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Neutron Star Anatomy

Greenstein
(1970; Nature)

Abstract: The neutron superfluid
in most neutron stars should be
in a highly turbulent state. If so,
this turbulence drastically alters
its rotational properties.
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The core and the crust

Conventional wisdom:
e Neutron star’s crust & core corotate

e 2 mechanisms:
e viscous coupling (Ekman pumping)

e magnetic coupling (commonly considered dominant)

The conventional wisdom is wrong!

Neither mechanism can effectively enforce crust-
core corotation (Melatos 2012; Glampedakis & PL 2015)

e Theoretical & Observational implications



Ekman pumping

QEZC

figure from
Poon, PL+;
in prep.

magnetic field

spins down crust e
down fluid in core



Ekman pumping

Vortex flow at the
Canberra airport

“Hhis is something that only
physicists can get excited

about+++"

Alexander Heger



stratified Ekman pumping

e Ekman flow hindered by stratification (Abney & Epstein 1996)

Only effective in thin layer near crust-core boundary

Rest of core couples on much longer timescale (~ 103 yr;
Melatos 2012)

Melatos 2012:
neutron stars have
super-rotating cores!

caveat:
the magnetic field!

figures from Poon, PL+; in prep.



magnetic crust-core coupling
Glampedakis & PL (2015)

Model

e Two-fluid core (charged proton-electron fluid + neutron
superfluid) magnetically coupled to the crust.

e in crust’s instantaneous rest frame, the
secular dynamics of charged component is
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Superfluid
neutrons

W : chemical + gravitational potentials
F . : magnetic force

o/ www.ualberta.cal F ;1 : coupling force with neutrons




magnetic crust-core coupling

Glampedakis & PL (2015)

The punch line

* Degree of coupling between the crust and the core depends
sensitively on the magnetic field geometry!



magnetic crust-core coupling

Glampedakis & PL (2015)

The punch line

* Degree of coupling between the crust and the core depends
sensitively on the magnetic field geometry!

Case 1: purely poloidal field,
no closed field lines in core

R
Entire core couples to
crust and corotates. "’ “'
Crust and core spin
down in unison




magnetic crust-core coupling

Glampedakis & PL (2015)

The punch line

* Degree of coupling between the crust and the core depends
sensitively on the magnetic field geometry!

Case 2: purely poloidal field,
with closed field lines in core

Only core region
threaded by open field
lines corotates with
the crust

Rest of the core
is decoupled




magnetic crust-core coupling

Glampedakis & PL (2015)

The punch line

* Degree of coupling between the crust and the core depends
sensitively on the magnetic field geometry!

Case 3: mixed toroidal-poloidal field,
with closed field lines in core

®

Only core region
threaded by open field
lines corotates with
the crust

)

Rest of the core
is decoupled




the super-rotating core region

Glampedakis & PL (2015)

 Following birth, neutron stars could have a super-rotating,
torus-shaped region in the core!

¢ Almost certainly unstable: ‘

R
e velocity jump along field line v
A induces local Lorentz force ,
that will try to displace the
super-rotating region
e also should be unstable to

Kelvin-Helmholtz instability




Two Possible Outcomes

i) core remains in
constant
turbulent state

-

Peralta, Melatos, et al.



Turbulent Consequences

= Pulsar timing noise

= Is pulsar timing noise from turbulence?

= Quantifying the effect on gravitational wave detection
with Pulsar Timing Arrays



Pulsar Timing Arrays

' = Time millisecond pulsars with EXTREME
' 7 precision
1 /jb“//
X A -

Look for correlated timing residuals as
GW signature

— ' = Timing Residual: difference between
measured and modelled phase of pulse.
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= Timing noise: =102 J1939+2134 |
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= Stochastic wandering of e
pulse arrival times S 100
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Timing Noise Due to Turbulence

Greenstein
(1970; Nature)

‘My final point is a speculative one. When an | -
uncooked egg rotates it does so irregularly. The yolk \ =
inside moves about erratically, and in order to & (\ |
conserve angular momentum the rotation rate of the ~ 3
shell must also fluctuate. The rotating turbulent .
neutron superfluid must exhibit something like the
same phenomenon.



Timing Noise Due to Turbulence

Greenstein
(1970; Nature)

—

calculated angular momentum = et
fluctuations on NS crust from core§ 00l

107 | s ‘
10 10" 10" 10’

f by
Prediction: low-frequency
plateau in timing noise spectrum

‘My final point is a speculative one. When an 3 'l
uncooked egg rotates it does so irregularly. The yolk o

inside moves about erratically, and in order to & (Q A
conserve angular momentum the rotation rate of the ~ 3 T~

shell must also fluctuate. The rotating turbulent - ‘
neutron superfluid must exhibit somethmg like the \

same phenomenon.

Melatos & Link (2014) JE— ﬁ.gure from PL, Melatos, Ravi & Hobbs (2015)

Small number of (relatively
unconstrained) parameters ‘fit’
timing noise spectra.



Quantifying the effect on GW detection with PTAs

PL, Melatos, Ravi & Hobbs (2015)
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Quantifying the effect on GW detection with PTAs

PL, Melatos, Ravi & Hobbs (2015)
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Quantifying the effect on GW detection with PTAs

PL, Melatos, Ravi & Hobbs (2015)

f [He] f [Hz

= Punch line:

Tmin [yr]

= A low-frequency turnover is great
for PTAs

= evidence for one is hard to find

f.=0.05 yr* f.=0.05 yr*
10° Apn=10"% yr Apn=10"" yr

0 1 2 3 456 70123 456 78
q q




Quantifying the effect on GW detection with PTAs

This may not matter for a number of
years...

Shannon et al. (in prep)

Bayesian analysis: No evidence for
red noise in the two pulsars that are
biggest contributors to new GW limit

J1909
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What about the level of red noise?

Red noise in PSR0437 is NOT a
gravitational wave background!
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Reardon et al. (in prep)

Search for evidence of a plateau
in the spectrum to (potentially)
understand neutron star core

physics!



Turbulent Consequences

= Gravitational waves - LIGO

= Single Neutron Star

= Stochastic Background



Turbulent flows emit
gravitational waves

Melatos & Peralta (2010)
Turbulence: On average - axisymmetric

Instantaneously non-axisymmetric
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One neutron star does not emit a
detectable gravitational wave signal

What about ALL the neutron
stars in the Universe?

PL, Bennett & Melatos (2013)

Consider 2 Populations

= Naive:
= g]]l NSs in Universe have same AQ. i.e. AQ is
independent of Q

= Radio pulsars:
= Broad distribution of AQ, where AQ is proportional to
spindown rate



Unique AQ

PL, Bennett & Melatos (2013)
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Pulsar Population

take galactic distribution of known pulsars and assume the
same throughout the Universe
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“Things sometimes happen fo me that are

Detection unlikely very, very unlikely. Does it mean that | don't
L; exist with high Bayesian probability?”

(Levin 2015, Facebook)

Non-detections give interesting
constraints on shear damping times, etc.

<« It is worth searching
for this.

PL, Bennett & Melatos (2013)



Two Possible Outcomes

\

ii) magnetic field
evicted to crust




the crust as a magnetic field depository

Glampedakis & PL (2015)
A Conjecture:

the system will evict the closed field lines + toroidal
region into the crust




the crust as a magnetic field depository

Glampedakis & PL (2015)
A Conjecture:

the system will evict the closed field lines + toroidal
region into the crust
‘\ c“ / |

* young magnetars:

B > 10'° G: star spins down before crust forms (~
B < 10' G: our model applies

hydrodynamic instability timescale

-2 2
B P
t ~tsq ~ 4.7 £ d
sd (101" G) (10 ms)

t < tsq : gravitational wave emission
t > t.q: eviction of the magnetic field to the core




e Strong toroidal field wound up in core

Te?

D
* ¢ due to magnetic deformations

6 B e.g., Cutler (2002)
e~ 10~ Haskell et al. (2008, erratum 2009),
1015 G Mastrano et al. (2011)

hoOC




Te?

D
* ¢ due to magnetic deformations

hoOC

e Strong toroidal field wound up in core

6 B e.g., Cutler (2002)
e~ 10~ Haskell et al. (2008, erratum 2009),
1015 G Mastrano et al. (2011)
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e Strong toroidal field wound

Tev? 25C _5 [ (Bt)
hg o D € 8.0 x 10 1015 ¢

* ¢ due to magnetic deformatic
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101° G
unfortunately, need lon This is potentially a nuclear
integration times: physics experiment!
SN1987A - 1 yr lntegratl Owen (2004), Glampedakis et al. (2012)
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e a positive detection also allows us to probe the stellar geometry
(e.g., Mastrano, PL & Melatos 2013 for multipolar fields)

e.g., twisted-torus
PL & Melatos (2013)

e triaxial deformation
e ‘naturally motivated’
e Enriches GW signal

e.g., NS born with:

e Virgo cluster (~20 Mpc)
i Bp = 1014 G
e <B>=10°G

Triaxiality must last ~ one
month for SNR~3 in aLIGO

10—267
0. 50. 100. 150.  200. 250. 300. 350.
frequency [Hz]




vexistence of strong toroidal field in crust is key for
magnetar heating, fast magnetic evolution and flares!



* magnetar heating
e e.g., series of papers by Pons & collaborators, Ho et al. 2012

 magneto-thermal evolution of strong crustal fields

LR &) pr e "o - o 0.0 D kyr

o= o

Pons, Miralles & Geppert (2009)

Thermaol luminosity [erg/s)

16' 16’ 10° 16‘ 16" 10° 16’
Age [yr)
Vigano, Pons, Miralles & Rea (2015)

 magnetar flares
e giant flares - is crust-fracturing by strong B-field involved?
(e.g., Thompson & Duncan series)



the future?

magnetic field does not couple the core and crust
of a neutron star.

Conjecture: stability is reached when closed field lines
+ toroidal field are evicted into crust.

e what’s next?

 more general B-field geometry
e easy to generalise to higher-
order multipoles /

 non-axisymmetric more difficult!// /

e superconducting MHD

‘ e how does the system actually evolve? b
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