

Detecting gravitational waves from, and with, neutron stars

LIGO Scientific Collaboration

Paul Lasky

Contents:

LIGO Scientific Collaboration

- Overview & update
- Gravitational waves from neutron stars

- Overview & update
- Cosmology with current gravitational wave limits

LIGO Livingston

Isolated Neutron Stars

 ϵ due to magnetic or thermoelastic deformations:

Magnetic

e.g., Cutler (2002) Haskell et al. (2008), PL & Melatos (2013), Mastrano, PL & Melatos (2014)

$$\epsilon \sim 10^{-6} \left(\frac{\langle B_{\rm int} \rangle}{10^{15} \,\mathrm{G}} \right)$$

Thermoelastic

e.g. Ushomirsky, Cutler & Bildsten (2000)

5% temperature gradient

$$\rightarrow \epsilon \sim 10^{-7}$$

LIGO Scientific Collaboration

Isolated Neutron Stars

 $h \propto rac{\epsilon f^2}{D}$

A nuclear physics experiment!

 $\epsilon^{2SC} \sim 8.0 \times 10^{-5} \left(\frac{\langle B_{\rm int} \rangle}{10^{15} \, \rm G} \right)$

 ϵ due to magnetic

Magnetic

e.g., Cutler (2002) Haskell et al. (2008), PL & Melatos (2013), Mastrano, PL & Melatos (2014)

$$\epsilon \sim 10^{-6} \left(\frac{\langle B_{\rm int} \rangle}{10^{15} \,\mathrm{G}} \right)$$

$$e^{CFL} \sim 2.5 \times 10^{-1}$$

 $-4\left(\frac{\langle B_{\rm int}\rangle}{10^{15}\,{
m G}}\right)$

Owen (2004), Glampedakis et al. (2012)

Known Radio Pulsars

Aasi et al. (2014)

Crab Nebula

Young Neutron Stars — SN remnants

Characterised by complex, dynamic magnetic field evolution

Glampedakis & PL (2015)

Young Neutron Stars — SN remnants

Rowlinson et al. (2013), Lü, Zhang, Lei, Li & PL (2015)

Rowlinson et al. (2013), Lü, Zhang, Lei, Li & PL (2015)

protoneutron stars radiate through:

- magnetic field-induced ellipticity (e.g., Fan et al. 2013, Dall'Osso et al. 2015)
- secular bar modes (e.g., Corsi & Meszaros 2009)

Magnetar Giant Flares

LIGO Scientific Collaboration "The PCA is completely saturated in the peak of the flares, despite the fact that neither event is on-axis for the telescope"

Magnetar Giant Flares

PL et al. (2011, 2012) Zink, PL & Kokkotas (2012) Levin & van Hoven (2011)

(Abadie et al., 2010)

Conclusions

- Advanced LIGO coming online in 2015
- First detections likely from compact binary inspirals
- Many possible gravitational wave sources from isolated neutron stars
 - (many not covered here)

Shannon, Ravi, Lentati, PL, et al., 2015 (submitted)

Shannon, Ravi, Lentati, PL, et al., 2015 (submitted)

Astrophysical Inference

• Galaxy merger rate?

Time since merger (Myr)

Environmental factors: stars, gas, …

see Ryan Shannon's talk, 2:15 Tuesday & PPTA poster Shannon, Ravi, Lentati, PL, et al., 2015 (submitted)

Conclusions

- Advanced LIGO coming online ~Q4 2015
 - Binary inspirals likely first detection
 - detection of isolated neutron stars has huge pay-off.
- PPTA currently doing cosmology with non-detections!
- Exciting times for gravitational wave science!!

Extra Slides

Laser Interferometer Gravitational wave Observatory

Epoch	Estimated run duration	No. of BNS Detections
2015	3 months	0.0004 — 3
2016 – 17	6 months	0.006 — 20
2017 — 18	9 months	0.04 — 100
2019 +	(per year)	0.2 — 200
2022 + (India)	(per year)	0.4 — 400

Abadie et al. (2010; arXiv:1003.2480)

see David McClelland's talk, 4pm Tuesday!

Laser Interferometer Gravitational wave Observatory

900+ members, 80+ institutions, 17 countries

LIGO Hanford

Coalescing compact binaries NS-NS, NS-BH, BH-BH **Bursts**

core-collapse SN, pulsar glitches, magnetar flares, cosmic strings, ...

stochastic background

Astrophysical & cosmological

continuous wave rotating neutron stars

LIGO Livingston

LIGO Scientific Collaboration

Accreting X-ray Binaries

Low Mass X-ray Binary: Sco X1

PL et al. (2014)

PL et al. (2014)

PL et al. (2014)

