

The Universe remembers: gravitational-wave memory with LIGO

Paul Lasky

Eric Thrane, Yuri Levin (Monash)
Jonathan Blackman, Yanbei Chen (CalTech)

Abbott et al. (2016) - GW150914

Abbott et al. (2016) - GW150914

26th December 2015

 $M_1 \approx 14 \, M_{\odot}$ $M_2 \approx 8 \, M_{\odot}$ $D \approx 400 \, \mathrm{Mpc}$

2.5 measurements!

September 2015 — February 2016

Abbott et al. (2016) - O1 BBH

Expected Detection Rates

What can we learn from the inevitable *ensemble* of events, that cannot be learnt from individual events?

How the detector responds

• non-zero from inspiral of point masses

e.g., Braginsky & Thorne (1987), Christodoulou (1991), Thorne (1992)

- non-zero from inspiral of point masses
- also from anisotropic distribution of projectiles (gravitons) leaving source

e.g., Braginsky & Thorne (1987), Christodoulou (1991), Thorne (1992)

- non-zero from inspiral of point masses
- also from anisotropic distribution of projectiles (gravitons) leaving source
 - alternatively, think of gravitational waves providing extra source term

- non-zero from inspiral of point masses
- also from anisotropic distribution of projectiles (gravitons) leaving source
 - alternatively, think of gravitational waves providing extra source term

Non-oscillatory contribution to GW signal: Permanent displacement of spacetime

how BIG is the effect?

how BIG is the effect?

GW150914:

oscillatory strain

memory strain

Previous efforts: Pulsar Timing Arrays

- PTAs search for nHz gravitational waves
- Sensitive to memory from supermassive black hole mergers
- Predicted event rates are low

Detecting memory from an ensemble of events

puntastic...

Detecting memory from an ensemble of events

- Any given signal is too weak to detect
- Proposal: measure the sum of many signals
- We know the arrival time of each signal
 - subtract oscillatory component
 - search for memory
- Design statistics for adding signal

For the frequentists...

Measurement Subtleties

• Oscillatory (h_{22}) waveform component invariant under

$$\psi \to \psi + \pi/2$$
 $\phi_c \to \phi_c + \pi/2$

$$h_{22}(\psi, \phi_c) = h_{22}(\psi + \pi/2, \phi_c + \pi/2)$$

Measurement Subtleties

• Oscillatory (h_{22}) waveform component invariant under

$$\psi \to \psi + \pi/2$$
 $\phi_c \to \phi_c + \pi/2$
 $h_{22}(\psi, \phi_c) = h_{22}(\psi + \pi/2, \phi_c + \pi/2)$

• but, memory component incurs a minus sign

$$h_{22}^{\text{mem}}(\psi, \phi_c) = -h_{22}^{\text{mem}}(\psi + \pi/2, \phi_c + \pi/2)$$

• Solution: higher order modes

$$\Delta h_{\ell m} \propto h_{\ell m}(\psi, \phi_c) - h_{\ell m}(\psi + \pi/2, \phi_c + \pi/2)$$

- $\Delta h_{\ell m} = 0$ degeneracy not broken :-(
- $\Delta h_{\ell m} \neq 0$ sign of memory known :-)

The Bayesian approach...

Advanced LIGO:
~35 'loudish'
black hole observations

Other ways to detect memory in LIGO: Orphan Memory

• Can we detect memory without detecting the oscillatory part of the waveform?

Other ways to detect memory in LIGO: Orphan Memory

- Can we detect memory without detecting the oscillatory part of the waveform?
- Yes:
 - high-frequency burst signals
 - memory is step-function

$$\implies h_{\rm mem}(f) \propto f^{-1}$$

Other ways to detect memory in LIGO: Orphan Memory

- Can we detect memory without detecting the oscillatory part of the waveform?
- Yes:
 - high-frequency burst signals
 - memory is step-function

$$\implies h_{\rm mem}(f) \propto f^{-1}$$

• Extends LIGO's bandwidth by orders of magnitude!

Other ways to detect memory in LIGO: Orphan Memory

- High frequency sources?
 - Cosmic strings
 - stellar oscillation modes
 - plasma instabilities in e.g., SNe, GRBs, ...
 - Brane-world black hole modes
 - dark matter collapse in stars

(for review, see Cruise 2012)

Conclusions

- gravitational-wave memory:
 - permanent deformation of spacetime!!

- Advanced LIGO:
 - ~ 35 'loudish' binary black hole mergers
 - ensemble observations allow us to learn physics more than the sum of the parts

Extra slides

