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Abstract

We present a model of the establishment and maintenance of communication between
mobile agents. We assume that the agents move through a fixed environment modeled by
a motion graph, and are able to communicate if they are at distance at most d. As the
agents move randomly, we analyse the evolution in time of the connectivity between a set
of w agents, asymptotically for a large number N of vertices, when w also grows large.
The particular topologies of the environment we study here are the cycle and the toroidal
grid.

1 Introduction

Consider a setting in which a large number of mobile agents can perform concurrent basic
movements: either ahead/behind/left/right, determining a grid pattern, or left/right, describ-
ing a line. Each agent can communicate directly with any other agents which are within a
given distance d. This enables communications with agents at a further distance using several
intermediate agents. At each step in time there is an ad-hoc network defined by the dynamic
graph whose vertex set consists of the agents, with an edge between any two agents iff they
are within the distance d of each other.

Various aspects of such networks (connectivity, transport capacity, protocols, etc.) have
been studied in the static case, i.e. in which the agents are randomly placed but fixed (see for
example [XK06, H06], and references there). Also, there has been quite a bit of experimental
study dealing with the dynamic situation, i.e. in which the agents are mobile: connections in
the network are created and destroyed as the agents move further apart or closer together;
see for example [AGE02, JBAS03, RMM01]. The paper [GHSZ] also deals with the problem
of maintaining connectivity of mobile agents communicating by radio frequency, but from an
orthogonal prespective to the one in the present paper. It describes a kinetic data structure
to mantain the connected components of the union of unit-radius disks moving in the plane.

To the best of our knowledge, ours is the first work in which the dynamic features of
such a network are studied theoretically. Moreover, we obtain much sharper results on the
static properties than previously obtained for this type of network. In the static case, our
results bear a strong resemblance to analogous results for similar problems of random points
in continuous spaces (see Holst [H80], and Penrose [P97], [P99]). The study of the behaviour of
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multiple, simultaneous random walks has its owns merits and could have further applications
in computer science.

We propose what we call the walkers model, defined as follows. A connected graph G =
(V,E) with |V | = N is given, and a number w of walkers (agents). Also given is a “distance” d.
A set W of walkers, with |W | = w, are placed randomly and independently on the vertices of
G (a vertex may contain more than one walker). Each walker has a range d for communication;
that is, two walkers w1 and w2 can communicate in one hop if the distance, in G, between
the position of the walkers is at most d. Two walkers can communicate if they can reach each
other by a sequence of such hops. In addition, each walker takes an independent standard
random walk on G, i.e. moves at each time step to a neighbouring vertex, each neighbour
chosen with equal probability.

The interesting features of the walkers model are encapsulated by the random graph of
walkers, W(G,w, d). This random graph is generated using a random assignment f : W → V
of walkers into the vertices of G. The vertices of W(G,w, d) are the vertices in G that receive
at least one walker, two vertices in W(G,w, d) being joined by an edge iff they are at distance
at most d in G. We are interested in the probability of W(G,w, d) being connected, or in the
number of components and their sizes, with certain mild asymptotic restrictions on w and d.

Our primary goal with the walkers model is to characterise the dynamics of the connectivity
of the communication network as represented by the random graph process (Wt(G,w, d))t≥0 .
Here Wt(G,w, d) denotes the graph of walkers at time t = 0, 1, . . ., and at each time step,
each walker simultaneously moves one step to a randomly selected neighbour vertex in G. In
order to study this model, we first examine W(G,w, d), which we call the static model. This
is a shapshot of the process at one point in time: we are interested in the distribution of the
number of components, as well as some other information which helps to answer the dynamic
questions. In particular, we are interested in studying the birth and death of components, and
the sudden connection and disconnection of Wt(G,w, d). We generally abbreviate W(G,w, d)
to W(G) when w and d are understood, and similarly, Wt(G,w, d) to Wt(G).

We consider a sequence of graphs G with increasing numbers of vertices N , for N tending to
inifinity. The parameters w and d are functions of N . We restrict to the case w → ∞ in order
to avoid considering small-case effects. Of course we take d ≥ 1. We make further restrictions
on w and d in order to rule out noninteresting cases, such as values of the parameters in
which the network is a.a.s. disconnected or a.a.s. connected. (Throughout this paper, a.a.s.
will abbreviate “asymptotically almost surely,” which denotes “with probability tending to 1
as N → ∞.”) We study the walkers model for two particular sequences of graphs G: the cycle
CN of length N and the n×n toroidal grid TN of size N = n2. (In the case of the grid, we use
the `p distance, for any 1 ≤ p ≤ ∞.) The two cases have an essential difference that prevents
a unified treatment: for the interesting values of w and d, disconnectedness of the graph of
walkers for the cycle is basically caused by the presence of at least two large “gaps” between
the walkers around the cycle, whereas for the grid, it is caused by the presence of one or more
isolated walkers.

We now give a description of some of our main results. Throughout this paper, % denotes
w/N , which is the expected number of walkers at a vertex.

1.1 The cycle

First we consider the cycle CN on N vertices. We will show that if d = Ω(N), then W(CN ) is
a.a.s. connected, so all results here refer to d = o(N). To study connectedness in this case, we
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introduce the concept of a hole. There is a hole between two vertices u and v if u and v each
contain at least one walker, but no vertex in the clockwise path from u to v contains a walker.
We say that such a hole follows u, or that u is the start vertex of the hole. The number of
internal vertices in a hole is its exact size. A k-hole is a hole whose exact size is at least k.

Let H be the random variable counting the number of d-holes in the walkers model for CN .
Notice that at least two d-holes are needed to disconnect the walkers on CN . To be precise,

W(CN ) is connected iff H ≤ 1. (1)

We define a new parameter µ = N (1 − e−%) e−d%, which plays a key role in characterising
the connectedness of W(CN ). It is straightforward to check that

µ ∼











we−d% if % → 0,

N (1 − e−%) e−d% if % → c,

Ne−d% if % → ∞.

Here, and throughout the paper, asymptotics refer to N → ∞ unless otherwise stated.
Regarding the behaviour of H, and connectedness, we have the following.

Theorem 1.1 The expected number of holes satisfies E [H] ∼ N (1 − e−%) (1 − d/N)w. Fur-
thermore,

(i) if µ → 0 then W(CN ) is connected a.a.s.,

(ii) if µ → ∞ then W(CN ) is disconnected a.a.s.,

(iii) if µ = Θ(1) then H is asymptotically Poisson with mean µ.

The following corollary gives the asymptotic probability that W(CN ) is connected. It
follows immediately from the theorem in view of (1).

Corollary 1.2 P (W(CN ) is connected ) = e−µ(1 + µ) + o(1).

We now turn to dynamic properties of the random graph of walkers on the cycle. One of our
main end results concerns the expected time that the graph of walkers remains disconnected,
after a point in time at which it becomes disconnected. Define a disconnected period to be
a maximal sequence of consecutive time steps for which the graph of walkers Wt(CN ) is
disconnected. We define for t > 0

LDt =

{

max{k ∈ N | Wt(CN ), . . . ,Wt+k−1(CN ) disconnected} if Wt−1(CN ) connected,

0 otherwise.

This is the random variable counting the length of the disconnected period starting at time step
t provided that it really starts then. Formally we define the average length of a disconnected
period starting at time t to be

LDav := E [LDt | LDt > 0].

By symmetry, this is independent of t, and so is a function of N , d and w. The next result
finds its size.
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Theorem 1.3 For the walkers model on the cycle CN , the average length of a disconnected
period of (Wt(CN ))t≥0 satisfies

LDav ∼















2 eµ−1−µ
µ2 %−1 if % → 0,

eµ−1−µ
1+µ−(1+µ+λ+λ2)e−λ if % → c,
eµ

1+µ if % → ∞,

where λ =

(

1 − 3e−% − e−
3

2
%

1 + e−
1

2
%

)

µ. Here 0 < λ < µ for % → c.

To give a feeling for the complexity of the question of how long a network remains discon-
nected once it becomes so, we introduce the following train paradox. A visitor to Barcelona
goes every morning to Catalunya station, where there are two metro lines meeting (red and
green), though at different levels. He wishes to measure the average length of a train. Since
there is plenty to see in Barcelona, each morning he chooses either the red line or the green,
at random. He waits for the first train to leave on that line, and records its length. He finds
after many days that the average length recorded is 9 cars. But he notices that, restricted to
the days that the train is already at the platform when he arrives, the average length is only
8 cars.

Could it be that the shorter trains wait longer for him? No, because the trains in Barcelona
stop at stations for equal times. Moreover, on any given line they arrive regularly at equally
spaced intervals, so the well known bus paradox does not directly apply.

Which is a better measure, the length of the first train to arrive, or the length of trains
arriving at a prescribed time? The former, yielding the answer 9, might seem more natural at
first. However, the explanation for the differing answers reveals the other to be meaningful,
and perhaps even more so. The data above, in both versions of the paradox, arise if the red
line has trains of average length 12 arriving every 10 minutes, and the green line has trains of
average length 6 arriving at 5 minute intervals. In an extended time period, recording all the
lengths of trains on all lines will yield 8 as the average.

Returning to the walkers model, as we shall see in Section 3, when N is even there are
many different configurations of walkers that cannot arise from a given initial configuration.
As a Markov chain, the process is not ergodic; each configuration belongs to a class of mu-
tually reachable configurations. The different classes of states correspond to different metro
lines in the train paradox. The quantity LDav in Theorem 1.3 is roughly equivalent to our
traveller’s measurement of length of trains restricted to those days that a train is just arriv-
ing. However, the train paradox shows that this is not the only reasonable measure of average
length. Moreover, the situation is even more complicated, as the train paradox would be if
the inter-train time periods were variable on a given line. The average length of the first train
to arrive would then be affected by any dependence between the length of a train and the
time before the previous train. We wish to study the analogue of the average length of trains
on a given metro line: the average length of a period of disconnection given the initial state.
If N is divisible by 2 and the initial configuration is conditioned upon, the walkers process is
“locked in” to a future in which the (conditional) average length of connected periods may be
different from LDav. However, we show that for almost all initial configurations this average
is essentially asymptotically equal to LDav. For T ∈ Z

+, we define the average disconnection
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time of the graph of walkers in [1, T ] to be

LDT =

T
∑

t=1

LDt

∣

∣

∣

{

t ∈ {1, . . . , T} : LDt > 0
}∣

∣

∣

.

We show that LDT converges in probability as T → ∞ to a random variable which may
depend on the class of the initial state, but nothing else. (Actually, the value is in general
different for different classes.) The notation f ∼ g a.a.s. used in the following theorem denotes
that for all ε > 0, a.a.s. |f/g − 1| < ε (see for example [W04]).

Theorem 1.4 For the walkers model on CN , LDT converges in probability as T → ∞ (with
N fixed) towards a random variable LD, uniquely determined almost everywhere. Furthermore
(as N → ∞) we have LD ∼ LDav a.a.s.

Intuitively, LD is the average length of the disconnected periods appearing in all the trajec-
tories of the random process starting from the initial state.

In Section 3.2 we give analogous results for maximal connected periods of W(CN ) (see
Theorems 3.10, 3.11).

During our examination of the cycle, we derive an incidental result (Corollary 3.7) on
the expected time required before a certain infinite set of random walkers sprinkled on the
nonnegative integers meets another such set sprinkled on the negative integers.

1.2 The grid

We turn now to the toroidal grid TN with N = n2 vertices, for which our results apply with
any normed `p distance, for 1 ≤ p ≤ ∞. We will show that if d = Ω(n), then W(TN ) is a.a.s.
connected, so all results here refer to d = o(n). We define h to be the number of grid points
within distance d of any fixed point in TN . This depends on the particular metric chosen, but
in all cases it is easy to see that h = Θ(d2).

We call a component of W(TN ) simple if it is formed by only one isolated vertex. Let X
be the number of simple components. To examine the connectedness of W(TN ), we need to
redefine the µ used for the cycle. For the following grid results, µ = N (1 − e−%) e−h%. Hence

µ ∼











we−h% if % → 0,

N (1 − e−%) e−h% if % → c,

Ne−h% if % → ∞.

Theorem 1.5

(i) For µ → ∞, W(TN ) is disconnected a.a.s.

(ii) For µ = Θ(1), a.a.s. all but one components of W(TN ) are simple, and the number X of
simple components is asymptotically Poisson with expected value µ.

(iii) For µ → 0, W(TN ) is connected a.a.s.

The theorem immediately gives the following.
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Corollary 1.6 P (W(TN ) is connected) = e−µ + o(1).

For dynamic considerations, we also need a function b = Θ(d) which is related to the
boundary of a ball of radius d in the grid. Like h, this function also depends on the metric.
It is defined in Section 4.2.

We define LDav and LDT for disconnected periods as for the cycle case above.

Theorem 1.7 For the walkers model on the grid TN with d > 1,

LDav ∼











eµ−1
µb% if d% → 0,
eµ−1

1−e−λ if d% → c,

eµ if d% → ∞,

where λ =
(

1 − e−b%
)

µ. Here 0 < λ < µ for d% → c. Furthermore, LDT converges in

probability for T growing large (N fixed) towards a random variable LD, uniquely determined
almost everywhere, where LD ∼ LDav a.a.s.

The case d = 1 is excluded for this result because of a technical complication that will be
explained in the proofs, though our basic approach could be modified to deal also with this
case. We also obtain exactly the same result as in Theorem 1.7 for connected periods as
opposed to disconnected periods.

The remainder of the paper gives proofs of these theorems as well as stating and proving
related ones. In Section 2 we give basic definitions and technical lemmas to be used throughout
the paper. In Section 3 we deal with the cycle CN , and in Section 4, the toroidal grid TN .
One of the main differences between this case and the cycle is the need for a geometric lemma
that may be of independent interest (Lemma 4.3). This bounds from below the number of
non-occupied vertices at distance at most d from the boundary of any connected component
in W(TN ), as a function of a measure of the length of the boundary. The last section contains
some discussion and related problems.

2 General definitions and basic results

We begin with some definitions and results which are common for all G. We call a component
simple if it is formed by only one isolated vertex. Recall that % = w/N is the expected number
of walkers at a vertex. For any v ∈ V , define hv to be the number of vertices in G at distance
at most d from v, and define h = minv∈V hv. We say that a vertex or set of vertices is empty
of walkers (e.o.w.), or simply empty, if it contains no walkers, and occupied otherwise. Note
that there must be h empty vertices in G within distance d of a simple component.

By considering the coupon collector’s problem, we observe that if w = N log N + ω(N)
then W(G,w, d) is trivially a.a.s. connected due to every vertex being occupied. Moreover,
for the graphs G which we consider in this paper, if h ∈ Ω(N/

√
w) then W(G,w, d) is a.a.s.

connected as well. This last claim will be seen in Observations 3.1 and 4.1. Thus, we consider
throughout the paper w < N log N + O(N) and h = o(N/

√
w). In fact, our proofs will just

assume h to be o(N). Note that, for the cycle, h = 2d.
We will need to compute the probability of certain configurations of walkers at two consec-

utive time steps t and t + 1, in order to record the event that walkers jump to the appropriate
place at that step. There is a convenient way to formulate this in terms of occupancy of
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directed edges. Let us regard G as a directed graph, by considering each edge as a symmetric
pair of directed edges. For any directed edge e going from vertex u to v, we say that a walker
is on e between time steps t and t + 1 if the walker is on u at time step t and jumps onto v
within one step. Note that in this way we can encode dynamic transitions in terms of static
configurations of walkers.

There is an alternative formulation in terms of cells. Each vertex is divided into as many
cells as its degree, and each cell is associated with one of directed edges stemming from the
vertex. Then, the transition of the system between two consecutive time steps can be described
by the placement of the walkers in the cells (see Figure 1). We use this representation especially
in figures for sake of simplicity and visual clarity.

Assign size 1 to all vertices in G. For a given directed edge stemming from a vertex v with
degree δv, its size will be 1/δv . Given a set A of vertices or directed edges, we define the size
of A to be the sum of the sizes of its elements.

steps t, t+1

step t+1step t

Figure 1: The walker jumps to a neighbour according to which cell it is placed on

The following technical lemma is used in most of our proofs to compute the probability of
having a certain configuration of walkers (in terms of vertex or directed edge occupancy) at
a given time step. The lemma applies to any graph G. Its proof, using an inclusion-exclusion
argument, is fairly straightforward so is omitted. (See [DPSW06] for details.)

Lemma 2.1 Let A0, . . . , Am be pairwise disjoint sets of vertices (or directed edges) in G, with
sizes S0, . . . , Sm respectively. Let N = |V (G)|. If

∑m
i=0 Si = o(N), then

P

(

A0 e.o.w. ∧
m
∧

i=1

(Ai not e.o.w.)

)

∼
(

1 − S0

N

)w m
∏

i=1

(

1 − e−Si%
)

.

To cover large sizes S, not necessarily o(N), we need the following variation.

Lemma 2.2 Let A be a set of vertices in G of size S, and v1, . . . , vm vertices not in A, with
m ≥ 1. Assume N − S → ∞. The probability that no vertex in A is occupied and v1, . . . , vm

are all occupied is at most p0p
m−1αw(1 + o(1)) where p0 = 1 − e−%/α, α = 1 − S/N and

p = min(1, %/α). Here the asymptotics is uniform over all m.

Proof The probability of the event E that all walkers avoid A is αw. The probability that
v1 is occupied conditional upon E is 1 − (1 − (N − S)−1)w, which is asymptotic to p0. The
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lemma follows for % > α, i.e. w > N − S. Otherwise, conditional upon E and the event that
v1, . . . , vi are occupied, the probability that the next is occupied is clearly decreasing with i
and is thus at most w/(N − S) = %/α. The lemma follows.

�

3 The cycle

Here G = CN , the cycle with N vertices.

Observation 3.1 Cover CN with d N
dd/2e e paths of dd/2e vertices. If d = Ω(N/

√
w), then the

probability that some path is e.o.w. (empty of walkers) is at most
⌈

N

dd/2e

⌉(

1 − dd/2e
N

)w

≤ O(
√

w)e−Ω(
√

w) → 0.

Thus, a.a.s. each of these paths is occupied (by at least one walker), and W(G,w, d) is con-
nected.

In view of this observation, we assume for the rest of the section that d = o(N). If d = Ω(N),
then W(G,w, d) is a.a.s. connected.

Recall the definition of a hole from Section 1, and that H is the random variable counting
the number of d-holes. For this section, µ is defined as for Theorem 1.1.

3.1 Static properties

Here, we study the connectedness of the graph of walkers W(G,w, d) in the static situation, by
analysing the behaviour of H. In view of (1), if E [H] → 0 then W(G,w, d) is a.a.s. connected.
Theorem 1.1 gives the asymptotic distribution of H.

Proof of Theoerem 1.1
For any vertex v in CN , let Hv be an indicator random variable such that Hv = 1 iff there

is a d-hole following vertex v. Then,

H =
∑

v∈V

Hv and E [H] =
∑

v∈V

P (Hv = 1). (2)

We shall compute the kth factorial moment:

E [H]k =
∑

v1 6=···6=vk∈V

P (Hv1
= 1 ∧ · · · ∧ Hvk

= 1). (3)

Let S denote the set of tuples such that each vi and vj, i 6= j, have distance at least d + 1
around the cycle. For (v1, . . . , vk) /∈ S, the probability in (3) is 0 since one of the vi “lies in”
the hole following some vj , and yet vi must be occupied. For (v1, . . . , vk) ∈ S, the probability
in (3) is easily computed by applying Lemma 2.1:

P (Hv1
= 1 ∧ · · · ∧ Hvk

= 1) ∼
(

1 − kd

N

)w
(

1 − e−%
)k

.

Since d = o(N) we have |S| ∼ N k, and thus from (3)

E [H]k ∼
[

N
(

1 − e−%
)

e−d%+O( d2w
N2 )

]k

. (4)
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In particular,

E [H] ∼ N
(

1 − e−%
)

(

1 − d

N

)w

∼ N
(

1 − e−%
)

e−d%+O( d2w
N2 ). (5)

In the case µ → 0, we have also E [H] → 0 since (1−d/N)w ≤ e−d%. Then, P (H = 0) → 1, and
W(G,w, d) is connected a.a.s.. In the case that µ is bounded away from 0, taking logarithms,

d% = log N
(

1 − e−%
)

− log µ. (6)

Considering separately the cases when % → 0 and when % → c,∞, we get from (6) that
d2w
N2 = o(1), so we can ignore the term O( d2w

N2 ) in the expression (4) and obtain

E [H]k ∼
[

N
(

1 − e−%
)

e−d%
]k

= µk. (7)

Moreover, if µ is bounded, then it follows, from (7) and (for instance) from Theorem 1.23
in [Bol02], that H is asymptotically Poisson. For µ → ∞, we have that E [H]2 ∼ µ2, and so
it follows from Chebyshev’s inequality that a.a.s. H > µ/2 (and W(G,w, d) is disconnected).

�

3.2 Dynamic properties

Assume that from an initial random placement f of the walkers, at each step, every walker
moves from its current position to one of its neighbours, with probability 1/2 of going either
way. This is a standard random walk on the cycle for each walker. To study the connectivity
properties of the dynamic graph of walkers we need to introduce some notation.

A configuration or state is an arrangement of the w walkers on the vertices of CN . Consider
the graph of configurations, where the vertices are the N w different configurations. Each
configuration can be represented by a vector a = (a1, . . . , aw) ∈ (ZN )w, where ai indicates
the label of the vertex being occupied by walker i. Given a configuration a, there exists an
edge between a and all configurations (a1 ± 1, . . . , aw ± 1). Thus, any configuration has 2w

neighbours, and the relationship of being neighbours is symmetric. The dynamic process can
be viewed as a random walk on the graph of configurations, in particular, a Markov chain
M(N,w, d). We denote Mt the state of the process at time step t.

For N even, given any two configurations a and b, we say that they have the same parity if
for all i and j, ai−aj ≡ bi−bj(mod 2). There are 2w−1 different parities. Note that the initial
parity stays invariant during the dynamic process. The following lemma is straigthforward
and the proof is left to the reader.

Lemma 3.2 Let a and b be any two configurations and let ha,b denote the hitting time from
a to b. If N is odd, then b is reachable from a and ha,b is finite for any a and b. If N is
even then b is reachable from a provided that a and b have the same parity, and in this case
ha,b is finite.

Then if N is odd, M(N,w, d) consists on a single closed class of states, so it is irreducible
and positive recurrent. It is trivial to verify aperiodicity and hence we have that the chain is
ergodic. However if N is even, there are 2w−1 closed classes of states, where each class consists
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of all configurations with the same parity. We denote by A the set of classes. Let A ∈ A be
any class of states and let a ∈ A be a configuration. For this particular configuration, we can
partition the set of walkers W = W1 ∪ W2 so that the ones in W1 lie in odd positions of the
cycle and the ones in W2 lie in even positions. Let A1 be the set of all states which lead to
this same partition, and A2 the set of those which lead to the complementary one. Clearly,
A = A1 ∪ A2. Those states in A1 are only reachable by an even number of steps from a, and
those in A2 by an odd number of steps. Hence, if we restrict the Markov chain to any class of
states, it is irreducible, positive recurrent, but 2-periodic and hence not ergodic.

Observation 3.3 Note that for any fixed t, the distribution of Wt(CN ) is just that of W(CN )
in the static case. That is, the initial uniform distribution stays invariant, even though when
N is even the chain is not ergodic and there is no limit distribution. Hence, by Theorem 1.1,
if µ → 0 or ∞, then for any fixed t, Wt(CN ) is a.a.s. connected or a.a.s. disconnected respec-
tively.

In view of this observation, we assume µ = Θ(1) for the remaining of the section, since we
wish to study only the nontrivial dynamic situations. One thing this implies, in view of the
definition of µ, is that

d% → ∞. (8)

We define H(t) to be the random variable that counts the number of d-holes at time step t.
Then from Section 3.1, H(t) is asymptotically Poisson with expectation µ = Θ(1).

For the dynamic properties of Wt(CN ), we are interested in the probability that a new
d-hole appears at a given time step. Moreover, we require knowledge of this probability
conditional upon the number of d-holes already existing.

If there is a d-hole from u to v at time step t and all walkers at u and v move in the
same direction on the next step, a new d-hole may appear following one of the neighbours
of u (provided no new walkers move in to destroy this). These two d-holes, though being
different, are related, and the presence of the first makes the second more likely to occur than
it would otherwise be. Similarly, the exact size of a d-hole following u may change in one step,
making it technically a different d-hole, but again, related. In all these cases, the start vertex
of the d-hole “moves” by at most 1; a d-hole at time step t + 1 which does not follow u or a
neighbour of u, is not related to a d-hole following u at time step t. We need some definitions
to make this loose description rigorous. Define a d-hole line to be a maximal sequence of pairs
(h1, t1), . . . , (hl, tl) where hi is a d-hole existing at time step ti for 1 ≤ i ≤ l, and such that
ti = ti−1 + 1 and the start vertex of hi is adjacent to, or equal to, the start vertex of hi−1, for
2 ≤ i ≤ l. Fix two consecutive time steps t and t + 1. If t1 = t + 1, we say that the line is born
between t and t + 1, if tl = t the line dies between t and t + 1, and if t = ti, i ∈ {1, . . . , l − 1}
we say that the line survives during the interval [t, t + 1]. Note that the time-reversal of the
process has a d-hole line born at vertex u between t + 1 and t iff the d-hole line dies at u
between t and t + 1.

We define random variables S(t), B(t) and D(t) to be the number of d-hole lines surviving,
being born and dying between t and t + 1. We have D(t) + S(t) = H(t) and B(t) + S(t) =
H(t + 1).

The proof of the following result is similar to that of Theorem 1.1, but rather more com-
plicated, so we only give an abbreviated proof here. A full proof may be found in [DPSW06]
or [P07]. Here “asymptotically independent Poisson” means that the joint distribution tends
to that of independent Poisson variables.
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Proposition 3.4 For any fixed t, the random variables S(t), B(t) and D(t) are asymptotically
independent Poisson, with the expectations

E [S(t)] ∼











µ if % → 0,

µ − λ if % → c,

3µe−% if % → ∞,

and E [B(t)] = E [D(t)] ∼











1
2µ% if % → 0,

λ if % → c,

µ if % → ∞,

where λ is defined in Theorem 1.3.

Proof We will estimate factorial moments of the appropriate variables. In CN , let right
denote ‘clockwise’ and left ‘counterclockwise’. Moreover, for a vertex v ∈ V and i ≥ 0, let
v + i (respectively v − i) denote the vertex i positions to the right (resp. left) from v. All
probabilities and events in this proof will involve two consecutive time steps t and t + 1. We
can describe these events from an static point of view, as explained in Section 2,

We consider births in detail. There are four ways that a d-hole line can be born at v
between time steps t and t + 1 according to the following descriptions, as shown in Figure 2:

b1 At time step t, there is a hole between v + 1 and v + d of exact size d − 2. Then all
walkers at v and v + 1 move left and all walkers at v + d and v + d + 1 move right.

b2 At time step t, there is a hole between v + 1 and v + d + 1 of exact size d − 1. Then all
walkers at v and v + 1 move left and all walkers at v + d + 1 and v + d + 2 move right.

b3 At time step t there is a hole between v +1 and v +d+1 of exact size d−1, and v +d+2
is occupied. Then all walkers at v and v + 1 move left, all walkers at v + d + 1 move
right, and at least one walker at v + d + 2 moves left.

b4 At time step t there is a hole between v and v + d of exact size d − 1, and v − 1 is
occupied. Then all walkers at v move left, all walkers at v + d and v + d + 1 move right,
and at least one walker at v − 1 moves right.

B  =11

B  =12

B  =13

B  =14
d−1

d−1

d−1

d−2
v

v

v

v

v v+1

v v+1

v v+1

v−1 v

v+d v+d+1

v+d+1 v+d+2

v+d+1 v+d+2

v+d v+d+1

Figure 2: Birth of a d-hole line at vertex v

The expected number of d-hole lines born at a given time is N times the sum of probabilities
of these four events. Applying Lemma 2.1, together with the fact that (1 − d/N)w ∼ e−d%
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(Theorem 1.1), we get (writing the four terms separately)

1

N
E [B(t)] ∼

(

1 − e−%/2
)2

e−d% +
(

1 − e−%/2
)2

e−(d+1)%

+
(

1 − e−%/2
)3

e−(d+1/2)% +
(

1 − e−%/2
)3

e−(d+1/2)%.

This leads to the expression for E [B(t)] stated in the theorem. The other expected values
are obtained in a similar way (with three types of survival event and four types of death
event). Computing the joint factorial moments of random variables counting births, deaths
and survivals gives the claim about Poisson distribution, similar to the proof of Theorem 1.1.
We omit the remaining details.

�

As H(t) = S(t) + D(t) and H(t + 1) = S(t) + B(t), the following is immediate.

Corollary 3.5 H(t) and B(t) are asymptotically independent, and so are D(t) and H(t + 1).

It is natural to define the lifespan of a d-hole line as the number of time steps for which the
line is alive. For any vertex v and time step t, the random variable Lv,t is the lifespan of the
d-hole line born at vertex v between time steps t and t+ 1. If no such birth takes place, Lv,t is
defined to be 0. Note that the random variables Lv,t are identically distributed for all v and t.

In view of (8), it is easy to see that a state can be reached in which there are no holes. One
way to do this is to force the walkers to move to positions in which they are almost equally
spaced around the cycle. Then by Lemma 3.2, for any initial state, the process will reach
some such state within finite expected time. Thus the expected lifespan of any given d-hole
line, given the configuration of walkers at its birth, is bounded (and the bound is simply a
function of N , d and w).

Considering the train paradox discussed in Section 1, we define the average lifespan of
d-hole lines to be the expected time that a d-hole line will survive once born. Formally,

Lav := E [Lv,t | Lv,t > 0].

By symmetry, this is independent of v and t, and so is a function of N , d and w. The next
result finds its size.

Theorem 3.6 The average lifespan of d-hole lines satisfies

Lav =
E [H(0)]

E [B(0)]
∼











2%−1 if % → 0,
µ
λ if % → c,

1 if % → ∞

where λ is defined as in Theorem 1.3.
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Proof For any vertex v and time step t, we have

NE [Lv,t] −E [H(0)] =
∑

v∈V

E [Lv,t] −E [H(0)]

=
1

T

(

∑

v∈V

T−1
∑

t=0

E [Lv,t] −
T−1
∑

t=0

E [H(t)]

)

, for any T ∈ Z
+

=
1

T
E

[

∑

v∈V

T−1
∑

t=0

Lv,t −
T−1
∑

t=0

H(t)

]

= lim
T→∞

1

T
E

[

∑

v∈V

T−1
∑

t=0

Lv,t −
T−1
∑

t=0

H(t)

]

= 0,

since H(t) is uniformly bounded (the bound depending on N) and so is the expected lifespan
of any line. Thus, the portions of lifespans omitted in

∑T−1
t=0 H(t) are bounded in expectation.

Now the rest follows easily:

E [Lv,t | Lv,t > 0] =
E [Lv,t]

P (Lv,t > 0)

=
E [H(0)]

NP (Lv,t > 0)

=
E [H(0)]

∑

v P (Lv,t > 0)

=
E [H(0)]

E [B(0)]
.

The final formula for this expression comes immediately from Proposition 3.4, noting that
H(t) = S(t) + D(t) ∼ S(t) for % → 0 and D(t) dominates for % → ∞.

�

The previous theorem has the following consequence of a rather different nature. Although
this is entirely incidental to our main goals, it seems interesting enough to mention. It is not
clear how to establish this result without reference to our result on the cycle.

Corollary 3.7 For constant 0 < p < 1, randomly place walkers on the integers each indepen-
dently with probability p, but with probability 1 for integers 0 and 1. Let them all take the usual
independent random walks. Then the expected time g(p) before one of the initially nonpositive
walkers meets or passes one of the initially positive walkers satisfies g(p) ∼ 2/p as p → 0.

Proof We call the model introduced in the statement of the theorem the p-model. For
fixed p, let m = dp−1e. For fixed i > 0, consider the intervals I−i = [−im,−(i − 1)m − 1]
and Ii = [(i − 1)m + 1, im]. Let Hi denote the event that in the first i2m2 steps, some walker
initially in Ii meets some walker initially in I−i. Then P(Hi) > c > 0 for some constant c
independent of i (and p). This is because the probability that at least one site in Ii is initially
occupied is at least 1 − (1 − p)m, which is bounded below, and because after i2m2 steps a
walker’s position is binomially distributed, subject to parity and relative to its starting point,
with variance i2m2, not to forget that the walkers move independently.
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Call a walker positive if it is initially positive, and negative otherwise. For fixed M , the
events H1,H2, . . . ,HM are mutually independent, so the probability that none of them occurs
is at most (1 − c)M . Thus the probability that none of the negative walkers meets or passes
one of the positive walkers in the first Mi2m2 steps is at most (1 − c)M , i.e. exponentially
small in M . It follows that g(p) is finite, and that a.a.s. the number of steps before the first
positive walker passes the first negative one is bounded in probability.

Still for fixed p, define a sequence of integers d = d(N) satisfying d = p−1 log N + O(1),
where the O(1) term ensures that such an integer sequence can be found. Define g̃(p) analogous
to g(p) but restricted to the walkers initially occupying the set Z(d) = {k : |k| ≤ d}. By the
observation at the end of the previous paragraph, g̃(p) ∼ g(p).

Next consider our standard model of w walkers on a cycle of length N +d, where w = bpNc.
Let g1(p) denote the expected lifespan of a d-hole line conditional upon it being born of size
d. This is clearly independent of the time and place of birth, but let us fix the birth at a
vertex v between time steps t and t + 1. All possible configurations that are feasible at time
steps t and t + 1 and such that this birth occurs are equally likely. At time step t there is a
walker at v and one at v + d + 1 (mod N), with none in between. For any such configuration
of walkers at time step t + 1, we can map the part of the configuration near v (to its “left”)
and near v + d + 1 (to its “right”) onto the integers, taking [v − d, v] onto the integers [−d, 0]
and [v + d + 1, v + 2d] onto [1, d]. Let Vd denote the set of sites mapped in this way to Z(d)
and let f denote the mapping.

For the rest of the proof we omit some technical details. For any particular configuration
in Vd, the probability it arises is close to the probability of its image under f occurring in the
p-model. In fact, it tends towards the same probability as N → ∞. Similarly, the probability
that two walkers occupy the same position within Z(d) or Vd will tend to 0 as N → ∞ (in
both cases). Hence g1(p) → g(p) as N → ∞.

Now let g2(p) denote the expected lifespan of a d-hole line conditional upon it being born
of size d + 1. The same argument as above gives g2(p) → g(p) as N → ∞.

It follows that for the walkers on the cycle with these parameters, Lav → g(p) as N → ∞.
Letting p → 0 slowly and applying Theorem 3.6 now gives the theorem.

�

It is also interesting to ask how the average lifespan relates to the intial configuration of
the walkers (see the train paradox in Section 1). As noted earlier, if N is odd then M(N,w, d)
is ergodic and parity is immaterial. However, if N is even and the initial configuration is
conditioned upon, the (conditional) average lifespan of d-hole lines may be different from Lav.
Define T ∈ Z

+,

LT =

T−1
∑

t=0

∑

v∈V

Lv,t

∣

∣

∣

{

(v, t) : Lv,t > 0
}∣

∣

∣

,

where the denominator runs over all pairs (v, t) ∈ V × {0, . . . , T − 1}. If the denominator is
zero (or the numerator is infinite, which happens with probability 0), the value is immaterial,
and may be defined as 0. Note that LT is a function of a given trajectory of the process.

We next aim for an analogue of Theorem 1.4. Define

L =
E [H(0)|Λ]

E [B(0)|Λ]
,
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where Λ is the random variable which is the closed class in which the initial state M0 lies.

Theorem 3.8 For the walkers model on CN , LT converges in probability as T → ∞ (with N
fixed) towards a random variable L. Furthermore, (as N → ∞) we have L ∼ Lav a.a.s.

Proof The proof proceeds by a renewal theory type of argument, showing sharp concen-
tration of the number of times that the associated Markov chain revisits a given state over a
given long time period.

Let us define the truncated average lifespan of d-hole lines in [0, T − 1] to be

LT =

∑T−1
t=0 H(t)

H(0) +
∑T−2

t=0 B(t)

(defined by convention to be 0 if the denominator is 0). As we prove below, this is an
approximation of LT .

We first deal with the case that N is even. To prove the result we need to take into account
the class of states containing the initial one, since different starting configurations of walkers
may lead to different expected numbers of holes and births.

Let Λ be the random variable accounting for the closed class of states where the initial
state M0 lies. Let A be any closed class of states. We condition on the event (Λ = A), which
we call A with some abuse of notation. By Lemma 3.2, the hitting time between any two
states is finite.

We consider the Doob Martingale Σ0, . . . , ΣT defined by

Σi = E

[

T−1
∑

t=0

H(t)

∣

∣

∣

∣

∣

A,M0, . . .Mi−1

]

, i = 0, . . . , T.

We have Σ0 = TE [H(0)|A] and ΣT =
∑T

t=1 H(t). (We recall that this last expression is
regarded in the probability space induced by restricting to the event A.)

From the fact that the expected hitting time between any two states is finite, we deduce
that the differences |Σi+1 − Σi| are bounded above by a constant independent of T . Hence as
an immediate consequence of Azuma’s inequality we get that, conditional upon the event A,

lim
T→∞

1

T

T−1
∑

t=0

H(t) = E [H(0)|A] in probability (9)

and by a similar argument

lim
T→∞

1

T

(

H(0) +

T−2
∑

t=0

B(t)

)

= E [B(0)|A] in probability. (10)

Then, by taking the ratio of (9) and (10), we get that

lim
T→∞

LT = L in probability. (11)

The case that N is odd is easier. There is just one closed class of states and M(N,w, d)
is ergodic. By the martingale argument as above, we get (noting Theorem 3.6)

lim
T→∞

LT =
E [H(0)]

E [B(0)]
= Lav in probability. (12)
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Moreover, we obtain
lim

T→∞
LT − LT = 0 in probability (13)

since H(t) and B(t) are uniformly bounded (the bound depending on N) and so is the expected
lifespan of any line. Thus the portions of lifespans omitted in LT are bounded in expectation,
which is insignificant since the denominator grows linearly with T as shown in (10).

In order to finish the proof, it suffices to show that as N → ∞
L ∼ Lav a.a.s.

We note that the quantity E [H(0)|A]/E [B(0)|A] may vary depending on the particular closed
class of states A. Let us study this in more detail. Let a ∈ A be a configuration. As in
Section 3.2, let us partition the set of walkers W into W1 and W2 according to the parity of
their positions in the cycle. Let us define the imbalance of the configuration as ∆(a) = |w1−w2|
where wi = |Wi|. It makes sense to define ∆(A) = ∆(a) since it does not depend on the choice
of a.

We can compute the expectations of S, B and D conditional upon (M0 ∈ A) by proceeding
the same way as in Proposition 3.4. The only difference is that w1 walkers must go to N

2 of
the vertices (say those with odd position) and w2 must go to the other N

2 . We omit details
here since they are fairly tedious but completely analogous to the previous computations. We
note that these expectations do not depend on the particular partition (W1,W2) but only on
the imbalance ∆(A). In all cases we get the following

E [H(0)|A]

E [B(0)|A]
= Θ

(

E [H(0)]

E [B(0)]

)

. (14)

In fact, for ∆(A)
N = O(1) we have E [H(0)|A] = Θ (E [H(0)]) and E [B(0)|A] = Θ (E [B(0)]).

For ∆(A)
N → ∞, these two statements are no longer true, but the extra factors in numerator

and denominator of (14) cancel out to within a factor of Θ(1).
However, not all imbalances are equally likely. In fact for any ε > 0, we have

P
(

∆(M0) ≥ w
1+ε
2

)

= P

(

∣

∣

∣
w1(M0) − w

2

∣

∣

∣
≥ 1

2
w

1+ε
2

)

≤ w

w1+ε
= o(1). (15)

Moreover, for a (typical) class A such that ∆(A) < w
1+ε
2 and by the method explained above,

we get
E [H(0)|A]

E [B(0)|A]
∼ E [H(0)]

E [B(0)]
. (16)

From this last fact together with (14) and (15), the theorem follows.
�

We turn now to connectivity issues, for which we use (1). The next lemma gives us the
probability that there is one component at time step t, but at least two at time step t + 1.

Lemma 3.9 The probability that Wt(CN ) is connected and that Wt+1(CN ) is disconnected is
given by

P
(

H(t + 1) ≥ 2 ∧ H(t) < 2
)

∼











1
2µ2e−µ% if % → 0,

e−µ
(

1 + µ − (1 + µ + λ + λ2)e−λ
)

if % → c,

(1 + µ)e−µ(1 − (1 + µ)e−µ) if % → ∞,

where λ is defined as in Theorem 1.3.
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Proof We can split the probability on the left hand side according to the events H(t) = 0
and H(t) = 1. Noting that

P
(

H(t + 1) ≥ 2 ∧ H(t) = 0
)

= P
(

H(t) = 0 ∧ B(t) ≥ 2
)

,

and

P
(

H(t + 1) ≥ 2 ∧ H(t) = 1
)

= P
(

S(t) + B(t) ≥ 2 ∧ S(t) + D(t) = 1
)

= P
(

S(t) = 1 ∧ B(t) ≥ 1 ∧ D(t) = 0
)

+ P
(

S(t) = 0 ∧ B(t) ≥ 2 ∧ D(t) = 1
)

,

the result follows from Proposition 3.4 and Corollary 3.5 provided % 6→ 0. If % → 0, we need

for instance to estimate the vanishingly small quantity P
(

S(t) = 1 ∧ B(t) ≥ 1 ∧ D(t) = 0
)

asymptotically, but the moment calculations as for the proof of Proposition 3.4 suffice for this
and we omit the routine details.

�

Recall the definition of a disconnected period from Section 1. By Lemma 3.2, from a
disconnected state the graph will always reach some connected one (for example, one in which
all walkers occupy one of two adjacent sites) within finite expected time. Thus the expected
length of any disconnected period is bounded (this bound depending on N).

Proof of Theorem 1.3 Arguing as in the proof of Theorem 3.6, and obtaining the asymptotic
expressions for the numerator and the denominator from Theorem 1.1 and Lemma 3.9, we
obtain

LDav =
P (H(1) ≥ 2)

P (H(0) < 2 ∧ H(1) ≥ 2)
∼















2 eµ−1−µ
µ2 %−1 if % → 0,

eµ−1−µ
1+µ−(1+µ+λ+λ2)e−λ if % → c,
eµ

1+µ if % → ∞.

(17)

�

Proof of Theorem 1.4 Let the random variable Φ(t) = 1[H(t)≥2] be the indicator of the
event that Wt(CN ) is disconnected, and let Ψ(t) = 1[H(t−1)<2∧H(t)≥2] be the indicator of the
event that a disconnected period starts at time step t.

We define the truncated average disconnection time of the graph of walkers in [1, T ] as

LDT =

∑T
t=1 Φ(t)

∑T
t=1 Ψ(t)

.

Proceeding as in the proof of Theorem 3.8, we get that LDT converges in probability for large
T towards a random variable LD such that LD ∼ LDav.

�

From the definitions in Section 1 relating to disconnected periods, by changing disconnected
to connected, we define connected periods, LCt, LCav and LCT . Using

LCav =
P (H(1) < 2)

P (H(0) ≥ 2 ∧ H(1) < 2)

and an analogue of Lemma 3.9 we obtain the following.
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Theorem 3.10 The average length of a connected period satisfies

LCav ∼















21+µ
µ2 %−1 if % → 0,

1+µ
1+µ−(1+µ+λ+λ2)e−λ if % → c,

eµ

eµ−(1+µ) if % → ∞,

where λ is defined as in Theorem 1.3.

The result for connection times analogous to Theorem 1.4 is the following. The proof is
almost identical so is omitted.

Theorem 3.11 LCT converges in probability as T → ∞ (N fixed) towards a random variable
LC where LC ∼ LCav a.a.s.

4 The Grid

In this section, we study the walkers model for G = TN , the toroidal grid with N = n2 vertices.
We can refer to vertices by using coordinates in Zn×Zn. For the grid we encounter significant
new obstacles as compared to the cycle; see for instance the Geometric Lemma below.

For any p ∈ [1,∞] and any two vertices u and v in TN , we define the distance dist`p(u, v)
as the minimal `p distance between any two points u′ and v′ in the square grid such that the
coordinates of u′ are congruent to those of u taken modulo n, and similarly for v and v ′. Let
us fix any such metric for our study of the connectedness of W(G,w, d), and write dist(u, v)
for short. We use dist to refer to this measure of distance, in distinguishing it from Euclidean
distance. Note that

1

2
· dist`1(u, v) ≤ dist(u, v) ≤ dist`1(u, v). (18)

The number of vertices at distance at most d from any given one is h = Θ(d2). The exact
expression of h depends on the choice of the metric. Some examples are found in Table 1.

Observation 4.1 Assume that d < 2n (otherwise the graph of walkers is always complete).
For each i, j < 4n/d, let vij denote the vertex in TN with coordinates (bid/4c, bjd/4c). Let Sij

denote the set of grid points closer to vij than any of the other vi′j′. Then there are Θ(N/d2)
disjoint sets Sij each containing Θ(d2) points. The probability that at least one of these Sij is
empty of walkers is at most

Θ(N/d2)(1 − Θ(d2/N))w = O(
√

w)e−Ω(
√

w),

which goes to 0 if d2 = Ω(N/
√

w). Thus, a.a.s. each of these pieces is occupied by at least one
walker, and W(G,w, d) is connected.

In view of the observation, we assume for the rest of the section that h = o(N), i.e.
d = o(n). If d = Ω(n), then W(G,w, d) is a.a.s. connected.

We wish to study the connection and disconnection of W(G,w, d) in a similar way to the
cycle. For the grid, the notion of hole does not help, and we deal directly with components.
Recall from the introduction that a simple component is one with just one vertex. These play
a major role, and we shall prove that, for the interesting values of the parameters, a.a.s. there
only exist simple components besides one giant one.
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Metric h

`1 h = 2d(d + 1)
`2 h ∼ πd2 if d → ∞
`∞ h = 4d(d + 1)

Table 1: Number of vertices at distance at most d from a given vertex.

Let C be any given component. The edges of C are the straight edges joining occupied
vertices in C of distance at most d. The associated forbidden region AC is the set of vertices not
in C, but at distance at most d from some vertex in C (i.e. those vertices which must be free
of walkers for C to exist as a component). The exterior EC of C is the set containing all those
vertices not in C ∪ AC . We partition EC into external regions as follows: two vertices belong
to the same external region when they can be joined by a continuous arc not intersecting any
edge of C. Figure 3 shows a component with different external regions.

A

B

C

B

C

Figure 3: Component (black), empty area (gray), external regions A, B and C (white)

Recall that, in the terminology of planar maps, the bounding cycle of a face is a walk
around the boundary of the face. Given an external region EC i, let C′ be any connected
subgraph of C that has no edges crossing and such that no vertices of C are contained in
the face F of C ′ which contains EC i. Such subgraphs always exist: for instance, take the
spanning tree of C whose length (sum of lengths of edges) in terms of dist has been minimised,
and, subject to this, has the shortest Euclidean length. We refer to the bounding cycle of
this face F as a boundary walk β in C with respect to EC i. Such a walk is maximal if the
face F does not properly contain a face of some other subgraph of C of the same type. In
Figure 4, {1, 5, 3, 7, 9, 11, 13, 15, 13, 12, 14, 12, 10, 8, 6, 2, 4, 1} is a nonmaximal boundary walk,
and {1, 5, 3, 7, 9, 11, 13, 15, 13, 14, 12, 10, 8, 6, 2, 4, 1} is a maximal one. A maximal one always
exists, because any nonmaximal one can be diverted around any face that prevents it from
being maximal.

We call a (directed) closed walk in C regular if, for each edge entering a vertex v, the next
edge in the walk is the next edge in the clockwise direction around v.

For i < n, let us call a v-band of width i to any subset of TN defined by {a, . . . , a+i−1}×Zn.
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15

Figure 4: The boundary walk

Similary, we define a h-band of height j. Define a rectangle of width i and height j to be the
intersection of a v-band of width i and a h-band of height j. We can compare vertices in a
rectangle according to their coordinates, and use statements such as v1 is more left than v2

or v3 is an uppermost vertex in the rectangle.
We say that a component C with at least 2 vertices is a rectangular component (r-

component) if all of its vertices, edges and forbidden region are contained in a rectangle
as defined above. In particular, this implies that C contains no nonseparating cycle of the
torus. Otherwise, C is an nr-component. For a given r-component C, we define its origin as
the leftmost of the lower-most vertices of C. The outside region of an r-component is the only
external region of the component having vertices outside any containing rectangle. We say
that an nr-component is type 1 if is not the subgraph of some graph of walkers containing more
than one nr-components, and type 2 otherwise. Note that this property is simply determined
by the subgraph of the toroidal grid remaining when the component and the vertices of dis-
tance at most d from it are deleted. By definition, W(G,w, d) has at most one nr-component
of type 1.

Let X, Y and Z be the number of simple components, r-components and nr-components
respectively, and note that Z = Z1 + Z2, where Zi is the number of nr-components of type i.
Then

E [Z] = P (Z1 = 1) + E [Z2].

4.1 Static properties

In this section, we study the connectedness of W(G,w, d) in the static situation for the case
G = TN ; in particular, we analyse the behaviour of X, Y and Z. For Section 4, the value of
µ is as defined for Theorem 1.5, rather than the value for the cycle.

Proposition 4.2 The expected number of simple components of W(G,w, d) for G = TN sat-
isfies E [X] ∼ N (1 − e−%)

(

1 − h
N

)w
. Furthermore,

(i) if µ → 0 then E [X] → 0 and there are no simple components a.a.s.,

(ii) if µ → ∞ then there exist simple components a.a.s. (and W(G,w, d) is disconnected),

(iii) if µ = Θ(1) then X is asymptotically Poisson with mean µ.

Proof We repeat the proof of Theorem 1.1 in the present context. To compute E [X]k, we
focus on the set S = {(v1, . . . , vk)|dist(vi, vj) > 2d if i 6= j}, with size |S| ∼ N k. Applying
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Lemma 2.1, we obtain

E [X]k ∼
[

N
(

1 − e−%
)

e−h%+O( h2w
N2

)

]k

. (19)

Comparing with (4), the rest of the proof is as for Theorem 1.1.
�

From part (ii) of the proposition, if h% = O(1) then µ → ∞ and W(G,w, d) is disconnected
a.a.s. In view of this, we may restrict to the condition h% → ∞ in the study of r-components
and nr-components.

Given a boundary walk β = (v1, . . . , vk), we define length(β) =
∑

1≤i<k dist(vi, vi+1) as
the sum of the distances (using the chosen metric) between consecutive vertices in β. We shall
write length`p(β) when we want specify that we are measuring distances in `p. Similarly we
define lengthv(β) (the vertical length) as the sum of the differences between y coordinates of
consecutive vertices along the cycle, and lengthh(β) (the horizontal length) using x coordinates
in the same way.

The next lemma relates the size of the forbidden region outside a boundary cycle of a
component to the length of the cycle, and will play a key role in proving the main results.

Lemma 4.3 (Geometric Lemma) Let C be a component in TN with β one of its maximal
boundary walks, and l = length(β) its length. Assume that C has at least two occupied sites.
Then the size of the forbidden region Aβ outside β is bounded below by |Aβ| ≥ dl/J , for some
sufficiently large constant J . Moreover, if C is rectangular, and β is a maximal boundary walk
with respect to the outside region, we have |Aβ| ≥ h + dl/J .

Proof The main idea in this proof is to consider intervals in the grid “sticking outwards”
from the boundary walk, and show that at least some small proportion of these intervals is on
average free of walkers.

For convenience we take J = 1010, though probably without large modifications the proof
method will yield the result for J = 1000. (We do not attempt to optimise the constant J ,
since probably the theorem holds for J close to 2 when d is large, whilst for d = 1 in all but
the case p = 1 we need J ≥ 4. Some experiments suggest that J = 4 suffices even in this
case.) Observe that in the 3 × 3 subgrid centred on the endpoint of an edge of β, there must
be at least one vertex in the forbidden region outside β; otherwise the boundary walk can be
rerouted to contradict its maximality. Each point of forbidden region can be counted in this
way at most 8 times. Thus the forbidden region has size at least l/(8d). This implies the first
statement in the lemma provided that 8d2 ≤ 1010.

Throughout this proof, all distances referred to are measured using dist. For the second
statement in the lemma, we begin with the fact that for a rectangular component, there are
“caps” of empty region of size at least h/2 − d on top and bottom of the component, being
the set of grid points within distance d, but above the leftmost point of C of greatest vertical
coordinate (or below the leftmost of least vertical coordinate). Without loss of generality, we
assume that the component has vertical height greater than 1 (otherwise, we may interchange
“vertical” and “horizontal”). Then there are also intervals of empty region of length d pro-
jecting outwards from the left- and right-most vertices of the top level of C. These caps and
intervals account for an empty region of size h, but use up some of the forbidden region counted
in relation to ends of edges of β in the argument above. The number of endvertices of edges of
β that are involved in the region of size h described is at most 4d + 2 and there is still at least
one endvertex of an edge of β not involved (the rightmost one in the bottom row of C, say —
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we cannot claim two vertices here because it might be the same as the leftmost one) which
means the above argument is valid if the bound on the size of the forbidden region is reduced
by a factor of 4d + 3. That is, the size of the forbidden region is at least h + l/8d(4d + 3). So
the second statement in the lemma holds provided that 8d2(4d + 3) ≤ 1010. Hence we may
now assume that d > 400.

Choose k = d d
100 e. Then k ≤ (d + 99)/100 ≤ (d/100)(1 + 99/d) < d/80. Assume without

loss of generality that for the boundary walk β we have lengthv(β) ≥ length(β)/2. We place
intervals of length k (note that all the `p metrics measure these intervals the same) horizontally
along all grid lines from a maximal boundary cycle towards the outside. Those starting from
a vertex of β point towards the outside according to the previous edge of β. (We assume β is
oriented in some direction.) We delete any intervals that touch the boundary cycle in two or
more places. Then each remaining interval will touch k vertices of the forbidden region outside
β, and each such vertex will be touched by at most two different intervals. (Two intervals
coming from opposite directions may touch the same vertex.)

We need to bound the number of intervals which were deleted. Call an edge of C short
if the distance between its endpoints is less than d/4, and long otherwise. Suppose that an
interval (that is to be deleted) touches a short edge at a point E and a point F on another edge
of β, with the part between E and F in the exterior of β. Suppose that F has distance at most
d− d/4 − k from both endvertices of its edge. Then by the triangle inequality each endvertex
(say P and Q) of that edge is of distance at most d from each endvertex (R and T ) of E’s edge.
Thus the quadrilateral PQRT (or triangle, if two points coincide) has diameter at most d,
and thus the walk β can be changed to make a smaller face “outside” (meaning the side which
was minimised). This can clearly be done also if other parts of β enter this quadrilateral,
contradicting the maximality of β. Thus, F has distance at least d− d/4− k > 2d/3 from one
of the endvertices of its edge. So F ’s edge is long, or, if F lies on more than one edge, they
are all long.

We call a middle interval any interval originating from a long edge from point at least 1/8
of the length of the edge from each end. Suppose that such a middle interval originating at a
point E (called a middle point), on edge e of β, is deleted. Then it hits some other edge f at
a point F of horizontal distance at most k from E. If f has an endvertex of distance less than
d/8 − k ≥ d/8 − d/80 ≥ d/9 from F , we get a contradiction as above. Since e is long, its end
vertices have distance at least d/32 from E. Since e and f are straight, either point on e of
distance rd/32 from E, for any r > 0, has horizontal distance at most (r + 1)k from f or the
extension of f . (Furthermore, note for later that every pair of points on e and f at the same
vertical coordinate have distance at most 32k apart.) It follows that the end vertices P and R
of e and f above the line EF have distance less than d, as do the ends Q and T below (or on)
the line EF . If either P = R or Q = T we now obtain a contradiction as before by rerouting
β. A similar contradiction arises if either PT or QR has length at most d. So, picturing e
and f with the line EF as making a near-perfect but very thin “H”, the distances along the
H from P to T and from Q to R are both greater than d. Thus the sum of lengths of e and
f is at least 2d − 2k (since the edge EF is included twice in these distances) and so each of
e and f has length at least d − 2k, and the lengths of the arms of e and f above EF differ
by at most k (as for the arms below EF ). It follows that both PR and QT have length at
most 34k (recalling the observation above about horizontal distance), which is at most d/2.
Without loss of generality, PR is not an edge of β. This again contradicts the choice of β,
either by shortening it at PR or, if another edge of β crosses PR, by joining P or R to an end
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of such an edge. We conclude that no middle intervals are deleted. Moreover, this shows that
the point F in the previous paragraph cannot be a middle point. So every interval starting at
a short edge that is deleted first hits a non-middle points of a long edge. Such a point can be
hit by only one interval from a short edge unless it is a vertex of β, in which case it can be hit
by two intervals. Thus if i1 is the number of intervals starting at short edges that are deleted,
j1 is the number of long edges of β, and j2 is the number of non-middle intervals originating
at non-ends of long intervals,

i1 ≤ 4j1 + j2.

Moreover, since no middle intervals are deleted, the number i2 of intervals originating on long
edges that are deleted similarly satisfies

i2 ≤ 4j1 + j2.

If j3 is the total number of intervals before any deletions occur, we clearly have

j2 ≤ j3/4

and also since long edges have length at least d/4,

j3 ≥ lengthv(β) ≥ length(β)/2 ≥ j1d/8. (20)

Combining these gives

i1 + i2 ≤ 8j1 + 2j2 ≤ j3

(

64

d
+

1

2

)

≤ 3j3/4

which shows that at least j3/4 of all the intervals are not deleted. These intervals each cover
k ≥ d/100 vertices of the forbidden region, at most two covering any one such vertex, so the
first part of the lemma follows for d > 400, using (20).

For the second claim of the lemma when d > 400, we may again add the caps of size
h − 2d but also two extra intervals of length d at the sides: assuming that β is oriented in
the clockwise direction, the intervals of length k projecting from the left-most vertex in the
bottom level of C, and from the right-most vertex in the top level, are not used. It is here
that extra intervals of empty region of length d may be found.

�

The next lemma will be used to show that nr-components of type 2 are rare.

Lemma 4.4 Let C be an nr-component of type 2. Then C has a maximal boundary walk β
with length(β) ≥ n − o(n).

Proof Let us divide TN into b n
d+1c v-bands c1, . . . , cb n

d+1
c of width ≥ d + 1, and similarly

into b n
d+1c h-bands r1, . . . , rb n

d+1
c of width ≥ d + 1.

Let C be a nr-component. Since C is connected, the v-bands (or h-bands) not containing
vertices of C must be consecutive. If there were at least 2 consecutive v-bands and at least 2
consecutive h-bands without vertices of C, then C would be rectangular since C and AC would
be embeddable in the complementary of the v-bands and h-bands. Hence, at most one v-band
and some consecutive h-bands (or at most one h-band and some consecutive colums) may be
without vertices of C.

We assume now that C coexists with another nr-component C ′.
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Case 1: Let us suppose first that C has no vertices in more that one v-band or h-band (v-band
without loss of generality). Let c1, c2 be two consecutive v-bands not containing vertices of
C. Hence all h-bands, excepting at most one, contain vertices in C. For each such h-band
ri, choose a vertex vi in C ∩ ri. We can also find some vertex wi in (c1 ∪ c2) ∩ ri such that
wi is at distance ≥ d + 1 from any vertex in C. By this construction, all wi belong to the
same external region of the component. Let β be any maximal boundary walk of C with
respect to this external region. Then, the straight line joining vi and wi must intersect an
edge of β, part of the edge contained in ri. Hence, β crosses all h-bands except at most 3 and
length(β) ≥ n − 4d − 3.

Case 2: On the other hand, let us suppose that C has vertices in all v-bands and h-bands
except for at most one of each. Without loss of generality, the other component, C ′, has
vertices in all v-bands except for at most one. Thus, there are at least b n

d+1c− 2 v-bands with
some vertices of both components. For each such v-band ci, let us take vertices vi ∈ C ∩ ci,
wi ∈ C′∩ci and join them by a straight line. Notice that all the wi belong to the same external
region of C, and let β be any maximal boundary walk with respect to this region. Then the
line joining vi and wi must intersect an edge of β, part of the edge contained in ci. Hence, β
crosses all v-bands except at most 4 and length(β) ≥ n − 5d − 4.

In any case, C has a maximal boundary walk β with length(β) ≥ n − o(n).
�

The next technical result shows that simple components are predominant a.a.s. in TN . The
proof uses the Geometric Lemma.

Lemma 4.5 If h% → ∞, then E [Y ] = o(E [X]) and E [Z2] = o(E [X]).

Proof Let us first bound the expected number E [Y ] of rectangular components with more
than one vertex. The amount of area empty of walkers, as guaranteed by the Geometric
Lemma, is large enough to make such components rare.

Notice from (18) that the `1-length of the edges of any boundary walk of a component are
integers between 1 and 2d.

Let B be the set of walks in TN which are (for some configuration of the walkers) a maximal
boundary walk of some r-component with respect to its outside region. For each β ∈ B, choose
a rooted spanning tree T (β) of the graph induced by the edges of β. Note that given any
such tree T of m vertices, we may recover β by joining certain pairs of vertices (with no edges
crossing). The edges added are just diagonals added to a face of degree 2m − 2. For each
vertex v ∈ V , natural m ≥ 2 and tuple l = (l1, . . . , lm−1) of naturals 1 ≤ li ≤ 2d, let Bv,m,l be
the set of all β ∈ B such that T (β) has m vertices, is rooted at v and has edges of `1-lengths
l1, . . . , lm−1. The number of such trees is at most

∏m−1
j=1 16lj , where a factor 4m comes from

the number of rooted plane trees, and each factor 4lj is the number of vertices of `1 distance
lj from a given vertex. Therefore,

|Bv,m,l| ≤
m−1
∏

j=1

Clj, (21)

where C is constant, and also clearly

E [Y ] ≤
∑

v ∈ V
m ≥ 2

1 ≤ l1, . . . , lm−1 ≤ 2d

∑

β∈Bv,m,l1,...,lm−1

P (Yβ = 1), (22)
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where Yβ indicates the event of having some r-component with β one of its maximal boundary
walks with respect to its outside region.

By Lemma 4.3, the size |Aβ | of the forbidden region outside β is an integer bounded below
by h + dl/J , where l = length(β). For technical purposes we consider a subset of Aβ of size
h + ddl/(2J + 1)e, representing an region free of walkers. By Lemma 2.2, and noting that
α > 1/2 and hence p < 2%, we obtain an upper bound for the probability of this emptiness
occurring and the m vertices in β being occupied. Since this is necessary for the event Yβ to
occur, we have

P (Yβ = 1) = O(1 − e−%/α)(2%)m−1

(

1 − S

N

)w

= O(1 − e−%)(2%)m−1

(

1 − h

N

)w

e−ddl/(2J+1)e% (23)

since α ≤ 1. Furthermore, let l′ = l1 + · · · + lm−1. Then since the spanning tree has length no
more than the length of β, length`1(β) > l′. By (18), we have l ≥ l′/2, and hence we get

P (Yβ = 1) = O(1 − e−%)(2%)m−1

(

1 − h

N

)w

e−dl′%/J ′

, (24)

where J ′ = 2(2J + 1).
From (22), (21) and (24), we get

E [Y ] = O(1)
∑

m ≥ 2
1 ≤ l1, . . . , lm−1 ≤ 2d

N





m−1
∏

j=1

Clj





(

1 − e−%
)

(2%)m−1

(

1 − h

N

)w

e−dl′%/J ′

Therefore, using Proposition 4.2 for the asymptotic value of E [X],

E [Y ]/E [X] = O(1)
∑

m ≥ 2
1 ≤ l1, . . . , lm−1 ≤ 2d





m−1
∏

j=1

Clj



 (2%)m−1e−dl′%/J ′

= O(1)
∑

m≥2

(

C ′

d

2d
∑

k=1

kd%e−kd%/J ′

)m−1

. (25)

In the case where d% → ∞, we have %e−c′d% = o(max(1, %)) = o(1) and hence E [Y ] = o(E [X]).
In the case where d% = O(1), we use

∑

k≥1 kc−εkd% = O((d%)−2)

In the case where d% = O(1), we use
∑

k≥1 kc−kd% = O((d%)−2) for c < 1 and (25) gives

E [Y ]/E [X] = O(1)
∑

m≥2

(

C ′′

d2%

)m−1

= o(1) as d2% → ∞.

To prove E [Z2] = o(E [X]), from Lemma 4.4, each component counted by Z2 has some
maximal boundary walk β with length(β) ≥ n − o(n). If we apply Lemma 4.3 to this β,
we have |Aβ | ≥ ld/J , where l = length(β). Using d = o(n) (since h = o(N)), we have
|Aβ | ≥ h + ld/2J for large N , and we then proceed similarly as for Y .
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�

Proof of Theorem 1.5 From Proposition 4.2, if µ → ∞, then W(G,w, d) is disconnected
a.a.s. In the other two cases, µ = O(1) and we must have h% → ∞. In this case we can apply
Lemma 4.5, and get

P (Y > 0) ≤ E [Y ] = o(E [X]) = o(1), P (Z2 > 0) ≤ E [Z2] = o(E [X]) = o(1).

Thus, a.a.s. we only have simple components and at most one nr-component of type 1. The
rest of the theorem follows from the asymptotic distibution of X given in Proposition 4.2.

�

4.2 Dynamic properties

According to the model, from an initial random placement f of the walkers, at each step, every
walker moves from its current position to one of its neighbours, with probability 1/4 of going
either way. This is a standard random walk on the grid for each walker. We wish to study the
connectivity properties of Wt(TN ). The analysis of the dynamic case is quite similar to that
of the cycle, so we state the major results, and point to the differing details in the proofs.

We define states (or configurations) and the graph of configurations in an analogous way to
the cycle (see Section 3.2). In this case, there are N w = n2w different configurations of walkers,
each one represented by a vector a = (a1, . . . , aw) ∈ (Zn × Zn)w where ai = (aix, aiy) indicates
the label of the vertex being occupied by walker i. Given a configuration a = (a1, . . . , aw),
there exists an edge between a and all configurations b = (b1, . . . , bw), such that dist(ai, bi) =
1. Thus, any configuration has 4w neighbours, and the relationship of being neighbours is
symmetric. As in the case of the cycle, the dynamic process can be seen as a random walk on
the graph of configurations, thus a Markov chain M(N,w, d).

For N even, given any two configurations a and b, we say that they have the same parity
if for all i and j, (ai,x − aj,x) + (ai,y − aj,y) ≡ (bi,x − bj,x) + (bi,y − bj,y) (mod 2). With this
definition of parity, Lemma 3.2 and its consequences also apply to the grid. Then, if N is
odd M(N,w, d) is ergodic, and if N is even there are 2w−1 closed classes of states, where
each class consists on all configurations with the same parity. The Markov chain restricted to
any of these classes of states is irreducible, positive recurrent, but 2-periodic so we don’t have
ergodicity.

Observation 4.6 Using the same argument as in Observation 3.3, for any fixed t, we can
consider Wt(TN ) as a static W(TN ).

In view of this observation and Theorem 1.5, we assume µ = Θ(1) for the remaining of
the section. This covers the nontrivial dynamic situations where W(G,w, d) is neither a.a.s.
disconnected nor a.a.s. connected. Furthermore, in this case we need only to focus on the
study of simple components. We also assume for the present subsection that d ≥ 2. The case
d = 1 is excluded for technical reasons.

We define X = X(t) to be the random variable that counts the number of simple compo-
nents at time step t. Given our assumptions about µ, for t in any fixed bounded time interval,
X(t) is asymptotically Poisson with expectation µ = Θ(1), as studied in Proposition 4.2.

In analogy with d-hole lines in Section 3.2, we define a simple component line to be a
maximal sequence of pairs (v1, t1), . . . , (vl, tl) where vi is a simple component existing at time
step ti for 1 ≤ i ≤ l, and such that ti = ti−1 + 1 and the vertex vi is adjacent to vi−1, for
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2 ≤ i ≤ l. Birth, death and survival of lines, and the random variables B(t), D(t) and S(t) are
defined analogously to the cycle case. For the case that d = 1, the concept of simple component
lines is not quite adequate to describe what is going on unless % → 0, since otherwise it is
reasonably likely that a vertex is occupied by several walkers that in one step jump to several
different neighbours and create several component lines simultaneously. For this reason we
exclude d = 1 at this point, though it is very easy to obtain most of the results claimed if
% → 0. Presumably a suitable analysis of the simultaneous creation or destruction of several
simple component lines gives results even for % 6→ 0, but we have not done this.

We need one more definition referred to in Section 1. Let v and v ′ be any two adjacent
vertices in the grid. Let b be the number of directed edges whose origin is a vertex at distance
strictly greater than d from v and whose destination is at distance at most d from v ′. Note
that this quantity b does not depend on the particular v and v ′ but just on parameter d.
We have that b = Θ(d), but the exact expression of this b depends on the particular chosen
metrics. Some examples are found in Table 2.

Metrics b

`1 b = 2d + 1/2

`p (p < ∞) b ∼
(

1/ p
√

2 + 3/2
)

d, if d → ∞
`∞ b = 3d + 1

Table 2: Parameter b.

We next have a result analogous to Proposition 3.4.

Proposition 4.7 Let d > 1. For t in any fixed bounded time interval, the random variables
S(t), B(t) and D(t) are asymptotically independent Poisson, with the expectations

E [S(t)] ∼











µ if d% → 0,

µ − λ if d% → c,

41−e−%/4

1−e−% e−(b+3/4)%µ if d% → ∞,

E [B(t)] = E [D(t)] ∼











b%µ if d% → 0,

λ if d% → c,

µ if d% → ∞,

where λ =
(

1 − e−b%
)

µ as in Theorem 1.7.

Proof For a vertex v ∈ V with coordinates (x, y), let vN , vS , vE, vW denote the vertices
with coordinates (x, y + 1), (x, y − 1), (x + 1, y), (x − 1, y). The proof is so similar to that of
Proposition 3.4 that we discuss in detail only the ways that a simple component line can be
born at v between time steps t and t + 1. We classify these events in 4 main classes, as shown
in Figure 5.

b1 At time step t, just one vertex of vN , vS , vE , vW is occupied and belongs to some bigger
component. Then, all walkers there jump to v and stop communicating with other
walkers.

b2 At time step t, just two vertices of vN , vS , vE , vW are occupied. Then, all walkers there
jump to v and don’t communicate with other walkers.

b3 At time step t, just three vertices of vN , vS , vE , vW are occupied. Then, all walkers
there jump to v and don’t communicate with other walkers.
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b4 At time step t, vertices vN , vS , vE , vW are occupied. Then, all walkers there jump to v
and don’t communicate with other walkers.

b3 b4

b1 b2

Figure 5: Birth of a simple component line at vertex v

The first three classes have several subtypes (four for b1, six for b2 and four for b3) which
correspond to choosing a subset of the four possible compass directions.

The rest of the proof follows that of Proposition 3.4. (See [DPSW06] for the full details.)
�

From Proposition 4.7, we can easily derive important consequences analogous to those of
the cycle, always under the assumption stated after Observation 4.6. The first one gives us
the probability that Wt(TN ) is connected but Wt+1(TN ) is disconnected. Note that this is
a.a.s. equivalent to having no simple components at time step t, and just one at t + 1. The
proof is immediate by the same argument as for Lemma 3.9.

Lemma 4.8 Let d > 1. The probability that Wt(TN ) is connected and that Wt+1(TN ) is
disconnected is given by

P (X(t + 1) ≥ 1 ∧ X(t) = 0) ∼











µe−µb% if d% → 0,

e−µ(1 − e−λ) if d% → c,

e−µ(1 − e−µ) if d% → ∞,

where λ is defined as in Theorem 1.7.

In a similar way to the cycle case, we define the lifespan of a simple component line as
the number of time steps for which the line is alive. For any vertex v and time t, the random
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variable Lv,t counts the lifespan of the simple component line born at vertex v between time
steps t and t + 1. If this birth does not take place Lv,t is defined to be 0.

We finish by considering lifespans and connected periods. Define Lav (the average lifespan
of simple component lines), LT and L as in Section 3.2 but in terms of the new definition
of Lv,t. Similarly, define LCav to be the average length of the period from time t for which
the graph of walkers on the grid is connected. We state the following theorem without proof
because it is not difficult to adapt the argument used for Theorems 1.3, 1.4, 3.6 and 3.8.
The proof is entirely straightforward in the case that Lav is bounded (i.e. d% 6→ 0). If Lav

is unbounded then there are two modifications to the argument. Firstly, one needs to do
the moment calculations more carefully (analogous to the situation at the end of the proof
of Proposition 3.4; there is less independence when d is large so this takes a bit of care).
Secondly, for connectivity issues the observation that a complex component exists at any one
time with probability tending to 0 does not show that we can ignore them, since the lifespan
is no longer bounded. However, we may easily adapt the analysis to consider the creation
or destruction of components (not just simple ones) in any given step, to obtain the result
required. We omit these details; they can be found in [P07].

Theorem 4.9 For the walkers model on TN with d > 1,

Lav ∼











1
b% if d% → 0,
µ
λ if d% → c,

1 if d% → ∞
and LCav ∼











1
µb% if d% → 0,

1
1−e−λ if d% → c,

1
1−e−µ if d% → ∞,

where λ is defined as in Theorem 1.7. Furthermore, LT (LCT ) converges in probability for T
growing large (N fixed) towards a random variable L (LC respectively), uniquely determined
almost everywhere, where L ∼ Lav and LC ∼ LCav a.a.s.

The proof of Theorem 1.7 is a simple adjustment of the proof of Theorem 4.9 (as in the
cycle case).

5 Conclusions and open problems

In this work we have characterised connectivity issues of a very large set of moving agents,
which move through a prescribed real or virtual graph. We believe it is the first time that
these kind of characterisations have been obtained, and it could open a interesting line of
research. We gave characterisations for the cycle and the grid. The results obtained for the
grid could easily be extended to the grid with diagonals. Also, an approach similar to ours
should work with the k-dimensional toroidal grid, but a suitable substitute for the Geometric
Lemma needs to be found.

Our results are based on results for the static problem, and the most difficult was to show
that, for the crucial values of w and d, there is a.a.s. just one big component apart from
simple ones. There is a corresponding argument in Penrose [P97], [P99] for the quite related
problem in which w walkers are placed at random a unit box in continuous Euclidean space
(or the toroidal counterpart), and walkers of distance at most r can communicate directly.
Our setting has one more parameter, but it is clear that the behaviour for our problem should
be similar to the continuous one with r = d/n, where our toroidal grid is n × n. However,
proving this equivalence would not be entirely straightforward in the case that d is small
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(constant or near-constant) since then the discrete ball of radius d is not well approximated
by the continuous one.

In our model we use a fixed number w of walkers. One could alternatively place walkers
randomly so that each vertex is occupied independently with probability p. For example, they
could be Poissonly distributed at each vertex (as suggested by an anonymous referee), with
parameter λ such that 1 − e−λ = p. In the static case these would bear a similar relation to
our model as between the random graph models G(n,m) and G(n, p), and as for that case, one
would expect similar properties when p is approximately w/N (or, more precisely, 1 − e−w/N

to capture the case that w is close to or greater than N). This would simplify some of our
analysis (e.g. the proof of Lemma 2.1). However, it would be difficult to deduce all the results
for our model in such a way. For one thing, some of the properties we study are not convex
in the required sense (see [JLR00]). There are also other obstacles to using models with
independent occupancy probabilities. For instance, if w(s0/N)2 6= o(1) then (1 − S0/N))w as
in Lemma 2.1 is not asymptotic to e−S0%.

Further planned work is the extension of the results presented to the random geometric
graphs, which will provide a model for omnidirectional radio communication in the setting
described in [GHSZ]. Another interesting extension is the hypercube, as the number of neigh-
bours of a vertex is then not constant. A further project is to study the connectivity of walkers
when the underlying topology has obstacles which can interfere with communication.
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