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Abstract

Let G be a graph. A G-trade of volume m is a pair (T , T ′), where each of T
and T ′ consists of m graphs, pairwise edge-disjoint, isomorphic to G, such
that T ∩T ′ = ∅ and the union of the edge sets of the graphs in T is identical
to the union of the edge sets of the graphs in T ′. Let X(G) be the set of
non-negative integers m such that no G-trade of volume m exists. In this
paper we prove that, for G ∈ G(n, 1

2), {1, 2, . . . , dcn/ log ne} ⊆ X(G) holds
asymptotically almost surely, where c = log(4/3)/88.
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Let G = (V (G), E(G)) be a simple graph. A G-decomposition of a simple

graph H = (V (H), E(H)) is a set T = {Gi : 1 ≤ i ≤ m} of graphs such that

Gi
∼= G, 1 ≤ i ≤ m, and {E(Gi) : 1 ≤ i ≤ m} is a partition of E(H). A G-trade

of volume m is a pair (T , T ′), where each of T and T ′ is a G-decomposition of

the same simple graph H such that |T | = |T ′| = m and T ∩ T ′ = ∅. The trade

spectrum of G, denoted TS(G), is defined to be the set of integers m such that a

G-trade of volume m exists. From this definition it follows that 0 ∈ TS(G), and

1 ∈ TS(G) if and only if G contains at least one isolated vertex. Denote by X(G)
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the set of forbidden trade volumes, that is, the set of non-negative integers m such

that no G-trade of volume m exists. Then

X(G) = {0, 1, 2, . . .} \ TS(G).

The reader is referred to [2] and the references cited therein for results on trade

spectra, and the connection between trades and block designs.

One can see that TS(G) is additive, that is, if m1, . . . ,mk ∈ TS(G), then∑k
i=1 cimi ∈ TS(G) for any non-negative integers ci. Thus, X(G) = ∅ if and

only if [2, Lemma 2.1] G contains isolated vertices. Also, if 2, 3 ∈ TS(G), then

X(G) = {1} since any integer no less than 2 can be written as 2c1 + 3c2 for some

c1 and c2. In general, Billington and Hoffman [2] proved that X(G) ⊆ {1, 2}
holds for several families of graphs. Also, they show [2, Theorem 3.2] that, for

any graph G 6= K2, 2s, 3s 6∈ X(G) holds for any integer s ≥ δ(G), where δ(G) is

the minimum degree of G. As a consequence all integers large enough, say, no less

than 5δ(G)+2, are not in X(G) (see [2, Theorem 3.2] for details). That is, graphs

with small minimum degree cannot have large forbidden trade volumes. On the

other hand, for complete graphs Kn of order n, we have {1, 2, . . . , 2n−3} ⊆ X(Kn)

[2, Lemma 4.1], and hence the forbidden trade volumes increase with the order.

Complete graphs are the only known graphs with this property. Billington [1] asked

whether there exist non-complete graphs G of order n such that the forbidden trade

volumes of G increase with n. In this paper we answer this question affirmatively

for random graphs.

As usual we use G(n, 1
2
) to denote the probability space of random graphs of

order n with any two vertices being adjacent with probability 1/2. For a sequence

of probability spaces Ωn, n ≥ 1, an event An of Ωn occurs asymptotically almost

surely, abbreviated to a.a.s. in the following, if limn→∞P(An) = 1. Set

c =
log(4/3)

88
.

Our main result is the following theorem.

THEOREM 1 [thm:main] For G ∈ G(n, 1
2
), a.a.s.

[excl] {1, 2, . . . , dcn/ log ne} ⊆ X(G). (1)

In order to prove this we introduce the following two concepts. A graph G =

(V (G), E(G)) of order n is called j-non-meshing, for some integer j with 2 ≤ j ≤ n,

if every way of identifying j vertices of one copy of G with j vertices of another

copy of G gives a graph with multiple edges. In other words, G is j-non-meshing if,

for any two graphs G1 and G2 isomorphic to G and having j vertices in common,
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there exist u, v ∈ V (G1) ∩ V (G2) such that u and v are adjacent in both G1 and

G2. For example, Kn is j-non-meshing for 2 ≤ j ≤ n. For a graph G, a subset K

of V (G) is G-defining if there exists no non-identity permutation σ of V (G) such

that, for all u ∈ K and v ∈ V (G), uv ∈ E(G) if and only if σ−1(u)σ−1(v) ∈ E(G).

Denote

j0(n) =
8 log n

log(4/3)
.

LEMMA 1 [lem:non-meshing] Asymptotically almost surely, G ∈ G(n, 1
2
) is

j-non-meshing for all j with j0(n) < j ≤ n.

Proof. Let J be a subset of V (G) with |J | = j. Let A(J) be the event that

there exists an injection σ from J to V (G) such that for all pairs {u, v} of distinct

vertices u, v in J ,

[eq : cond] either uv 6∈ E(G) or σ(u)σ(v) 6∈ E(G). (2)

For a fixed pair {u, v}, the probability that (2) holds is 1/2 when {σ(u), σ(v)} =

{u, v} (as this can only happen if uv /∈ E(G)) and 3/4 otherwise. However, these

events are not independent for different pairs {u, v}. If {u1, v1}, {u2, v2}, . . . , {uk, vk}
is a set of distinct pairs of vertices in J such that σ(ui) = ui+1 and σ(vi) = vi+1

for 1 ≤ i < k (k ≥ 2), we say that these pairs are associated by σ. For all of these

pairs to satisfy (2), it is necessary that no two consecutive pairs in the sequence

{u1, v1}, {u2, v2}, . . . , {uk, vk} are edges of G. (The extra condition on the image

of {uk, vk} under σ gives no improvement, as it turns out, since it may happen

that {u1, v1} = {uk, vk}, and k = 2 is the value of k which determines the final

result.) The probability that this happens is 3/4 for k = 2, whilst for k ≥ 3 it is

2−k
k/2∑
i=0

(
k − i + 1

i

)
≤ 2−kbk/2 + 1c20.724k <

(
3

4

)k/2

.

The middle step here follows on noting that the binomial is increasing in i for

i ≤ 1
2
− 1

2
√

5
, and the last step follows by calculus and checking the small values of

k. The pairs of vertices in J can be partitioned into maximal associated sets, and

the event considered above is, for a maximal associated set, independent of all other

pairs of vertices in J . Thus, for a given injection σ from J to V (G), the probability

that σ satisfies (2) for all
(

j
2

)
pairs of vertices in J is at most (3/4)j(j−1)/4. Thus,

P(A(J)) ≤ [n]j(3/4)j(j−1)/4, where [n]j = n(n− 1) · · · (n− j + 1). Consequently, if

Xj is the number of sets J with |J | = j such that A(J) holds,

E(Xj) ≤
(

n
j

)
[n]j

(
3

4

)j(j−1)/4

≤ n2j

j!

(
3

4

)j(j−1)/4

=
e(2 log n+(j−1) log(3/4)/4)j

j!
(3)
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which is O(1/j!) since j > j0(n). Thus E
∑

j≥j0 Xj = o(1) using linearity of

expectation. So by the first moment principle, P
(∑

j≥j0 Xj ≥ 1
)

= o(1), and the

result follows.

LEMMA 2 Let G ∈ G(n, 1
2
). Then a.a.s. all subsets K ⊆ V (G) with |K| ≥ 10n/11

are G-defining.

Proof. Let K ⊆ V (G) with |K| = k ≥ 10n/11. Suppose that σ is a non-identity

permutation on V (G) with support R, i.e., R = {v ∈ V (G) : σ(v) 6= v}, and let

r = |R|. Then σ induces a permutation σ∗ on the set of unordered pairs {u, v} of

distinct vertices in V (G), defined by σ∗({u, v}) = {σ(u), σ(v)}. Let S be the set

of unordered pairs {u, v} not fixed (as an unordered pair) by σ∗ and with at least

one of u, v in K. That is,

S = {{u, v} : u, v ∈ V (G), {u, v} ∩K 6= ∅, {σ(u), σ(v)} 6= {u, v}}.

Let i = |K ∩R|. The number of unordered pairs {u, v} with one of u, v in K and

the other in R is i(k − i) + k(r − i) +

(
i
2

)
. All these unordered pairs are in S,

except for at most r/2 which correspond to transpositions in σ. So we have

[S] |S| ≥ kr − i(i + 1)

2
− r

2
≥ (k − 2)r

2
(4)

using i ≤ r and i + 1 ≤ k + 1.

The permutation σ∗ induces a digraph on the set of unordered pairs of dis-

tinct vertices of G, in which there is an arc from {u, v} to {u′, v′} if and only if

σ∗({u, v}) = {u′, v′}. The sub-digraph D of this digraph induced by S consists of

directed paths, and directed cycles of length at least 2. Let d be the number of

such cycles, so that d ≤ |S|/2. Suppose that for all {u, v} ∈ S we have

[cond] uv ∈ E(G) if and only if σ−1(u)σ−1(v) ∈ E(G). (5)

Suppose all edges uv of G with {u, v} 6∈ S are given. Then the number of pos-

sibilities for assigning edges of G to these paths and cycles is 2d, because the

edges in paths of D are determined by (5) and for each cycle of D there are

two possibilities. The probability that G ∈ G(n, 1
2
) satisfies (5) is thus at most

2d−|S| ≤ 2−|S|/2 ≤ 2−(k−2)r/4 by (4).

There are

(
n
k

)
subsets K ⊆ V (G) with |K| = k and at most

(
n
r

)
r! < nr

permutations σ as above (note that r ≥ 2 by its definition). Since k ≥ 10n/11 we

have by Stirling’s formula that for sufficiently large n(
n
k

)
≤
(

n
d10n/11e

)
≤ (11/1010/11)n < 1.36n.
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So the probability that G ∈ G(n, 1
2
) satisifies (5) for some K and σ is at most

1.36nnr2−(k−2)r/4 = 1.36n2−(k−2−4 log n)r/4 ≤ 1.36n2−(5/11−ε)n

for all ε > 0. Since 25/11 > 1.37, the sum of this expression over all k ≥ 10n/11

and r ≥ 2 goes to zero, and the lemma is proved.

We will use the two lemmas above in the proof of Theorem 1. We will also use

the following known results, see e.g. [3, Lemma 2.1]. For a graph G and v ∈ V (G),

denote by NG(v) the set of neighbours of v in G, and d(v) = |NG(v)| the degree

of v.

LEMMA 3 [lem:deg-con] Let G ∈ G(n, 1
2
) and 0 < ε < 1/10. Then the

following hold a.a.s.

(a) |d(v)− n/2| < εn for all v ∈ V (G);

(b) for all u, v ∈ V (G),
∣∣∣|NG(u) ∩NG(v)| − n/4

∣∣∣ < εn.

Proof of Theorem 1. Select a graph G on n vertices satisfying all of the proper-

ties in Lemmas 1 to 3 which are asserted to hold a.a.s. We prove that (1) holds for

such a graph G. It then follows by Lemmas 1 to 3 that a random graph G ∈ G(n, 1
2
)

satisfies (1) a.a.s. Let m ≤ n/(11j0(n)) = cn/ log n. To prove that there is no

G-trade of volume m, it suffices to show that, for any two G-decompositions

T = {Gi : 1 ≤ i ≤ m}, T ′ = {G′
i : 1 ≤ i ≤ m}

of a simple graph H, we have G1 = G′
i for some i.

Since H is simple and, by Lemma 1, G is j-non-meshing for any j > j0(n), G1

has at most j0(n) vertices in common with each of Gi, for i = 2, . . . ,m. Hence there

are at most mj0(n) ≤ n/11 vertices in V (G1)∩ (
⋃m

i=2 V (Gi)). Denote by K the set

of all other vertices of G1, that is, K = V (G1)\ (
⋃m

i=2 V (Gi)). Then |K| ≥ 10n/11.

Note that, by the definition of K, any edge of H incident with a vertex in K must

be in G1. Hence dH(v) = dG1(v) for all v ∈ K, and in particular dH(v) is close to

n/2 by Lemma 3(a). For distinct vertices u ∈ K and v ∈ K, let G′
i and G′

j be the

graphs in T ′ containing u and v, respectively. Then i is unique since otherwise

dH(u) would close to n by Lemma 3(a), a contradiction. Similarly, j is unique.

Also, NH(u) ∩ NH(v) = NG1(u) ∩ NG1(v) and so by Lemma 3(b) it follows that

|NH(u) ∩ NH(v)| is close to n/4. On the other hand, NH(u) ∩ NH(v) ⊆ V (G′
i) ∩

V (G′
j), so if i 6= j, we have by Lemma 1 that |V (G′

i) ∩ V (G′
j)| ≤ j0(n) << n/4.

Thus, we must have i = j. Since this is true for all u, v ∈ K, we conclude that

K ⊆ V (G′
i) for some i. Moreover, since all vertices of G1 − K have degree at
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least (1/2 − ε)n in G1 by the statement in Lemma 3(a), a vertex v of H −K has

neighbours in K if and only if v is in G1. The same statement holds for G′
i. Hence

V (G1) = V (G′
i).

Since G1
∼= G ∼= G′

i, there exists a permutation σ of V (G1) which induces an

isomorphism from G1 to G′
1. Thus, uv ∈ E(G) if and only if σ−1(u)σ−1(v) ∈ E(G)

for u, v ∈ K. However, as |K| ≥ 10n/11, K is G-defining by the statement in

Lemma 2. So σ must be the identity permutation. Hence G1 = G′
i and we are

done.

Concluding remarks

It would be interesting to know how much the interval of values in Theorem 1

can be increased without making the theorem false. Clearly the upper end of the

interval can be increased, since we made no attempt to obtain the best possible

constant in Lemma 1; the difficulties with cycles in σ of length 2 will not be typical.

On the other hand, the upper end must be less than n, by Lemma 3 and the

above-mentioned result that 2δ(G) /∈ X(G). Moreover, this upper bound can be

decreased a little since the minimum degree of a random graph is n/2−Θ(
√

n log n).
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