

Equation of state and gravitational waves from short GRB remnants

Paul Lasky

Rowlinson et al. (2013), Lü, Zhang, Lei, Li & PL (2015)

Rowlinson et al. (2013), Lü, Zhang, Lei, Li & PL (2015)

Zhang & Mészáros (2001)

Rowlinson et al. (2013), Lü, Zhang, Lei, Li & PL (2015)

GRB	z		B_p	$t_{ m col}$
		[ms]	$[10^{15}{ m G}]$	$[\mathbf{S}]$
060801	1.13	$1.95\substack{+0.15 \\ -0.13}$	$11.24^{+1.93}_{-1.78}$	326
070724A	0.46	$1.80^{+1.04}_{-0.38}$	$28.72^{+1.42}_{-1.29}$	90
080905A	0.122	$9.80\substack{+0.78 \\ -0.77}$	$39.26\substack{+10.24 \\ -12.16}$	274
101219A	0.718	$0.95\substack{+0.05 \\ -0.05}$	$2.81^{+0.47}_{-0.39}$	138
051221A	0.00	$7.70^{+0.31}_{-0.28}$	$1.80^{+0.14}_{-0.13}$	
070809	0.219	$5.54\substack{+0.48 \\ -0.43}$	$2.06\substack{+0.48 \\ -0.42}$	
090426	2.6	$1.89\substack{+0.08 \\ -0.07}$	$4.88^{+0.88}_{-0.90}$	
090510	0.9	$1.86\substack{+0.04\\-0.03}$	$5.06^{+0.27}_{-0.23}$	

Supramassive Stars Consider a star: $p_0 = 1.05 \text{ ms}$ $M = 2.44 \text{ M}_{\text{sun}}$

Supramassive Stars Consider a star: $p_0 = 1.05$ ms $M = 2.44 \text{ M}_{\text{sun}}$ 2.48

Kiziltan et al. (2013)

PL, Haskell, Ravi, Howell & Coward (2014)

PL, Haskell, Ravi, Howell & Coward (2014)

Gravitational Waves

PL, Haskell, Ravi, Howell & Coward (2014)

$\approx 0.2 \text{ yr}^{-1}$

Burst and Transient Source Experiment (BATSE-XRT)

$\approx 0.4 \text{ yr}^{-1}$

Space-based multi-band astronomical Variable Object Monitor (SVOM)

$\approx 1 \text{ yr}^{-1}$

What else can we learn?

90

Rowlinson et al. (2014)

efficiency: $\eta = 0.1$

GRB	ϵ
GRB051221A	0.0061
GRB060801	0.0094
GRB070724A	0.0223
GRB070809	0.0049
GRB080905A	0.1532
GRB090426	0.0039
GRB090510	0.0041
GRB101219A	0.0012

PL & Glampedakis (2015; in prep)

efficiency: $\eta = 0.1$

GRB	ϵ
GRB051221A	0.0061
GRB060801	0.0094
GRB070724A	0.0223
GRB070809	0.0049
GRB080905A	0.1532
GRB090426	0.0039
GRB090510	0.0041
GRB101219A	0.0012

cf. Fan et al. 2013, Dall'Osso et al. (2015)

PL & Glampedakis (2015; in prep)

Parkes Pulsar Timing Arrays

Astrophysical Inference

- Massive end of galaxy mass function?
- Black hole bulge relations?

- Galaxy merger rate?
- Environmental factors: stars, gas, ... ?

Shannon et al. (PPTA; submitted)

Conclusions

If millisecond magnetar model is correct

(doesn't work with Rezzolla & Kumar (2015), Ciolfi & Siegel (2015) model)

- allows for equation of state measurements
 - gravitational wave observations will help
- allows us to study (in a limited sense) neutron star dynamics
- Parkes Pulsar Timing Array at 'design sensitivity'
 - no detection; important cosmological implications