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Abstract

When a discrete random variable in a discrete space is asymptotically Poisson,
there is often a powerful method of estimating its distribution, by calculating
the ratio of the probabilities of adjacent values of the variable. The versatility
of this method is demonstrated by finding asymptotically the probability that
a random graph has no triangles, provided the edge density is not too large.
In particular, the probability that G ∈ G(n, p) has no triangles is asymptotic
to exp(−1

6p3n3 + 1
4p5n4 − 7

12p7n5) for p = o(n−2/3), and for G ∈ G(n, m) it is
asymptotic to exp(−1

6d3n3) for d = 2m
n(n−1) = o(n−2/3).

1 Introduction

From time to time the following idea has been used to estimate the probability of
an event in a probability space Ω.
1. Partition the whole space into events C0, C1, . . . , Cm.
2. Estimate the ratio P(Ck+1)/P(Ck) for k = 0, . . . ,m− 1.
3. Obtain an approximation for P(Ci) from

P(Ci)−1 =
m∑

k=0

P(Ck)
P(Ci)

,

by breaking the ratio in the summation into a telescoping product of ratios esti-
mated in 2.

The aim of this article is to act as a tutorial on how to apply this idea to
probability spaces in a quite general way. This will be done in the setting of
random graph spaces, and for didactic reasons is restricted to a computation of
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the probability that a random graph has no triangles. A much more extensive and
general development is given in [13].

The probabilities P(Ck+1) and P(Ck) in Step 2 are called here adjacent proba-
bilities. The idea is that the ratio of these adjacent probabilities can be estimated
by altering elements of Ck+1 slightly so as to obtain elements of Ω predominantly
in Ck, and vice versa. Various modifications of the main idea have also been used,
such as taking a partition of almost all of the space rather than all of it, or taking
a partition into events indexed by two or more variables rather than one. In this
article, this general approach will be called the perturbation method. In practice,
the perturbation method is used to show that a variable X is approximately Pois-
son by letting Ck be the event that X = k. The simplest applications use the
following lemma or a similar one for estimating P(Ck).

Lemma 1. If
P(Ck+1)
P(Ck)

=
λ

(k + 1)
(1 + o(1/m))

for k = 0, . . . ,m− 1 and
∑m

k=0 P(Ck) ∼ 1 then

P(C0) ∼ e−λ.

Proof. This is elementary using the idea described above. There are at most m
factors in the telescoping product form of P(Ck)/P(Ci) in step 3, with a relative
error of o(1/m) each, giving error o(1) overall.

However, in more complex situations, the correction terms to the ratio of
adjacent probabilities are significant and need to be included.

In many previous applications of the perturbation method, Ω is a uniform
probability space of combinatorial structures and so the ratios in Step 2 were
computed by direct counting. Moreover, the transformation of elements of Ck+1

to elements of Ck was effected by deleting one or two bits of the structure and
replacing them (in a more or less random manner). (An exception to this is
Stein’s use of “exchangeable pairs” [12].) For graphs, the natural operation of this
type is a “switching”. The setting of the present article is, however, somewhat
different, and the transformation is from Ck to Ck+1 (or, with lower probabilities,
to Ck+i for some small values of i) by adding part of the structure.

An important innovation in the present article is the fact that the error bounds
in the estimation of the ratios of adjacent probabilities are proved inductively. To
be able to do this in an uncomplicated manner seems to be a key factor contribut-
ing to the ability to extend the method to a natural boundary of precision; in
previous applications somewhat ad-hoc methods were used to increase precision
or range of applicability. However, the name “perturbation” will be used to apply
to the present as well as previous methods, since they all involve a small alteration
to the structure and analysis of the corresponding (usually) small alteration to the
value of a substructure count.

We will be concerned here mainly with the random graph model G(n, p), in
which the edges of a random graph on n vertices are generated independently with
probability p each. The results obtained in G(n, p) can also be translated to results
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in G(n, m). This does not depend on the general relationship that exists between
these two models, by which an approximate result for one tranfers directly to the
other. The type of information gained in this paper is far more delicate than that,
and the results do not carry over without change between the models. However,
the accuracy obtained is sufficient for the correct translation of the results.

As this paper is intended as an exposition of the perturbation method, for
simplicity of definitions and notation it will be applied only to the distribution of
the number X of triangles in G ∈ G(n, p) and G ∈ G(n, m), and then, only to the
probability that X = 0. In Section 2 this is done for p = o(n−4/5) by dividing
the space into classes based on how many triangles they have. For higher values
of p we need to consider clusters of two or more “edge-connected” triangles. By
keeping count of clusters of two triangles it is possible to cover all p = o(n−5/7); in
Section 3 we go one step further, considering clusters of three triangles, to reach
p = o(n−2/3). In Section 4, a slight reworking of the technique in Section 3 gives
the probability that X = 0 in G(n, m) for m = o(n4/3).

A natural upper limit for the scope of this method in the case of triangles is
not reached until p = o(n−1/2) and m = o(n3/2). This will be made explicit in [13]
amidst a development of the method in G(n, p), and similar models, which extends
the results of the present paper, adding more bells and whistles in several ways.
For instance, the point probabilities in the distribution of the number of subgraphs
can be found accurately over much of the range of the distribution, it applies to
all strictly balanced subgraphs, the accuracy can be increased, the density of the
graph model can be increased, other graph models and other types of subgraphs
can be examined, and some other interesting consequences result. This general
development however requires more careful treatment of various error terms than
is attempted in the present paper.

Briefly, here are the known results on the probability that a random graph
in G(n, p) or G(n, m) has no triangles. All of these results apply to more general
subgraphs than just triangles. Erdős and Rényi [1] showed for p ∼ c/n with c fixed
that X is asymptotically Poisson with expectation c3/6. Thus P(X = 0) ∼ e−c3/6.
Janson, Luczak and Ruciński [4] extended this to show that

P(X = 0) ∼ e−p3n3/6 (1.1)

for p = o(n−4/5), using Janson’s inequality. This inequality actually gives the
following upper bound for all values of p, the lower bound coming from the corre-
lation inequality:

M ≤ P(X = 0) ≤ M exp
(

∆
2(1− p3)

)
(1.2)

where M = (1− p3)n(n−1)(n−2)/6 and ∆ = 6
(n

4

)
p5. The upper and lower bounds

do not match asymptotically unless p = o(n−4/5).
Frieze [2], working with a type of switching in G(n, m) (see below) obtained

the probability that a random graph has k triangles asymptotically, for a wide
range of k, provided m = o(n1+δ). He did not attempt to state the best value of
δ for which his argument applies, but it is certainly less than 1/5. Prömel and
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Steger [10] recently showed that the asymptotic formula for P(X = 0) in G(n, p)
determined by (1.2) applies also to G(n, m); that is, in G(n, m), P(X = 0) is
asymptotically exp(−p3n3/6) where p = 2m/n2 provided m = o(n6/5).

For more dense graphs, it is a recent result of Prömel and Steger [9] that almost
all triangle-free graphs in G(n, m) are bipartite provided m > cn7/4 log n. They
also show that this is false for c1n < m < c2n

3/2. Of course, these results in
G(n, m) imply similar results in G(n, p).

This section closes with brief mention of many random structures in which the
switching version of the perturbation method has already been used. The next
section considers the problem of estimating the probability that a random graph
in G(n, p) has no triangles. The perturbation method is applied here and extended
in the following section, where the translation to G(n, m) is also performed.

Stein [11] used a switching technique to estimate the asymptotic number of
k×n Latin rectangles, for k = o(n1/2). In this case, the switching is a permutation
of a few of the entries of a rectangle with possible multiple occurrences of a number
in the same column, so that the number of such occurrences is reduced. (Later
Godsil and McKay [3] used switchings in conjuction with an integral formula for
the number of 1-factors in bipartite graphs, to estimate the number of ways of
extending a random k×n Latin rectangle by one row. The result was an asymptotic
formula for the number of k×n Latin rectangles valid for k = o(n6/7). But in this
case the switchings were used to prove results about a random structure rather
than to estimate the ratio of probabilities of adjacent classes of structures.)

Stein [11] uses switchings in the form of exchangeable pairs, whose use is
further developed in [12], including applications to random allocations and the
cycle lengths of random permutations. The use of exchangeable pairs is possibly
almost as flexible as the perturbation method itself. In both cases, it is clear
that the flexibility can be useful and so it may be detrimental to be too fixed
in defining either method. Perhaps because of the fuzziness of definition, it is
possible to argue that they are identical. What is clear is that they can achieve
similar results, and that the power in each case depends on the treatment of error
terms.

McKay [6] used switchings in the pairing model of random graphs with given
degrees to estimate the probability that a random pairing induces no loops or
multiple edges in the graph. This gave rise to an asymptotic formula for the
number of graphs with given degrees, provided the degrees are o(n1/3). In this
case a switching is the replacement of two pairs of the pairing and by another
two pairs using the same four points. In terms of graphs, this replaces two edges
by another two edges on the same four points. This is a natural operation here
because it preserves the degree sequence. The type of switching was modified
in [8] to extend results to most degree sequences with maximum degree o(n1/2).
Here, a three-variate analogue of Lemma 1 was used. It was also shown in [7] that
the new switchings can be used to generate a graph with vertex degrees O(n1/3)
uniformly at random in polynomial time. McKay [5] earlier used switchings to
estimate probabilities in the space of random regular graphs.

More recently, Frieze [2] used a type of switching in G(n, m) to estimate the
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distribution of the number of strictly balanced subgraphs of a given type. Here the
switching is the replacement of one edge by another one randomly chosen subject
to some restrictions. Thus, the total number of edges remains unchanged. This is
natural, but does not seem to give as simple an argument or as strong a result as
the present paper.
Acknowledgments This research received a great boost from many conversations
and communications with Charles Stein in 1990, when we discussed our two similar
approaches to the problems considered here. I would also like to thank one of the
referees for a careful reading and corrections.

2 G(n, p) with p = o(n−4/5)

This section introduces the perturbation method in a simple way by re-deriving the
formula (1.1) for the probability of no triangles in G ∈ G(n, p) when p = o(n−4/5).
We regard a triangle of G as a subset of E(G) inducing a 3-cycle of G. A triangle-
set of G is a nonempty subset of E(G) which is the union of a set of triangles
of G. A cluster of G is a triangle-set which cannot be partitioned into disjoint
triangle-sets. A maximal cluster K of G is cluster contained in no larger cluster.
Note that every maximal cluster K of G is a nonempty triangle-set of G such
that every triangle of G not contained by K has empty intersection with K. A
maximal cluster of cardinality 3 is therefore a triangle sharing no edges with any
other triangle.

Assume p = o(n−4/5) and put q = 1 − p. Let T1 denote the set of triangles
of the complete graph Kn on n vertices, and X = X(G) the number of triangles
in G. Define λ = EX (=

(n
3

)
p3). In this section, a large cluster is any cluster

which is not a triangle. Let Ck denote the set of graphs on n vertices with exactly k
triangles and no large cluster. Since the expected number of clusters of cardinality
5 (the union of two triangles sharing an edge) is exactly 6

(n
4

)
p5 = o(1),∑

f

P(Ck) = 1− o(1). (2.1)

As a substitute for switchings, associate each graph in Ck with the graphs
obtained by adding a triangle in every possible way. This gives the equation

|T1|P(Ck) =
∑

(D,G):D∈T1, G∈Ck

P(G). (2.2)

Now evaluate this summation by grouping the terms according to G + D, which
denotes the graph with the same vertices as G, and edge set E(G) ∪D.
Case 1: D is a maximal cluster of G + D.
In this case, if i < 3 edges of D are in G, then G + D ∈ Ck+1, P(G + D) =
p3−iP(G)/q3−i, and furthermore each graph in Ck+1 arises in exactly

(
3
i

)
(k + 1)

ways from this construction. Thus the contribution to (2.2) from these terms is

2∑
i=0

(
3
i

)(
q

p

)3−i

(k + 1)P(Ck+1) =
(

1
p3
− 1

)
(k + 1)P(Ck+1).
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On the other hand, the terms in which all three edges of D are in G contribute

kP(Ck)

to (2.2).
Case 2: D is contained in a large cluster of G + D.
In this case there must exist two edges x1 and x2 of G creating a second triangle
with D. There are 0 ≤ i ≤ 2 triangles of G containing x1 or x2. Deleting x1 and
x2 and all other edges of these i triangles creates a graph G′. Then G′ ∈ Ck−i,
and these terms contribute

O(p2n4)P(Ck) + O(p3n4 + p4n5)P(Ck−1) + O(p6n6)P(Ck−2)

to (2.2).
Collecting the above contributions and noting that |T1| =

(n
3

)
, we obtain

|T1|P(Ck) =
(

1
p3
− 1

)
(k + 1)P(Ck+1) + kP(Ck)

+O(p2n4)P(Ck) + O(p3n4 + p4n5)P(Ck−1) + O(p6n6)P(Ck−2).

Hence
P(Ck+1)
P(Ck)

=
λ

k + 1
(1 + O(ε))

where
ε =

k

n3
+ p3 + p2n + p3n(1 + pn)

P(Ck−1)
P(Ck)

+ p6n3P(Ck−2)
P(Ck)

.

Writing P(Ck−2)
P(Ck) as P(Ck−2)

P(Ck−1)
P(Ck−1)
P(Ck) , it follows by induction from this equation that

for k < Cλ (C any constant),

P(Ck+1)
P(Ck)

=
λ

k + 1
(1 + O(p2n)). (2.3)

Assume firstly that pn → ∞. Then the expected number of sets of k disjoint
triangles in G ∈ G(n, p) is at most(n

3

)k
k!

p3k <

(
ep3n3

6k

)k

. (2.4)

Hence,
∑

k≥3λ P(Ck) = o(1). Thus, we can choose m = b3λc in Lemma 1, and
its hypotheses are satisfied in view of (2.1) and (2.3). On the other hand, if
pn = O(1), then m = log n suffices by a similar argument. Hence

P(X = 0) ∼ e−λ

for p = o(n−4/5), as first shown in [4].
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3 G(n, p) with several types of small clusters

The method of the previous section can be extended to treat G(n, p) with larger
values of p by keeping track of the numbers of maximal clusters with a small
number of triangles. In this section we do so for p = o(n−2/3). Again put q = 1−p.
Cluster definitions are as in the previous section, with the exception that a small
cluster is redefined to be any cluster consisting of just one triangle (which we say is
of type 1), or the union of two triangles (type 2) or three triangles on five vertices.
In the last case there are two possibilities: all three triangles share one edge (type
3a) or not (type 3b). Any other clusters are called large. Then the probability
that G ∈ G(n, p) has a large cluster is o(1).

Theorem 1. The probability that G ∈ G(n, p) has no triangles is asymptotic to

exp
(
−1

6
p3n3 +

1
4
p5n4 − 7

12
p7n5

)
for p = o(n−2/3).

Proof. Let S denote the set {1, 2, 3a, 3b} of small types. For each t ∈ S, let Tt

denote the set of subsets of Kn which can form a cluster of type t, let Xt = Xt(G)
denote the number of clusters of type t in a graph G, and define λt = EXt. Note
that since Xt counts all clusters of type t , not just maximal ones,

λ1 =
p3n3

6
(1 + O( 1

n
)),

λ2 =
p5n4

4
(1 + O( 1

n
)),

λ3a =
p7n5

12
(1 + O( 1

n
)),

λ3b =
p7n5

2
(1 + O( 1

n
)).

For any non-negative integer valued function f with domain S, let Cf denote the
set of graphs on n vertices with no large clusters and exactly f(t) maximal clusters
of type t for each t ∈ S. For each of the four values of t ∈ S, we will use the
equation

|Tt|P(Cf ) =
∑

(D,G):D∈Tt, G∈Cf

P(G), (3.1)

analogous to (2.2). In each case, u will denote the type of the maximal cluster K
of G + D which contains D. We define

δt(u) =

{
1 u = t
0 otherwise.

(i) t = 1. First consider u = 1. This is exactly the same as Case 1 in the previous
section, which gives a contribution to (3.1) of(

1
p3
− 1

)
(f(1) + 1)P(Cf+δ1) + f(1)P(Cf ).
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Secondly, consider u = 2. In this case K contains D together with two edges x1

and x2 of G completing another triangle with D. If the third edge of the triangle
with x1 and x2 is not in E(G), then G + D ∈ Cf+δ2 , and G can be reconstructed
from G + D by selecting a maximal cluster of type 2 and deleting some edges.
Therefore, the contribution here is(

2
p3

+ O(p−2)
)

(f(2) + 1)P(Cf+δ2),

where the factor 2 occurs because there are two ways to select the triangle D in
the selected cluster of type 2. On the other hand, if x1 and x2 are in a triangle
of G, then this triangle is not a maximal cluster of G + D. In this case, either
D ⊆ G and G + D ∈ Cf , contributing

2f(2)P(Cf ),

or G + D ∈ Cf+δ2−δ1 , contributing

O(p−2)(f(2) + 1)P(Cf+δ2−δ1).

Thirdly, consider u = 3a. Then |K−D| ≥ 4. If K∩E(G) contains no triangles,
then G + D ∈ Cf+δ3a , and the contribution here is(

3
p3

+ O(p−2)
)

(f(3a) + 1)P(Cf+δ3a).

On the other hand, if K∩E(G) contains a triangle, then either G+D ∈ Cf+δ3a−δ2

or G + D ∈ Cf , contributing

O(p−2)(f(3a) + 1)P(Cf+δ3a−δ2) + 3f(3a)P(Cf ).

Fourthly, consider u = 3b. This is a little different from u = 3a. If K ∩ E(G)
contains no triangles, the contribution is(

1
p3

+ O(p−2)
)

(f(3b) + 1)P(Cf+δ3b
).

It is also possible that K ∩E(G) contains just one triangle, in which case G+D ∈
Cf+δ3b−δ1 , and the contribution is(

2
p3

+ O(p−2)
)

(f(3b) + 1)P(Cf+δ3b−δ1).

Similarly, the other possibilities here contribute

O(p−2)(f(3b) + 1)(P(Cf+δ3b−δ2) + P(Cf+δ3b−2δ1)) + 3f(3b)P(Cf ).

Finally, suppose that K is large. The situation here is much more complicated
than the analogous Case 2 in the previous section. Choose a large subcluster L of
K such that D ⊆ L and L has no large proper subclusters. Since all small clusters
have cardinality at most 7, it follows that |L| ≤ 8. Otherwise, some edge or pair
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of edges in a triangle in L could be deleted to leave a large proper subcluster of
L. At most |L| distinct maximal clusters of G can have non-trivial intersection
with L. Since G has no clusters of cardinality greater than 7, the union of L with
all these maximal clusters is a large cluster J of G + D containing at most 56
edges. Deleting J from G + D gives a graph G′ such that P(G) = O(p|J |−3)P(G′)
and such that the maximal clusters of G′ are the same as those of G except for
the omission of the small maximal clusters of G ∩ J . For t ∈ S let h(t) be the
number of maximal clusters of G∩J of type t. Then the function h with domain S
belongs to a finite set H1 of bounded non-negative integer functions. The number
of possible positions of J gives an upper bound on the number of G corresponding
to G′. Since this number of positions multiplied by p|J | is the expected number
of clusters of the same type as J , which is o(1) as J is large, the contribution to
(3.1) for K large is

o(p−3)
∑

h∈H1

P(Cf−h).

For an integer-valued function h defined on S, write

ρ(h) = ρ(f, h) =
P(Cf+h)
P(Cf )

.

Then the above evaluation of (3.1) can be written as

ρ(f, δ1) =
λ1

f(1) + 1

(
1− 2(f(2) + 1)ρ(δ2) + 3(f(3a) + 1)ρ(δ3a)

λ1

−(f(3b) + 1)(ρ(δ3b) + 2ρ(δ3b − δ1))
λ1

+ O(ε1)
)

(3.2)

where

ε1 = (f(2) + 1)
ρ(δ2) + ρ(δ2 − δ1)

p2n3
+ (f(3a) + 1)

ρ(δ3a) + ρ(δ3a − δ2)
p2n3

+(f(3b) + 1)
ρ(δ3b) + ρ(δ3b − δ1) + ρ(δ3b − δ2) + ρ(δ3b − 2δ1)

p2n3

+p3 +
f(1) + f(2) + f(3a) + f(3b)

n3
+
∑

h∈H1

o(ρ(−h))
λ1

.

(ii) t = 2. Arguments similar to those above give a contribution to (3.1) of(
1
p5

+ O(p−4)
)

(f(2)+1)P(Cf+δ2)+O(p−2)(f(2)+1)P(Cf+δ2−δ1)+O(f(2))P(Cf )

for u = 2, (
3
p5

+ O(p−4))
)

(f(3a) + 1)P(Cf+δ3a) + O(f(3a))P(Cf )

+O(p−4)(f(3a) + 1)(P(Cf+δ3a−δ1) + P(Cf+δ3a−δ2))

9



for u = 3a,(
2
p5

+ O(p−4))
)

(f(3b) + 1)P(Cf+δ3b
) + O(f(3b))P(Cf )

+O(p−4)(f(3b) + 1)(P(Cf+δ3b−δ1) + P(Cf+δ3b−δ2) + P(Cf+δ3b−2δ1))

for u = 3b, and
o(p−5)

∑
h∈H2

P(Cf−h)

for K large, where H2 is a bounded set of bounded functions like H1. Hence, since
|T2| = 6

(n
4

)
and λ2 = p5|T2|,

ρ(f, δ2) =
λ2

f(2) + 1

(
1− 3(f(3a) + 1)ρ(δ3a) + 2(f(3b) + 1)ρ(δ3b)

λ2
+ O(ε2)

)
(3.3)

where

ε2 = (f(2) + 1)
ρ(δ2 − δ1)

p4n4
+ (f(3a) + 1)

ρ(δ3a) + ρ(δ3a − δ1) + ρ(δ3a − δ2)
p4n4

+(f(3b) + 1)
ρ(δ3b) + ρ(δ3b − δ1) + ρ(δ3b − δ2) + ρ(δ3b − 2δ1)

p4n4

+p +
f(2) + f(3a) + f(3b)

n4
+
∑

h∈H2

o(ρ(−h))
λ2

.

(iii) t = 3a. Here the contributions to (3.1) are(
1
p7

+ O(p−6)
)

(f(3a) + 1)P(Cf+δ3a) + O(f(3a))P(Cf )

+O(p−6)(f(3a) + 1)(P(Cf+δ3a−δ1) + P(Cf+δ3a−δ2))

for u = 3a, nothing for u = 3b, and

o(p−7)
∑

h∈H3a

P(Cf−h)

for K large, where H3a is similar to H1 and H2. Hence, since |T3a| = 10
(n

5

)
and

λ3a = p7|T3a|,

ρ(f, δ3a) =
λ3a

f(3a) + 1
(1 + O(ε3a)) (3.4)

where

ε3a = (f(3a) + 1)
ρ(δ3a − δ1) + ρ(δ3a − δ2)

p6n5
+ p +

f(3a)
n4

+
∑

h∈H3a

o(ρ(−h))
λ3a

.

(iv) t = 3b. Here the contributions to (3.1) are(
1
p7

+ O(p−6)
)

(f(3b) + 1)P(Cf+δ3b
) + O(f(3b))P(Cf )

+O(p−6)(f(3b) + 1)(P(Cf+δ3b−δ1) + P(Cf+δ3b−δ2) + P(Cf+δ3b−2δ1))
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for u = 3b, and
o(p−7)

∑
h∈H4

P(Cf−h)

for K large, where H4 is similar to H1, H2 and H3.
Hence, since |T3b| = 60

(n
5

)
and λ3b = p7|T3b|,

ρ(f, δ3b) =
λ3b

f(3b) + 1
(1 + O(ε3b)) (3.5)

where

ε3b = (f(3b) + 1)
ρ(δ3b − δ1) + ρ(δ3b − δ2) + ρ(δ3b − 2δ1)

p6n5

+p +
f(3b)
n4

+
∑

h∈H3b

o(ρ(−h))
λ3b

.

Define for t ∈ S

γ(t) = γ(f, t) =
ρ(f, δt)(f(t) + 1)

λt
=

(f(t) + 1)P(Cf+δt)
λtP(Cf )

.

Then, for example,

(f(3b) + 1)ρ(δ3b − δ1) = λ3bγ(f − δ1, 3b)ρ(−δ1) =
λ3bγ(f − δ1, 3b)(f(1) + 1)

γ(1)λ1
,

and (3.2)–(3.5) become

γ(f, 1) = 1− 2λ2

λ1
γ(2)− 3λ3a

λ1
γ(3a)− λ3b

λ1
γ(3b)

−2λ3bγ(f − δ1, 3b)(f(1) + 1)
γ(1)λ2

1

+ O(ε′1) (3.6)

γ(f, 2) = 1− 3λ3a

λ2
γ(3a)− 2λ3b

λ2
γ(3b) + O(ε′2) (3.7)

γ(f, 3a) = 1 + O(ε′3a) (3.8)
γ(f, 3b) = 1 + O(ε′3b) (3.9)

where

ε′1 =
λ2γ̂(2) + λ3aγ̂(3a) + λ3bγ̂(3b)

p2n3
(1 + ρ(−δ1) + ρ(−δ2) + ρ(−2δ1))

+p3 +
f(1) + f(2) + f(3a) + f(3b)

n3
+
∑

h∈H1

o(ρ(−h))
λ1

ε′2 =
λ2γ̂(2) + λ3aγ̂(3a) + λ3bγ̂(3b)

p4n4
(1 + ρ(−δ1) + ρ(−δ2) + ρ(−2δ1))

+p +
f(2) + f(3a) + f(3b)

n4
+
∑

h∈H2

o(ρ(−h))
λ2

11



ε′3a =
λ3aγ̂(3a)(ρ(−δ1) + ρ(−δ2))

p6n5
+ p +

f(3a)
n4

+
∑

h∈H3a

o(ρ(−h))
λ3a

ε′3b =
λ3bγ̂(3b)(ρ(−δ1) + ρ(−δ2) + ρ(−2δ1))

p6n5
+ p +

f(3b)
n4

+
∑

h∈H3b

o(ρ(−h))
λ3b

,

and
γ̂(t) = γ(f, t) + γ(f − δ1, t) + γ(f − δ2, t) + γ(f − 2δ1, t).

We now derive asymptotic estimates of γ(f, t), t ∈ S, by induction on f . We
can identify f with the vector (f(1), f(2), f(3a), f(3b)). The induction proceeds
on the lexicographic ordering of these vectors; that is, f < g iff f 6= g and f has
a smaller value than g at the first component where they differ. The induction
requires no special initial step; we need only to keep in mind that ρ(−δt) = 0 if
f(t) = 0.

As in the previous section, the upper bound on the value of f(t) which needs
to be considered depends on whether λt → ∞ for each t ∈ S. First, assume that
p7n5 →∞. In this case, define

S = {f : 0 ≤ f(t) < b3λtc for each t ∈ S}.

We prove by induction on f in S that

γ(f, 1) = 1− 3p2n +
21
2

p4n2 − 6p4n2 f(1)
λ1

+ o(1/λ1) (3.10)

γ(f, 2) = 1− 5p2n + o(1/λ2) (3.11)
γ(f, 3a) = 1 + o(1/λ3a) (3.12)
γ(f, 3b) = 1 + o(1/λ3b). (3.13)

Note that since p = o(n−2/3) and p7n5 → ∞, (3.10)–(3.13) imply γ(f, t) ∼ 1
for t ∈ S.

Now assume (3.10)–(3.13) for all g < f ∈ S. Since f − δt < f and f(t)/λt < 3
for any t ∈ S,

ρ(f,−δt) =
1

ρ(f − δt, δt)
=

f(t)
λtγ(f − δt, t)

= O(1)

Similarly, for any non-negative function h defined on S, ρ(−h) = O(1). Hence,
using p3n2 = o(1), we obtain

ε′3b = O(pγ(f, 3b) + p) + o(1/λ3b)

and then (3.13) from (3.9). A similar argument gives (3.12). Using these,

ε′2 = O(pγ(2) + p) + o(1/λ2)

and so (3.11) comes from (3.7), (3.12) and (3.13). From here we obtain (3.10) in
a similar fashion.
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Since p7n5 →∞, arguing as at (2.4) gives∑
f(t)≥3λt

P(Cf ) = o(1)

for each t ∈ S. Therefore, following the line of the proof of Lemma 1, we see that
with mt = b3λtc,

P(X1 = 0)−1 ∼
∑

0≤f(t)≤mt ∀t∈S

P(Cf )
P(C0)

. (3.14)

Choose an ordering, say 1 < 2 < 3a < 3b, of the elements of S. For f as in (3.14)
and t ∈ S, define f∗t,i to be the function agreeing with f on each t′ < t, with
f∗t,i(t) = i, and with value 0 on each t′ > t. Rewriting (3.14),

P(X1 = 0)−1 ∼
∑

0≤f(t)≤mt ∀t∈S

∏
t∈S

i=0,...,f(t)−1

ρ(f∗t,i, δt)

=
∑

0≤f(t)≤mt ∀t∈S

∏
t∈S

i=0,...,f(t)−1

γ(f∗t,i, t)
λt

f∗t,i(t) + 1

∼
∑

0≤f(t)≤mt ∀t∈S

∏
t∈S

f(t)−1∏
i=0

γ(iδt, t)λt

i + 1

=
∏
t∈S

∑
0≤j≤mt

j−1∏
i=0

γ(iδt, t)λt

i + 1
. (3.15)

For t = 1, the summation here is, using (3.10),

∑
0≤j≤mt

j−1∏
i=0

(
1− 3p2n +

21
2

p4n2 − 36pn−1i + o(λ−1
1 )
)

λ1

i + 1

=
∑

0≤j≤mt

j−1∏
i=0

(
1− 3p2n +

21
2

p4n2 + o(λ−1
1 )
)

λ1

i + 1

 j−1∏
i=0

(1− 36pn−1i)

∼
∑

0≤j≤mt

(
1− 3p2n +

21
2

p4n2
)j λj

1

j!
exp

j−1∑
i=0

(−36pn−1i + O(p8n4))

 .

The dominant terms in this summation are for j = λ1 + O(
√

λ1), and for such
terms the exponential factor is

exp(−18pn−1λ2
1 + O(p11n7 + pn−1λ

3/2
1 )) ∼ exp

(
−1

2
p7n5

)
.

Hence, the factor in (3.15) due to t = 1 is asymptotic to

exp
((

1− 3p2n +
21
2

p4n2
)

λ1 −
1
2
p7n5

)
∼ exp

(
1
6
p3n3 − 1

2
p5n4 +

5
4
p7n5

)
.
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Similar but much simpler computations using (3.11)–(3.13) show that the fac-
tor due to t = 2 is asymptotic to exp

(
1
4p5n4 − 5

4p7n5
)
, and for t = 3a and

t = 3b the factors are exp
(

1
2p7n5

)
and exp

(
1
12p7n5

)
respectively. Hence, (3.15)

is asymptotic to

exp
(

1
6
p3n3 − 1

4
p5n4 +

7
12

p7n5
)

,

which gives the theorem when p7n5 → ∞. Smaller values of p are easily dealt
with using a simplified version of this argument. For instance, if p7n5 is roughly
constant, we can choose m3a = m3b = log n, analogous to pn = O(1) in the
previous section. The remaining details for such p are left to the reader.

Theorem 1 shows that the upper bound in (1.2) (where X is the same as
X1) is the true value of the first correction to the Poisson approximation e−λ1

of P(X = 0). One possible explanation that the Poisson approximation is not
asymptotically correct is that the numbers of maximal clusters of the various small
types could be behaving, at least to this level of accuracy, as independent Poisson
variables, making X approximately compound Poisson. For p = o(n−2/3), the
expected numbers of maximal clusters of the various small types are asymptotically
λ3a and λ3b for types 3a and 3b, and hence λ2 − 3λ3a − 2λ3b for type 2, and
λ1 − 2(λ2 − 3λ3a − 2λ3b) − 3λ3a − 3λ3b, that is λ1 − 2λ2 + 3λ3a + λ3b, for type
1. This suggests using exp(−λ1 + λ2 − λ3a) as an approximation for P(X = 0),
which is asymptotically correct for p = o(n−5/7), but no further.

4 G(n,m)

By considering edges not in any triangles as clusters of their own right, it is possible
to investigate the distribution of the number of edges in the class of graphs in
G(n, p) with a given number of triangles. This gives access to probabilities in
G(n, m). The following theorem is an example.

Theorem 2. The probability that G ∈ G(n, m) has no triangles is asymptotic to

exp
(
−1

6
d3n3

)
for d = 2m

n(n−1) = o(n−2/3).

Proof. The definitions of the previous section need only slight modifications. For
the proof we still work in G(n, p) with p = o(n−2/3). We introduce a new small
cluster: an edge, which we say is of type 0. Thus S = {0, 1, 2, 3a, 3b}, and

λ0 = EX0 =
pn2

2
(1 + O( 1

n
)).

No new maximal clusters are introduced other than a single edge not in any
triangle, so the probability that G ∈ G(n, p) has a large cluster is still o(1). Along
with the new equations corresponding to (3.1) for the expanded set S, we will use
the corresponding equation for t = t0, but only for functions f = kδ0, k ≥ 0:
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n(n− 1)
2

P(Ckδ0) =
∑
x∈T0

G∈Ckδ0

P(G). (4.1)

Consider this equation first. Again let u denote the type of the maximal
cluster K of G + x which contains x. If u = 0, there are two cases: x ∈ E(G) and
x 6= E(G). The contribution to (4.1) is thus

q

p
(k + 1)P(C(k+1)δ0) + kP(Ckδ0).

Similarly, u = 1 gives
3
q

p
P(C(k−2)δ0+δ1),

u = 2 gives
q

p
P(C(k−4)δ0+δ2)

and u = 3a gives
q

p
P(C(k−6)δ0+δ3a

).

Note that there are no terms corresponding x ∈ K because G ∈ Ckδ0 and so G
contains no triangles. There is no contribution from u = 3b because there is no
way to add a single edge to a graph with no triangles to form a cluster of type
3b. Finally, suppose that K is large. Then there is a cluster J of G + x of type
3a. Deleting J from G + x gives a graph G′ which has exactly k − 6 edges and
no triangles; that is, G′ ∈ C(k−6)δ0 . This contributes o(p6n5)P(C(k−6)δ0) to (4.1).
Hence this equation becomes

ρ(kδ0, δ0) =
λ0

k + 1

(
1− 3ρ(kδ0,−2δ0 + δ1)

λ0
+ O(ε0)

)
(4.2)

where

ε0 = p +
k + o(p6n5)ρ(kδ0,−6δ0)

n2
+

ρ(kδ0,−4δ0 + δ2) + ρ(kδ0,−6δ0 + δ3a)
pn2

,

and so
γ(kδ0, 0) = 1− 3γ((k − 2)δ0, 1)λ1(k − 1)k

γ((k − 2)δ0, 0)γ((k − 1)δ0, 0)λ3
0

+ O(ε0). (4.3)

It is now possible to reconsider ρ(kδ0, δ1) and so on, along the lines of (3.2)–
(3.5), and derive equations like (3.10)–(3.13). However, much less is required than
this, since now we only need to estimate γ(kδ0, 0) accurately. For this, we only
need the approximate values of γ’s and ρ’s in (4.3).

Take G ∈ Ckδ0 . Since O(kn) elements of T1 can contain an edge of G, a simple
version of the argument leading to (3.2) establishes ρ(kδ0, δ1) = λ1 − O(p3kn).
Similarly,

ρ(kδ0, δ2) = O(λ2) and ρ(kδ0, δ3a) = O(λ3a).
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Substituting into (4.3) and restricting to 0 ≤ k ≤ Cpn2 for any C gives firstly
that γ(kδ0, 0) ∼ 1 for all such k, and then from this that ε0 = O(p) and

γ(kδ0, 0) = 1− 4k2

n3
+ O(p). (4.4)

However, the probability that G ∈ G(n, p) has more than Cpn2 edges for C > 1/2
is o(C1

pn2
) = o(exp(−p3n3)) = o(P(X1 = 0)) (assuming pn2 → ∞; we have no

trouble in any case for smaller p). Hence, since P(X1 = 0) =
∑

k≥0 P(Ckδ0),

P(X1 = 0)
P(Ckδ0)

∼
pn2∑
j=0

P(Cjδ0)
P(Ckδ0)

, (4.5)

and (4.4) now implies asymptotic normality of X0 restricted to the graphs in
G(n, p) with no triangles, with mean and variance approximately

µ =
1
2
pn2(1− p2n), σ2 = µ

respectively. In fact, for k = µ + xσ (x bounded), we have

γ(kδ0, 0) = 1− p2n + O(p) and ρ(kδ0, δ0) =
µ

(k + 1)
(1 + O(p + n−1)).

Hence from (4.5), if ω(n) →∞ arbitrarily slowly,

P(X1 = 0)
P(Ckδ0)

∼
bµ+ω(n)σc∑

j=bµ−ω(n)σc
ρ(kδ0, (j − k)δ0)

∼ k!
µk

bµ+ω(n)σc∑
j=bµ−ω(n)σc

µj

j!

∼ k!eµ

µk

∼ σ
√

2π ex2/2, (4.6)

by the normal approximation to the Poisson probability.
It follows that for k = bµc,

P(X0 = k|X1 = 0) ∼ 1
n
√

πp
.

On the other hand, for N =
(n

2

)
and ε = O(p2n),(

N

bNp(1 + ε)c

)
pNp(1+ε)(1− p)N(1−p(1+ε)) ∼ 1√

2πpN
exp

(
N

(
−1

2
pε2 +

1
6
pε3
))

.

Thus, for k = bµc, putting ε = −p2n shows

P(X0 = k) ∼
exp(−1

4p5n4 − 1
12p7n5)

n
√

πp
,
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and Theorem 1 gives P(X1 = 0). Dividing (4.6) by the first of these probabilities
and multiplying by the second gives

P(X1 = 0|X0 = k) ∼ exp(−1
6
p3n3 +

1
2
p5n4 − 1

2
p7n5). (4.7)

But the subspace of G(n, p) restricted to X0 = k is equivalent to G(n, m) with
m = k. Thus (4.7) gives the probability that G ∈ G(n, m) has no triangles for
m = k; that is, for edge density

d = 2k/n2 + O(k/n3) = p− p3n + O(pn−1).

The theorem follows.
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