variables. Galerkin weighting functions are used in Eqs. (2.28), (2.29), (2.30) and (2.32),
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i.e. ψc = φp, ψm = φv, ψL = φL and ψx = φx. The Streamline-Upwind Petrov-Galerkin

method is used for the weighting function in the conformation transport Eq. (2.31),

ψM = φM + huv ·∇φM, where hu is the upwind parameter. The upwind parameter hu

is chosen as the characteristic element size. In all our simulations hu was always less

than 0.01.

2.1.4.2 Weighted residual form of the equilibrium equation for solid

The weighted residual form of Eq. (2.13) is obtained by multiplying the governing

equations with appropriate weighting functions and then integrating over the current

domain. The formulation of the fluid-structure interaction problem posed here follows

the procedure introduced previously by Carvalho and Scriven [1997] in their exami-

nation of roll cover deformation in roll coating flows. However, it turns out that the

weighted residual form of Eq. (2.13) used in their finite element formulation is incor-

rect. While the error does not lead to significant discrepancies for small deformations,

it is serious for large deformations. The correct form of the weighted-residual equation

is presented here and validated in Appendix B against predictions by the commercial

software package ANSYS-11.0 for the deformation of a simple beam fixed at its edges.

The deformation of the solid in the current configuration (ΩS) is written in the zero-

stress configuration (ΩS). A construction of the mapping X = X(ξ) from computational

domain (Ω0S) to zero-stress configuration (ΩS) is required to integrate this equation in

the computational domain (Ω0S). This is a known mapping and it requires a change of

domain of integration. The Jacobian of this transformation is denoted by |J∗|. The weak

form of the equilibrium equation is

∫

ΩS

∇X · S · φdΩS = 0

=> −
∫

ΩS

∇Xφ · SdΩS +

∫

ΓS

φ (N · S) dΓS = 0
(2.36)

The weighted residual form of the x-position, y-position and incompressibility in

the reference domain can be expressed as,

Rx
i = −

∫

Ω0S

[
∂φi

∂X
SXx +

∂φi

∂Y
SYx

]
|J∗|dΩ0S +

∫

Γ0S

φi (N · S)x

(
dΓS

dΓ0S

)
dΓ0S (2.37)

Ry
i = −

∫

Ω0S

[
∂φi

∂X
SXy +

∂φi

∂Y
SYy

]
|J∗|dΩ0S +

∫

Γ0S

φi (N · S)y

(
dΓS

dΓ0S

)
dΓ0S (2.38)
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Rp∗

i =

∫

Ω0S

[
∂x
∂X

∂y
∂Y
− ∂x
∂Y

∂y
∂X
− 1

]
χi|J∗|dΩ0S (2.39)

The weighting functions φi are bi-quadratic, and χi are piecewise linear discontinuous.

2.1.5 Boundary conditions

Appropriate boundary conditions are needed to solve the governing equations. The

momentum and mesh equations for the fluid (Eqs. (2.2) and (2.17)) and equilibrium

equation for the solid (Eq. (2.13)) are elliptic in nature, thus boundary conditions

must be specified on all boundaries. Since the equation for the conformation tensor

(Eq. (2.3)) is hyperbolic in nature, boundary conditions are only required at the inflow

boundaries. Xie and Pasquali [2004] have shown that the entrance boundary condition

v ·∇M = 0 is appropriate when the flow is fully developed at the inlet. The continuity

equation and the velocity gradient equation don’t need any boundary conditions. More

specific boundary conditions pertaining to different problems are described in chapters

3-5.

2.1.6 Solution procedure with Newton’s method

Newton’s method with analytical Jacobian is applied to solve the non-linear equations,

Eqs. (2.28)–(2.31) and (2.37)–(2.39). Initially a 2D structured mesh is generated utilizing

a code developed by Scriven’s group at the University of Minnesota. The weighted

residual (R = rc,α, rm,α,RL,α,RM,α, rx,α,Rx
i ,R

y
i and Rp∗

i ) form of the equations and the Jaco-

bian matrix (J), which represents the analytical derivative of the residual equations and

their boundary conditions with respect to the basis function coefficients, are solved.

δu = uk+1 − uk (2.40)

J δu = −R (2.41)

where uk+1 is the solution vector (v, p, x, L, M) at the current Newton iteration and uk is

the solution vector at the previous Newton iteration. The residual vector and Jacobian

matrix is assembled and the linear system of equations is solved by a frontal solver

[DE Almeida, 1995; Duff et al., 1989; Pasquali, 2000]. The final solution is obtained

when the residual and update norms approach a convergence criterion. The details of
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the analytical Jacobian entries for viscoelastic fluids have been provided by Pasquali

[2000], whereas the analytical Jacobian entries for the solid can be found in Carvalho

[1996].

2.2 Conclusion

In this chapter, a computational method to solve steady two-dimensional viscoelastic

fluid-elastic solid interaction has been described. The rheological behaviour of the

viscoelastic fluids has been described in terms of a conformation tensor model and the

finite-thickness solid wall by a neo-Hookean solid model. A DEVSS-TG/SUPG mixed

finite element method for discretizing the mesh equation and transport equations,

together with the solution technique proposed by Carvalho and Scriven [1997] for

calculating deformation of a finite thickness solid has been employed.



Chapter 3

Viscoelastic flow in a two-dimensional

collapsible channel

3.1 Introduction

In this chapter1, we compute the flow of three viscoelastic fluids in a two-dimensional

channel partly bounded by a tensioned membrane, a benchmark geometry for fluid-

structure interactions. The computational method developed in chapter 2 is used to

solve this problem.

As mentioned previously, laboratory experiments on flow through collapsible tubes

have shown complex and nonlinear dynamics, with a multiplicity of self-excited os-

cillations [Bertram, 1986; Bertram et al., 1990]. The simplest numerical model in the

literature that captures part of this rich behaviour is that of a fluid flowing in a 2D rigid

parallel sided channel, where part of one wall is replaced by a tensioned membrane

(Fig. 3.1). This geometry has been studied extensively in the case of Newtonian fluids,

with the flexible wall treated as an elastic membrane of zero thickness, with the stretch-

ing and the bending stiffness of the membrane along the flow direction neglected [Heil

and Jensen, 2003; Lowe and Pedley, 1995; Luo and Pedley, 1995, 1996; Rast, 1994]. There

have been no studies of fluid-structure interaction issues associated with the flow of

viscoelastic fluids in vessels with compliant walls. This work aims to study the flow

of model viscoelastic fluids in a simple two-dimensional collapsible channel as a pre-

liminary study of the behaviour that might arise when more realistic models of blood

1This chapter has been published as, Chakraborty, D., Bajaj, M., Yeo, L., Friend, J., Pasquali, M., and
Prakash, J. R. (2010). Viscoelastic flow in a two-dimensional collapsible channel. J. Non-Newton. Fluid
Mech., 165:12041218.

26
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Figure 3.1: Geometry of the 2D collapsible channel; the segment BC is an elastic membrane.

and blood vessels are simulated under conditions in which the viscoelastic character of

blood and the elastic nature of blood vessel walls become important. Here, we use the

simple 2D geometry, with a zero thickness membrane, to study fluid-structure interac-

tion in viscoelastic liquids. We restrict our attention to Re = 1, since we are interested

in the microcirculation.

This chapter is organized as follows. Section 3.2 presents the flow domain, bound-

ary conditions, dimensionless numbers and choice of parameter values. Section 3.3

compares the results of viscoelastic and Newtonian fluid computations, and Section 3.4

summarises our conclusions.

3.2 Problem formulation

In units of channel width W, the dimensions of the channel are Lu = 7W, L = 5W,

and Ld = 7W (Fig. 3.1). As in Luo and Pedley [1995], the tension in the flexible wall is

constant and the shape of the flexible part is governed by the normal force acting on

it. h denotes the minimum channel width between the deformed membrane and the

bottom wall (Fig. 3.1).

3.2.1 Boundary conditions

The governing equations for the present problem have already been discussed in chap-

ter 2. However, in order to solve the present problem, appropriate boundary conditions

are needed. We prescribe the following boundary conditions:

1. At the upstream boundary, a fully developed velocity profile is specified in the



3.2. Problem formulation 28

form, vx = f (y), and vy = 0. Since, for all the Wi considered here, the upstream

velocity profiles for the Oldroyd-B and FENE-P fluids do not differ significantly

from that for a Newtonian fluid, a Newtonian velocity profile is used. However,

because of the strongly shear thinning nature of the Owens model fluid, we use

a fully developed velocity profile obtained by analytically solving the flow of a

power-law fluid in a channel. The power-law index used is that exhibited by the

Owens model (with the current parameter values) in a simple shear flow.

2. No slip boundary conditions (v = 0) are applied on the rigid walls.

3. At the flexible wall,

(a) On the momentum equation (Eq. (2.2)), we impose (i) t · v = 0, where t is

the unit tangent to the flexible wall, and, (ii) a force balance in the normal

direction through the traction boundary condition:

nn : T = −pe + χ∇II · n (3.1)

where, n is the unit normal to the flexible wall, ∇II denotes the surface

gradient operator, pe is the external pressure and χ is the fixed tension in the

flexible wall.

(b) On the mapping equation (Eq. (2.17)), we impose (i) n · v = 0 in the normal

direction, and, (ii) a uniform node distribution in the tangential direction.

4. At the downstream boundary, the fully developed flow boundary condition is

imposed, n ·∇v = 0.

5. At the upstream inflow, the conformation tensor does not change along the stream-

lines because the flow is fully developed [Pasquali and Scriven, 2002; Xie and

Pasquali, 2004]. Thus,

v ·∇M = 0 (3.2)

6. The pressure of the fluid at the downstream boundary, pd, is set equal to zero on

the bottom wall (at location E in Fig. 3.1).
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3.2.2 Dimensionless numbers and choice of parameter values

Non-dimensionalization of the governing equations and boundary conditions yields

the following dimensionless numbers:

Re =
ρWU0

η0
; β =

ηs

η0
; Wi =

λ0U0

W
; Ca =

η0U0

χ
; Pd =

(pe − pd)W
η0U0

(3.3)

where, U0 is the average inlet velocity, Ca is analogous to a capillary number, β is the

viscosity ratio, Wi is the inlet Weissenberg number, Pd is the dimensionless transmural

pressure difference, and η0 = ηs + ηp,0 is the zero shear rate solution viscosity. (For a

Newtonian fluid, η0 is just the constant Newtonian viscosity). It is convenient to define

a local Weissenberg number W̃i = λ0 γ̇, which measures the non-dimensional shear rate

anywhere in the flow.

Luo and Pedley [1995] used the dimensionless ratio, α = Ca/Ca∗ to represent the

influence of membrane tension, where Ca∗ is a reference dimensionless tension (defined

with χ = 1.610245 N/m). In order to compare our predictions for Newtonian fluids

at Re = 1 [Luo and Pedley, 1995], we also index membrane tension by α (in the

range α =15–64), and we use the same value of the dimensionless transmural pressure

difference, Pd = 9.3 × 104.

For the Owens model, the best agreement with triangular step shear rate experi-

mental data [Bureau et al., 1980] occurs when parameters ηp,0 = 0.14 Pa s, ηp,∞ = 0.004

Pa s, θ2 = 7.2, m = 0.6, and λH = 0.145 s [Owens, 2006]. Interestingly, this choice

of parameters neglects the solvent (or plasma) viscosity, and consequently yields an

upper convected Maxwell” rather than an “Oldroyd-B” type model. Later work [Fang

and Owens, 2006; Moyers-Gonzalez et al., 2008a] introduced a solvent contribution

(ηs = 0.001 Pa s), and modified the remaining parameters depending on the specific

comparison of model predictions with experiments. Importantly, in steady homo-

geneous flows, specification of the parameters above also sets the expression of the

relaxation time λ(γ̇). Here we vary λH to control the inlet Weissenberg number (since

λ0 =
ηp,0

ηp,∞
λH), while keeping the values of the other parameters [Owens, 2006], aug-

mented with the plasma viscosity ηs = 0.001 Pa s.

To attain Re = 1, we set ρ = 1054 kg/m3 (as in Owens [2006]), U0 = 1.338 × 10−2 m/s,

W = 10−2 m and η0 = 0.141 Pa s. This yields a viscosity ratio β = 0.0071 (which signifies

that the fluid is predominantly elastic). The FENE-P parameter bM is set to 100.
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Figure 3.2: The deformed shape of the flexible wall for the steady flow of a Newtonian fluid

in the 2D collapsible channel, at various values of the dimensionless membrane tension ratio

α. Lines denote the result of the current FEM simulation, while the symbols are the reported

results of Luo and Pedley [1995].

3.3 Results and Discussions

3.3.1 Code validation

We compare our prediction of membrane shapes for a Newtonian fluid to those of Luo

and Pedley [1995] (a similar comparison was reported earlier in Xie and Pasquali [2003]).

The difference between external pe and outlet pd pressures is one of the parameters that

determines the velocity and stress fields in the channel [Luo and Pedley, 1995, 1996].

In Newtonian flow, our downstream boundary condition is equivalent to that used

by Luo and Pedley [1995]; to allow direct comparison, we use the same downstream

channel length as used by them.

Fig. 3.2 shows the profile of the membrane at different values of α. Our results are

in excellent agreement with Luo and Pedley [1995]. Notably, Luo and Pedley [1995]

reported that steady states could be computed directly only at high membrane tension—

i.e., low α < 64 at Re = 1 [Luo and Pedley, 1995]—whereas time dependent simulations

were necessary to compute steady solutions at higher α (for sufficiently small Re) [Luo
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Figure 3.3: Meshes M1 (a), M2 (b) and M3 (c), considered in the current study.

and Pedley, 1996]. Our fully-coupled algorithm shows no such convergence limits at

Re = 1; profiles for α = 100 and 200 are displayed in Fig. 3.2. This demonstrates the

robustness of the present simulation technique.

3.3.2 Mesh convergence and the limiting Weissenberg number

Viscoelastic flows are notoriously difficult to compute; therefore, here we study mesh

convergence over a range of parameters, particularly to establish whether the collapsi-

ble channel flow suffers from the high Weissenberg number problem.

Computations are performed with three different meshes (M1, M2 and M3) (Fig. 3.3
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Table 3.1: Meshes considered in the current study.

Mesh Number of elements Number of nodes
Degrees of freedom for
fully coupled macroscopic
simulations (x, v, p, M, L)

M1 950 4011 27342
M2 2145 8897 60455
M3 3800 15621 105972

and Table 3.1).

The invariants of the conformation dyadic, M are a good indicator of mesh con-

vergence; its eigenvalues mi represent the square stretch ratios along the principal

directions of stretching mi for an ensemble of molecules [Pasquali and Scriven, 2002,

2004]. Previous studies of viscoelastic flows based on conformation tensor formulations

of the Oldroyd-B and FENE-P models have shown that the breakdown of numerical

computations coincides with the smallest eigenvalue becoming negative in some re-

gions of the flow domain [Bajaj et al., 2008; Pasquali and Scriven, 2002]. There have been

some recent developments where the problem of the lack of positive definiteness of M

have been addressed, and solutions proposed [Balci et al., 2011; Fattal and Kupferman,

2004, 2005; Lozinski and Owens, 2003].However, in the present instance, since a con-

ventional conformational tensor formulation has been used, we encounter numerical

problems similar to those seen in earlier studies, as described in greater detail shortly.

Figs. 3.4 and 3.5 show the contour plots of the largest (m3) and smallest (m1) eigen-

values for the Oldroyd-B, FENE-P and Owens models, at Wi = 0.1 and α = 30. They

indicate that the molecules experience varying extents of stretching and contraction

as they flow in the channel and below the collapsible wall. For all the models, the

largest eigenvalue is highest below the collapsible wall at the minimum gap location

(Fig. 3.4). (The magnitude varies from model to model). The smallest eigenvalue is

positive everywhere in the flow domain (Fig. 3.5, Wi = 0.1).

Raising Wi yields higher maximum m3 and lower minimum m1 across the flow

domain, as shown in Fig. 3.6 for the Owens model at α = 30 and α = 45. Whereas

the maximum m3 grows smoothly with Wi and results on various meshes overlap

(Fig. 3.6 (b) and (d)), the plots of minimum m1 show clearly the breakdown of each

mesh (Fig. 3.6 (a) and (c)) Even though we have not carried out computations with a
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Figure 3.4: Contour plots of the largest eigenvalues (m3) of the conformation tensor at Wi =

0.1 for: (a) Oldroyd-B, (b) FENE-P, and (c) Owens models, at a tension ratio α = 30.

mesh finer than M3, the sudden change of slope of the curves in Fig. 3.6 (c) suggests

that M3 mesh is yielding inaccurate results at Wi & 0.5 at α = 45. Unless otherwise

specifically stated, all computations reported hereafter were performed on M3.

On any mesh, computations can be performed at Wi beyond the limit of mesh

convergence, until a limiting Weissenberg number, beyond which computations fail

because the minimum value of m1 becomes negative (which is unphysical)—this is

clearly visible in Fig. 3.6 (a) and (c). As has been observed in previous studies [Bajaj

et al., 2008; Pasquali and Scriven, 2002], the maximum attainable value of Wi increases

with mesh refinement; for example, in the Owens model at α = 45, the limiting value

of the Weissenberg number is Wi = 0.75 on M2 and Wi = 0.9 on M3. Fig. 3.6 (a) and (c)

shows that the tension ratio affects the limiting Weissenberg number (because it affects



3.3. Results and Discussions 34

0.52 0.55 0.57 0.59 0.62 0.64 0.67 0.69 0.71 0.74 0.76 0.78 0.81 0.83 0.86 0.88 0.90 0.93 0.95 0.98

x / W
y

/W

1

00 199.5

(a)

0.51 0.53 0.56 0.58 0.61 0.63 0.65 0.68 0.70 0.73 0.75 0.78 0.80 0.83 0.85 0.88 0.90 0.93 0.95 0.98

x / W

y
/W

1

00 199.5

(b)

0.88 0.89 0.90 0.91 0.92 0.93 0.94 0.94 0.95 0.96 0.97 0.98 0.99

x / W

y
/W

0

1

9.5 19
0

(c)

Figure 3.5: Contour plots of the smallest eigenvalues (m1) of the conformation tensor at Wi =

0.1 for: (a) Oldroyd-B, (b) FENE-P, and (c) Owens models, at a tension ratio α = 30.

the minimum gap); For the Owens model, the limiting Weissenberg number (on M3)

decreases from Wi = 7.0 at α = 30 to Wi = 0.9 at α = 45.

The decrease of the minimum eigenvalue below zero coincides with a steep increase

in the maximum eigenvalue (Fig. 3.6 (b) and (d)). This value is much higher for α = 45

than for α = 30 because (as in the Newtonian case, Fig. 3.2) the minimum gap h

decreases with increasing α, leading to a more dramatic “squeezing” of the fluid, and

a consequently greater stretching of the molecules in the gap.

Computations with the Oldroyd-B and FENE-P models yield qualitatively similar

behaviour; the limiting Wi values are reported in Table. 3.2 for α = 30 and α = 45.

Fig. 3.7 shows the dependence of the limiting Weissenberg number on the tension

ratio for the three different fluid models. In general, the limiting Weissenberg numbers
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Figure 3.6: Maximum value of the largest eigenvalue (m3) and minimum value of the smallest

eigenvalue (m1) in the entire flow domain, for the Owens model, as a function of Wi at two

different values of tension ratio α = 30 (a, b), and α = 45 (c, d).

follow the trend Owens > FENE-P > Oldroyd-B until a tension ratio α ≈ 50, where

there is an interesting crossover, and the limiting Weissenberg number for the Owens

model becomes smaller than that for the FENE-P model.

Fig. 3.8 shows the profile of Mxx (mean streamwise molecular stretch) across the

minimum gap at α = 45 for a range of Weissenberg numbers and all three fluid models.

Clearly, with increasing Wi, Mxx grows almost symmetrically, from a relatively low

value in the middle of the gap, to a significantly larger value near the bottom (rigid)

and top (flexible) walls. In the Oldroyd-B and Owens models, Mxx is unbounded.

Conversely, the FENE-P model has an upper bound for the maximum Mxx, which
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Table 3.2: Maximum mesh converged value of Wi, and the limiting Wi for the three fluid

models, for computations carried out with the M2 and M3 meshes, at two values of α.

α = 30 α = 45
Converged Wi Limiting Wi Converged Wi Limiting Wi
M2 M3 M2 M3 M2 M3 M2 M3

Oldroyd-B 0.2 0.43 0.42 0.44 0.02 0.04 0.06 0.07
FENE-P 0.32 0.45 0.50 0.53 0.2 0.27 0.25 0.27
Owens 4.0 5.0 6.45 6.76 0.3 0.5 0.75 0.9
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Figure 3.7: Limiting Weissenberg number for the Oldroyd-B, FENE-P and Owens models at

different tension ratios α.

for bM = 100 is 300. This upper bound for the FENE-P model limits the Mxx cross-

stream gradient near the walls; such saturation is not present in the Mxx profiles for the

Oldroyd-B and Owens models, which display steep gradients near the walls. Inter-

estingly, of the three fluid models, the FENE-P model shows the highest stretch in the

center of the gap.

Before examining the effect of fluid behaviour on flow characteristics, it is important

to note that both the Oldroyd-B and Owens models predict an unbounded conformation

tensor and extensional viscosity in a steady, homogeneous extensional flow, whereas
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Figure 3.8: Profile of Mxx across the narrowest channel gap for the Oldroyd-B, FENE-P and

Owens models, for a range of Weissenberg numbers, at α = 45. The distance from the bottom

channel is scaled by the narrowest gap width h of the particular model.
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Figure 3.9: Contours of axial velocity (vx) in the flow domain, for (a) Newtonian (red),

Oldroyd-B (green) and FENE-P (blue) fluids, and (b) Newtonian (red) and Owens (blue) fluids,

at Wi = 0.01 and α = 45.

the FENE-P model has a bound on these quantities. Moreover, the Oldroyd-B model

predicts constant viscosity in steady shear flow, whereas the FENE-P and Owens models

are shear thinning.

3.3.3 Velocity fields and molecular shear and extension rates

Fig. 3.9 compares the velocity contours predicted for a Newtonian fluid with the con-

tours predicted for the Oldroyd-B, FENE-P and Owens model fluids at Wi = 0.01 and

α = 45. While the fields for the Newtonian, Oldroyd-B and FENE-P fluids do not differ

to any significant degree from each other at this value of Wi (Fig. 3.9 (a)), the velocity

profile for the Owens model displays a slight difference from the Newtonian profile

(Fig. 3.9 (b)). Interestingly, this apparently slight difference in the velocity field between

the different models becomes greatly amplified when viewed from the perspective of

molecular deformation rates, as elaborated below.

Arguing that the invariants of the rate of strain cannot serve as indicators of the

type of flow because they do not carry any information on whether molecules are

being strained persistently along the same axes, or are rotating with respect to the
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Figure 3.10: Molecular extension rate ε̇M for (a) Oldroyd-B, (b) FENE-P, and (c) Owens models,

at Wi = 0.1 and α = 30.

principal axes of the rate of strain, Pasquali and Scriven [2004] introduced the molecular

extension and shear rates as being more appropriate measures for obtaining insight into

the coupling between the flow and molecular behaviour. These deformation rates are

defined as,

ε̇M ≡m3m3 : D and γ̇M =|m1m3 : D | (3.4)

where, ε̇M is the mean ensemble molecular extension rate, γ̇M is the mean ensemble

molecular shear rate, and, as mentioned earlier, the eigenvectors m3 and m1 are

associated with the largest and smallest eigenvalue of M, respectively. In regions

of flow where ε̇M > 0, molecular segments are being stretched along their direction

of preferred stretch and orientation and the flow is working against the molecular

relaxation processes. On the other hand, a large γ̇M indicates that the rate of strain is
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Figure 3.11: Molecular shear rate γ̇M for (a) Oldroyd-B, (b) FENE-P, and (c) Owens models, at

Wi = 0.1 and α = 30.

deforming molecules aligned along one of the principal directions of the conformation

tensor, in a direction orthogonal to their orientation.

Figs. 3.10 and 3.11 display contours of molecular extension and shear rate for the

Oldroyd-B, FENE-P and Owens fluids at α = 30 and Wi = 0.1. Fig. 3.10 indicates

that ε̇M is of the same order of magnitude for the Oldroyd-B and FENE-P models, and

the contour lines appear similar to each other. However, both the contours and the

maximum value for the Owens model are significantly different, with the maximum

value being greater by roughly a factor of 3. With regard to γ̇M, on the other hand,

while the contour lines are similar in all the fluid models, the maximum values for the

Oldroyd-B and FENE-P models are roughly greater than that for the Owens model by

a factor of 6 (Fig. 3.11).
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Figure 3.12: Locations of the maximum eigenvalue m3, the maximum molecular shear and

extension rates γ̇M and ε̇M, and the maximum local Weissenberg number W̃i, for the Owens

model, at α = 45, for various values of the Weissenberg number Wi. Curved lines indicate the

shape of the flexible membrane at the lowest and highest value of Wi.

A comparison of the contour lines for the largest eigenvalue m3 (displayed in Fig. 3.4)

with the contour lines for γ̇M (Fig. 3.11), suggests a strong correlation between the two

sets of figures. Indeed, the ordering of the magnitudes between the three models,

with the values for the Oldroyd-B and FENE-P models being greater than that for

the Owens model, is similar in both figures. A more detailed examination of this

correlation is afforded by Fig. 3.12, which shows the location of the maximum values

of m3, γ̇M, ε̇M, and the local Weissenberg number W̃i, for the Owens model at α = 45,

for a range of Wi. For all values of the Weissenberg number, the maximum values

of m3, γ̇M and W̃i coincide with each other, and are located just below the collapsible

channel, as suggested by the contour lines in Fig. 3.4 and Fig. 3.11 for the former two

variables. Note that the location appears to move slightly upstream with increasing

Wi. On the other hand, the location of the maximum value of ε̇M starts close to the
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Figure 3.13: The deformed shape of the flexible wall for the steady flow of Oldroyd-B, FENE-P

and Owens model fluids in a 2D collapsible channel, compared with the profile for a Newtonian

fluid, with Re = 1.0 and β = 0.0071, at (a) various values of α for Wi = 0.01, and (b) various

values of Wi for α = 45.
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bottom of the collapsible membrane for small values of Wi, but moves away towards

the bulk flow with increasing Wi. It seems that it is the maximum molecular shear rate

below the collapsible membrane rather than the maximum molecular extension rate

that determines the magnitude of the largest eigenvalue.

It is appropriate here to revisit Fig. 3.6 (b) and (d) to note the change in the shape of

the m3 versus Wi curve with an increase in α from 30 to 45. While at α = 30 the slope of

the curve increases with increasing Wi, the slope decreases with increasing Wi at α = 45.

The value of m3 also appears to be levelling off in the latter case. In their examination

of the slot coating flow of a viscoelastic fluid, Bajaj et al. [2008] also observed that

the maximum m3 versus Wi curve changes slope and goes through an inflection point

with increasing Wi. In that context, it was found that the shape change was related

to the fact that the location of the maximum eigenvalue changed from being near a

shear-dominated region adjacent to the moving web supporting and transporting the

fluid, to being near the extension-dominated region just below the free-surface. In the

present instance however, the maximum eigenvalue always appears to be located just

below the deformable membrane for all the values of α that we have examined, and

coincides with the location of γ̇M, as has been demonstrated by Fig. 3.12.

3.3.4 Flexible membrane shape, and pressure and stress fields

In the remainder of this work, we focus our attention on examining the influence of the

Weissenberg number Wi and the tension ratio α on the shape of the membrane, and on

stress and conformation tensor fields in the channel, for the fixed values of the viscosity

ratio β, the transmural pressure Pd, and Reynolds number Re, that have been adopted

here. We start by examining the dependence of the shape of the channel on Wi and α,

for each of the three viscoelastic fluids, and subsequently attempt to explain the origin

of the observed dependence.

Fig. 3.13 (a) displays the shape of the flexible wall, for the three fluid models, at

various values of α, for a fixed value of Wi = 0.01, and Fig. 3.13 (b) is a zoomed in

view of the membrane shape close to the centre of the membrane, for the three fluids,

at various values of Wi, for a fixed value of α = 45. It is clear from Fig. 3.13 (a) that

on the scale of the figure, the shape of the membrane for the Oldroyd-B and FENE-P

models is indistinguishable from the shape of the membrane for a Newtonian fluid at

all three values of α (= 15, 30 and 45). On the other hand, the shape of the membrane

for the Owens model, in the neighbourhood of the centre of the membrane, becomes
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Figure 3.14: Pressure and normal components of stress on the flexible wall for the Newtonian,

Oldroyd-B, FENE-P and Owens models at α = 45 and Wi = 0.01, with Re = 1.0 and β = 0.0071.

Tn is the normal component of total stress, P is the pressure, τ s
n is the normal component of

viscous stress and τ
p
n is the normal component of elastic stress.
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clearly distinguishable from that for a Newtonian fluid at α = 45. For each of the three

fluid models, the curve corresponding to Wi = 0.01 in Fig. 3.13 (b) is the same as that

in Fig. 3.13 (a) for α = 45. In the case of the Owens model, since the curves for Wi = 0.1

and Wi = 0.5 coincide with the curve for Wi = 0.01, it is clear that the Weissenberg

number has negligible influence on the shape of the membrane. While there appears

to be a slight change in the shape of the membrane for the Oldroyd-B fluid, the most

significant change occurs for the FENE-P model, with the shape approaching that

for the Owens model with increasing Weissenberg number. From the nature of the

boundary condition on the flexible membrane adopted here (Eq. 3.1), it is clear that

the only reason the membrane can change shape as a result of changing either α or

Wi is due to a change in the normal stress acting on the membrane. In the present

formulation, the shear stress has no influence on membrane shape. It is reasonable

therefore to examine the normal stress field on the flexible membrane in order to find

the cause of the change (or lack thereof) in the shape of the membrane for the three

fluids.

Fig. 3.14 (a)-(c) shows plots of the total non-dimensional normal stress (Tn), and

the individual contributions of the non-dimensional pressure (P), the non-dimensional

viscous normal stress (τ s
n), and the non-dimensional elastic normal stress (τ p

n), for

the three viscoelastic fluids, on the flexible membrane as a function of distance along

the membrane. The pressure and viscous normal stress for a Newtonian fluid is also

displayed on each subfigure for the purpose of comparison. The vertical line indicates

the midpoint of the collapsible membrane (9.5W), which is the location of the narrowest

channel gap for most of the cases. It is immediately apparent that the only contribution

to the normal stress is the pressure, since both τ s
n and τ

p
n are identically zero for all the

fluids. This result is entirely consistent with the analytical result derived by Patankar

et al. [2002] that any incompressible fluid with a constitutive model of the following

form,

a1D + a2
∇
D + a3T + a4

∇
T = 0 (3.5)

will have a zero normal component of extra stress on a rigid body surface. Here, a1,

a2, a3, and a4 are constants or some scalar functions of the invariants of D and T, and
∇
D and

∇
T represent the upper convected time derivatives of D and T. It can be shown

that all the viscoelastic fluids considered here belong to the class of fluids described

by Eq. (5.15). Since the shape of the flexible membrane is entirely determined by the

normal force acting on it, the consequence of zero normal components of extra stress

is that only differences in the predictions of pressure on the membrane between one
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Figure 3.15: Dependence of the pressure profile along the flexible membrane on Wi and α, for

the Oldroyd-B ((a) and (d)), FENE-P ((b) and (e)) and Owens models ((c) and (f)), respectively.

The symbols in (d)–(f) are for a Newtonian fluid. Note that α = 45 in (a)–(c) and Wi = 0.01 in

(d)–(f). All other parameters are as in Fig. 3.14.
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model and another are responsible for any differences in the prediction of the shape

of the membrane. Clearly, at α = 45, the pressure exerted by the Oldroyd-B and

FENE-P fluids along the membrane is nearly identical to that exerted by a Newtonian

fluid, while the pressure exerted by an Owens model fluid is significantly lower. This

difference is responsible for the difference observed earlier in the predicted membrane

shape in Fig. 3.13 (a). The origin of the pressure difference predicted by the different

models is examined in greater detail after first discussing the results in Fig. 3.15.

The two sets of plots in Fig. 3.15 display the dependence of the pressure profile on

Wi and α for all the three viscoelastic fluids. From Fig. 3.15 (a)–(c) it can be seen that an

increase in Wi leads to a decrease in the pressure upstream of the narrowest gap in the

channel, while causing a modest increase in the pressure downstream of the narrowest

gap. In each of the subfigures, data is presented until the limiting Weissenberg number

for the respective model. Fig. 3.15 (d)–(f) reveals that the pressure increases uniformly

across the entire channel with an increase in α. Both the Oldroyd-B and FENE-P fluids

closely mirror the increase in pressure observed for a Newtonian fluid (represented by

the symbols). On the other hand, as seen earlier in Fig. 3.14 (c), the pressure prediction

in the Owens model is below the Newtonian value at all values of α. The increase in

pressure is not surprising since the narrowest channel gap decreases with increasing α

(see Fig. 3.13 (b)). Note that results are reported in Fig. 3.15 (f) for the Owens model for

a maximum value of α = 45. This is discussed further subsequently.

We now examine the possible origin of the differences in the prediction of pressure

by the different models. Since the Oldroyd-B and the FENE-P models predictions of

pressure are close to that for a Newtonian fluid at Wi = 0.01, it can be conjectured that

the elasticity of the fluid accounted for by these two models does not play a significant

role in determining the pressure. Since the Owens model at the same value of Wi

predicts a significantly lower pressure, it seems reasonable to expect that the shear

thinning behaviour of the Owens model is the source of this difference. In order to

examine this hypothesis further, we have plotted in Fig. 3.16 (a), the FENE-P and Owens

models predictions of the microstructure’s contribution to viscosity (ηp) as a function

of the local Weissenberg number W̃i, in a steady shear flow, at a constant value of

λ0. For the values of U0 and W chosen here, this value of λ0 corresponds to an inlet

Weissenberg number of 0.1. The dependence of ηp on γ̇ for a FENE-P model in steady

shear flow has been derived previously [Bird et al., 1987b].

For the Owens model, the dependence of ηp on γ̇ in steady shear flow is given by

Eq. (2.12). Since the parameters in the Cross model are fixed for all the computations
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Figure 3.16: (a) The contribution of the microstructure to the total viscosity, ηp, for the Owens

model and FENE-P fluids in steady shear flow as a function of local Weissenberg number W̃i,

at a constant value of the relaxation time λ0. (b) Pressure profile along the flexible membrane

for Newtonian fluids with a range of viscosities. The profiles for an Owens model fluid and a

FENE-P fluid, with Wi = 0.1 and α = 45, are also displayed.
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Figure 3.17: (a) Pressure drop ∆P in the channel for the Oldroyd-B, FENE-P and Owens

models at different Wi, for α = 45, Re = 1.0 and β = 0.0071. Note that for a Newtonian fluid,

∆P = 7474.0. The curves terminate at the limiting Weissenberg number for each model. (b)

Dependence of pressure drop on tension ratio for the three viscoelastic fluids, at Wi = 0.01,

compared to the dependence of ∆P on α for a Newtonian fluid.
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carried out here, the functional dependence of ηp on γ̇ is the same in all the cases

considered here. However, since the profile in Fig. 3.16 (a) for the Owens model is

plotted as a function of the local Weissenberg number W̃i, it will vary for different

values of λ0.

For the parameters in the Owens model adopted here (chosen by Owens [Owens,

2006] to get agreement with the experimental results of Bureau et al. [1980]), it is clear

from Fig. 3.16 (a) that the onset of shear thinning occurs at really small values of W̃i. If

shear thinning is the sole cause for the reduced prediction of pressure on the membrane

in a channel flow, then a Newtonian fluid with viscosity equal to the effective viscosity

in the Owens model, would predict the same value of pressure as the Owens model. By

scanning the flow field in the channel, the maximum value of W̃i = λ0γ̇ (which occurs

just below the collapsible membrane) for an inlet Weissenberg number Wi = 0.1 and

α = 45, was found to be W̃i = 91.6. As indicated in Fig. 3.16 (a) for the Owens model,

this corresponds to a reduced viscosity of ηp = 0.0043 at the location of the maximum

shear rate. In Fig. 3.16 (b), the pressure profile along the flexible membrane predicted

by the Owens model at Wi = 0.1 and α = 45, has been compared with pressure profiles

predicted for Newtonian fluids with a wide range of viscosity values. Of these, the

profile for a Newtonian fluid with a viscosity η0 = ηp + ηs = 0.0043 + 0.001 = 0.0053 Pa

s is nearly identical to that for the Owens model, strongly supporting the validity of

our hypothesis. Fig. 3.16 (a) indicates that even the FENE-P fluid suffers considerable

shear thinning at Wi = 0.1. By following a procedure similar to that for the Owens

model, we find that the maximum value of W̃i, at Wi = 0.1 and α = 45, for a FENE-P

fluid flowing in the channel is 44.4. This corresponds to ηp = 0.0513. As can be seen in

Fig. 3.16 (b), the pressure profile on the flexible membrane for a Newtonian fluid with

η0 = 0.0523 is fairly similar to that for a FENE-P fluid. In particular, the value for the

maximum pressure on the membrane is nearly identical.

The identification of shear thinning as the main factor responsible for the predicted

pressure profile is also helpful in understanding the dependence of the pressure drop

∆P in the channel, on the inlet Weissenberg number, depicted in Fig. 3.17 (a). (Note that

the curves terminate at the limiting Wi for each model). Clearly, the lack of any change

in the pressure drop with Wi for an Owens model fluid is related to the fact that at

these Weissenberg numbers, nearly all the shear thinning that can occur has occurred,

and there is consequently no change in the viscosity with increasing Wi. The fairly

rapid decrease in pressure drop for a FENE-P fluid is related to the significant shear

thinning that sets in at Weissenberg numbers greater than 0.1 (which correspond to
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Figure 3.18: Dependence of the narrowest channel gap h on: (a) α, and (b) Wi. The narrowest

gap is scaled by the channel width W in (a), and by the gap for a Newtonian fluid in (b). Note

that α = 45 in (b).
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W̃i > 1). Interestingly, the modest decrease in ∆P with increasing Wi observed for the

Oldroyd-B fluid must be attributed to the fluid’s elasticity, since the Oldroyd-B fluid

does not shear thin. Unfortunately, the breakdown of the Oldroyd-B model at very low

values of Wi prevents a more thorough examination of the dependence of ∆P on Wi.

It is worth noting that the dependence of membrane shape on Wi observed earlier in

Fig. 3.13 (b), namely, the lack of change in membrane shape for the Owens model, and

the significant change in shape for the FENE-P model, can also be understood in the

context of the shear thinning behaviour of these two fluids. The increase in ∆P with α

displayed in Fig. 3.17 (b) is clearly the result of the narrowing of the channel gap with

increasing α. The coincidence of the curves for the Oldroyd-B and FENE-P fluids with

that for a Newtonian fluid is because the viscosities of these fluids are nearly identical

at Wi = 0.01.

The dependence on α of the narrowest channel gap (scaled by the width of the chan-

nel) predicted for the three viscoelastic models, is compared with that for a Newtonian

fluid in Fig. 3.18 (a). The rate at which the narrowest gap decreases with increasing

α appears to slow down for α ≥ 50 in the case of Newtonian, Oldroyd-B and FENE-P

models. While the behaviour of the Owens model coincides with that of the other fluids

until approximately α = 45, the gap continues to decrease until it becomes extremely

narrow. Indeed, the gap becomes so small for α ≥ 50 that we have been unable to

compute the shape of the membrane for any values of α > 55. On the other hand, no

difficulty was encountered in computing the membrane shape for the Oldroyd-B and

FENE-P models for all the values of α explored here (up to α = 64). The difficulty

of numerically solving the Owens model for α ≥ 50 is the likely cause for the change

in the dependence of the limiting Weissenberg number on α, observed earlier at these

values of α in Fig. 3.7. In Fig. 3.18 (b), the dependence on Wi of the narrowest channel

gap scaled by the value of the gap for a Newtonian fluid, h/hNewtonian, is displayed.

The differences observed between the three viscoelastic fluids can be understood in

terms of the differences in the degree of shear thinning exhibited by these fluids, using

arguments similar to those proposed above in the context of Fig. 3.17 (a).

The behaviour observed in Fig. 3.7 can be explained using Fig. 3.18 (b). It is clear

that even at Wi = 0.01 for α = 45 the narrowest channel gap predicted by the Owens

model becomes very small and this gap decreases rapidly with the further increase in

the value of α. However, for all other models (Newtonian, Oldroyd-B and FENE-P) the

rate at which the narrowest gap decreases with increasing α appears to slow down for

α ≥ 50.
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Figure 3.19: Dependence of the axial component of the conformation tensor Mxx on Wi, for

(a) Oldroyd-B, (b) FENE-P, and (c) Owens models, at α = 45, and dependence of Mxx on α, for

(d) Oldroyd-B, (e) FENE-P, and (f) Owens models, at Wi = 0.01.
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Fig. 3.19 (a)–(c) displays the dependence of the axial component of the conforma-

tion tensor Mxx along the flexible membrane on Wi, and Fig. 3.19 (d)–(f) displays its

dependence on α. As expected, an increase in Wi or in α leads to an increase in the

degree of stretching experienced by the micro-structural elements, with the maximum

stretching occurring near the narrowest channel gap (indicated by the vertical lines).

Since both the Oldroyd-B and Owens constitutive equations are based on Hookean

dumbbell models, there is no upper bound on Mxx. Interestingly, the FENE-P model

predicts that close to the limiting Weissenberg number, the micro-structural elements

are nearly fully stretched for a fairly significant fraction of the length of the flexible

membrane. For large values of α, the shape of the curves in Fig. 3.19 (d) and (e) appear

to reflect the asymmetry in the shape of the membrane, which was seen to occur earlier

for Newtonian fluids in Fig. 3.2. Interestingly, Fig. 3.19 (f) suggests that the value of Mxx

in the Owens model is much less sensitive to the value of α compared to the Oldroyd-B

and FENE-P fluids, and remains nearly unchanged from its equilibrium value. This

can be attributed to the extensive shear thinning experienced by the fluid, leading to a

significant reduction in the local relaxation time. The same argument can also be used

to understand the differences in the relative magnitudes of the maximum eigenvalue

m3 for the three viscoelastic fluids, that was displayed earlier in Fig. 3.4.

The manner in which the presence of a flexible wall has been treated in this work,

through a zero-thickness membrane that is coupled to the fluid only through the normal

force, is a particularly simple representation of the fluid-structure interaction problem

that underlies flow in a collapsible channel. It is reasonable to expect that the shear

force on the membrane will also play a significant role in determining the shape of the

membrane. With a view to examining the magnitude of shear forces on the membrane,

we have computed the tangential shear stress along the length of the membrane surface.

The dependence of the shear stress on both Wi and α, for the three different viscoelastic

fluids, is displayed in Fig. 3.20 (a)–(f). It is immediately apparent from Fig. 3.20 (a)–(c)

that, while the common feature between the three fluids is the decrease in tangential

shear stress with an increase in Wi, there are striking differences in the extent of the

decrease. While the Oldroyd-B model fluid suffers a relatively modest decrease in the

shear stress near the narrowest channel gap, the FENE-P model fluid experiences a

significant decrease. In the case of the Owens model, there is hardly any difference

in the shear stress for the different Weissenberg numbers. As has been argued in a

number of instances above, it is straightforward to relate these differences in behaviour

to the different degrees of shear thinning experienced by the fluids, at the Weissenberg
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Figure 3.20: Dependence of the total tangential shear stress on the membrane (τ s
t + τ

p
t ) on Wi,

for (a) Oldroyd-B, (b) FENE-P, and (c) Owens models, at α = 45, and dependence of (τ s
t + τ

p
t )

on α, for (d) Oldroyd-B, (e) FENE-P, and (f) Owens models, at Wi = 0.01.
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numbers examined in Fig. 3.20 (a)–(c). For all the fluids, at Wi = 0.01, the tangential

shear stress appears to increase in absolute value with an increase in α, as can be seen

from Fig. 3.20 (d)–(f). While the values for the Oldroyd-B and FENE-P models are

approximately equal to each other, the shear stress prediction by the Owens model is

significantly lower. At this value of Wi, the FENE-P model fluid does not undergo

much shear thinning, and as a result, both the pressure (see Fig. 3.15 (d)–(f)) and the

shear stress are similar for the Oldroyd-B and FENE-P models.

In general, even though there are significant differences in the shear stresses pre-

dicted by the different models, this is not reflected in the predicted shape of the mem-

brane (see Fig. 3.13) because of the boundary condition adopted here. It would be

extremely interesting to compare the predictions of the three fluid models with more

realistic boundary conditions, where the influence of the shear stress is taken into ac-

count, since we can anticipate that significant differences in the predicted shape of the

membrane will emerge. This is the problem studied in Chapter 5.

3.4 Conclusions

The aim of this chapter was to examine the differences that arise when three different

viscoelastic fluids interact with the deformable membrane on the channel wall. Each

of the three model viscoelastic fluids that have been chosen, namely, the Oldroyd-B,

the FENE-P and Owens models, has unique features that distinguish it from the others.

These differences lead to differences in the predictions of the various properties, and

in many instances, the source of the difference can be traced back to a particular

characteristic of the viscoelastic fluid. The most significant findings of this part are the

following:

1. There is a limiting Weissenberg number Wi for each of the fluids beyond which

computations fail. The value of Wi at which simulations breakdown coincides

with the value at which the smallest eigenvalue of the conformation tensor be-

comes negative somewhere in the flow field.

2. For the Oldroyd-B and Owens models, the breakdown of numerical computations

is accompanied by the axial component of the conformation tensor Mxx assuming

large values at the top and bottom walls, close to the location in the channel where

the gap between the walls is the narrowest.
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3. The maximum deformation of the micro-structural elements occurs at a point just

below the deformable membrane at the narrowest gap in the channel, and the

location of this point coincides with the location of the maximum shear rate.

4. The shape of the deformable membrane, and its dependence on Wi and tension

ratio α, is entirely determined by the pressure on the membrane surface, and by

the changes in pressure that occur as a result of changes in these parameter values.

5. The key determinant of the pressure in the channel is the effective viscosity of the

viscoelastic fluid at the location of the maximum shear rate. This result has been

established for the FENE-P and Owens models (see Fig. 3.16 (b)) by showing that

a Newtonian fluid with viscosity equal to the effective viscosity has nearly the

same pressure profile as the viscoelastic fluid.

6. While it has been difficult to discern any noticeable influence of the elasticity of

the fluid on the various properties, the degree of shear thinning exhibited by the

fluid has a dramatic effect on all the properties. Thus, for instance, the observed

dependence on Wi and α, of the pressure drop in the channel, the width of the

narrowest gap, and the tangential shear stress on the membrane surface, can be

understood by considering the extent of shear thinning experienced by the fluids

at the relevant values of these parameters.

7. The significant differences that arise amongst the three viscoelastic fluids in the

predicted value of the tangential shear stress on the membrane surface, has no

influence on the shape of the deformable membrane in the present model because

of the boundary condition adopted in this work, whereby only changes in the

normal stress on the membrane can lead to changes in the shape. A more accurate

model for the deformable membrane would account for the effect of the shear

stress on membrane shape.



Chapter 4

The influence of shear thinning on

viscoelastic fluid-structure interaction

in a two-dimensional collapsible

channel

4.1 Introduction

In chapter 3 it was shown that viscoelastic fluids behave similarly to Newtonian fluids,

provided that the viscosity of the two fluids at the location of the maximum shear rate

in the channel is the same. However, the influence of the degree of shear thinning of the

viscoelastic fluid was not examined systematically. The finite extensibility parameter

bM, in the FENE-P model controls the extent of shear thinning experienced by the

fluid, and is consequently a convenient parameter for examining the influence of shear

thinning. In this chapter2, we compute numerically the steady flow of a viscoelastic

FENE-P fluid in a two-dimensional collapsible channel (Fig. 3.1). We use the same

flow domain, boundary conditions, computational method, dimensionless numbers

and parameter values as discussed in chapter 3. However, in order to delineate the role

of shear thinning on the nature of the fluid-structure interaction, we compute the flow

of a FENE-P model fluid for various values of bM. The FENE-P parameter bM is set in

the range 2–100.

2Most of the results of this chapter has been published as, Debadi Chakraborty and J. Ravi Prakash,
Influence of Shear Thinning on Viscoelastic Fluid-Structure Interaction in a Two-Dimensional Collapsible
Channel, Ind. Eng. Chem. Res., ASAP publication, DOI:10.1021/ie200173b, 2011.
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Figure 4.1: The contribution of the microstructure to the total viscosity, ηp, for the FENE-P

fluid in steady shear flow as a function of local Weissenberg number W̃i, at a constant value of

the relaxation time λ0.

Here various predictions of the FENE-P fluid model, along with a comparison of

predictions for a Newtonian fluid, is presented. Finally, concluding remarks are drawn

in the last section.

4.2 Results and discussion

A comparison of the predictions of the current formulation for a Newtonian fluid with

those of Luo and Pedley [1995] has been carried out by Chakraborty et al. [2010].

Predictions of the profile of the membrane at different values of α, were shown to be in

excellent agreement with the reported results of Luo and Pedley [1995].

Before we present results for the various relevant variables, it is appropriate here

to show the dependence of the FENE-P model’s predictions of the microstructure’s

contribution to viscosity ηp on the local Weissenberg number W̃i, in a steady shear

flow, at a constant value of λ0 for different values of bM. As is evident from Fig. 4.1,

the FENE-P model undergoes increasing shear thinning with decreasing values of the

finite extensibility parameter bM. Note that the values of U0 and W chosen here, this

value of λ0 corresponds to an inlet Weissenberg number of 0.1. The dependence of ηp

on γ̇ for a FENE-P model in steady shear flow has been derived previously [Bird et al.,

1987b]. In this section, we examine the effect of varying bM on other properties such as
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Figure 4.2: Minimum value of the smallest eigenvalue (m1) and maximum value of the largest

eigenvalue (m3) in the entire flow domain, for a FENE-P model, as a function of Wi at α = 45

and bM = 100.

the limiting Weissenberg number, the shape of the membrane and pressure profile in

the channel.

4.2.1 Mesh convergence and the limiting Weissenberg number

Since most viscoelastic computations break down numerically at some limiting value

of the Weissenberg number due to the development of large stresses, it is essential to

ensure mesh convergence over a range of parameters. Three different meshes (M1, M2

and M3), with number of elements 2145, 3008 and 3800 respectively, have been consid-

ered here for examining the convergence of the numerical computations. A convenient

set of variables with which to examine the convergence of numerical computations of

viscoelastic fluids are the invariants of the conformation dyadic, M. Previous studies

have revealed that invariably the breakdown of viscoelastic computations coincides

with the smallest eigenvalue becoming negative, and the largest eigenvalue assuming

significantly large values in some regions of the flow domain [Bajaj et al., 2008; Pasquali

and Scriven, 2002]. The magnitude of the maximum in m3 and the minimum in m1,

in the entire flow domain, is displayed in Fig. 4.2 as a function of Wi, for the FENE-P

model, at α = 45 and bM = 100. The value of Wi at which mesh convergence no longer

exists can be clearly located in Fig. 4.2 (a) for the minimum eigenvalue m1. As has
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Figure 4.3: Minimum value of the smallest eigenvalue (m1) and maximum value of the largest

eigenvalue (m3) in the entire flow domain, for the FENE-P model at different finite extensibility

bM.

been observed in previous studies [Bajaj et al., 2008; Pasquali and Scriven, 2002], the

maximum attainable value of Wi increases with mesh refinement; for example, in the

FENE-P model at α = 45 and bM = 100, the limiting value of the Weissenberg number

is Wi = 0.26 on M2 and Wi = 0.27 on M3. Unless otherwise specifically stated, we have

used the M3 mesh in all the remaining computations carried out in this work.

Fig. 4.3 examines the dependence of the limiting Weissenberg number (which is the

value at which the curves terminate), on the finite extensibility parameter bM. Both

figures indicate that the limiting Weissenberg number increases with decreasing bM.

Thus shear thinning enhances the computability of the viscoelastic fluid by decreasing

the value of m3 and delaying the value of Wi at which m1 becomes negative.

4.2.2 Flow field and flexible membrane shape

To examine the behaviour of a viscoelastic liquid in this flow domain we compare the

velocity contours predicted by a Newtonian fluid with the predictions of the FENE-P

model. Fig. 4.4 compares the velocity profile prediction at Wi = 0.1 for different values

of bM. It is clear that the Newtonian and FENE-P fluids do not show any significant

differences between them for bM=100 at Wi = 0.1. The prediction of the FENE-P model

for lower values of bM, on the other hand, displays some difference from the Newtonian
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Figure 4.4: Comparison of contours of axial velocity (vx) in the domain at tension ratio of

45 for Newtonian (black line) and different values of bM for the FENE-P model, bM=100 (red

dashed line), bM=50 (blue dots) and bM=2 (thin green line) at Re = 1.0 and β = 0.0071.

velocity profile, which must arise since different values of bM imply different degrees

of shear thinning.

In the remainder of this section, we focus our attention on examining the influence of the

Weissenberg number Wi and the finite extensibility bM on the shape of the membrane,

for the fixed values of the viscosity ratio β, the transmural pressure Pd, and the Reynolds

number Re, that have been adopted here. The dependence of the shape of the channel

on Wi and bM is shown in Fig. 4.5 (a) which is a zoomed in view of the membrane

shape close to the centre of the membrane, for the FENE-P model fluid, at various

values of bM, for a fixed value of Wi = 0.1. Shear thinning leads to a departure from the

Newtonian shape. The influence of shear thinning and viscoelasticity on the extent of

deformation of the membrane can be seen more clearly in Fig. 4.5 (b) which reveals the

effect of Weissenberg number (Wi) on the narrowest channel gap scaled by the value

for a Newtonian fluid for various values of bM. The value of the narrowest channel gap

is seen to be decreasing with increase in Wi at fixed values of bM, while at a fixed Wi,

h/hNewtonian decreases with decreasing bM. It is clear that both these parameters have a

similar effect on changes in the membrane shape since they both have a similar effect

on the viscosity of the fluid, as evident from Fig. 4.1.
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Figure 4.5: (a) The deformed shape of the flexible wall for the steady flow of the FENE-P

model fluid in a 2D collapsible channel, compared with the profile for a Newtonian fluid, with

Re = 1.0 and β = 0.0071, at various values of bM for α = 45 and Wi = 0.1 and (b) comparison of

the narrowest channel gap between the flexible wall and bottom wall at various values of bM

for varying Wi

4.2.3 Pressure and stresses

From the nature of the boundary condition on the flexible membrane adopted here

(3.1), it is clear that the only reason the membrane can change shape as a result of

changing either bM or Wi, is if there is a change in the normal stress acting on the

membrane. Patankar et al. [2002] have shown analytically that the contribution from

the elastic and viscous stresses to the component of stress normal to the surface of a

rigid body, for a wider class of fluids, is zero. A similar result has also been observed

by Chakraborty et al. [2010] in a 2D collapsible channel for the flow of incompressible

Oldroyd-B, FENE-P and Owens model fluids, where they showed that the normal

component of stress on the membrane wall is solely due to pressure. This is also

confirmed in the present simulations, where we find that the normal component of

stress on the wall is solely due to pressure for all values of bM.

Fig. 4.6 displays the pressure profile along the flexible membrane for the FENE-P

model at various values of bM. It is clear that both increasing the value of Wi and

decreasing the value of bM, decreases the pressure on the membrane upstream of the

narrowest section of the channel. Fig. 4.7 shows the overall pressure drop (∆P) across

the channel for the FENE-P model for different values of bM with varying Wi. The
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Figure 4.6: Dependence of the pressure profile along the flexible membrane on Wi for the

FENE-P model at various values of bM. Here the vertical lines with the same colour as the

pressure profile indicate the position of the narrowest channel gap for the corresponding cases.
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Figure 4.7: Dependence of the pressure drop in the channel on Wi for the FENE-P model at

various values of bM. Note that for a Newtonian fluid, ∆P = 7474.0.

decrease in pressure drop is significant with increase in Wi and with decrease in bM.

This decrease in pressure and pressure drop is clearly attributable to the decrease in

the viscosity of the fluid in the channel due to shear thinning. In turn, the decrease in
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Figure 4.8: Pressure profile along the flexible membrane for Newtonian fluids with a range

of viscosities, and the pressure profile for a FENE-P fluid with Wi = 0.1 and bM = 2, 10 and

100. The values η = 0.0523, 0.0205 and 0.0156 Pa s are the calculated values of reduced viscosity,

respectively, at bM = 100, 10 and 2, at the location of the maximum W̃i under the flexible

membrane.

pressure is the source of change in membrane shape seen earlier in Fig. 4.5.

If shear thinning is the primary cause for the reduced prediction of pressure on

the membrane in a channel flow, then a Newtonian fluid with viscosity equal to the

effective viscosity in the FENE-P model, would predict a similar value of pressure to

that of the FENE-P model. We find the maximum value of W̃i = λ0γ̇ (which occurs just

below the collapsible membrane) by scanning the flow field in the channel for different

values of bM for an inlet Weissenberg number Wi = 0.1. Subsequently, utilizing Fig. 4.1,

the corresponding reduced viscosity is obtained at that particular value of bM. In

Fig. 4.8, the pressure profile along the flexible membrane predicted by the FENE-P

model at Wi = 0.1 for different values of bM, has been compared with pressure profiles

predicted for Newtonian fluids with a range of viscosity values obtained from the above

mentioned procedure. We find that the maximum value of W̃i, at Wi = 0.1 and bM =

100, for a FENE-P fluid flowing in the channel is 44.4. This corresponds to ηp = 0.0513.

As can be seen in Fig. 4.8, the pressure profile on the flexible membrane for a Newtonian

fluid with η0 = 0.0523 is fairly similar to that for a FENE-P fluid. In particular, the value

for the maximum pressure on the membrane is nearly identical. The pressure profiles
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Figure 4.9: Dependence of the axial component of the conformation tensor Mxx on bM for a

fixed value of Wi = 0.1.

for a FENE-P fluid at other values of bM also show the same trend as the pressure profile

of a Newtonian fluid calculated at the respective reduced viscosity.

We now explore the influence of viscoelasticity, by examining the behaviour of the

axial component of the conformation tensor Mxx along the membrane wall. Fig. 4.9

displays the dependence on bM, while Fig. 4.10 displays the dependence on Wi. The

value of Mxx is maximum near the narrowest region of the channel and increases with

both Wi and bM. This signifies that the FENE-P fluid is experiencing the maximum

stretching near the narrowest region of the channel. The value of bM imposes a upper

bound to the mean stretchability of the spring in the FENE-P model and restricts the

maximum value for Mxx.

Fig. 4.11 shows the dependence of the shear stress on bM for the FENE-P fluid at

a fixed value of Wi, while Fig. 4.12 explores the effect of Wi at various values of bM.

It is immediately apparent from these figures that the common feature is a decrease

in tangential shear stress with an increase in Wi and a decrease in bM. This is clearly

due to the reduction of viscosity in the channel that accompanies the change in these

parameters.

The significant differences in the shear stresses predicted by the FENE-P model

at different values of bM has no effect on membrane shape under the present set of

boundary conditions, since the influence of shear stresses exerted by the fluid on the

flexible membrane cannot be taken into account. Future advancement of this work
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Figure 4.10: Dependence of the axial component of the conformation tensor Mxx on Wi, for
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for a fixed value of Wi = 0.1

requires a more realistic implementation of boundary conditions, which is the focus of

Chapter 5.

4.3 Conclusions

The extent of shear thinning is shown to be a key factor in determining the nature of

the fluid-structure interaction. The most significant conclusions of this work are the

following:

1. There is a limiting Weissenberg number Wi at each value of bM for the FENE-P

fluid beyond which computations fail. The limiting value of Wi increases with

the decrease in the value of bM.

2. The shape of the deformable membrane, and its dependence on Wi and bM, is

entirely determined by the pressure on the membrane surface.

3. The pressure drop, molecular conformation tensor fields, and stresses in the flow

domain are significantly affected by the extent of shear thinning of the FENE-P

fluid.
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Figure 4.12: Dependence of the total tangential shear stress on the membrane (τ s
t + τ

p
t ) on Wi,

for (a) bM=100, (b) bM=10 and (c) bM=2.



Chapter 5

Viscoelastic fluid–elastic wall

interaction in a two-dimensional

collapsible channel

5.1 Introduction

In the earlier chapters, it was found that the significant differences that arise amongst

the different viscoelastic fluids in the predicted value of the tangential shear stress on

the membrane surface, have no influence on the shape of the deformable membrane,

because of the boundary condition adopted in the work. Essentially, it was assumed

that the shape of the membrane is governed only by the normal stresses acting on it. In

order to use a more realistic model for the collapsible wall, here we use a finite thickness

neo-Hookean solid model which accounts for the effect of shear stress on membrane

shape. Thus in this chapter, steady viscoelastic flow in a two-dimensional channel

in which part of one wall is replaced by a deformable finite thickness elastic solid is

studied. Three different viscoelastic fluids have been considered–the Oldroyd-B model,

the FENE-P model, and the Owens model for blood. The elastic wall is modelled as

an incompressible neo-Hookean solid. The model formulation used here follows the

seminal work of Carvalho and Scriven [1997] who proposed a fluid-structure interaction

formulation to solve roll cover deformation in roll coating flows, with the rubber roll

cover modelled as incompressible neo-Hookean and Mooney-Rivlin solids. We choose

channel dimensions to be compatible with the microcirculation. The computational

method developed in chapter 2 is used to solve this problem.

The plan of the chapter is as follows. The problem formulation, with details of the

70



5.2. Problem formulation 71

Figure 5.1: Geometry of the domain.

governing equations for the viscoelastic fluids and incompressible neo-Hookean solid,

the boundary conditions and the relevant dimensionless variables are presented in

Section 5.2. The results of viscoelastic and Newtonian fluid computations are compared

in Section 5.3 . In particular, the dependence of the shape of the fluid-solid interface,

and of the pressure, stress, conformation tensor and velocity fields on the different

parameters, is examined. Finally, concluding remarks are drawn in Section 5.4.

5.2 Problem formulation

The geometry of the flow is that of a 2D channel, with one of the walls containing an

elastic segment as illustrated in Fig. 5.1. In units of channel width W, the dimensions of

the channel are Lu = 7W, L = 5W, and Ld = 7W. The solid wall has a thickness t = 0.4W.

5.2.1 Governing Equations

We have nondimensionalized the various physical quantities, by scaling lengths and

displacements with W, velocities with GW/η0 and pressure and stresses with G, where

G is the shear modulus of the solid, η0(= ηs+ηp,0) is the zero shear rate solution viscosity,

ηs is the solvent viscosity, and ηp,0 is the contribution of the micro-structural elements

to the zero shear rate viscosity. (For a Newtonian fluid, η0 is just the constant New-

tonian viscosity). Non-dimensionalization of the governing equations and boundary

conditions yields the following dimensionless numbers:

Re =
ρWU0

η0
; β =

ηs

η0
; Wi =

λ0U0

W
; Γ =

η0U0

GW
(5.1)
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where, Re is the Reynolds number, β is the viscosity ratio, Wi is the inlet Weissenberg

number, Γ is the dimensionless solid elasticity parameter, ρ is the density of the liquid,

U0 is the average inlet velocity and λ0 is the constant characteristic relaxation time of

the microstructure.

Upon introduction of these dimensionless variables, the governing equations as-

sume the following dimensionless form:

∇ · v = 0 (Mass balance) (5.2)

Re
Γ

v ·∇v = ∇ · T (Momentum balance) (5.3)

v ·∇M −∇vT ·M −M ·∇v = − Γ

Wi
{
f (tr M) M − I

}
(Conformation tensor ) (5.4)

T = −P I + τ s + τ p (Cauchy stress tensor for viscoelastic fluid) (5.5)

τ s = β(∇v + ∇vT) (Viscous stress tensor ) (5.6)

τ p = (1 − β)
Γ

Wi
{
f (tr M) M − I

}
(Elastic stress tensor) (5.7)

∇X · S = 0 (Equation of motion for solid) (5.8)

S = F−1 · σ (First Piola-Kirchhoff stress tensor ) (5.9)

σ = −π I + B (Cauchy stress tensor for a neo-Hookean material) (5.10)

In these equations, v is the velocity, ∇ denotes the gradient, P is the pressure, I is

the identity tensor, π is a pressure-like scalar function and B is the left Cauchy-Green

tensor, expressed as B = F · FT and F is the deformation gradient tensor.
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5.2.2 Boundary conditions

We prescribe the following boundary conditions:

1. No slip boundary conditions (v = 0) are applied on the rigid walls.

2. The elastic solid is fixed at both ends (points B and C in Fig. 5.1).

3. At the upstream boundary, a fully developed dimensionless velocity profile vx =

Γ f (y/W) is specified. Since, for all the Wi considered here, the upstream velocity

profiles for the Oldroyd- B and FENE-P fluids do not differ significantly from

that of a Newtonian fluid, a Newtonian velocity profile is used. However, for

the Owens model fluid, we use a fully developed velocity profile obtained by

analytically solving the flow of a power-law fluid in a channel. This is because of

the strongly shear thinning nature of the Owens model fluid which is discussed

in more detail subsequently. The power-law index used is that exhibited by the

Owens model (with the current parameter values) in a simple shear flow.

4. At the downstream boundary, the fully developed flow boundary condition is

imposed, n ·∇v = 0 where n is the unit normal to the outlet.

5. At the upstream inflow, the conformation tensor does not change along the stream-

lines because the flow is fully developed [Pasquali and Scriven, 2002; Xie and

Pasquali, 2004]. Thus,

v ·∇M = 0 (5.11)

6. A force balance and a no-penetration condition are prescribed at the interface

between the liquid and solid domain.

n · T = n · σ and vsolid = v f luid = 0 (5.12)

where n is the unit normal to the deformed solid surface.

7. A force balance is prescribed at the top surface.

n · σ = −Pe n (5.13)

where Pe is the dimensionless external pressure.

8. The non-dimensional pressure of the fluid at the downstream boundary, Pd, is set

equal to zero.
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Figure 5.2: Couette flow of a Newtonian fluid past an incompressible finite thickness
neo-Hookean solid.

5.3 Results and discussions

A thorough validation of the finite-element code has been carried out by comparing

the results of the present formulation with several earlier results obtained in different

contexts.

5.3.1 Validation of the finite-element formulation

In order to validate the finite-element formulation used here, results of computations

in a variety of different contexts are compared with results reported earlier in the

literature.

5.3.1.1 Couette flow past a finite thickness solid

Gkanis and Kumar [2003] have examined the flow of a Newtonian fluid past an incom-

pressible neo-Hookean solid, as shown schematically in Fig. 5.2. The interface between

the fluid and solid is located at y = t, and a rigid plate located at z = (W + t) moves in

the x direction at a constant speed U0, giving rise to Couette flow in the fluid domain.

The bottom edge of the solid is held fixed. Gkanis and Kumar [2003] have performed a

linear stability analysis of this problem in the limit of zero Reynolds number and infi-

nite domain length L, and have shown that the steady state solution of the deformation

in the solid produced by the Couette flow is,

x = (x, y) = (X + ΓY,Y) (5.14)

where Γ is the dimensionless number defined in Eq. (5.1).
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Figure 5.3: Comparison of FEM simulation with the analytical solution for different
values of Γ. Lines denote the analytical solution reported by Gkanis and Kumar [2003],
while symbols are results of the current FEM formulation.

Computations have been performed to compare predictions for the deformation of

the solid domain at L/2 with the analytical results of Gkanis and Kumar [2003]. In

order to eliminate end effects caused by the fixed ends of the solid and fluid domains

in computations, we have varied the length of the domain between 10 to 30 m and

ensured that domain length independent predictions are obtained.

The following parameter values have been used: ρ = 10−3 kg/m3, η0 = 1 Pa s, W = 1

m, t = 1 m and U0 = 10−3 to 1.75× 10−3 (in order to keep Re close to zero), and G = 10−2

Pa. This choice of parameter values maintains the value of the dimensionless number

Γ in the range 0.1 to 0.175.

The mid-surface displacement of the solid predicted by the finite-element formula-

tion is compared with the analytical solution for different values of Γ, in Fig. 5.3. It is

clear that in all cases finite-element results are in excellent agreement with the analytical

solution.



5.3. Results and discussions 76

5.3.1.2 Two-dimensional collapsible channel flow: Elastic beam model

Luo et al. [2007] have carried out extensive studies of Newtonian fluid flow in a 2D

collapsible channel by considering the flexible wall to be a plane-strained elastic beam

that obeys Hooke’s law. In contrast to the current finite thickness elastic solid model,

the beam model does not admit any stress variation across the cross-section of the

beam.

For the purposes of comparison, the dimensions of the channel and other parameter

values are chosen here to be identical to those used by Luo et al. [2007] in their simu-

lations: Lu = 5W, L = 5W, Ld = 30W, and U0 = 0.03 m/s, W = 10−2 m, ρ = 103 kg/m3,

η0 = 0.001 Pa s. This choice corresponds to Re = 300. Further, we set G = 11.97 kPa

(which is equivalent to a value of 35.9 kPa for the Young’s modulus of an incompress-

ible solid), and pe = 1.755 Pa. The flexible wall thickness is varied in the range 0.01W to

0.1W. The “pre-tension” in the beam is also a variable in the model of Luo et al. [2007].

However, since no such variable exists in the current model, we have restricted our

comparison to the results reported by Luo et al. [2007] for cases where the pre-tension

in the beam is zero.

Fig. 5.4 compares the prediction of the shape of the flexible wall by the present finite

thickness elastic solid model, with the reported results of Luo et al. [2007]. As may be

anticipated, while our simulations agree with Luo et al. [2007] for the relatively small

deformation that occurs for large membrane thickness t, the Hookean beam model

begins to depart from the prediction of the nonlinear neo-Hookean model for the large

deformations that occur when the membrane thickness is small.

5.3.1.3 Two-dimensional collapsible channel flow: Zero-thickness membrane model

Simulations have also been performed to compare predictions of the flexible wall shape

by the current finite thickness elastic solid model, with predictions by the zero-thickness

membrane model of Luo and Pedley [1995], for the flow of a Newtonian fluid. Apart

from the simplicity of the zero-thickness membrane model from a constitutive point of

view, a fundamental difference between the two models is that while the tension in the

flexible wall is prescribed a priori in the zero-thickness membrane model, it is part of

the solution in the finite thickness elastic solid model. As a result, in order to carry out

a comparison, a procedure involving several steps has been invoked.

Firstly, the zero-thickness membrane model has been computed for a pre-determined

value of membrane tension equal to 675 N/m, with the following parameter values:
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are the results of the current FEM formulation.
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Figure 5.5: (a) Extrapolation to t = 0 of the flexible wall shape obtained from the finite thickness
elastic solid model, for t = 0.01 W, t = 0.05 W, and t = 0.1 W. (b) Comparison of the shape of
the flexible wall predicted by the finite-thickness solid model (symbols) with the prediction of
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the elastic solid to the limit of zero wall thickness.
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Re = 1, ρ = 1054 kg/m3, U0 = 1.338 × 10−2 m/sec, W = 10−2 m, η0 = 0.141 Pa s and

pe = 17545 N/m2. This leads to a prediction of the minimum height of the gap in the

channel (beneath the flexible membrane) to be h/W = 0.125.

Computations with the finite thickness elastic solid model are then carried out for

the same parameter values, for various combinations of flexible wall thickness t, and

shear modulus G, such that each combination always leads to the same value of the

minimum channel gap height, namely h/W = 0.125. It turns out that even though the

minimum gap height is the same in both models, the predicted interface shape is not,

with the difference increasing with the thickness of the elastic solid. This is clearly a

result of the finite thickness of the elastic solid. Consequently, in order to compare the

interface shape, an extrapolation procedure has been carried out in which the height of

the interface at various locations in the gap, as a function of flexible wall thickness, is

extrapolated to the limit of zero wall thickness, as shown in Fig. 5.5 (a). The extrapolated

interface shape is then compared with the prediction by the zero-thickness membrane

model in Fig. 5.5 (b). Excellent agreement between the two models is obtained.

We still need to evaluate the resultant tension in the finite thickness elastic solid,

and examine how it compares with 675 N/m. This is done as follows. First, the tension

in the finite thickness solid at a particular location x is estimated by averaging the

tangential solid stresses acting across the cross-section at x. An estimate of the overall

tension in the solid is then obtained by averaging the tension along the entire length of

the flexible solid, for all values of x. The values of the average tension obtained from

the finite thickness elastic solid model for t = 0.01 W, t = 0.05 W, and t = 0.1 W are

then extrapolated to t = 0, as shown in Fig. 5.5 (c). The extrapolated value of tension

(667 N/m) is fairly close to the value of 675 N/m used in the zero-thickness membrane

model.

It is appropriate to briefly discuss the fluid models used in the present work before

presenting the results, since the differences in behaviour amongst them is essentially

due to differences in their rheology.

5.3.2 Fluid models and choice of parameters

Each of the three fluids examined here has distinct qualitative features: (i) The Oldroyd-

B fluid is elastic, but does not shear thin. Furthermore, its uniaxial extensional viscosity

is unbounded. (ii) The FENE-P fluid is elastic, shear thins, and has a bounded uniaxial

extensional viscosity. (iii) The Owens model fluid is elastic and shear thins, but has an
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Figure 5.6: The contribution of the microstructure to the total viscosity, η, for the Owens model
and FENE-P fluids in steady shear flow as a function of Weissenberg number W̃i. The inset
shows the shear rate dependence of viscosity in the Owens model, fitted to the experimental
results for blood reported by Chien [1970], and the predictions of the FENE-P model for bM = 2
and λ0 = 0.263.

unbounded uniaxial extensional viscosity. Additionally, a notable feature of the Owens

model, which belongs to the class of White-Metzner fluids, is that the dependence

of viscosity ηp on shear rate γ̇ can be prescribed arbitrarily through the choice of

parameters in the Cross model (see Eq. (2.12)). In particular, the viscosity can be

prescribed independently of the relaxation time. In contrast, for the FENE-P model,

the dependence of ηp on the shear rate γ̇ is completely determined by the choice of the

parameters, ηp,0, λ0, and the finite extensibility parameter bM. Unlike in the case of the

Owens model, no further control can be exerted on the shape of the viscosity function.

The difference in the prediction of viscosity by the FENE-P and Owens models, as

a function of the Weissenberg number W̃i = λ0γ̇, in steady shear flow, is displayed in
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Fig. 5.6. For the Owens model, we set ηp,0 = 0.197 Pa s, ηp,∞ = 0.003 Pa s, ηs = 0.001 Pa s,

θ2 = 8, and m = 0.75. These parameter values were chosen by Fang and Owens [2006]

to fit experimental data for the steady-state viscosity of blood, as reported by Chien

[1970]. The fitted curve and experimental data are reproduced in the inset to Fig. 5.6.

Additionally, Fang and Owens [2006] suggest λH = 0.004 s, which leads to λ0 = 0.263.

In order to compare the two fluid models, we assume that the FENE-P model has the

same value of ηp,0 and λ0, and that ηs is the same. This assumption is based on the

expectation that any choice of viscoelastic model would have to be compatible with

known experimental information on the rheology of the fluid, which would, at the least,

include a knowledge of the zero shear rate viscosity and the relaxation time. Note that

for the FENE-P model, while there is no necessity to prescribe λ0 when the shear rate

dependence of viscosity is expressed in terms of Wi, it is necessary when represented

in terms of γ̇. As is well known, the FENE-P model predicts increasing shear thinning

with decreasing values of the finite extensibility parameter bM. The entire family of

curves for the FENE-P model shown in Fig. 5.6, with values of bM ranging from 100

to 2, does not shear thin as rapidly as the Owens model. In particular, it is clear

from the inset that for the parameters recommended by Fang and Owens [2006], the

FENE-P model is unable to capture the rapidity with which blood shear thins, even

for bM = 2. In all cases, in line with expectation, shear thinning first occurs for the

FENE-P fluid when W̃i ∼ O(1). For viscoelastic fluids, the onset of shear thinning at

W̃i ∼ O(1) is an indication that relaxation modes corresponding to time scales larger

than λ0 are responding elastically, while relaxation modes corresponding to smaller

times scales are undergoing viscous dissipation. Since the Owens model shear thins

at significantly smaller values of W̃i, this suggests that the characteristic time scale

below which all modes dissipate energy through viscous dissipation is much larger

than λ0. As mentioned earlier, λ0 corresponds to the relaxation time for an aggregate

of blood cells, which according to Owens [2006], are typically of a size that represents

the greatest proportion of erythrocytes. By defining a Weissenberg number W̃i
Owens

for

which the Owens model fluid shear thins when it is of O(1) (see the upper horizontal

axis of Fig. 5.6), we can estimate that the appropriate relaxation time is of order 104,

which must correspond to much larger structures than a typical blood cell aggregate.

We do not explore this aspect further here, rather, for the purposes of the present

paper, we assume that the FENE-P and Owens models are distinct constitutive models,

which have the same zero shear rate material properties, but shear thin significantly

differently. As will be discussed in greater detail in the sections below, the difference
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between the models leads to significant differences in their behaviour.

For all the computational results reported here, we set ηp,0, ηp,∞ ηs, θ2, and m at the

values recommended by Fang and Owens [2006]. However, we vary λ0 (by varying

λH) in order to control the inlet Weissenberg number. For the FENE-P fluid, we set

bM = 100, which is a value commonly used in simulations. As we are interested in

small blood vessels, we choose the width W of the channel to be 100 µm and U0 = 0.01

m/s, inline with the data reported in Robertson et al. [2008]. The value of Re in small

blood vessels is well below 1. We have not seen any significant difference in the profile

shape of the collapsible wall for values of Re in the range of 0-1, so we set Re = 0 by

setting ρ = 0.

Deng and Guidoin [1998] have reported the values of Young’s modulus for the

human artery to be in the range 300-4000 kPa. Zhang and co-workers [Zhang et al.,

2004; Zhang and Greenleaf, 2005, 2006a,b] have reported the Young’s modulus of the

porcine artery to be in the range 110-140 kPa, while using two different values for

the external pressure (8 kPa and 9.3 kPa) in their experimental measurements of the

Young’s modulus. In order to adequately represent the microcirculation, we choose a

wide range of values for the external pressure pe from 1.2 to 16 kPa and G in the range

30 to 400 kPa. Since Pe = pe/G, we keep Pe fixed at a constant value of 0.04 even though

both pe and G are varied. On the other hand, we vary Γ in the range 4.95 × 10−5 to

6.6 × 10−4. We choose a fixed value of 0.4W for thickness of the solid wall (t) as the

artery wall thickness to vessel diameter ratio is very high in small blood vessels [Kalita

and Schaefer, 2008].

5.3.3 Mesh convergence and the high Weissenberg number problem

Chakraborty et al. [2010] have established that the flow in a collapsible channel with

a zero-thickness membrane suffers from the high Weissenberg number problem and

have shown that there is a limiting Weissenberg number for each of the fluid models

beyond which computations fail. Furthermore, this limiting Wi value has been shown

to increase with mesh refinement. Here we study mesh convergence over a range of

parameters for the current geometry, using three different meshes M1-M3 for t = 0.4W,

as illustrated in Fig. 5.7, with the mesh details given in Table 5.1.

In viscoelastic flow, mesh convergence is generally studied by examining the values

of the invariants of the conformation dyadic, M. The eigenvalues mi of the conformation

dyadic represent the square stretch ratios along the principal directions of stretching
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Figure 5.7: Meshes considered in the current study. (a) M1, (b) M2 and (c) M3, for t = 0.4W.

Mesh Number of elements Number of nodes Degrees of freedom

M1 400 1705 10972
M2 900 3757 24072
M3 1600 6609 42252

Table 5.1: Meshes considered in the current study.
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Figure 5.8: Minimum value of the smallest eigenvalue (m1) and maximum value of the largest
eigenvalue (m3) in the entire flow domain, for the Oldroyd-B ((a) and (d)), FENE-P ((b) and (e)),
and Owens model ((c) and (f)), as a function of Wi at Γ = 4.95 × 10−5 and Pe = 0.04 for t = 0.4W.
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mi for an ensemble of molecules [Pasquali and Scriven, 2002, 2004]. It has been well

established that the breakdown of viscoelastic computations is typically due to the

smallest eigenvalue becoming negative in some regions of the flow domain [Bajaj et al.,

2008; Chakraborty et al., 2010; Pasquali and Scriven, 2002; Singh and Leal, 1993; Zanden

and Hulsen, 1988].

Fig. 5.8 shows the maximum eigenvalue m3 and minimum eigenvalue m1 of the

conformation tensor as a function of Wi for the Oldroyd-B, FENE-P and Owens fluids

at Γ = 4.95 × 10−5 and Pe = 0.04 for t = 0.4W. Fig. 5.8 (a)-(c) clearly exhibits the

breakdown of viscoelastic computations at a particular value of Weissenberg number

on each mesh, since the minimum value of m1 becomes negative. This limiting Wi

increases with increase in mesh refinement.

An increase in Wi leads to a higher maximum m3 and lower minimum m1 across the

flow domain. While the breakdown value of Wi at each mesh can be anticipated from

the sudden change of the slope of the curves in the minimum m1 plots (Fig. 5.8 (a)-(c)),

the curves of the maximum m3 on various meshes overlap with each other (Fig. 5.8 (d)-

(f)). The limiting value of Wi on the M2 mesh for the Oldroyd-B, FENE-P and Owens

fluids is respectively 0.29, 0.38 and 2.13, while the mesh converged value of Wi for these

models is 0.17, 0.20 and 1.0 respectively. In all our analysis, we have ensured that mesh

converged values of Wi are used for any particular mesh.

While Fig. 5.8 displays the maximum and minimum eigenvalues in the entire flow

field, Fig. 5.9 displays the mean streamwise molecular stretch Mxx across the channel

at the point where the gap between the flexible and rigid walls is a minimum, for a

fixed value of Γ, and increasing values of Wi. With increasing Weissenberg number,

Mxx grows nearly symmetrically from a relatively low value in the middle of the gap, to

a significantly larger value near the bottom (rigid) and top (flexible) walls. Note that in

the Oldroyd-B and Owens models, Mxx is unbounded due to the infinite extensibility

of the Hookean spring in the Hookean dumbbell model which underlies these fluid

models. Conversely, the existence of a upper bound to the mean stretchability of the

spring in the FENE-P model restricts the maximum value for Mxx, which for bM = 100

is 300. The profiles of Mxx for the different fluids in Fig. 5.9 clearly reflect this micro-

mechanical aspect of the models, and confirm that as in other benchmark problems for

non-Newtonian flow, numerical computations in a 2D collapsible channel also fail due

the development of large stresses and stress gradients in certain regions of the flow

field, which are related to large changes in the conformations of the molecules.

In their earlier study with a zero-thickness membrane, Chakraborty et al. [2010]
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Figure 5.9: Profile of Mxx across the narrowest channel gap for the Oldroyd-B, FENE-P and
Owens models, for a range of Weissenberg numbers, at Γ = 1.98 × 10−4. The distance from the
bottom channel is scaled by the narrowest gap width ∆ymax (see Fig. 5.13(a) for a definition) of
the particular model.
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(a)

(b)

Figure 5.11: Contours of axial velocity (vx) in the flow domain, for Newtonian (black), Oldroyd-
B (red), FENE-P (blue) and Owens (green) fluids at Pe = 0.04, t = 0.4W and Γ = 1.98 × 10−4 for
two different values of Weissenberg number (a) Wi = 0.1 and (b) Wi = 0.5.

have shown that the extent of collapse of the membrane also has a significant effect

on the limiting Weissenberg number. As the gap in the channel becomes narrower

with decreasing tension in the membrane, the fluid is ’squeezed’ leading to a greater

deformation of the molecules, with a concomitant numerical breakdown at smaller

values of Wi. The parameter that controls the deformability of the finite thickness wall

in the current work is Γ. Fig. 5.10 demonstrates the limiting and the mesh converged

values of the Weissenberg number on the M2 mesh for all the values of Γ used in this

study. The limiting Weissenberg number increases with an increase in the value of Γ,

and follows the trend Owens > FENE-P >Oldroyd-B. The Owens model has the largest

gap between the converged and limiting values of Wi. As will be apparent when we

discuss the shape of the fluid solid interface in Fig. 5.12, an increase in Γ leads to an

increase in the magnitude of the narrowest channel gap, and consequently an increase

in the limiting value of Wi.

5.3.4 Velocity fields and interface shape

Fig. 5.11 compares the velocity profile predicted by a Newtonian fluid with those of an

Oldroyd-B, FENE-P and Owens’ fluid at Pe = 0.04, t = 0.4W and Γ = 1.98× 10−4 for two
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different values of Wi. The coincidence of the velocity profiles for the Oldroyd-B and

FENE-P models with the velocity profile for a Newtonian fluid at Wi = 0.1, and the

continued coincidence at Wi = 0.5 for the Oldroyd-B model suggests that elastic effects

do not have a significant influence on the velocity field at these values of Wi. On the

other hand, the slight departure of the velocity profile for the FENE-P fluid from the

Newtonian velocity profile at Wi = 0.5, and the significant departure of the velocity

profile for the Owens model, at both values of Wi, indicates that the extent of shear

thinning plays a crucial role in determining the velocity profile.

Fig. 5.12 explores the deformation of the finite-thickness solid wall, while interacting

with the different fluids. While Fig. 5.12 (a)-(c) investigates the shape of the fluid-solid

interface for different values of Γ at Wi = 0.1, Fig. 5.12 (d)-(f) examines the dependence of

the interface profile on Wi at a fixed value of Γ = 4.95×10−4. The extraordinary variation

in the shape of the elastic solid with varying elasticity parameter Γ is immediately

apparent from Fig. 5.12 (a)-(c). In particular, there is a stark contrast in the response

of the solid to the flow of different viscoelastic fluids. Except in the case of the Owens

model, increasing Γ leads to a movement of the deformable solid from being within

the channel (concave downwards) to bulging out of the channel (convex upwards)

due to action of the forces exerted by the flowing fluid. At the relatively low value

of Wi = 0.1 there is no discernible difference between the Newtonian, Oldroyd-B and

FENE-P fluids. For the Owens model on the other hand, the elastic solid remains

concave downwards for the entire range of Γ values. This behaviour is related to the

significant difference in the force field generated in the Owens model fluid due to flow,

as discussed shortly.

It is appropriate to note here that in our earlier investigation of viscoelastic flow in a

2D channel with a zero-thickness membrane [Chakraborty et al., 2010], the fluid-solid

interface was always observed to be concave downwards for all values of membrane

tension. Indeed, in contrast to the situation for a finite thickness solid, with decreasing

tension, the zero-thickness membrane moves further into the channel, with a concomi-

tant decrease in the narrowest channel gap.

At a fixed value of elasticity parameter Γ, while Fig. 5.12 (f) indicates that Wi has

no effect on the shape of the deformable solid in the case of the Owens model (which

remains concave downwards), it has a noticeably different effect for the Oldroyd-B and

FENE-P fluids. Both fluids cause the elastic solid to bulge outwards. However, the

extent of this bulge decreases more rapidly for the FENE-P fluid with increasing Wi. In

the case of the Owens model, at these values of Wi, shear thinning is nearly complete,
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Figure 5.12: The shape of the fluid-solid interface in a 2D collapsible channel for the Oldroyd-B
((a) and (d)), FENE-P ((b) and (e)) and Owens models ((c) and (f)), compared with the profile
for a Newtonian fluid. Note that Wi is 0.1 in (a)–(c) and Γ is 4.95 × 10−4 in (d)–(f). In (a)–(c)
different symbols represent different values of Γ (�: 4.95 × 10−5, ◦: 1.98 × 10−4,?: 3.0 × 10−4,
+: 3.96 × 10−4, x: 4.95 × 10−4 and 4: 6.6 × 10−4). Lines with the same colour as the symbols
represent the predictions of a Newtonian fluid for identical values of Γ.
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and there is consequently no change discernible in the membrane shape. On the other

hand, the onset of shear thinning for the FENE-P model is responsible for the observed

variation in the predicted membrane shape from that for an Oldroyd-B fluid.

Fig. 5.12 indicates that the deformation of the solid wall occurs along both axial and

vertical directions for all the fluid models, with the extent of movement depending

on the values of Γ and Wi. By defining the position of maximum deformation as the

point on the elastic solid furthest in the vertical direction from the horizontal surface,

this dependence can be examined more systematically. The precise location of the

position of maximum deformation is given by the co-ordinate pair (∆xmax, ∆ymax), as

shown schematically in Fig. 5.13 (a), which measures the maximum displacement from

the centre of the elastic solid when it is horizontal. Fig. 5.13 (b) and (c) tracks the

position of maximum deformation for varying Γ and Wi, and correspond to the set

of Fig. 5.12 (a-c) and Fig. 5.12 (d-f), respectively. The movement of the elastic solid

from being concave downwards to convex upwards in the case of varying Γ, and the

downward movement with increasing Wi are clearly captured in this description. The

relative immobility of the solid in the case of a flowing Owens model fluid is also clearly

revealed.

5.3.5 Pressure and stresses

Patankar et al. [2002] have shown analytically that for any constitutive model of the

form,

a1D + a2
∇
D + a3T + a4

∇
T = 0 (5.15)

where, a1, a2, a3, and a4 are scalar functions of the invariants of D and T, and
∇
D and

∇
T are

the upper convected time derivatives of D and T, the normal component of extra stress

on a rigid body surface will be zero. Chakraborty et al. [2010] have shown numerically

that this is true even in the case of flow past a deformable zero-thickness membrane,

for all the three viscoelastic fluids considered here. In the present instance as well, we

find that the normal component of stress on the elastic wall is solely due to pressure.

Fig. 5.14 examines the effect of Γ and Wi on the non-dimensional pressure P exerted

by the different fluids on the elastic solid. At Wi = 0.1, the increase in P with increasing

Γ for the Oldroyd-B and FENE-P models is nearly identical to that for a Newtonian

fluid, as can be seen from Fig. 5.14 (a) and (b). Notably, for all these fluids, a distinct

change occurs in the shape of the pressure profile for Γ > 1.98×10−4. For values of Γ less

than or equal to this value, the pressure profile is relatively constant upstream of the
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Figure 5.13: (a) Schematic diagram for defining the position of maximum deformation
(∆xmax,∆ymax). (b) Dependence of (∆xmax,∆ymax) on Γ at a fixed value of Wi = 0.1, and (c)
on Wi at a fixed value of Γ = 4.95 × 10−4. In (b) and (c) the arrows indicate the direction of
increasing Γ and Wi, respectively. The range of Wi for the Oldroyd-B, FENE-P and Owens
models are 0.01-1.508, 0.01-2.372 and 0.01-7.9, respectively.
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Figure 5.14: Dependence of the pressure profile along the flexible membrane on Wi and Γ, for
the Oldroyd-B ((a) and (d)), FENE-P ((b) and (e)) and Owens models ((c) and (f)), respectively.
The lines in (a)–(c) are for a Newtonian fluid. Note that Γ = 1.98 × 10−4 in (d)-(f) and Wi = 0.1
in (a)-(c).
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position of maximum deformation, before decreasing relatively rapidly downstream

to a constant value. (The vertical lines in the figure denote the x-position of maximum

deformation, with the colour coordinated to match the corresponding Γ value). On the

other hand, for values of Γ > 1.98 × 10−4, the decrease in pressure from the location

where the fluid flows under the deformable solid to the location where it exits, is much

more uniform. As can be seen from Fig. 5.12 (a) and (b), the change in the shape of

the pressure profile is correlated with the change in interface shape that occurs around

Γ ∼ 3 × 10−4, which is approximately the value at which the elastic solid moves from

being concave downwards within the channel to bulging outwards from the channel.

In the case of the Owens model, even though the pressure increases with increasing Γ,

the shape of the pressure profile remains unchanged, since the elastic solid is always

concave downwards in shape (see Fig. 5.14 (c) and Fig. 5.12 (c)). Another notable aspect

is that the magnitude of pressure at any point along the interface is significantly lower

for the Owens model compared to that for all the other fluids. This can be attributed

to the significant decrease in viscosity that occurs for the Owens model fluid when it

flows under the deformable solid.

Fig. 5.14 (d)-(e) displays the effect of Wi on the pressure profile for a fixed value

of Γ = 4.95 × 10−4. At this value of Γ, as seen earlier in Fig. 5.12 (d)-(f), for all the

values of Wi considered here, the elastic solid bulges outwards from the channel due

to interaction with the Oldroyd-B and FENE-P fluids, while it is concave downwards

for the flow of an Owens model fluid. In the former two cases, with increasing Wi,

there is a clear decrease in the pressure that the fluid exerts on the downstream end of

the elastic solid, with the decrease being more substantial for the FENE-P fluid. This

correlates with the decrease in the bulge of the elastic solid seen earlier in Fig. 5.12 (d)

and (e). For the Oldroyd-B fluid, there also appears to be a slight increase in pressure

at the upstream end of the elastic solid. In the case of the Owens model fluid, neither

the interface shape nor the pressure profile are significantly altered by the variation in

Wi.

A different perspective on fluid pressure in the channel is provided in Fig. 5.15,

where the pressure drop ∆P in the channel between the entrance and exit to the region

beneath the elastic solid, is displayed. As seen earlier in Fig. 5.12 (a)-(b), with increasing

Γ, the interface shape for the Oldroyd-B and FENE-P fluids moves from being concave

downwards to convex upwards. Fig. 5.15 (a) shows that this is accompanied by an

increase in ∆P. Interestingly, the rate of change of ∆P with Γ has a point of inflection

around Γ ∼ 3×10−4, which is approximately the value at which the elastic solid becomes
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Figure 5.15: Dependence of pressure drop ∆P in the channel for the Oldroyd-B, FENE-P and
Owens models on (a) Γ at a fixed value of Wi=0.1 and (b) Wi at Γ = 1.98 × 10−4. Note that for a
Newtonian fluid, ∆P = 0.1. The curves terminate at the limiting Weissenberg number for each
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5.3. Results and discussions 96

horizontal (see Fig. 5.12 (a)-(b), and inset to Fig. 5.15 (a)).

A striking manifestation of differences in the prediction of a macroscopic property,

because of differences in fluid rheology, is displayed in Fig. 5.15 (b), where the depen-

dence of pressure drop ∆P on Weissenberg number Wi is plotted. The Owens model

fluid has a nearly constant pressure drop because the fluid has undergone significant

shear thinning, and has an almost constant viscosity under the deformable elastic solid

for all values of Wi. For the Oldroyd-B model on the other hand, which is a constant

viscosity fluid, there appears to be a very slight increase in ∆P. Clearly, the decrease

in pressure at the downstream end of the channel, is more than made up with the

increase at the upstream end. For the FENE-P fluid, the increasing shear thinning with

increasing Wi is reflected in Fig. 5.15 (b) with the observed decrease in ∆P.

Fig. 5.16 explores the dependence of the axial component of the conformation tensor

Mxx, along the flexible wall, on Γ and Wi. Fig. 5.16 (a)-(c) shows that an increase in

Γ leads to a decrease in the degree of stretching experienced by the micro-structural

elements, and that the value of Mxx in the Owens model is much less sensitive to the

value of Γ compared to the Oldroyd-B and FENE-P fluids. For the latter two fluids,

for values of Γ . 3 × 10−4, the elastic solid is concave downwards. As a result, the Mxx

profile has a maximum at the location in the channel where the gap is narrowest. As

the elastic solid moves out of the channel, there is a significant relaxation in the degree

to which the micro-structural elements are stretched.

The correlation between interface shape and Mxx profile is more strikingly revealed

in Fig. 5.16 (d)-(e), where the dependence of Mxx on Wi is explored at a constant value

Γ = 4.95 × 10−4. Since the interface always bulges outwards for the Oldroyd-B and

FENE-P fluids at this value of Γ, the highest stretch occurs at the inlet and outlet to the

deformable region, in contrast to the situation for the Owens model, where the elastic

solid is always concave downwards, and consequently, the maximum stretch is always

at the location of the narrowest gap.

Finally, the dependence of the total shear stress on the elastic solid, τ s
t + τ

p
t , on the

parameters Γ and Wi, is examined in Fig. 5.17 for the three viscoelastic fluids. Once

again, there is close parallel between the shape of the fluid-solid interface and the shear

stress on the wall. Indeed, the shear stress profiles are either concave downwards

or convex upwards in complete synchrony with the interface shape. In contrast to

the zero-thickness membrane model, where the shear stress on the membrane has no

influence on membrane shape because of the use of a boundary condition that only

accounts for the influence of the normal stress, in the present model, both the pressure
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Figure 5.16: Dependence of the axial component of the conformation tensor Mxx on Γ, for (a)
Oldroyd-B, (b) FENE-P, and (c) Owens models, at Wi = 0.1, and dependence of Mxx on Wi, for
(d) Oldroyd-B, (e) FENE-P, and (f) Owens models, at Γ = 4.95 × 10−4.
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Figure 5.17: Dependence of the tangential component of stress τ s
t +τ

p
t on Γ, for (a) Oldroyd-B,

(b) FENE-P, and (c) Owens models, at Wi = 0.1, and dependence of τ s
t + τ

p
t on Wi, for (d)

Oldroyd-B, (e) FENE-P, and (f) Owens models, at Γ = 4.95 × 10−4.
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and the shear stress are responsible for the membrane shape. As a result, a much

greater variety of interface shapes is observed for a finite thickness elastic solid.

5.4 Conclusions

In order to use a more realistic model for the collapsible wall, the zero-thickness mem-

brane model has been replaced by a finite-thickness incompressible neo-Hookean solid

which accounts for the effect of shear stress on membrane shape. A modified version

of Carvalho’s fluid-structure interaction formulation [Carvalho and Scriven, 1997] to-

gether with the DEVSS-TG/SUPG mixed finite element method is used to solve for the

fluid velocity, stress field and deformation of the solid wall. We have found significant

differences in the fluid-solid interface profiles from the Newtonian fluids for all values

of Γ for the Oldroyd-B, FENE-P and Owens models.

1. We have found a limiting Weissenberg number which is very sensitive to vis-

coelastic models and depends on dimensionless solid elasticity parameter Γ.

2. The axial component of the conformation tensor Mxx has a large value for both

the Oldroyd-B and Owens models near the maximum deformed position of the

fluid-solid interface. This can be attributed to the breakdown of numerical com-

putations.

3. The shape of the membrane as a function of a membrane elasticity parameter Γ,

and of the Weissenberg number Wi has been studied, and the change in shape

has been used as an indication of the extent of fluid-structure interaction.



Chapter 6

Collapsible microchannel

6.1 Introduction

Experiments on flow through a collapsible tube [Bertram, 1982, 1986, 1987; Bertram and

Castles, 1999; Bertram and Elliott, 2003; Bertram and Godbole, 1997; Bertram et al., 1990,

1991; Brower and Scholten, 1975; Conrad, 1969] were carried out in large diameter tubes

(13-15 mm) at high Reynolds numbers (>100) and the theory for predicting the New-

tonian fluid flow in collapsible macrochannels/macrotubes is well established [Hazel

and Heil, 2003; Heil and Jensen, 2003; Liu et al., 2009a; Luo and Pedley, 1995, 1996;

Marzo et al., 2005]. However, to the best of our knowledge none of the studies have

used a collapsible microchannel. In this chapter, we investigate fluid flow in a col-

lapsible microchannel made of PDMS (approximate length 30 mm and width 200µm).

Initially, to characterize the elastic behaviour of PDMS, the deformation of the thin

PDMS membrane is measured without fluid flow in the channel. Upon establishing

the PDMS properties, fluid is introduced in the channel. We have used two-dimensional

Navier-Stokes equations to predict the behaviour of the fluid flow, however special care

has been taken to eliminate the effect of the third dimension. In this study, measure-

ments of the deformation of the PDMS membrane having different widths has been

performed in addition to the finite element analysis to extract the elastic modulus of

the PDMS membrane from the load-displacement data.

This chapter is organized as follows. Section 6.2 presents the microfabrication

process employed to fabricate the collapsible microchannel. Section 6.3 compares the

experimental results with the simulation, and Section 6.4 summarises our conclusions.
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6.2 Method

6.2.1 Design of a PDMS collapsible microchannel

Optical transparency, gas permeability, biocompatibility and elasticity of PDMS poly-

mers, makes them suitable for studying several phenomena in the microcirculation

[Duffy et al., 1998; Leclerc et al., 2003]. The fabrication of microfluidics channels using

PDMS has been done following the standard microfabrication method [Duffy et al.,

1998; Unger et al., 2000]. Fig. 6.1 schematically shows the microfabrication process to

produce a collapsible microchannel. The mold for the PDMS collapsible microchannel

is created by standard photolithography technique. The photomask for the mold is

designed by AUTOCAD software and a laser quartz photomask is prepared by print-

ing in a chromium deposited quartz plate (420 000 dpi/600 nm). To prepare the mold,

we have used SU-8 (SU-8 2035, MicroChem, Newton MA USA) negative photoresist.

Initially, the SU-8 photoresist was spin coated on a cleaned silicon wafer to achieve an

approximate thickness of 100 to 200µm by varying spinning speed. The photoresist film

was then prebaked (soft baked) (at 65oC for 10 min and 95oC for 120 min) on a hot plate.

For high aspect-ratio mold multiple layers of SU-8 are spin coated and subsequently

prebaked. After the soft baking process, the SU-8 covered wafer with mask atop was

exposed to UV radiation with a wavelength of 350–400 nm for 60 s. To enhance the

cross-linking in the exposed portions of the SU-8 a two-stage postexposure bake pro-

cedure (65oC for 1 min and 95oC for 20 min) was then used. The wafer was developed

by keeping it in a MicroChem SU-8 developer solution for 20 min. The dimension of

the mold was confirmed by taking several measurements with a profilometer.

Once the mold is created, PDMS (Dow and Corning Sylgard 184) which is a two-

part system, is mixed in the ratio of cross-linker: siloxane equal to 1:10 and is then

kept in a vacuum chamber to remove the bubbles generated during mixing. It is well

established that the changes in mixing ratio and curing procedure can alter the rigidity

of the PDMS significantly [Friend and Yeo, 2010; Fuard et al., 2008; Hohne et al., 2009].

Hence, we strictly followed the mixing ratio and curing procedure to keep the rigidity

of the PDMS channel the same when making different devices. PDMS was then poured

over the mold and cured at 700C for two hours in an oven yielding an inverse cast of the

patterned mold. The PDMS structure was then peeled away from the mold and holes

were punched to provide for inlet and outlet ports and outlets for a pressure sensor.

The PDMS channels are oxidized in a plasma cleaner for 2 min and then bonded with

another piece of PDMS.
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Figure 6.1: Schematics of the fabrication process used to produce the collapsible microchannel,
(a) spin coating of the SU-8 2035 negative photoresist on a silicon wafer, (b) exposing the
photoresist to UV radiation in a standard photolithography process, (c) development to prepare
the SU-8 structured mold and (d) inverse cast of the patterned mold made of PDMS upon curing.

(i) (ii)

Figure 6.2: Exploded view of the collapsible microchannel fabricated for the present study, (i)

design type 1 and (ii) design type 2.
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Fig. 6.2 shows two different designs for fabricating collapsible microchannels. In

one type of design (device type one, DT1) a single casted PDMS structure contains the

fluid channel, pressure chamber and flexible membrane, where as in the other type

(DT2), the fluid channel, pressure chamber and flexible membrane are separately cast.

In DT1 the width of the channel (W) is decided by the spin coated thickness of the

SU-8, while this thickness decides the height (H) of the channel for DT2. The width of

the DT1 devices are limited because of the challenges in making a high thickness SU-8

mold.

Fig. 6.3 shows the images of the mold and final devices which are fabricated using the

two different approaches adopted in the present study. While following the fabrication

process for DT1 we have successfully fabricated collapsible microchannels of three

different widths, approximately 0.3, 0.45 and 0.67 mm. In these types of devices the

thin PDMS membrane structure is developed due to the maintenance of a gap of

approximately 80µm between the fluid channel and pressure chamber. It was not

possible to generate an SU-8 mold of thickness more than 0.67 mm, since the gap

did not develop properly which in turn limited the width of the channel to 0.67 mm.

However, we have successfully fabricated collapsible microchannels of six different

widths, approximately 0.22, 0.5, 1.0, 2.0, 3.0 and 4.0 mm using the fabrication process

for DT2.

6.2.2 Analytical solution for pressure drop

The equations of motion for steady, incompressible flow in the absence of body forces

are:

∇ · v = 0 (6.1)

ρ v ·∇v = ∇ · (−pI + τ ) (6.2)

where ρ is the density of the liquid, v is the velocity, ∇ denotes the gradient, p is

the pressure, I is the identity tensor, τ is the viscous stress tensor. For a Newtonian

fluid, the viscous stress tensor is τ = 2ηD, where η is the viscosity of the liquid and

D = 1
2 (∇v + ∇vT) is the rate of strain tensor.

In general, fluid flow in a microchannel is characterized by low Reynolds num-

bers [Squires and Quake, 2005]. In a fully developed steady Poiseuille flow through a

long, straight, rigid rectangular microchannel, the velocity field cannot depend on the
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(a)

(b)

Figure 6.3: Images of patterned SU-8 mold and PDMS devices for (i) design type 1 ((a) SU-8

mold, (b) close view of the gap between fluid channel and pressure chamber and (c) final PDMS

device) and (ii) design type 2 ((a) SU-8 mold for fluid channel, (b) SU-8 mold for pressure

chamber and (c) final PDMS device).

flow direction (x), while only its x component can be non-zero. These simplifying as-

sumptions on the Navier-Stokes equations result in the following equation (x direction

only).

0 = −∂p
∂x

+ η

(
∂2vx

∂y2 +
∂2vx

∂z2

)
(6.3)
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The analytical solution of the equation 6.3 is straightforward for a channel with circular

cross section (Hagen and Poiseuille flow), while an approximate solution is obtained

as a Fourier sum for the flow in a channel with a rectangular cross-section which is

the frequently encountered shape especially in microfluidics [Bruus, 2008; Mortensen

et al., 2005; White, 1991]. The velocity profile in a rectangular microchannel is given by

vx =
4H2∆p
π3ηL

∞∑

n,odd

1
n3

1 −
cosh(nπ y

H )

cosh(nπ W
2H )

 sin(nπ
z
H

) (6.4)

where L is the length of the channel, W is the width of the channel, ∆p is the total

pressure drop and H is the height of the channel. The flow rate Q can be obtained upon

integration of equation 6.4 along the width and height of the channel [Bruus, 2008;

White, 1991],

Q =
H3W∆p

12ηL

1 −
∞∑

n,odd

192H
n5π5W

tanh(nπ
W
2H

)

 (6.5)

In the worst case, i.e. when H = W, the approximate value of Q considering only the

first term of the series gives an error of 13% in comparison to the value including all

the terms in the series.

6.2.3 ANSYS formulation

The incompressible neo-Hookean model described in Section 2.1.2 is only valid for a

two-dimensional geometry. However, to solve in a three-dimensional geometry, we

have considered the ANSYS plain strain model for a compressible neo-Hookean solid.

Here we briefly present the ANSYS formulation for simulating rubber-like materials

which undergo large deformations and are termed hyperelastic solids. The geometrical

transformations in this type of material are described in terms of the deformation

gradient tensor (F). Hyperelastic materials are described by a strain-energy density

function or a elastic potential function Ŵ. This quantity is a function of strain tensors

and its derivative with respect to a strain component determines the corresponding

stress component. This stress can be obtained as

Ŝ = 2
∂Ŵ
∂C

(6.6)

where Ŝ is the second Piola-Kirchoff stress tensor and C is the right Cauchy-Green

strain tensor which is expressed as C = FT · F.
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The strain energy potential for the neo-Hookean material can be expressed as

Ŵ =
G
2

(I1 − 3) +
1
d

(J − 1)2 (6.7)

where I1 is the first invariant of the right Cauchy-Green deformation tensor which can

be expressed as I1 = tr(C). In the above equation, G is the initial shear modulus of

the material, d is the material incompressibility parameter and J which is the ratio of

the deformed elastic volume over the undeformed volume of material expressed as

J = det(F).

If the acceleration and body forces are negligible, the equilibrium equation in the

current (deformed) configuration is simply

∇x · σ = 0 (6.8)

where σ is the Cauchy stress tensor which is related to the second Piola-Kirchoff stress

tensor as σ = J−1F · Ŝ · FT.

6.3 Results and discussions

6.3.1 Deformation of the PDMS membrane without fluid flow

Initially, to characterize the elastic properties of PDMS, the deformation of the thin

PDMS membrane was measured without fluid flow in the channel. One of the ma-

jor aims of the present study is to compare the experimental results with the two-

dimensional computational model developed here. It is consequently important to

fabricate a collapsible microchannel which can display two-dimensional features. One

of the possible means of reducing the dimensionality is to make the third dimen-

sion (width of the channel in this case) very large compared to the other dimensions.

In this type of collapsible microchannel, however, the value of width at which two-

dimensional behaviour can be observed is not known a priori. Thus collapsible mi-

crochannels for three different widths, approximately 0.3, 0.45 and 0.67 mm were

fabricated. The deformation of the thin PDMS membrane with the applied external

pressure was captured by microvideography using a Dino-Lite–Digital Microscope.

Fig. 6.4 displays the deformed shape of the membrane for an external pressure of 85

kPa. The deformation of the membrane is extracted from such images. Fig. 6.5 shows

the maximum deformation (∆zmax) of the flexible membrane in the three collapsible
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Figure 6.4: Microscopic image of the deformation of the flexible membrane with an application

of external pressure Pe = 85 kPa for a collapsible microchannel (DT1) with channel width of

approximately 0.3 mm.
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Figure 6.5: Dependence of maximum deformation ∆zmax of the bottom surface of the flexible

membrane on external pressure (Pe) for micro-collapsible channel (DT1) with three different

channel widths.

microchannels with applied external pressure. As may be expected, the increase in the

width of the channel alleviates the end effects imposed by the fixed ends of the flexible

membrane at the two extremes of the channel width. However, the two-dimensional

behaviour cannot be derived from the deformation in these devices.

To get an idea of the approximate value of W at which the importance of the

width in the third dimension diminishes, finite element analysis was performed with a

standard simulation tool for elastic analysis namely, the structural mechanics module

of ANSYS. Only the thin PDMS membrane was simulated by considering a finite-

thickness rectangular membrane with a fixed thickness of 60µm and a length of 1 mm

and varying widths (0.2, 0.5, 1.0, 2.0, 3.0 and 4.0 mm). Since ANSYS does not converge

for the incompressible case, i.e. when the Poisson ratio (ν) is 0.5, we have carried

out simulations at ν = 0.495. All the edges were kept fixed and an external pressure

applied on the top surface of these membranes, while keeping the pressure on the

bottom surface at zero. Nanoindentation tests were used to evaluate the values of

Young’s modulus for the PDMS membranes, and values in the range of 1.2 to 2.2 MPa

were obtained. A detailed description of the nanoindentation test results can be found

in Appendix C. The thin PDMS membrane is modelled as a nearly incompressible
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Figure 6.6: Dependence of maximum deformation ∆zmax of the bottom surface of the flexible

membrane on width W at three different values of external pressure Pe = 5, 10 and 15 kPa

obtained from ANSYS simulation.
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Figure 6.7: Microscopic image of the deformation of the flexible membrane with an application

of external pressure Pe = 20 kPa for collapsible microchannel (DT2) with channel width of

approximately 0.5 mm.

non-linear neo-Hookean elastic material with Young’s modulus of E = 2 MPa and a

Poisson ratio of ν = 0.495. The maximum deformation of the bottom surface of the

flexible PDMS membrane is extracted from the simulation at different pressures. Fig. 6.6

clearly shows the appearance of 2D behaviour, starts at around W = 2 mm.

It is now clear from the preliminary ANSYS simulation that at least a width of W =

2 mm is required to neutralize the influence of the third dimension. However, we are

constrained with the present technique of device fabrication DT1, since the width of

the DT1 devices are limited because of the challenges in making high aspect-ratio SU-8

mold using standard photolithography. It is essential to find an alternative method

to make devices which have higher width values. As mentioned in the section 6.2.1,

the DT2 devices can have higher widths. However we found it difficult to observe the

membrane deformation using DT2. We then devised a new post-casting technique to

make the viewing transparent, in order to explore DT2 micro-collapsible channels to

see the appearance of 2D behaviour as suggested by the ANSYS simulation. Fig. 6.7

shows the deformed shape of the membrane with a width of 0.5 mm for an external
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Figure 6.8: Dependence of maximum deformation ∆zmax of the bottom surface of the flexible

membrane on external pressure (Pe) for micro-collapsible channel (DT2) with different channel

widths, approximately 0.22, 0.5, 1.0, 2.0, 3.0 and 4.0mm.

pressure of 20 kPa.

Fig. 6.8 displays the maximum deformation (∆zmax) of the flexible membrane in

these six collapsible microchannels with applied external pressure. It is clearly visible

from Fig. 6.8 that the two-dimensional deformation pattern is starting at around W = 2

mm.

We now compare our experimental results with the 2D simulation results for an

incompressible neo-Hookean material. Simulations are carried out considering a 2D

beam of length 1 mm and thickness 60 µm, which is fixed at both the ends and deforms

due an external pressure acting on the top edge. In all the simulations, the value of pe

was varied according to the experimental value and different values of Young’s mod-

ulus for the solid were assumed. It can be seen from the Fig. 6.9 that the deformation

behaviour predicted using E = 1.95 MPa is approximately in agreement with the ex-

perimental results at lower values of deformation, whereas, a value of E = 1.5 MPa is

more appropriate for higher deformation values.
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Figure 6.9: Comparison of experimental results with the 2D simulation results.

Figure 6.10: Experimental setup for carrying out pressure drop measurements.
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Figure 6.11: Dependence of pressure drop ∆p on flow rate Q for two different widths.

6.3.2 Deformation of the PDMS membrane with fluid flow

Fig. 6.10 shows the microfluidics setup designed for carrying out pressure drop mea-

surements together with the microimaging for membrane deformation. A syringe

pump, which is connected to the channel inlet, is used to supply fluid at constant flow

rate to the collapsible microchannel. The pressure drop in the channel can be calculated

from the difference in fluid column height (pressure head) indicated by the small tubes

connected to the channel at the inlet and outlet pressure ports.

It is very important to measure the pressure drop in the channel to characterize the

flow within a collapsible microchannel. As shown in Fig. 6.11, the measured pressure

drop using the present experimental setup is compared with the analytical values

derived from Eqs. 6.5 for two different widths (0.5 and 3.0 mm) of the channel. The

measured experimental ∆p agrees well with the analytical solution. The variation in the

channel pressure drop with flow rate follows the linear behaviour of theoretical profiles
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Figure 6.12: FEM prediction of fluid-solid interface profile at different flow rate.

at low flow rates. Although in the experimental data, the dependence of ∆P on Q

appears largely linear, a departure of the experimental data from the analytical solution

is evident at higher values of flow rate for the channel having a width of 0.5 mm. Because

of the flexible nature of PDMS channel deformation can occur at higher flow rates and

this deformation can change the cross-sectional area of the microchannel [Gervais

et al., 2006; Hardy et al., 2009; Holden et al., 2003]. While deriving the Eqs. 6.5 it

was assumed that the channel cross-section did not experience any change due to the

pressure applied by the flowing fluid. The departure from the linear theoretical profile

in predicting pressure drop in the channel of 0.5 mm width can be attributed to the

channel deformation occurring at higher flow rate. However for the 3 mm width

channel, the deformation has negligible effect as evidenced from the pressure drop

profile.

Preliminary experiments are carried out on 3.0 mm width channel to see the evi-

dence of fluid-structure interaction in the collapsible microchannel. While keeping the

external pressure fixed at pe = 5 kPa, flow rates are varied in the range of Q = 1 - 60 ml/hr,

which corresponds to average inlet velocity U0 in the range of 4.4 × 10−4 to 2.6 × 10−2.

We have not encountered any significant departure in the fluid-solid interface profile.
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In order to identify the reason behind this type of behaviour, we have carried out FEM

simulation considering a collapsible channel of height 200 µm. The geometry of the

flow is that of a 2D channel, with one of the walls containing an elastic segment. The

membrane has a finite thickness of 60 µm. The channel has a height of H = 200 µm

and a total length of L = 29 mm. To mimic the experimental flow, we set ρ = 1000

kg/m3, H = 200 µm and η0 = 0.001 Pa s and vary U0 in the range of 5.0 × 10−4 to 1 m/s.

As can be seen from the Fig. 6.12, any noticeable departure in interface shape cannot

be observed for the inlet velocity U0 varying in the range of 5.0 × 10−4 to 5.0 × 10−2

m/s. This result strongly supports our experimental results. A total pressure drop of

approximately 0.2 kPa has been measured at Q = 60 ml/hr which is very much less than

the external pressure of pe = 5 kPa acting on the flexible membrane. Thus the normal

force as well as the shear force exerted by the fluid on the solid surface is not changing

much with the set of parameter values considered in the present case. Further analysis

is required to see the deformation of the flexible membrane caused by the flowing fluid.

One possibility is to use a very high viscosity fluid. In addition to the increase in total

pressure drop, the shear stress acting on the solid surface can be increased significantly

with the high viscosity fluid. Another option is to increase the flexibility of the PDMS

membrane so that it can display the similar type of deformation even at lower values

of external pressure. These directions will be pursued in future work.

6.4 Conclusions

Experiments have been carried out in a micro-collapsible channel made of poly-

dimethysiloxane (PDMS) that mimics the numerically simulated geometry. To char-

acterize the elastic properties of PDMS, the deformation of the thin PDMS membrane

is measured without fluid flow in the channel. Upon establishing the PDMS proper-

ties, fluid is introduced in the channel and different parameters are studied. The most

significant conclusions of this work are the following:

1. The influence of the third dimension has been eliminated successfully with the

use of a proper device fabrication technique. A simple simulation carried out

using the commercial software ANSYS has revealed the channel widths at which

the third dimension is important.

2. The observed value of the elastic modulus for the PDMS membrane agrees well

with the nanoindentation test results.
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3. The load-displacement curve predicted by the FEM simulation agrees well with

the experimental data.

4. Preliminary studies carried for the flow of a Newtonian fluid in the collapsi-

ble microchannel show promising trends for the applicability of our simulation

method.



Chapter 7

Overall conclusions and future work

7.1 Overall conclusions

The aim of this work has been to understand the role of viscoelasticity on flow in a two-

dimensional collapsible channel using a numerical method based on a fluid-structure

interaction formulation. At present, there are no models in the literature that simulta-

neously account for the elastic nature of the collapsible wall and the non-Newtonian

rheology of the flowing fluid. In this study, for the first time, a viscoelastic fluid-

structure interaction model has been developed that accounts for a viscoelastic fluid

and a finite thickness elastic wall, and the resulting governing equations are solved

with a sophisticated finite element method. Three different viscoelastic fluid models

have been considered - the Oldroyd-B, the FENE-P and Owens model for blood. The

rheological behaviour of the viscoelastic fluids is described in terms of a conformation

tensor model. Initially the collapsible wall is considered as a zero-thickness mem-

brane model. Subsequently the collapsible wall is modelled as an incompressible neo-

Hookean solid. The mesh equation and transport equations are discretized by using the

DEVSS-TG/SUPG mixed finite element method. The computational method developed

in this work is validated by comparing with the available analytical and numerical re-

sults. Experiments in collapsible microchannels have also been performed. The three

distinct parts of this project are zero-thickness membrane model, finite-thickness model

and collapsible microchannel.

1. Viscoelastic flow in a 2D channel with zero-thickness membrane model: Since

the focus has been on modelling flows at low Reynolds number, a fixed value of

Re = 1 has been used in all the computations. Each of the three model viscoelastic

fluids that have been chosen, namely, the Oldroyd-B, the FENE-P and Owens

117
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models, has unique features that distinguish it from the others. The predicted flow

patterns are compared to those of a Newtonian liquid. We find that computations

fail beyond a limiting Weissenberg number. Flow fields and membrane shape

differ significantly because of the different degree of shear thinning and molecular

extensibility underlying the three different microstructural models.

The flow of a FENE-P fluid for various values of finite extensibility parameter

bM has also been studied numerically to delineate the role of shear thinning on

the nature of the fluid-structure interaction in this benchmark geometry. The

influence of viscoelasticity and shear thinning on flow patterns and stress profiles

is examined and comparisons with Newtonian predictions are reported. The

existence of a limiting Weissenberg number beyond which computations fail

is demonstrated. The extent of shear thinning is shown to be a key factor in

determining the nature of the fluid-structure interaction.

2. Viscoelastic flow in a 2D channel with finite-thickness solid model: We have in-

troduced a new geometry, whose central feature is the existence of fluid-structure

interaction, into the lexicon of standard benchmark non-Newtonian flow com-

putations. The role that the presence of a deformable membrane plays in the

development of a complex flow field in the channel has been examined, and the

relationship of the upper limit to the Weissenberg number to molecular confor-

mations at various locations in the flow domain, has been delineated. The shape

of the membrane as a function of a membrane elasticity parameter Γ, and of the

Weissenberg number Wi has been studied, and the change in shape has been used

as an indication of the extent of fluid-structure interaction. The nature of the cou-

pling between macroscopic observables such as velocity, stress and conformation

fields, and various rheological features of the three viscoelastic fluid models used

in this study, has been explored in some detail.

3. Collapsible microchannel: Experiments show that the channel width W perpen-

dicular to the flow must be significant in order for wall effects to be negligible (an

assumption that is made in the 2D simulation). As a consequence, the commercial

software ANSYS has been used to develop a full 3D model of the channel which

captures the deformation of the flexible membrane in the absence of flow. De-

formation patterns observed for higher W channels agree well with the ANSYS

prediction. The elastic properties of PDMS have been extracted by comparing
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the load-displacement curves obtained from the FEM simulations with the ex-

periments. Preliminary comparison has been made between simulations and

experiments for the flow of a Newtonian fluid in the collapsible microchannel.

7.2 Future work

There are many aspects of the fluid-structure interaction problem for viscoelastic flows

in two dimensional collapsible channels that have not been examined in our work, and

which are important to examine in order to obtain a more complete understanding.

1. In terms of the fluid model, the use of a constitutive model that accounts for

thixotropy is an important feature, since the aggregation of blood cells in regions

of low shear rate can lead to rheological properties that depend locally on mi-

crostructural dynamics. The Owens model in its most general form does account

for thixotropy [Owens, 2006]. Thixotropy leads to rheological properties that

depend locally on microstructural dynamics.

2. Even though there exists an upper limit to the Weissenberg number at which

computations fail for each mesh, we have not encountered, in our admittedly

limited simulations, a situation where this upper limit has not changed with

mesh refinement. It would be interesting to see if the use of a log-conformation

tensor formalism leads to much higher upper limits to the Weissenberg numbers

for all the models.

3. The multiple modes of instabilities that arise for flow in collapsible channels, and

the rich behaviour that occurs in unsteady flows, has been extensively investi-

gated for Newtonian fluids. We hope that the present work provides a starting

point for similar studies in the context of viscoelastic fluids.

4. Further study is required to achieve a comprehensive understanding of experi-

mental aspects of the flow of blood in collapsible microchannels.



Appendix A

Owens’ model for human blood

A.1 Governing equations

As mentioned earlier, the Oldroyd-B, FENE-P and Owens’ models are used in this work.

The origins of the Oldroyd-B and FENE-P models are well known and consequently

are not discussed here further. We will discuss briefly, however, the new constitutive

equation for whole human blood derived by Owens [2006]. Owens used ideas drawn

from temporary polymer network theory to model the aggregation and disaggregation

of erythrocytes in normal human blood at different shear rates. Each erythrocyte is

represented by a dumbbell. The model exhibits shear-thinning, viscoelasticity and

thixotropy and its predictions agree reasonably closely with experimental observations

that have been carried out in certain benchmark flows [Bureau et al., 1980]. The basic

equation (for homogeneous flow) derived by Owens [2006] to describe the elastic stress

tensor for blood is:

τ p + λ

(
∂τ p

∂t
− (∇v)T · τ p − τ p ·∇v

)
= N0kBTλγ̇ (A.1)

A conformation tensor version of the Owens model can be derived straightforwardly,

∂M
∂t

+ v ·∇M −∇vT ·M −M ·∇v = − 1
λ
{M − I} (A.2)

and the constitutive equation for elastic stress is given by,

τ p =
ηp,0

λ0
{M − I} (A.3)

where
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λ =
nλH

1 + gnnλH

dn
dt

= −1
2

b(γ̇)(n − nst)(n + nst − 1)

b(γ̇) =
a(γ̇)N0

nst(nst − 1)

gnn =
1
2

b(γ̇)n(n − 1) + a(γ̇)N0 (A.4)

nst =
ηp,0

η∞

(
1 + θ1γ̇m∗

1 + θ2γ̇m∗

) (
1 +

3
2

a(γ̇)N0λH

)
(A.5)

here γ̇ is the rate of strain tensor (∇v+ (∇v)T) , γ̇ is the shear rate (+
√

(1/2)γ̇ : γ̇) , a(γ̇) is

the aggregation rate, b(γ̇) is the disaggregation rate, gn is the disaggregation coefficient,

n is the average aggregate size, nst is the steady state value of n at a given shear rate,

N0 is the number of red blood cells per unit volume, m∗, θ2 andθ1 = θ2 η∞/ηp,0 are

the Cross model parameters, with ηp,0 and η∞ = N0kBTλH being the zero and infinite

shear-rate red blood cell viscosities, respectively.

The exact form of the functions a(γ̇) and b(γ̇) are not known either experimentally or

theoretically. All RBC aggregates will break up at sufficiently high shear rate and thus

a(γ̇)→ 0 as γ̇→ ∞. Owens shows that with increase in shear rate, the function a(γ̇)N0

attains a maximum at some critical shear rate and then decays to zero. However, Owens

restricted his calculations to a linear form for a(γ̇)N0, which we follow. Owens [2006]

found the best agreement with the experimental data of Bureau et al. [1980] occurred for

the choice of parameters ηp,0 = 0.14 Pa s, η∞ = 0.004 Pa s, θ2 = 7.2, m∗ = 0.6, λH = 0.145

s and aN0 = 2(1 + γ̇).

With these parameter values, Eq. (A.4) and (A.5) can be rewritten for steady state as:

gnstnst = 3(1 + γ̇) (A.6)

nst =
ηp,0

η∞

(
1 + θ1γ̇m∗

1 + θ2γ̇m∗

) {
1 + 3(1 + γ̇)λH

}
(A.7)
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A.2 Analytical solution of Owens’ model in Couette flow

Motivated from the derivation of the analytical solution for the Oldroyd-B model in Bird

et al. [1987a] we describe here an analytical solution of Owens’ model in Couette flow.

For Newtonian fluids in Couette flow, there is a only one non-zero component of stress,

i.e. the transverse shear stress (τyx). But this is not the case for viscoelastic flows. The

most general form that the stress tensor [Bird et al., 1987a] can have for a simple shear

flow is given below:

τ p =



τ
p
xx τ

p
yx 0

τ
p
yx τ

p
yy 0

0 0 τ
p
zz



In simple shear flow, the rate of strain tensor (γ̇) will have the following form:

γ̇ = ∇v + (∇v)T =



0 1 0

1 0 0

0 0 0


γ̇yx

Here shear rate (γ̇) is same as γ̇yx provided γ̇yx ≥ 0. Now the upper convected time

derivative of the stress tensor (τ p
(1)) for steady flow can be expressed as follows [Bird

et al., 1987a]:

τ
p
(1) = −



2τ
p
yx τ

p
yy 0

τ
p
yy 0 0

0 0 0


,

so, that equation A.1 can be written as:



τ
p
xx τ

p
yx τ

p
zx

τ
p
yx τ

p
yy τ

p
zy

τ
p
zx τ

p
zy τ

p
zz


− λγ̇



2τ
p
yx τ

p
yy 0

τ
p
yy 0 0

0 0 0


= N0kBTλ



0 1 0

1 0 0

0 0 0


γ̇.

For a two dimensional geometry this equation becomes,


τ

p
xx τ

p
yx

τ
p
yx τ

p
yy

 − λγ̇

2τ

p
yx τ

p
yy

τ
p
yy 0

 = N0kBTλ


0 1

1 0

 γ̇

After solving this equation we can get the following expressions for the different



A.3. Derivatives 123

components of stresses.

τ
p
yx = N0kBTλγ̇ τ

p
xx = 2N0kBTλ2γ̇2

Once we calculate the values of stresses we can easily calculate the values of the

conformation tensor from Eqs. A.3.

A.3 Derivatives

In Owens’ model (Owens [2006]) λ depends on shear rate, which in this thesis is

calculated from the linearly interpolated velocity gradient (L). So, to incorporate

Owens’ model in our FEM code, we need to find out the derivative of λwith respect to

the interpolated velocity gradient basis function coefficients (Lβi j). The strain rate can

be expressed in terms of L as γ̇ i j = L + (L)T.

The derivative of the strain rate(γ̇ i j) with respect to the interpolated velocity gradient

basis function coefficients(Lβi j) is,

∂γ̇ i j

∂Lβkl

=
∂Li j

∂Lβkl

+
∂(Li j)T

∂Lβkl

=
(
δikδ jl + δikδ jl

)
× φβL

(A.8)

The derivative of shear rate (γ̇) with respect to the strain rate(γ̇ i j) is,

∂γ̇

∂γ̇ i j
=
∂
√

1
2 γ̇ : γ̇

∂γ̇ i j
=
∂
[√

1
2 tr(γ̇2

i j)
]

∂γ̇ i j

=
1
2

[1
2

tr(γ̇2
i j)

]− 1
2

×
∂
[

1
2 tr(γ̇2

i j)
]

∂γ̇ i j

=
1
2
× 1
γ̇
× γ̇ ji

(A.9)

The derivative of shear rate (γ̇) with respect to the interpolated velocity gradient basis

function coefficients(Lβi j)is,
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∂γ̇

∂Lβkl

=
∂γ̇

∂γ̇ i j
×
∂γ̇ i j

∂Lαkl

=
γ̇ ji

2γ̇
×

(
δikδ jl + δikδ jl

)
× φβL

=
1

2γ̇
(
γ̇lk + γ̇lk

) × φβL

(A.10)

The derivative of nst with respect to the shear rate (γ̇) is,

∂nst

∂γ̇
=
∂
∂γ̇

[
ηp,0

η∞

(
1 + θγ̇m

1 + βγ̇m

) {
1 + 3(1 + γ̇)λH

}]

=
ηp,0

η∞

(
1 + θγ̇m

1 + βγ̇m

)
∂
∂γ̇

{
1 + 3(1 + γ̇)λH

}
+
ηp,0

η∞

{
1 + 3(1 + γ̇)λH

} ∂
∂γ̇

(
1 + θγ̇m

1 + βγ̇m

)

=
ηp,0

η∞

(
1 + θγ̇m

1 + βγ̇m

)
× 3λH +

ηp,0

η∞

{
1 + 3(1 + γ̇)λH

} (1 + θγ̇m

1 + βγ̇m

) [
θ

1 + θγ̇m −
β

1 + βγ̇m

]
mγ̇m−1

(A.11)

The derivative of λ with respect to the shear rate (γ̇) is,

∂λ
∂γ̇

=
∂
∂γ̇

(
nstλH

1 + gnstnstλH

)

=

(
1

1 + gnstnstλH

)
λH
∂nst

∂γ̇
+ λHnst

∂

∂γ̇

(
1

1 + gnstnstλH

)

=

(
λH

1 + 3(1 + γ̇)λH

)
∂nst

∂γ̇
+ λHnst

[
− {

1 + 3(1 + γ̇)λH
}−2

]
× 3λH

=
λ
nst

∂nst

∂γ̇
−

(
λHnst

1 + 3(1 + γ̇)λH

)
×

(
3λH

1 + 3(1 + γ̇)λH

)

=
λ
nst

∂nst

∂γ̇
− λ × 3λ

nst

=
λ
nst

(
∂nst

∂γ̇
− 3λ

)

(A.12)

The derivative of 1
λ with respect to the shear rate (γ̇) is,

∂

∂γ̇

( 1
λ

)
=
∂

∂λ

( 1
λ

)
× ∂λ
∂γ̇

= − 1
λ2

∂λ

∂γ̇

=
1

nst

(
3 − 1

λ
∂nst

∂γ̇

)
(A.13)
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These derivatives have been incorporated into the Jacobian routine of our FEM code.

A.4 Implementation of Owens’ model

In this work Owens’ model has been implemented in the FEM code using the con-

formation tensor based approach. Here all the nonlinear equations are solved with

Newton’s method with the analytical Jacobian. In general, shear-thinning fluids (such

as the White-Metzner fluid) have a power-law viscosity with exponent <1 and exhibit

a weakly singular behaviour at zero shear rate. The viscosity in Owens’ model does

not suffer from such problems (for details see appendix A.1). But the derivative of

viscosity with respect to shear rate suffers from this problem (for details see appendix

A.3). In Owens’ model (Owens [2006]) the relaxation time (λ) depends on the shear

rate, which is calculated from a linearly interpolated velocity gradient (Lαi j). So, to

incorporate Owens’ model in our FEM code, we need to provide the derivative of λ

with respect to the interpolated velocity gradient basis function coefficients (φαL) for

the calculation of the Jacobian matrix. As the values of the Jacobian matrix influence

mainly the convergence of the solution, small deviations in its value will not cause any

deviation in the final solution. It has been incorporated in the code in such a way that

when the value of the shear rate falls below a critical value (here 10−6), the derivative

will be calculated from this threshold value. With the implementation of this step,

Owens’ model works well in all our computations.

A.4.1 Validation of Owens’ model

The relaxation time (λ) in the Owens’ model is a function of shear rate, whereas

the relaxation time for the Oldroyd-B model (λ) is constant. So, these two models

should agree with each other in steady simple shear (Couette) flow, i.e. confined

flow between two parallel plates of infinite length with one plate moving at some

constant velocity. Fig. A.1 shows the flow geometry and boundary conditions for the

Couette flow computations. The steady state velocity profile for a Newtonian liquid,

u = U(y/W), with W being the distance between two plates is used for Couette flow

computations. The flow is generated by imposing a constant velocity, U, to the bottom

plate in case of Couette flow.

The analytical solution of Owens’ model in Couette flow has been derived in ap-

pendix A.2. The flow conditions are Re = (ρWV)/η = 1, where fluid density ρ = 103
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Figure A.1: Flow domain and boundary conditions for the Couette flow

Table A.1: Comparison of different components of conformation tensor.

Components of
conformation
tensor

Analytical solu-
tion

FEM code
Oldroyd-B

FEM code
Owens’ blood
model

Mxx 1.199 1.199 1.199
Myy 1.0 1.0 1.0
Myx 0.3152 0.3152 0.3152

kg/m3, average velocity v = 10−3 m/sec, width of the channel W=1 m and total solution

viscosity η=1 Pa s. Here a viscosity ratio (β = ηs/(ηs + ηp,0), where ηp,0 is the polymer

contribution and ηs is the solvent contribution to the viscosity of the liquid) of 0.86 has

been considered. Table A.1 shows the comparison between the analytical results and

the FEM solution results for the Oldroyd-B model and Owens’ model. The analytical

results and the FEM results agree with each other perfectly.

A.5 Velocity profile

The fully developed velocity profile for a shear thinning power-law fluid can be ex-

pressed as follows:

u(x) = U0
2m + 1
m + 1

(
1 −

( y
h

)( 1+m
m ))

(A.14)

where U0 is the average velocity at the inlet, y is the distance along the height of the

channel (h) and m is the power law exponent. We have used a power-law exponent

(m) value of 0.59. To check the fully developed velocity profile for this model we have
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Figure A.2: Blunting of the parabolic profile.

studied a simple case, where flow between two parallel plates is considered and at

the inlet a parabolic velocity profile is prescribed. We have found that the prescribed

parabolic profile at the inlet is changing and after certain distance along the flow

direction blunting of the profile is visible which is shown in the Fig. A.2. Analytical

result agrees well with FEM results.



Appendix B

Weighted residual form of ∇X · S = 0

The weak form of Eq. (5.8) is,

∫

ΩS

(∇X · S)φ dΩS = −
∫

ΩS

(
∇Xφ · S

)
dΩS +

∫

ΓS

φ (N · S) dΓS = 0 (B.1)

where, ΩS, ΓS and N are the area, arc length and unit normal in the zero-stress configu-

ration, respectively, and φ is a weighting function. When written in terms of Cartesian

components, the weighted residual form of this equation in the computational domain

is,

Rx
i = −

∫

ΩS0

[
∂φi

∂X
SXx +

∂φi

∂Y
SYx

]
|J∗| dΩS0 +

∫

ΓS0

φi (N · S)x

(
dΓS

dΓS0

)
dΓS0 (B.2)

Ry
i = −

∫

ΩS0

[
∂φi

∂X
SXy +

∂φi

∂Y
SYy

]
|J∗| dΩS0 +

∫

ΓS0

φi (N · S)y

(
dΓS

dΓS0

)
dΓS0 (B.3)

Here, ΩS0 and ΓS0 are the area and arc length in the computational domain, respec-

tively, |J∗| is the Jacobian of the transformation from the zero-stress configuration to the

computational domain, and φi are bi-quadratic weighting functions.

We find it convenient to work with dimensional quantities in Appendix B. In terms

of the dimensional Cauchy stress tensor for a neo-Hookean material, σ = −π∗ I + G B,

the components of the dimensional Piola-Kirchhoff stress tensor S are,

SXx = −π∗ ∂y
∂Y

+ G
∂x
∂X

; SYx = π∗
∂y
∂X

+ G
∂x
∂Y

SXy = π∗
∂x
∂Y

+ G
∂y
∂X

; SYy = −π∗ ∂x
∂X

+ G
∂y
∂Y

(B.4)

In their finite-element formulation of the fluid-structure interaction problem, Carvalho
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Figure B.1: Geometry of the solid domain.

and Scriven [1997] (see also Carvalho [1996]) have used,

Rx
i = −

∫

ΩS0

[
SXx

∂φi

∂X
+ SXy

∂φi

∂Y

]
|J∗| dΩS0 +

∫

ΓS0

φi (N · S)x

(
dΓS

dΓS0

)
dΓS0 (B.5)

Ry
i = −

∫

ΩS0

[
SYx

∂φi

∂X
+ SYy

∂φi

∂Y

]
|J∗| dΩS0 +

∫

ΓS0

φi (N · S)y

(
dΓS

dΓS0

)
dΓS0 (B.6)

in place of Eqs. (B.2) and (B.3). Basically, the positions of the two components SYx and

SXy have been interchanged.

In order to establish the validity of equations (B.2) and (B.3) and to demonstrate the

incorrectness of equations (B.5) and (B.6), we have examined the simple problem of a

beam fixed at the edges, with uniform pressure applied on both the top and bottom of

the beam, as shown schematically in figure B.1. Essentially, we compare the results of

our computations using Eqs. (B.2) and (B.3) (labelled FEM-N), and Eqs. (B.5) and (B.6)

(labelled FEM-C), with the results obtained with the ANSYS software package for a

plain-strain model.

The following boundary conditions are prescribed,

1. Zero displacements at the left and right edges of the beam.

2. A force balance at the top and bottom of the form,

n · σ = −pi n; i = 1, 2 (B.7)

where, n is the unit normal to the deformed solid surface, and p1 and p2 are the

dimensional external pressures on the top and bottom of the beam, respectively.
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In units of height H, the length of the beam is set at L = 5H, with H = 10−3 m.

The external pressures have been chosen to be p1 = 1.1 N and p2 = 1.0 N, and three

different values (6000, 12000 and 24000 Pa) have been used for the shear modulus G.

Computations have been performed with three different meshes (M1, M2 and M3) in

order to examine mesh convergence.

The formulation of the fluid-structure interaction problem by Carvalho and Scriven

[1997] is for the special case of an incompressible neo-Hookean material with a Poisson

ratio ν = 0.5. On the other hand, the ANSYS plain-strain package is only applicable

to compressible neo-Hookean materials. Consequently, in order to carry out the com-

parison with ANSYS, we have obtained predictions with several values of ν < 0.5, and

extrapolated the results to ν = 0.5.

Figure B.2 compares the maximum displacement of the beam obtained with the

FEM-N and FEM-C formulations with the ANSYS plain strain model for the three

different values of G. In all three cases, mesh converged results obtained with FEM-N

agree with the extrapolated mesh converged solution obtained with ANSYS. On the

other hand, the mesh converged solution obtained with FEM-C shows differences from

the other two approaches. Indeed, while this difference is small at G = 24000 Pa, and

substantially larger at G = 12000 Pa, we are unable to obtain a converged solution with

FEM-C at G = 6000 Pa.
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Figure B.2: Comparison of formulations FEM-N and FEM-C with the ANSYS plain-strain
model for three different values of G: (a) 24000 Pa, (b) 12000 Pa, and (c) 6000 Pa.



Appendix C

Nanoindentation test to characterize the

elastic modulus of PDMS membrane

The unique properties of polydimethylsiloxane (PDMS), such as optical transparency,

gas permeability, biocompatibility and elasticity, make it suitable for the fabrication

of microsystems [Duffy et al., 1998; Leclerc et al., 2003; Unger et al., 2000; Whitesides,

2006]. Since the Young’s modulus of PDMS can significantly be altered by varying

the curing temperature and time and the mixing ratio of silicone base to the curing

agent [Friend and Yeo, 2010; Fuard et al., 2008; Hohne et al., 2009; Thangawng et al.,

2007], research in measuring the isotropic mechanical properties of PDMS is rapidly

growing [Kim et al., 2011; Liu et al., 2009b,c].

Different experimental techniques have been employed to characterize the rigidity

of PDMS and the reported value of Young’s modulus for PDMS usually falls within 0.05

to 4.0 MPa [Fuard et al., 2008; Thangawng et al., 2007]. Recently, Liu et al. [2009c] have

carried out tensile test to establish the thickness dependent hardness and the Youngs

modulus of the PDMS membranes, which is caused by shear stresses during fabrication

of these thin membrane.

The nanoindentation test which has widely been employed for characterizing elas-

tic and plastic properties of hard materials is gaining importance for characterizing

mechanical properties of polymeric materials. In a standard nanoindentation test the

Young’s modulus and hardness of a very thin membrane made of elastic material

can easily be obtained from the load displacement data. Carrillo et al. [2005] used a

nanoindentation technique to characterize the Young’s modulus of PDMS with different

degrees of crosslinking.
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C.1 Experimental Method

PDMS (Dow and Corning Sylgard 184) samples were prepared by mixing the cross-

linker and siloxane in a ratio of 1:10 and were then kept in a vacuum chamber to

remove the generated bubbles during mixing. Different thickness PDMS membranes

are produced by spin coating glass wafers at different spinning speed and then cured

at 700C for two hours in an oven. The thickness of the PDMS membrane was measured

using a surface profiler. By varying the spinning speed in the range of 500 to 2000

rpm, PDMS membranes of thickness in the range of 25µm to 100 µm are successfully

produced.

The nanoindentation test using the TriboIndenter (Hysitron, Inc, Minneapolis, MN)

has been performed at room temperature using a Berkovich shaped indenter. 10 µN/s

loading and unloading rate, 100 µN peak load and 5 s of hold period have been

chosen for load control function. When the tip of the indentor reaches the sample

surface, the instrument applies the predefined load and accordingly records the load

and displacement data. The hardness and the Young’s modulus of a material is then

determined from the unloading portion of the load-displacement curve using classical

Hertzian contact theory [Johnson, 2003]:

H =
Fmax

A
(C.1)

1
Er

=
1 − ν2

E
+

1 − ν2
i

Ei
(C.2)

where H is the hardness of the substrate and Fmax is the maximum force applied on the

PDMS membrane, A is the projected contact area between the tip and the substrate, ν

and E are the Poisson’s ratio and the Young’s modulus respectively for the test specimen

and νi and Ei are those for the indenter. The material properties of the diamond indenter

are Ei = 1140 GPa and νi = 0.07. The reduced elastic modulus Er is calculated using the

following expression proposed by Oliver and Pharr [1992],

Er =
S
√
π

2β
√

A
(C.3)

where S is the contact stiffness taken as the initial slope of the unloading section of

the load-displacement curve and β is a constant that depends on the geometry of the

indenter.
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Figure C.1: Load-displacement curves for PDMS membrane with thickness of 0.05 mm

C.2 Results and discussions

Figure C.1 shows the displacement of the indentor in response to the applied load

during nanoindentation test on PDMS membrane using quasi-static measurements

with the help of a diamond Berkovich- shaped indenter tip in a Hysitron Triboindenter.

To confirm the reproducibility of the test data, indentation has been performed on nine

different location of a particular sample. We have found similar trends for other PDMS

membranes but the penetration depth of the indenter is higher for low thickness PDMS

membrane indicating a lower value for Young’s modulus as the thickness decreases.

The reduced elastic modulus Er and Young’s modulus of PDMS membrane are

calculated using Eqs. (C.2) and (C.3). Fig. C.2 indicates that the Young’s modulus of

PDMS membranes decreases as the thickness decreases. The results indicate that the

nanoindentation test is capable of differentiating the elastic behaviour of a material

with varying thickness. All these membranes with different thickness are prepared

by varying the spin coating speed while keeping all other parameters, such as curing

temperature, PDMS mixing ration and curing time etc., exactly same. As the speed
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Figure C.2: Dependence of reduced elastic modulus Er and Young’s modulus of PDMS
membrane on thickness.

of the spin coating increases the PDMS polymer molecules experience more stretching

along the radial direction due to the increase in shear stress value.

C.3 Conclusions

We have demonstrated the thickness dependent Young’s modulus of PDMS membranes

using a nanoindentation test. The measured values of E agree well with the previously

reported values.



Appendix D

Stability analysis of pressure driven

flow of a viscoelastic fluid through a

deformable channel

D.1 Governing equations

We consider the pressure driven flow of an incompressible viscoelastic fluid flowing

through channel lined with a layer of incompressible and impermeable deformable

solid. As illustrated in Fig. D.1, the width of the channel is 2W and the solid layer has a

thickness of HW and is strongly bonded to a rigid surface at z∗ = (2 + H)W on top and

z∗ = −HW below.

The elastic wall is modelled as an incompressible neo-Hookean solid, while the

fluid has been considered as an Oldroyd-B fluid. The densities of fluid and solid

are assumed to be equal without loss of generality. We have nondimensionalized the

various physical quantities, by scaling lengths and displacements with W, velocities

with GW/η0, time with η0/G and pressure and stresses with G, where G is the shear

modulus of the solid, η0(= ηs + ηp,0) is the zero shear rate solution viscosity, ηs is the

solvent viscosity, and ηp,0 is the contribution of the micro-structural elements to the zero

shear rate viscosity. For a Newtonian fluid, η0 is just the constant Newtonian viscosity.

Non-dimensionalization of the governing equations and boundary conditions yields

the following dimensionless numbers:

Re =
ρWU0

η0
; β =

ηs

η0
; Wi =

λU0

W
; Γ =

η0U0

GW
(D.1)
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Figure D.1: Geometry of the pressure driven viscoelastic fluid flow interacting with
elastic solid layer

where, Re is the Reynolds number, β is the viscosity ratio, Wi is the inlet Weissenberg

number, Γ is the dimensionless solid elasticity parameter, ρ is the density of the liquid,

U0 is the maximum fluid velocity and λ is the constant characteristic relaxation time of

the microstructure. Upon introduction of these dimensionless variables, the governing

equations of the fluid assume the following dimensionless form:

∇ · v = 0 (Mass balance) (D.2)

Re
Γ

[
∂v
∂t

+ v ·∇v
]

= ∇ · T (Momentum balance) (D.3)

T = −PI + τ s + τ p (Cauchy stress tensor) (D.4)

τ s = β(∇v + ∇vT) (Viscous stress tensor) (D.5)

In these equations, v is the fluid velocity, ∇ denotes the gradient, P is the pressure,

I is the identity tensor. The elastic stress for the Oldroyd-B fluid can be given by the

following constitutive relation:

We
Γ

[
∂τ p

∂t
+ v ·∇τ p − (∇v)T · τ p − τ p ·∇v

]
+ τ p = (1 − β)

[
∇v + (∇v)T

]
(D.6)
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The non-dimensional equations governing the deformation of an incompressible

neo-Hookean solid satisfying the momentum and mass conservation equations, are

given by
Reρs

Γρ

[
∂2x
∂t2

]
= ∇X · S (D.7)

det(F) = 1 (D.8)

S = F−1 · σ (First Piola-Kirchhoff stress tensor ) (D.9)

σ = −π I + B (Cauchy stress tensor for a neo-Hookean material) (D.10)

In these equations, ρs is the density of the solid, π is a pressure-like scalar function

and B is the left Cauchy-Green tensor, expressed as B = F·FT. The deformation gradient

tensor F relates the undeformed state [X = (X,Y,Z)] to the deformed state [x = (x, y, z)]

and is expressed as:

F =
∂x
∂X

(D.11)

We prescribe the following boundary conditions:

1. The tangential and normal stress and the velocity continuity condition are pre-

scribed at the interface between the liquid and solid domain.

n · σ · n − n · T · n = γ∇ · n (D.12)

n · σ · t = n · T · t (D.13)

vx =
∂wx

∂t
(D.14)

where n and t are respectively the normal and tangential unit vectors at the liquid-

solid interface and γ = γi/GW is the dimensionless surface tension, with γi being

the dimensional liquid-solid interface tension. Here vx is the velocity of the fluid

in the x direction and wx is the deformation of the solid in the x direction.

2. At the fixed surfaces (z = (2 + H) and z = −H) zero displacement conditions are

specified.

x = X (D.15)



D.2. Base state 139

D.2 Base state

In the laminar base state of the present problem, it is assumed that the fluid-solid

interface remains flat and the pressure gradient acting on the channel creates an unidi-

rectional flow of fluid in the x direction. Fluid forces acting on the fluid-solid interface

produces a nonzero displacement of the solid layer only in the x direction. The base

state solution for the dimensionless velocity, viscous and elastic stresses in the fluid

layer are given as:

vx = 2Γ

(
z − z2

2

)
(D.16)

vz = 0 (D.17)

τs
zz = 0 (D.18)

τs
xz = τs

zx = β
∂vx

∂z
(D.19)

τs
xx = 0 (D.20)

τp
zz = 0 (D.21)

τp
xz = τp

zx = (1 − β)
∂vx

∂z
(D.22)

τp
xx =

2We(1 − β)
Γ

(
∂vx

∂z

)2

(D.23)

Here the maximum dimensionless velocity has been calculated from the dimensional

pressure gradient ∂p∗/∂x∗ acting in the channel. It can be shown that Γ = (W/2G)|∂p∗/∂x∗|
[Gaurav and Shankar, 2010]. The base state solution for the displacement (w) and

pressure field for neo–Hookean solid are given by:

wx = X + Γ
(
H2 − Z2

)
+ 2Γ (H + Z) (D.24)

wz = Z (D.25)

ps = p(x) + 1 + 4Γ2

(
Z2

2
− Z

)
(D.26)

Here overbar on different quantities indicate its base state value.

D.3 Linear stability analysis

In order to examine the stability behaviour of the present problem, we have performed

a temporal linear stability analysis. In this method, a small perturbation is introduced
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about the base state to all the dynamical quantities and are substituted in the governing

equations and boundary conditions. The resulting equations are then linearized. The

perturbations are expressed in the following Fourier form:

f
′
= f̃ (z) exp[ik(x − ct)] (D.27)

where, f ′ is the perturbation to any variable, f̃ (z) is the complex amplitude function of

the disturbance, k is the wavenumber of perturbations and c (=cr + ici) is the complex

wavespeed with cr and ci being the real and imaginary parts, respectively. The value of ci

governs the stability since even a small initial positive value of ci will grow with time and

make the flow unstable. However, a negative value of ci always has a stabilizing effect.

For the solid equation the perturbation can be expressed as f ′ = f̃ (Z) exp[ik(X − ct)].

Upon substitution of the perturbation, the linearized governing equations, including

the constitutive Eqs. (D.6), for the fluid layer are,

∂ṽz

∂z
+ ikṽx = 0 (D.28)

Re
Γ

[ik(vx − c)ṽx + (dzvx)ṽz] = −ikp̃ + β

[
∂2ṽx

∂z2 − k2ṽx

]

+ikτ̃p
xx +

∂τ̃p
xz

∂z
(D.29)

Re
Γ

[ik(vx − c)ṽz] = −∂p̃
∂z

+ β

[
∂2ṽz

∂z2 − k2ṽz

]

+ikτ̃p
xz +

∂τ̃p
zz

∂z
(D.30)

[
1 + ik(vx − c)

We
Γ

]
τ̃p

zz = 2
[
ik

We
Γ
τp

xzṽz + (1 − β)
∂ṽz

∂z

]
(D.31)

[
1 + ik(vx − c)

We
Γ

]
τ̃p

xz =
We
Γ

∂vx

∂z
τ̃p

zz −
[
We
Γ

∂τp
xz

∂z
− ik(1 − β +

We
Γ
τp

xx)
]

ṽz

+(1 − β)
∂ṽx

∂z
(D.32)

[
1 + ik(vx − c)

We
Γ

]
τ̃p

xx = −We
Γ

∂τp
xx

∂z
ṽz + 2

We
Γ

∂vx

∂z
τ̃p

xz +
[
2ik(1 − β +

We
Γ
τp

xx)
]

ṽx

+2
We
Γ
τp

xz
∂ṽx

∂z
(D.33)

Eqs. (D.28)- (D.30) can be merged to form a single fourth-order Orr-Sommerfeld-like
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equation for ṽz.

ik
Re
Γ

[
(vx − c)(d2

z − k2) − d2
zvx

]
ṽz = β(d2

z − k2)
2
ṽz + k2dz (τ̃p

xx − τ̃p
zz)

−ik(d2
z + k2)τ̃p

xz (D.34)

Upon substitution of the perturbation, the linearized governing equations for the

neo-Hookean solid model are as follows:

∂w̃Z

∂Z
+ ikw̃X + 2ikΓ(Z − 1)w̃Z = 0 (D.35)

−ikp̃s + 4ikΓ2(Z − 1)w̃Z + 2Γ
∂w̃Z

∂Z
= k2w̃X − ∂

2w̃X

∂Z2 − k2c2 Reρs

Γρ
w̃X (D.36)

2ikΓ(1 − Z)p̃s −
∂p̃s

∂Z
− 2Γ

∂w̃X

∂Z
− 4ikΓ2(Z − 1)w̃X

= k2w̃Z − ∂
2w̃Z

∂Z2 − k2c2 Reρs

Γρ
w̃Z (D.37)

These equations can be condensed to a single fourth-order, Orr-Sommerfeld-like

equation for w̃Z:

d4
Zw̃Z + 4ikΓ(Z − 1)d3

Zw̃Z +

[
6ikΓ − k2

(
2 + 4Γ2(Z − 1)2 − Reρs

Γρ
c2

)]
d2

Zw̃Z

−4k2Γ(Z − 1)
[
ik + 2Γ − ikc2 Reρs

Γρ

]
dZw̃Z −

[
2ik3Γ

(
1 − Reρs

Γρ
c2

)

−k4

(
1 + 4Γ2(Z − 1)2 − Reρs

Γρ

(
4Γ2c2(Z − 1)2 + c2

)) ]
w̃Z = 0 (D.38)

The interfacial conditions at the liquid–solid interfaces are linearized by Taylor-expanding

the conditions about their respective mean interface positions. The linearized boundary

conditions at the liquid-solid interface (z = 0) are:

ṽz = −ikc w̃Z (D.39)

ṽx + w̃Z (dzvx)z=0 = −ikc w̃X (D.40)
[
8ikWeΓ(1 − β) − 4ikΓ2 + ik + 2Γ

]
w̃Z + 2Γ

∂w̃Z

∂Z
+
∂w̃X

∂Z

= β
∂ṽx

∂z
+ βikṽz + τ̃p

xz (D.41)

−p̃ + 2β
∂ṽz

∂z
+ τ̃p

zz − k2γw̃Z = −p̃s + 2
∂w̃Z

∂Z
(D.42)
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The boundary condition at the channel centre-line are,

ṽz = 0,dzṽx = 0 Varicose modes (D.43)

ṽx = 0,d2
z ṽx = 0 Sinuous modes (D.44)

Hence, the linearized boundary conditions at the fixed surface z = −H are:

w̃Z = 0 (D.45)

w̃X = 0 (D.46)

The complete set of equations (Eqs. (D.28)- (D.46)) which governs the stability of the

present problem are solved for the complex wavespeed c as a function of the parameters

Re,We, β, k,Γ,H and γ.

D.4 Results and Discussions

D.4.1 Code validation

Often a spectral method is employed to solve the eigenvalue problems that arise in

hydrodynamic stability. We have used a Chebyshev-tau spectral method for solving

the Orr-Sommerfeld equation using expansions in Chebyshev polynomials [Boyd, 2001;

Gardner et al., 1989; Orszag, 1971; Weideman and Reddy, 2000]. In the Chebyshev-tau

spectral method the fluid velocity field and solid displacement field are expressed in

a truncated series of N Chebyshev polynomials. Upon substituting these expressions

in to the linearized governing equations and boundary conditions, N equations for

the unknown coefficients are obtained. This N × N matrix is then solved using the

polyeig eigenvalue solver in MATLAB to get the complete spectrum of eigenvalues c for

specified values of other parameters. In order to remove the spurious eigenmodes that

may arise, the truncation level N is increased until the genuine modes are accurately

identified. We have validated our spectral code with the reported results of Gaurav and

Shankar [2010] by considering β = 1.0 and Wi = 0. Fig. D.2 displays the eigenspectrum

for H = 5, k = 0.8 and Re = 100 for different values of Γ. It is clear that unstable modes

appear at higher values of Γ and that the number of unstable modes increases with an

increase in Γ. In all these cases, we have found good agreement between our results

and the reported results of Gaurav and Shankar [2010].
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Figure D.2: Eigenspectrum for varicose mode with H = 5, k = 0.8 and Re = 100 for
different values of Γ. Inset compares the positive Ci values of our simulation with the
reported Ci values by Gaurav and Shankar [2010].

D.5 Conclusions

In this study, we have considered the pressure driven flow of an Oldroyd-B fluid

flowing through an channel lined with a layer of an incompressible neo-Hookean

solid. A temporal linear stability analysis has been carried out to examine the stability

behaviour of the present problem. To check the accuracy of our derivation we have

compared our predictions for a Newtonian fluid with the reported results of Gaurav

and Shankar [2010]. Preliminary results are promising for future advancement of this

study.
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