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Abstract. We present a mathematical model to analyse the establish-
ment and maintenance of communication between mobile agents. We
assume that the agents move through a fixed environment modelled by
a motion graph, and are able to communicate if they are at distance at
most d. As the agents move randomly, we analyse the evolution in time
of the connectivity between a set of w agents, asymptotically for a large
number N of nodes, when w also grows large, and for different values of
d. The particular topologies of the environment we study in this paper
are the cycle and the toroidal grid.

1 Introduction

Consider a setting in which a large number of mobile agents can perform concur-
rent basic movements: ahead/behind/left/right, determining a grid pattern, or
left/right, describing a line. Each agent can communicate directly with any other
agents which are within a given distance d. This enables communications with
agents at a further distance using several intermediate agents. At each step in
time there is an ad-hoc network defined by the dynamic graph whose vertex set
consists of the agents, with an edge between any two agents iff they are within
the distance d of each other.

In this paper, we study the static and dynamic connectivity characteristics
of communicating agents, in a framework called the walkers model, which we
define as follows. A connected graph G = (V,E) with |V | = N is given, and a
number w of walkers (agents). Also given is a “distance” d. A set W of walkers,
with |W | = w, are placed randomly and independently on the vertices of G
(a vertex may contain more than one walker). Each walker has a range d for
communication; that is, two walkers w1 and w2 can communicate in one hop if
the distance, in G, between the position of the walkers is at most d. Two walkers
can communicate if they can reach each other by a sequence of such hops. In
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addition, each walker takes an independent standard random walk on G, i.e.
moves at each time step to a eighbouring vertex, each neighbour chosen with
equal probability.

The interesting features of the walkers model are encapsulated by the graph
of walkers, Gf [W ]. Here f is an random assignment f : W → V of walkers into
the vertices of G. The vertices of Gf [W ] are the vertices in G that contain at
least one walker, two vertices in Gf [W ] being joined by an edge iff they are at
distance at most d in G. We refer to components of Gf [W ] in the usual sense,
and call a component simple if it is formed by only one isolated vertex. We
are interested in the probability of Gf [W ] being connected, or in the number of
components and their sizes, with mild asymptotic restrictions on w and d.

Our primary goal with the walkers model is to characterise the dynamics of
the connectivity of the network. To obtain enough information to do this, we
first examine a variation of the model called the static model. This is a snapshot
of the model at one point in time: there is merely the random function f , and
we are interested in the distribution of the number of components, as well as
other information which helps to answer the dynamic questions.

In the dynamic situation, there is an initial placement of walkers as in the
static case, and at each time step, every walker simultaneously moves one step
to a randomly selected neighbour vertex in G. This gives rise to a random graph
process, where Gft [W ] denotes the graph of walkers at time t = 0, 1, . . .. We
are interested in studying the birth and death of components, and the sudden
connection and disconnection of Gft

[W ] in a dynamic setting.
We consider a sequence of graphs G with increasing numbers of vertices N ,

for N tending to infinity. The parameters w and d are functions of N . We restrict
to the case w → ∞ in order to avoid considering small-case effects. Of course
we take d ≥ 1. We make further restrictions on w and d in order to rule out
non interesting cases, such as values of the parameters in which the network
is asymptotically almost surely (a.a.s.) disconnected or a.a.s. connected. In this
paper, we study the walkers model for two particular sequences of graphs G:
the cycle of length N and the n × n toroidal grid. (In the case of the grid, we
use the `1 distance, modelling the distance along roads in a city grid, but our
approach is useful for other metrics.) Amongst other things, we determine the
limiting probability of connectedness of the graph for the appropriate range of w
and d, and also the expected time the graph spends in the connected state after
it undergoes a transition from disconnected to connected (and similarly, for the
disconnected state).

Nowadays, the random geometric graph has became the basic network model
to study communication in wireless networks. In this model, the broadcasting
stations (centre of the disk) could be distributed according to a Poisson process
or uniformly at random on a bounded subset of R2, see for example [8]. For
instance, it is known that for a random geometric graphs with n vertices and ra-
dius d (where d is a function of n), a.a.s. the graph is connected if d ≥

√
log n/n

[7]. The theoretical results obtained not only on connectivity but also on other
graph parameters like chromatic number, have help in dealing with more tech-



nological issues as efficient broadcasting algorithms for wireless ad-hoc networks
or message congestion, using as a basis the static situation. In the present paper,
we obtain much sharper results on the static properties than previously obtained
(albeit with a slightly different model). We give precise characterisations of con-
nectivity for two graphs: the cycle and the toroidal grid with the Manhattan
distance. In particular, given a grid with n2 nodes, where we sprinkle uniformly
at random (u.a.r.) w walkers on the nodes of grid, and given d = o(n), we give a
specific equation for the expected number µ of simple components in the grid, as
the ratio w/n2 tends to 0, c or ∞. From these expressions, we deduce the connec-
tivity threshold for G[W ], when µ → ∞ (disconnected a.a.s.), when µ → Θ(1)
(simple components except one isolated component) and when µ → 0 (connected
a.a.s.).

In recent times, the big issue has been the mobility of the agents, where
connections in the network are created and destroyed as the agents move further
apart or closer together. There has been quite a bit of work designing efficient
communication algorithms for motion agents, see [1, 6] for nice surveys. Most of
the work is experimental [9]. Other interesting work deals with a data structure
which is able at time t to decide quickly if two given stations are connected
[5]. However, no theoretical work has been done with the global connectivity
properties of dynamic wireless networks. Again we consider first the case of the
cycle and the toroidal grid. In particular for the toroidal grid, we give firstly
a precise estimation of the probability that, if the walkers are connected, they
become disconnected in the next step (Theorem 8). Then using that result, we
give precise asymptotic estimations on the expected number of steps that the
grid will maintain connected (once it becomes connected) or disconnected, as the
agents perform random movements on the nodes of the grid (Theorem 10). We
believe that the study of the behaviour of multiple, simultaneous random walks
is an important open problem which could have further applications in other
fields of computer science. By lack of space, the proofs as well as the results on
the grid for the l2 norm, are left for the long version.

2 General definitions and basic results

The reader is referred to [3] for the basic definitions and theorems on probability.
As usual, for any integer n, we use [n] = {1, 2, . . . , n} and for any integers n and
m, [n]m = n!/(n−m + 1)!.

For our specific work, we begin with some definitions and results which are
common for all G. Define K to be the random variable counting the number of
connected components, in Gf [W ], under random assignment f of walkers. Let %
denote the expected number of walkers at a vertex. Then % = w/N . For v ∈ V ,
define hv to be the number of vertices in G at distance at most d from v, and
define h = minv∈V hv. Notice that h is the minimum number of empty vertices
in G around a simple component. (We say that a vertex v is empty if it contains
no walkers, and occupied if it contains at least one.)



By considering the well known coupon-collector’s problem, we observe that
if w = N log N + ω(N) then Gf [W ] is trivially a.a.s. connected due to every
vertex being occupied. Moreover, for the graphs G which we consider in this
paper, if h ∈ Ω(N/

√
w) then Gf [W ] is a.a.s. connected as well. This last claim

will be seen in Observations 1 and 3. Thus, we consider throughout the paper
w < N log N + O(N) and h = o(N/

√
w). In fact, our proofs will just require h

to be o(N).
As a key step in most of our proofs, we often need to compute the probability

of having a certain configuration of walkers at a given time t. For this we apply
Lemma 1 below.

Sometimes we also need the probability of certain configurations of walkers
involving two consecutive time steps, in order to record the event that walkers
jump to the appropriate place at time t. There is a convenient way to view this by
partitioning every vertex v of G into as many sub-vertices as its degree, where
each sub-vertex of v is associated with a different neighbour of v. Any given
walker on one vertex will occupy the sub-vertex corresponding to the neighbour
to which it will move at the next time step. Thus, a walker at v moving to a
neighbour will occupy each of the sub-vertices of v with the same probability.
In this case, we can also apply Lemma 1 with sub-vertices, since these form a
static configuration (even though it encodes a dynamic transition).

Assign size 1 to all vertices in G. For a given sub-vertex in a vertex v with
degree δv, its size will be 1/δv. Given a set A of vertices or sub-vertices, we
define the size of A to be the sum of the sizes of its elements.

The following lemma comes by inclusion-exclusion.

Lemma 1 Let A0, . . . , Am be pairwise disjoint sets of vertices (or sub-vertices)
in G, with sizes S0, . . . , Sm respectively. Let N = |V (G)|. If

∑m
i=0 Si = o(N),

then

P

(
A0 empty ∧

m∧
i=1

Ai not empty

)
∼
(

1− S0

N

)w m∏
i=1

(
1− e−Si%

)
.

To cover large sizes S (not necessarily o(N)) we need the following variation on
the previous lemma.

Lemma 2 Let A be a set of vertices in G of size S, and v1, . . . , vm vertices not
in A, with m ≥ 1. Assume |V (G)| = N and N − S → ∞. The probability that
no vertex in A is occupied and v1, . . . , vm are all occupied is at most p0p

m−1αw

where p0 = 1− e−%/α, α = 1− S/N and

p =

{
1 ifρ/α →∞,

ρ/α ifρ/α = O(1).

3 The cycle

Let G = CN be the cycle with N nodes.



Observation 1 Notice that for CN , h = 2d. Cover the cycle with d N
dd/2ee paths

of dd/2e vertices. If h = Ω(N/
√

w), then the probability that some path is empty
of walkers is at most⌈

N

dd/2e

⌉(
1− dd/2e

N

)w

≤ O(
√

w)e−Ω(
√

w) → 0

Thus, a.a.s. each of these paths is occupied by at least one walker, and Gf [W ] is
connected. So we assume for the rest of the section that h = o(N/

√
w), in fact

the assumption d = o(N) is all we require.

To study the connectivity of CN , we introduce the concept of hole. Let us
say there is a hole between two vertices u and v if u and v each contain at least
one walker, but no vertex in the clockwise path from u to v contains a walker.
We say that such a hole follows u, or that u is the start vertex of the hole. The
number of internal vertices in a hole is its size. An s-hole is a hole whose size is
at least s. Notice that at least two d-holes are needed to disconnect the walkers
on CN .

Let H be the random variable counting the number of d-holes, when w walkers
are placed u.a.r. on CN , and let µH = E [H] be its expectation (just µ for short
throughout this section ).

Holes are closely related to components: trivially,

K =

{
1 if H = 0, 1,
H if H > 1.

and thus E [K] = P (H = 0) + E [H]. (1)

Static properties Here, we study the connectivity of the graph of walkers Gf [W ]
in the static situation, by analysing the behaviour of H. In view of (1), notice
that if µ → 0 then P (K = 1) → 1, i.e. Gf [W ] is a.a.s. connected.

Theorem 1 The expected number of holes satisfies

µ ∼ N
(
1− e−%

)(
1− d

N

)w

∼


w
(
1− d

N

)w
if % → 0,

N (1− e−%)
(
1− d

N

)w
if % → c,

N
(
1− d

N

)w
if % →∞.

Furthermore, if µ is bounded then H is asymptotically Poisson with mean µ, and
if µ is bounded away from 0 then µ ∼ N (1− e−%) e−d%.

The proof is done by estimating the factorial moments of H, using indicator
variables.

From the second part of this theorem we can immediately obtain the proba-
bility that Gf [W ] is connected, when w walkers are scattered u.a.r. through the
vertices of CN .

Corollary 1 If w walkers are placed u.a.r. on CN , then P (K = 1) = e−µ(1 +
µ) + o(1).



This implies that Gf [W ] is a.a.s. disconnected if µ →∞, and a.a.s. connected
if µ → 0. So we may restrict attention to µ = Θ(1).

It is a simple matter determine from this and the first part of Theorem 1 the
threshold value of ρ (or of d) at which the walkers graph becomes connected,
and the probability of connectedness when around the threshold.

Dynamic properties Assume that from an initial random placement f of the
walkers, at each step, every walker moves from its current position to one of its
neighbours, with probability 1/2 of going either way. This is a standard random
walk on the cycle for each walker. To study the connectivity properties of the
dynamic graph of walkers we need to introduce some notation.

A configuration is an arrangement of the w walkers on the vertices of CN .
Consider the graph of configurations, where the vertices are the Nw different
configurations. Any configuration has 2w neighbours, and the dynamic process
can be viewed as a random walk on the graph of configurations, in particular, a
Markov chain M(N,w). If N is odd, then M(N,w) is ergodic. For the purposes
of this extended abstract, we will treat in detail only the case of N odd, if
non-ergodicity causes extra complications.

Observation 2 For any fixed t, we can regard Gft [W ] as Gf [W ] in the static
case. Hence, by Corollary 1, if µ → 0 or ∞ then, for t in any fixed bounded
time interval, Gft

[W ] is either a.a.s. connected or a.a.s. disconnected. So we
assume µ = Θ(1) for the remaining of the section, since we wish to study only
the nontrivial dynamic situations.

We define H = H(t) to be the random variable that counts the number of d-holes
at time t. Under the assumptions in Observation 2, for t in any fixed bounded
time interval, H(t) is asymptotically Poisson with expectation µ = Θ(1) as
studied in CN .

For the dynamic properties of Gft
[W ], we are interested in the probability

that a new d-hole appears at a given time. Moreover, we require knowledge of
this probability conditional upon the number of d-holes already existing.

If there is a d-hole from u to v at time t and all walkers at u and v move in
the same direction on the next step, a new d-hole may appear following one of
the neighbours of u (provided no new walkers move in to destroy this). These
two d-holes, though being different, are related, and we prefer to think of them
as the same thing. A similar comment applies when the exact size of a d-hole
following u changes in one step. Define a d-hole line to be a maximal sequence
of pairs (h1, t1), . . . , (hl, tl) where hi is a d-hole existing at time ti for 1 ≤ i ≤ l,
and such that ti = ti−1 + 1 and the start vertex of hi is adjacent to, or equal
to, the start vertex of hi−1, for 2 ≤ i ≤ l. Fix two consecutive time steps t and
t + 1. If t1 = t + 1, we say that the line is born between t and t + 1, if tl = t
the line dies between t and t + 1, and if t = ti, i ∈ {1, . . . , l − 1} we say that
the line survives during the interval [t, t + 1]. Note that the time-reversal of the
process has a d-hole line born at vertex u between t + 1 and t iff the d-hole line
dies at u between t and t + 1. Define S = S(t), B = B(t) and D = (t) to be the



number of d-hole lines surviving, being born and dying between t and t + 1. We
obviously have D(t) + S(t) = H(t) and B(t) + S(t) = H(t + 1).

Theorem 2 For t in any fixed bounded time interval, the random variables S(t),
B(t) and D(t) are asymptotically jointly independent Poisson, with the expecta-
tions

E [S] ∼


µ if % → 0,

µ− λ if % → c,

3µe−% if % →∞,

and E [B(t)] = E [D(t)] ∼


1
2µ% if % → 0,

λ if % → c,

µ if % →∞,

where λ =

(
1− 3e−% − e−

3
2 %

1 + e−
1
2 %

)
µ. Here 0 < λ < µ for % → c.

Under the assumptions in Observation 2 and using this result, we can obtain
several important consequences. The first gives the probability of having no
holes at time t and at least one at time t + 1. Note that more than one hole
is required in CN to disconnect Gft

[W ]. As H(t) = S(t) + D(t), it follows
from the theorem that H(t) and B(t) are asymptotically independent. We can
write P (H(t + 1) ≥ 1 ∧H(t) = 0) = P (H(t) = 0 ∧B(t) ≥ 1), and immediately
obtain the following.

Corollary 2 Let λ be defined as in Theorem 2. The probability of having no
holes at time t and at least one at time t + 1 is given by

P
(
H(t + 1) ≥ 1 ∧H(t) = 0

)
∼


1
2µe−µ% if % → 0,
e−µ

(
1− e−λ

)
if % → c,

e−µ(1− e−µ) if % →∞,

We define the lifespan of a d-hole line as the number of time steps for which the
line is alive. For any vertex v and time t, the random variable Lv,t counts the
lifespan of the d-hole line born at vertex v between times t and t+1. If this birth
does not take place Lv,t is defined to be 0. Note that the random variables Lv,t

are identically distributed for all v and t. Notice that the expected lifespan of
any given d-hole line is bounded (this bound depending on N).

Theorem 3 Let λ be defined as in Theorem 2. For any vertex v and time t,

E [Lv,t] ∼


2%−1 if % → 0,
µ
λ if % → c,
1 if % →∞,

The next theorem gives us the probability that there is one component at time
t, but at least two at time t + 1.



Theorem 4 Let λ be defined as in Theorem 2. The probability that Gft
[W ] is

connected and that Gft+1 [W ] is disconnected is given by

P
(
H(t+1) ≥ 2∧H(t) < 2

)
∼


1
2µ2e−µ% if % → 0,
e−µ

(
1 + µ− (1 + µ + λ + λ2)e−λ

)
if % → c,

(1 + µ)e−µ(1− (1 + µ)e−µ) if % →∞,

For any time t, let us condition upon Gft [W ] being disconnected at time t
and becoming connected at t + 1. Let TC be a random variable measuring the
time Gft

[W ] remains connected. Similarly, let us condition upon Gft
[W ] being

connected at time t and becoming disconnected at t + 1. Let TD be a random
variable measuring the time Gft [W ] remains disconnected. Their expectations
do not depend on the chosen time t and are given in the following theorem.

Theorem 5 Let λ be defined as in Theorem 2. The expected time that the graph
of walkers Gft

[W ] will be connected or disconnected (once it becomes so) is

E [TC ] ∼


2 1+µ

µ2 %−1 if % → 0,
1+µ

1+µ−(1+µ+λ+λ2)e−λ if % → c,
eµ

eµ−(1+µ) if % →∞.

and E [TD] ∼


2 eµ−1−µ

µ2 %−1 if % → 0,
eµ−1−µ

1+µ−(1+µ+λ+λ2)e−λ if % → c,
eµ

1+µ if % →∞,

4 The Grid

Let G = TN be the toroidal grid with N = n2 nodes. We can refer to vertices by
using coordinates in Zn×Zn. For the grid we encounter significant new obstacles
as compared to the cycle; see for instance the Geometric Lemma below. In TN ,
we shall express the distance between two vertices as the minimal `1 distance of
their coordinates. (In the long version, similar results are obtained for `2 norm).

Observation 3 For TN , and for d < n/2, the number of vertices at distance
at most d from any given vertex is h = 2d(d + 1). For each i, j < 8n/d, let vij

denote the point with coordinates (bid/8c, bjd/8c). Let Sij denote the set of grid
points closer to vij than any of the other vi′j′ . Then there are Θ(N/d2) disjoint
sets Sij each containing Θ(d2) points. The probability that at least one of these
Sij is empty is at most Θ(N/d2)(1−Θ(d2/N))w = O(

√
w)e−Ω(

√
w) → 0 if h =

Ω(N/
√

w). Thus, a.a.s. each of these pieces is occupied by at least one walker,
and Gf [W ] is connected. So we assume for the rest of the section h = o(N/

√
w),

or merely h = o(N), i.e. d = o(n).

We wish to study the connection and disconnection of Gf [W ] in a similar way
to the cycle. For the grid, the notion of hole does not help, and we deal directly



with components. A major role is played by simple components, and we shall
prove that, for the interesting values of the parameters, a.a.s. there only exist
simple components and one giant one.

Let C be any given component. The edges of C are the straight edges joining
occupied vertices in C at distance at most d. The associated empty area AC is
the set of vertices not in C, but at distance at most d from some vertex in C (i.e.
those vertices which must be free of walkers for C to exist as a component). The
exterior EC of C is all those vertices not in C ∪AC . We partition EC into external
regions as follows: two vertices belong to the same external region when they
can be joined by a continuous arc not intersecting any edge of C.

Recall that, in the terminology of planar maps, the bounding cycle of a face
is a walk around the boundary of the face. Given an external region EC i, let C′
be any connected subgraph of C that has no edges crossing and such that no
vertices of C are contained in the face F of C′ which contains EC i. Such graphs
exist: for instance, take the spanning tree of C whose length (sum of lengths of
edges) has been minimised in `1, and, subject to this, has the shortest Euclidean
length. The bounding cycle of this face F is defined to be a boundary walk β in
C with respect to EC i. Such a walk is maximal if the face F does not properly
contain a face of some other subgraph of C. We call a (directed) closed walk in
C regular if, for each edge entering a vertex v, the next edge in the walk is the
next edge in the clockwise direction around v.

For i < n, let us call a column of width i any subset of TN defined by
{a, . . . , a + i− 1} ×Zn. We define a row of height j similarly. Define a rectangle
of width i and height j to be the intersection of a column of width i and a row
of height j. Notice in a rectangle we can compare vertices inside according to
their coordinates, and we shall use statments as v1 is more to the left than v2 or
v3 is the uppermost vertex.

We say that a component C with at least 2 vertices is a rectangular component
(r-component) if all of its vertices, edges and empty area are contained in a
rectangle in the torus of height and width at most n − 1. In particular, this
implies that C contains no nonseparating cycle of the torus. Otherwise, it is an
nr-component. For a given r-component C, we define its origin as the leftmost of
the lower-most vertices of C, with a canonical defintion of left and lower over a
containing rectangle. The outside region of an r-component is the only external
region of the component having points outside any containing rectagle.

Let X, Y and Z be the number of simple components, r-components and nr-
components respectively, and put K = X +Y +Z. Let Z = Z1 +Z2, where Z1 is
the number of nr-components which cannot coexist with another nr-component
and Z2 counts those ones which can. Then E [Z] = P (Z1 = 1) + E [Z2]. Set
µ = µX = E [X], the expected number of simple components.

Static properties Let µ denote the expected number of simple components in the
grid. The next theorem gives its value asymptotically.



Theorem 6 The expected number of simple components satisfies

µ ∼ N
(
1− e−%

)(
1− h

N

)w

∼


w
(
1− h

N

)w
if % → 0,

N(1− e−%)
(
1− h

N

)w
if % → c,

N
(
1− h

N

)w
if % →∞.

Furthermore, if µ is bounded then X is asymptotically Poisson with mean µ,
whilst if µ is bounded away from 0 then

(
1− h

N

)w ∼ e−h% and we have µ ∼
N (1− e−%) e−h%.

The proof, analogous to the proof of Theorem 1, follows from Lemma 1.
From the previous theorem we can immediately obtain the probability of

having no simple components, when w walkers are scattered u.a.r. throughout
the vertices of TN .

Corollary 3 The probability of having no simple components is P (X = 0) =
e−µ + o(1). Furthermore, if h% = O(1) then µ →∞ and Gf [W ] is disconnected
a.a.s.

We may now restrict to the condition h% →∞ in the study of r-components and
nr-components.

The next lemma relates the empty area outside a boundary cycle of compo-
nent with its length, and will play a key role in proving the main results.

Lemma 3 (Geometric Lemma) Let C be a component in TN with β one of
its maximal boundary walks, and l = length(β) its length. Assume that C has
at least two occupied sites. Then the size of the empty area Aβ outside β is
bounded below by |Aβ | ≥ dl/R, for some big enough constant R. Moreover, if
C is rectangular, and β is a maximal boundary walk with respect to the outside
region, we have |Aβ | ≥ h + dl/R.

Lemma 4 Let C be an nr-component which can coexist with other nr-components.
Then it has a boundary cycle β with length(β) ≥ n− o(n).

This lemma’s proof (omitted) is effected by quantifying the intuitive idea that
such a component must “wrap around” the torus.

The next technical result shows that simple components are predominant
a.a.s. in TN . The proof uses the Geometric Lemma.

Lemma 5 If h% →∞, then E [Y ] = o(E [X]) and E [Z2] = o(E [X]).

The following theorem gives the connectivity of Gf [W ] in the static case,
under various assumptions. The proof follows from Lemma 5, Theorem 6 and
Chebyshev inequality

Theorem 7 • For µ →∞, Gf [W ] is disconnected a.a.s.
• For µ = Θ(1), then K = 1 + X a.a.s., and X is asymptotically Poisson.
• For µ → 0, Gf [W ] is connected a.a.s.



From the previous theorem we immediately obtain that the probability that
Gf [W ] is connected is e−µ + o(1). Since Gf [W ] is a.a.s. disconnected if µ →∞,
and a.a.s. connected if µ → 0, we may restrict attention to µ = Θ(1). In this
case, we only have a.a.s. simple components and the giant one found in the above
proof.

Dynamic properties With the static results under our belt, the analysis of the
dynamic case is quite similar to that of the cycle (though differing in details and
some of the justifications) so we just state the major results.

By analogy with d-hole lines, we define a simple component line to be a
maximal sequence of pairs (v1, t1), . . . , (vl, tl) where vi is a simple component
existing at time ti for 1 ≤ i ≤ l, and such that ti = ti−1 + 1 and the vertex vi is
adjacent to vi−1, for 2 ≤ i ≤ l. Birth, death, survival and random variables S,
B, D are the defined analogously to the cycle case.

Theorem 8 For t in any fixed bounded time interval, the random variables S(t),
B(t) and D(t) are asymptotically jointly independent Poisson, with the expecta-
tions

E [S(t)] ∼


µ if d% → 0,
µ− λ if d% → c,
4 1−e−%/4

1−e−% e−(2d+5/4)%µ if d% →∞,
and

E [B(t)] = E [D(t)] ∼


2d%µ if d% → 0,
λ if d% → c,
µ if d% →∞,

where λ =
(
1− e−2d%

)
µ. Here 0 < λ < µ for d% → c.

Theorem 9 Let λ = λ(%) = µ
(
1− e−2d%

)
. The probability that Gft [W ] is con-

nected and that Gft+1 [W ] is disconnected is asymptotic to 2µe−µd% if d% → 0,
to e−µ(1− e−λ) if d% → c, and to e−µ(1− e−µ) if d% →∞.

A sequence of results similar to the case of the cycle yields the following analogue
of Theorem 3.

Theorem 10 The expected life of a simple component line is asymptotic to 1
2d%

if % → 0, to µ
λ if % → c, and to 1 if % →∞. where λ is defined as in Theorem 9.

As in the case of CN , let TC be a random variable measuring the time Gft [W ]
remains connected from a moment at which it is so, and let TD be a random
variable measuring the time Gft

[W ] remains disconnected, from the moment
at which it is so. The next theorem gives the expected time that the graph of
walkers Gft [W ] will remain connected or disconnected.

Theorem 11 Let λ be defined as in Theorem 9. Then,

E [TC ] ∼


1

2µd% if % → 0,
1

1−e−λ if % → c,
1

1−e−µ if % →∞,

and E [TD] ∼


eµ−1
2µd% if % → 0,
eµ−1
1−e−λ if % → c,

eµ if % →∞,



5 Conclusions and open problems

In this work we have characterised the dynamic connectivity of a very large set
of agents which move through a prescribed real or virtual graph. We believe it
is the first time that this kind of characterisation has been obtained, and could
open an interesting line of research. We gave characterisations for the cycle and
the grid for the `1 norm, which can be extended without problems to the `2
norm, as applies for instance to robots with movement restricted to orthogonal
N-E-S-W directions but with omni-directional radio-frequency communication.

Currently under way is the extension of the results presented here to the
hypercube, which is interesting from the mathematical point of view, as the
number of neighbours is not constant. Moreover, from the point of view of ad-
hoc networks, an interesting case is the random geometric graph (with the `2
norm), where the walkers can move randomly in any direction taking a step of
some random size. We think the present work constitutes a step in this direction.
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