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1 Introduction

The asymptotic distribution of small subgraphs of a random graph has been basically
worked out (see Ruciński [5] for example). But for random regular graphs, the main
techniques for proving, for instance, asymptotic normality, do not seem to be usable.
One very recent result in this direction is to be found in [3], where switchings were
applied to cycle counts. The aim of the present note is to show that another very
recent method of proving asymptotic normality, given by the authors in [1], can easily
be applied to this problem. In particular, it requires considerably less work than using
switchings. The application is, however, not direct, in the sense that the result obtained
is very weak if the random variable counting copies of a subgraph is examined directly.
We obtain a much stronger result by considering isolated copies of a subgraph.

To be specific, we investigate the probability space Gn,d of uniformly distributed ran-
dom d-regular graphs on n vertices (which we assume to be {1, 2, . . . , n}). Asymptotics
are for n→∞, and here d is not fixed but may vary with n (though for all our results
there is an upper bound on the growth of d, at least implicitly). As usual, we impose
the restriction that for the asymptotics, the odd values of n are omitted in the case of
odd d.
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We use µ(G) and ν(G) for the numbers of edges and vertices of a graphG respectively.
A graph G is strictly balanced if

µ(G)

ν(G)
>
µ(G1)

ν(G1)
(1.1)

for all nontrivial proper subgraphs G1 of G. A standard example: every connected
regular graph is strictly balanced.

Throughout this paper, [x]m denoting the falling factorial: x(x− 1) · · · (x−m+ 1).
We will use the following from [1] to deduce asymptotic normality.

Theorem 1 Let sn > −µ−1
n and

σn =
√
µn + µ2

nsn, (1.2)

where 0 < µn →∞. Suppose that

µn = o(σ3
n), (1.3)

and a sequence {Xn} of nonnegative random variables satisfies

E[Xn]k ∼ µkn exp

(
k2sn

2

)
(1.4)

uniformly for all integers k in the range cµn/σn ≤ k ≤ c ′µn/σn for some constants
c ′ > c > 0. Then (Xn−µn)/σn tends in distribution to the standard normal as n→∞.

We also use McKay [4, Theorem 2.10], in the form of the following simpler special
case stated in [3]. Here, G denotes a random element of Gn,d, E denotes the edge set,
and Kn is the complete graph on n vertices (the same vertex set as G).

Theorem 2 For any d and n such that |Gn,d| 6= 0, let J ⊆ E(Kn). Then, with ji the
number of edges in J incident with vertex i,

(a) if |J |+ 2d2 ≤ nd/2 then

P(J ⊆ E(G)) ≤
∏n
k=1[d]jk

2|J |[nd/2− 2d2]|J |
;

(b) if 2|J |+ 4d(d+ 1) ≤ nd/2 then

P(J ⊆ E(G)) ≥
∏n
k=1[d]jk

2|J |[nd/2− 1]|J |

(
n− 2d− 2

n+ 2d

)|J |
.

Corollary 1 Provided d|J | = o(n), the hypotheses of Theorem 2 imply that

P(J ⊆ E(G)) =

∏n
k=1[d]jk
(nd)|J |

(
1 +O

(
(d|J |/n)2

))
.
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2 Distribution of number of copies of a graph

Throughout this section, G denotes a random graph in Gn,d. Let H be a fixed strictly
balanced graph with maximum vertex degree d. Let p and q be the number of vertices
and edges of H. A copy of H in G is a subgraph of G which is isomorphic to H.

The use of Theorem 1 calls for computing high moments of a random variable. It
turns out that the random variable counting copies of H has badly behaved moments
and consequently does not produce a very useful result. Instead we consider a related
random variable whose behaviour is more easily analysed. We say that a subgraph of a
graph G isomorphic to H is an isolated copy of H if it shares no edges with any other
subgraph of G isomorphic to H. Let XH be the random variable which is the number
of isolated copies of H in a random d-regular graph. Let a denote the order of the
automorphism group of H. Set

µ = P(H1 ⊆ G)[n]p/a (2.1)

where H1 is a fixed copy of H on the vertex set {1, 2, . . . , V (H)}. The probability that
any given copy of H in Kn occurs in G is equal to P(H1 ⊆ G), and there are [n]p/a
such copies. Hence, µ is the expected number of copies of H in G, isolated or not. By
Corollary 1, for d = o(n) (noting that q is fixed),

µ = Θ(np−qdq) (2.2)

where f = Θ(g) if f = O(g) and g = O(f). Also, let

r = r(n, d,H) = P(H1 is not isolated | H1 ⊆ G). (2.3)

Fix a proper subgraph F of H1 containing at least one edge, and consider the probability
that G contains not only H1 but also the edges of a subgraph H2

∼= H with H1∩H2 = F .
Again using Corollary 1, this (unconditional) probability is Θ(np−p(F ) (d/n)2q−q(F )) for
d = o(n). Since there is a bounded number of such subgraphs F , we have for d = o(n),

r = Θ(rH(n, d)) where rH(n, d) = np−p(F )

(
d

n

)q−q(F )

, (2.4)

p(F ) = |V (F )|, q(F ) = |E(F )|, and F is a subgraph ofH which maximises nq(F )−p(F )d−q(F )

subject to 1 ≤ q(F ) < q. (See [2, Section 3.2] for a related discussion in the setting of
random graphs without the regularity condition.)

Theorem 3 Define µ and r as in (2.1) and (2.3). Suppose that µ → ∞, µ = o(n),
µ = o(n2/d2) and r = O(1/

√
µ). Then (XH − µe−r)/σ tends in distribution to the

standard normal as n→∞, where σ2 = µe−r.

Note 1 If r = o(1/
√
µ) then the mean and variance of the asymptotic distribution can

both be taken as µ. Moreover, the proof of the theorem then simplifies considerably.
However, by including the case r ≈ 1/

√
µ we highlight why the method does not easily

extend.
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Note 2 The distribution result in [3], which is only for cycles, does not extend to the
full range of d covered by Theorem 3. (It does however apply to non-fixed subgraphs, a
modification which could also be done easily using the techniques of the present paper.)
One could presumably extend the methods used in [3] to obtain distribution results
for all strictly balanced subgraphs, but this is not as economical as the method in the
present paper, and we believe that the range of d obtained would not be any greater
than that in Theorem 3.

Note 3 Distribution results for subgraph counts in the other common models of random
graphs apply for wider ranges of density of the parent graph than expressed in Theo-
rem 3. Given the much greater accessability of those models due to edge independence,
this is not very surprising.

Proof of Theorem 3 We compute the k’th factorial moment E[XH ]k, for k = O(
√
µ),

k →∞. Note that

E[XH ]k =
∑

J1,...,Jk⊆E(Kn)

P

(∧

i

AJi

)
(2.5)

where AJ denotes the event that J ⊆ E(G) and forms an isolated copy of H. (For
k = 1, this differs from (2.1) because the copies here are isolated.) To find the number
of nonzero summands contributing in (2.5), for which a prerequisite is that the Ji are
pairwise disjoint, consider placing k ordered copies of H on the vertices of the complete
graph. Since k = O(

√
µ) = o(

√
n), the number of ways of doing this, where each copy

is placed independently (ignoring possible overlaps) is asymptotic to

nkp

ak
, (2.6)

and we get the same expression if we insist that the copies have disjoint vertex sets (so
after j copies have been placed there are n − pj vertices to choose from). Thus, by
sandwiching, this is also asymptotically the number of ways of choosing edge-disjoint
copies, as required for isolated copies, and almost all these placements are pairwise
vertex-disjoint. Clearly

P

(∧

i

AJi

)
≤ P(J1 ∪ · · · ∪ Jk ⊆ E(G)) ≤ (P(J1 ⊆ G))k(1 + o(1))

using Corollary 1 and noting that the assumption µ = o(n2/d2)) implies the required
bound on d|J |. So we have from (2.5) that

E[XH ]k = o

(
nkp

ak

)
(P(J1 ⊆ G))k +

∑

J1,...,Jk⊆E(Kn)
Ji vertex-disjoint

P

(∧

i

AJi

)

= o

(
nkp

ak

)
(P(J1 ⊆ G))k +

nkp

ak
P

(∧

i

AJi

)
(2.7)

for any particular choice of J1, . . . , Jk ⊆ E(Kn) which induce vertex-disjoint copies of
H in Kn. Letting B denote the conditional probability that these sets induce isolated
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copies in G, given that they are subsets of the edge set of G, we have

P

(∧

i

AJi

)
= BP(J1, . . . , Jk ⊆ E(G))

∼ B(P(J1 ⊆ G))k (2.8)

using Corollary 1 again.
For one of the copies to be nonisolated, it must share an edge with some other copy of

H, and we may use the same machinery to compute the factorial moments of the number
Y of i for which Ji induces a nonisolated copy in G, conditional upon J1, . . . , Jk ⊆ E(G).
We have

kr = O(1) (2.9)

since r
√
µ = O(1), and hence also, since µ→∞,

r = o(1). (2.10)

Thus

r = O(r2) +
∑

H2

P(H1 ∪H2 ⊆ G)

P(H1 ⊆ G)

where the sum is over copies H2 of H in Kn which share at least one edge with H1,
and the r2 term bounds the overcounting in inclusion-exclusion. With this observation
it is easy to compute the jth factorial moment E[Y ]j of Y . There are [k]j ways to
choose a j-subset of J1, . . . , Jk each of which induce a copy of H to be nonisolated, and
the probability that all the required edges are present in G is, again using Corollary 1,
asymptotic to

rjP(J1, . . . , Jk ⊆ E(G)) ∼ rj(P(J1 ⊆ G))k.

The probability that all these edges are inG, conditional upon the event that J1, . . . , Jk ⊆
E(G), is thus rj, and so E[Y ]j ∼ (kr)j. Thus by (2.9) and the method of moments (the
usual one, that is), P(Y = 0) ∼ e−kr. Thus B ∼ e−kr, and we have from (2.7) and (2.8)
that

E[XH ]k ∼
nkp

ak
e−kr(P(J1 ⊆ G))k.

By (2.1) and the fact that k = o(
√
n), this implies

E[XH ]k ∼ (µe−r)k

and thus by Theorem 1 with sn = 0 the distribution of XH is asymptotically normal
with mean and variance µe−r by (2.10).

Example: Cycles
Consider the graph H = Ct, the cycle of length t ≥ 3. Here by (2.2) µ = Θ(dt), so

we require d → ∞. Also it is easy to check that rH(n, d) = Θ(µ/(nd)), the maximum
in (2.4) occurring for F ∼= K2. Thus the range of µ is bounded at the maximum end by
µ3/2 = O(nd), µ = o(n) and µ = o(n2/d2). By considering the implied upper bounds
on d, we see that the first is strictest, and thus the number of isolated copies of H is
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asymptotically normally distributed provided d→∞ and d = O(n2/(3t−2)). This can be
compared with the result in [3], for which the bound is d = o(n1/(2t−1)).

Example: Complete graphs
Consider the graph H = Kt, where t ≥ 3. Here by (2.2)

µ = Θ(dt(t−1)/2n−t(t−3)/2). (2.11)

Also rH(n, d) = max2≤s<t dt(t−1)/2−s(s−1)/2n−t(t−3)/2+s(s−3)/2, and considering d = nα, the
maximum occurs (as with cycles) at s = 2, and so r = Θ(µ/(nd)). Thus (as with
cycles), the range of µ is bounded at the maximum end by µ3/2 = O(nd), µ = o(n) and
µ = o(n2/d2). By considering the implied upper bounds on d, it is straightforward to
verify that the first gives the strictest bound for t = 3, and the last does for t ≥ 4. These
imply the upper bounds d = O(n2/7) in the case t = 3, and d = o(n(t(t−3)/2+2)/(t(t−1)/2+2)),
i.e. d = o(n1−2t/(t2−t+4)), for t ≥ 4. Therefore, the number of isolated copies of H is
asymptotically normally distributed provided this upper bound on d holds and the
expression in (2.11) tends to ∞.

Finally, we may conclude something about the distribution of the total number of
copies of H, isolated or not. Denote this number by X̂H .

Corollary 2 Suppose that µ → ∞, µ = o(n), µ = o(n2/d2) and r = o(1/
√
µ). Then

(X̂H − µ)/
√
µ tends in distribution to the standard normal as n→∞.

Proof: The expected number of nonisolated copies is O(µr). So we may conclude
that the total number of copies of H is asymptotically normal provided µr = o(

√
µ),

i.e. r
√
µ = o(1). This is an assumption of the corollary which is stronger than the

corresponding one in the theorem.

3 Concluding remarks

For the distribution results obtained in Theorem 3, the mean and variance are asymp-
totically equal. This means that it could equivalently be stated as giving asymptotically
Poisson distribution. It would be interesting to know the range of the degree d for
which the subgraph count remains asymptotically Poisson. Theorem 1 can potentially
be used to deduce asymptotic normality outside the Poisson range (as for instance the
previous applications in [1]); one challenge is to find a way to apply it for such d in the
present context. Another challenge is to find a way to apply any of the other methods
of deducing asymptotic normality to significantly higher values of d than we do here.

One possibility is to use switchings rather than standard inclusion-exclusion to ex-
tend the range of d for which the nonisolated copies may be treated in the proof of
Theorem 3. However, the extra effort may not pay very big dividends.
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[5] A. Ruciński, When are small subgraphs of a random graph normally distributed?
Probability Theory and Related Fields 78 (1988), 1–10.

7


