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Abstract

In this paper we consider a random star d-process which begins with n isolated
vertices and in each step chooses randomly a vertex of current minimum degree δ,
and connects it with d − δ random vertices of degree less than d. We show that
for d ≥ 3 the resulting final graph is connected with probability 1 − o(1), and
moreover that for sufficiently large d it is d-connected with probability 1− o(1).

1 Introduction

The standard models of random graphs (see [2]) have a limited potential for applications.
This is because in social and natural sciences several processes and structures demand
restrictions on the number of connections between objects. Hence, sometimes more
suited is the model of a random d-regular graph, where each vertex has degree d.

Its dynamic counterpart is the random d-process introduced in [6], where to the
initially empty graph with n vertices, edges are added randomly one by one, chosen
uniformly from all available pairs of vertices whose current degrees are less than d. We
say that an event holds asymptotically almost surely (briefly a.a.s.) if it holds with
probability 1− o(1) as n→∞. It is proved in [6] that a.a.s. the final graph of a random
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d-process is d-regular (or with one vertex of degree d − 1 in the case when dn is odd).
Moreover, for d ≥ 3, such a graph is proved in [7] to be a.a.s. connected.

A quicker way to generate a random d-regular graph is, with some luck, to “saturate”
vertices one by one. One way of doing this was proposed in [3]. A random star d-process
introduced in [3] begins with n isolated vertices and in each step chooses randomly a
vertex of current minimum degree δ, and connects it with d − δ random vertices of
degree less than d. It is proved in [5] that a.a.s. the final graph is, indeed, d-regular
(provided dn is even). In this paper we prove that a.a.s. it is connected for all d ≥ 3
and d-connected for sufficiently large d (cf. Theorem 2 in Section 2 and Theorem 3 in
Section 3).

The situation for a random star 2-process is quite different. When d = 2, the final
graph is connected if and only if it is a Hamilton cycle, in which case it is also 2-
connected. Robalewska [4, Theorem 3.2] showed that the probability of this event is
asymptotically O(n−1/2).

It is worthwhile to mention that the ‘static’, uniform random d-regular graph is a.a.s.
d-connected for d ≥ 3 (see [8]). Although the three models of random regular graphs
(static, d-process, star d-process) are not asymptotically equivalent, it is believed that
they all are contiguous (see, e.g., [2] for the definition of contiguity).

The paper is organized as follows. In Sections 2 and 3, we prove respectively, Theo-
rems 2 and 3, the former establishing the connectedness and the latter – d-connectedness
of a random star d-process. The last section contains a proof of a deterministic result
needed for the proof of Theorem 3. In the remainder of this introductory section we
give some definitions and facts to be used later.

First, we describe the star d-process formally. Fix n > d ≥ 3, and let G0 be the
empty graph on n vertices, and Gt be the graph created at step t of the star d-process.
To obtain Gt+1 from Gt, in step t + 1 we proceed by choosing a vertex v of minimum
degree δt in Gt uniformly at random, and choosing d − δt active vertices (that is those
with degree less than d) uniformly at random from Gt to be the neighbours of v in Gt+1.

If at some time t0 there are not more than d−δt0 active vertices left, then any further
transition is impossible, and we say that the process arrived at its final stage and call
the graph constructed so far, that is, Gt0 , the final graph of the process. (It is possible
that some active vertex of the final graph, but not of minimum degree, can be made
saturated. The rules of the star d-process do not allow that, which, in view of Theorem
1 below, is not essential, at least asymptotically. Clearly, the whole process takes less
than n steps, but the actual length may vary. For convenience, we artificially extend its
duration beyond the final stage, by defining Gt = Gt0 for t = t0 + 1, . . . , n.

While the minimum degree δt of Gt is i, the process is said to be in phase i. Define
Ti as the first time t such that δt > i; if no such t exists, set Ti = ∞. So, the stopping
times T0, . . . , Td−2 divide the entire process into d phases (some of the final ones can
be empty). Note that at any time the set of active vertices is independent, and that
if Td−2 < ∞ then the last phase is nonempty and consists of adding (sequentially) a
random matching saturating all but at most one active vertices. Thus, in such a case,
the final graph has precisely bdn/2c edges, and for dn even it is d-regular.

It is easy to see that T0 ≥ n/(d + 1). In our proofs we will rely upon the following
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result from [5], which roughly says that with probability very close to 1, each phase lasts
some constant times n number of steps, and, in particular, the final graph is d-regular.

Theorem 1 For fixed d ≥ 3 there exist constants 0 < s0 < · · · < sd−2 and c > 0 such
that, a.a.s. for i = 0, . . . , d − 2, we have Ti = sin + o(n), and the number of active
vertices at time Td−2 is at least cn.

Thus, although there are trajectories of the star d-process which end up in a final
graph with minimum degree δt0 < d − 1 (even δt0 = 0 is possible), it may only happen
with very small probability.

By Theorem 1, there exists a positive constant c such that a.a.s. there are at least
cn active vertices remaining by the end of phase d − 2. Fixing one such c, let T (c) be
the first time t for which the number of active vertices in Gt is less than cn; if no such
t exists, set T (c) =∞. Further, let T = min{T (c), Td−2}. By the choice of c,

P(T = Td−2) = 1− o(1). (1)

In our proofs we will often condition on the event Tt = {T > t}.
Throughout we assume that dn is even, though our methods would work if dn were

odd, except that in Theorem 3 we could only show that the final graph is a.a.s. (d− 1)-
connected (the obvious reason being the presence of a vertex of degree d− 1). Since dn
is assumed to be even, the number of active vertices left at the end of phase d − 2 is
also even, and the last phase makes up a matching saturating all of them. It is easy to
verify that this matching occurs uniformly at random.

For a subgraph H ofGt, denote by A(H) the number of active vertices ofGt contained
in H, and call it the active size of H. For convenience a connected component will be
viewed sometimes as a subgraph and sometimes as a set of (its) vertices. In either case
the above definition will apply, that is, a connected component C of Gt has active size
A(C) equal to the number of active vertices it contains. A singleton component is one
consisting of an isolated vertex.

2 Connectedness of the star d-process

In this section we prove the following theorem.

Theorem 2 For fixed d ≥ 3, the final graph of the random star d-process is a.a.s.
connected.

First we will show that a.a.s., the graph GTd−2
created by the process contains no

connected component of active size less than d. Then we will show that adding a
randomly chosen perfect matching to the remaining active vertices a.a.s. connects the
graph.

Say that a connected component C of Gt is small if A(C) ≤ d2, and say that the
addition of a star in step t+ 1 is a rare step if some three vertices of the star belong to
the same small component of Gt.
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Lemma 1 With probability 1− o(1), there are no rare steps before the time T .

Proof. Let Rt be the event that a rare step occurs at time t, for t = 1, . . . , n. Our goal
is to show that

P

(
n⋃

t=0

(Rt ∩ Tt)
)

= o(1).

By the law of total probability,

P(Rt ∩ Tt) =
∑

G

P(Rt ∩ Tt|Gt = G)P(Gt = G),

where the sum runs over all graphs G with P(Gt = G) 6= 0. Note that the conditional
probability vanishes if A(G) < cn and that otherwise it equals P(Rt|Gt = G).

Fix a graph G with A(G) ≥ cn. A rare step occurs if either some three neighbours
of the star centre, or the star centre and two of its neighbours, are chosen from the same
small component of Gt. Regard the chosen vertices as being selected sequentially, so in
the first case there are at most

(
d
3

)
choices for when these three neighbours are selected.

The first of these three fixes a small component C, and the probability of choosing the
other two vertices also from C is O(n−2), since A(C) ≤ d2 and there are at least cn− d
active vertices. The second case is similar, but with the star centre fixing the small
component. Thus P(Rt|Gt = G) = O(n−2) and consequently P(Rt ∩ Tt) = O(n−2).
Summing over t = 1, . . . , n yields the bound O(1/n) = o(1) on the probability that
some rare step occurs at all before the time T .

For trajectories of the process with no rare steps and such that T = Td−2, a de-
terministic proof by induction shows that each connected component of GTd−2

has at
least d active vertices.

Lemma 2 With probability 1−o(1), all connected components of GTd−2
have active size

at least d.

Proof. For t ≥ 0, let At be the event that A(C) ≥ d for all non-singleton connected
components C in Gt. Fix a trajectory (G0, G1, . . . ) of the star d-process with no rare
steps, and for which T = Td−2. We will show that it has property At for all t ≤ T . In
particular, it follows that AT holds. By Lemma 1, equation (1), and the fact that there
are no singleton components in GTd−2

, this will imply Lemma 2.
For technical reasons we have to treat phase 0 somewhat differently. Therefore, we

define

g(C) =
∑

w∈C
(d− degGt(w)) (2)

and Gt as the property that g(C) ≥ (d − 1)2 + 1 for all non-singleton components C
in Gt. Note that Gt implies At and that G0 holds vacuously. We will first prove by
induction on t that Gt holds for all 0 ≤ t ≤ T0. In particular, AT0 will be satisfied. Then
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we will complete the proof of Lemma 2 by showing, again by induction on t, that At
holds for all T0 ≤ t ≤ T .

Phase 0. Fix 0 ≤ t < T0 and assume that Gt holds. Recall that in phase 0, step t + 1
consists of choosing an isolated vertex v, and choosing d active vertices of Gt to become
the neighbours of v in Gt+1. Denoting by C the component of Gt+1 containing v, if two
of these neighbours lie in distinct non-singleton components C1, C2 of G, then, since Gt
holds,

g(C) ≥ g(C1) + g(C2)− d ≥ (d− 1)2 + 1,

and Gt+1 holds too. If i of the neighbours lie in a non-singleton component C1 and d− i
are isolated vertices in G then the component C formed in Gt+1 satisfies

g(C) = g(C1)− i+ (d− 1)(d− i) = g(C1) + d(d− 1− i).

Hence g(C) ≥ g(C1) as long as 0 ≤ i ≤ d− 1. Thus the only way in which Gt+1 can fail
is if all d neighbours of v are chosen from C1. Still, if g(C1) ≥ (d − 1)2 + 1 + d, then
Gt+1 must hold. So we may assume that, say, g(C1) ≤ d2, and hence A(C1) ≤ d2 by (2).
But, since d ≥ 3, this would constitute a rare step, contradicting our assumption.

Later phases. Fix T0 ≤ t < Td−2 and assume that At holds. Let δ(Gt) = j, where
1 ≤ j ≤ d − 2. In step t + 1 a vertex v of degree j is chosen, and d − j active vertices
are chosen to become the neighbours of v in Gt+1. Let C1 be the component of G
containing v. If any neighbours are chosen from a component of G different from C1,
then the component C of Gt+1 containing v satisfies

A(C) ≥ 2d− 1− (d− j) = d+ j − 1 ≥ d,

and At+1 holds. Thus the only way in which At+1 can fail is if all d− j neighbours of v
are chosen from C1. Still, if A(C1) ≥ 2d then At+1 must hold. Otherwise, since 2d < d2

and d− j ≥ 2, we would get a rare step – a contradiction.

Since d ≥ 3, Lemma 2 shows that a.a.s. there are no components of active size less
than 3 in GTd−2

. By (1), the set S of active vertices in GTd−2
has size at least cn. Recall

that the edges added throughout phase d− 1 form a uniformly chosen perfect matching
M on the set of active vertices in GTd−2

. We will next show that adding this matching
a.a.s. connects the graph. The following combinatorial fact will be useful.

Lemma 3 For positive reals s, r and m, let s = s1 + · · ·+ sp be an ordered partition of
s, with m ≤ min si ≤ r ≤ s. Let I be the set of I ⊆ [p] such that

∑
i∈I si = r. Then

|I| ≤
(bs/mc
br/mc

)
.

Proof. By complementation, we can assume that r ≤ s/2. Note that I is a Sperner
system of subsets of [p], that is, no set in I contains another. Also note that |I| ≤ br/mc
for each I ∈ I.
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First suppose that br/mc ≤ bp/2c. Then by the LYM inequality (c.f. [1])

|I| ≤
(

p

br/mc

)
≤
(bs/mc
br/mc

)

where the second inequality comes from the fact that p ≤ bs/mc.
On the other hand, if br/mc > bp/2c then by Sperner’s theorem (c.f. [1])

|I| ≤
(

p

bp/2c

)
≤
(bs/mc
bp/2c

)
≤
(bs/mc
br/mc

)

where the last inequality comes from br/mc ≤ 1
2
bs/mc.

Finally, we show that adding the randomly chosen perfect matching a.a.s. connects
the graph. Here S denotes the set of active vertices in GTd−2

, which, by (1), a.a.s.
contains at least cn vertices (hence |S| → ∞ as n→∞). Furthermore, p stands for the
number of connected components of GTd−2

, and S1, . . . , Sp represent their active parts.

Lemma 4 Let S1, . . . , Sp be a partition of a set S, with s = |S| even and with |Si| ≥ 3
for all i. Let M be a perfect matching on S chosen uniformly at random. Form a graph
HM whose vertices are the sets Si, with an edge from Si to Sj whenever an edge of M
joins an element of Si to one of Sj. Then

lim
s→∞

P(HM is connected) = 1−O(s−1).

Proof. Let M be a matching on S chosen uniformly at random. Suppose that HM is
disconnected. Then we can partition S as L ∪ R, where L and R are both unions of
sets Si, such that no edge of M joins an element of L to an element of R. Let r = |R|.
Then r is even, and r 6= 2, since |Si| ≥ 3. So, without loss of generality, 4 ≤ r ≤ s/2.
Let m(r) denote the number of perfect matchings of r points, r even. Note that from
Stirling’s formula

m(r) =
r!

2r/2(r/2)!
∼
√

2
(r
e

)r/2

as r → ∞, and hence m(r) = Θ((r/e)r/2) uniformly over all even r (meaning that it
is bounded above and below by positive constants times the asymptotic expression).
Therefore, setting

f(r) =

√
rr(s− r)s−r

ss
,

the probability that no matching edge joins an element of L to an element of R is

m(r)m(s− r)
m(s)

= O(f(r)).
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By Lemma 3, there are at most
(bs/3c
br/3c

)
ways that R can be chosen to contain r

elements of S. Therefore, denoting bs/3c by s3 and br/3c by r3 (and ignoring the
condition that r is even)

P(HM is disconnected) = O(1)

s/2∑

r=4

(
s3

r3

)
f(r)

= O(1)

s/2∑

r=4

(
es3

r3

)r3
f(r)

= O(1)
11∑

r=4

sr3−r/2 +O(1)

s/2∑

r=12

F (r), (3)

where

F (r) =
(es
r

)r/3
× f(r) =

(es
r

)r/3√rr(s− r)s−r
ss

.

Note that the terms in the first summation in (3) are O(s−1) (This can be verified
separately for the first two, and then note that for r ≥ 6, r3 − r/2 ≤ r/3− r/2 ≤ −1.)

So the first summation is O(s−1). We now seek a bound on
∑s/2

r=12 F (r). The second
derivative of logF is

1

6r
+

1

2(s− r) ,

which is positive for all r. So, F is log-convex, and it is enough to consider only the
extremes of the range of r. We have as above that F (12) = O(s12/3−12/2) = O(s−2), and

F (s/2) =
(2e)s/6

2s/2
=
(e

4

)s/6
= O(s−2).

Thus F (r) = O(s−2) uniformly for all 12 ≤ r ≤ s/2 by the log-convexity of F . Therefore∑s/2
r=12 F (r) = O(s−1) and the lemma follows from (3).

3 Higher connectivity for large d

The aim of this section is to prove the following sharpening of Theorem 2 for sufficiently
large degree d.

Theorem 3 For fixed d large enough, the final graph of the random star d-process is
a.a.s. d-connected.

We do not make any attempt to determine the minimum d for which this argument
works, as there are several places where the argument cannot work for d less than 5 say,
without major changes. On the other hand, we believe the result is true for all d ≥ 3.
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Let δ(H) denote the minimum degree of the graph H. Note that in every graph H
there is a set S of vertices of size δ(H) such that H \S contains a singleton component.
Say that a graph H is monosingular if for all sets S ⊆ [n] with |S| = δ(H), at most
one component in H \ S is a singleton. Given a subgraph H of G, for each S ⊆ [n] let
C1(S), . . . , CjS(S) be the non-singleton, connected components of H \ S. We say that
H is linked in G if for every S of size δ(H), and every partition [jS] = I ∪ J , where I
and J are nonempty, there is an edge of G which joins

⋃
i∈I Ci(S) with

⋃
i∈J Ci(S).

The proof of Theorem 3 is based on the following simple observation.

Lemma 5 If a d-regular graph G contains a monosingular spanning subgraph H, with
δ(H) = d− 1, which is linked in G, then G is d-connected.

Proof. Let S be a (d − 1)-subset of [n] and [n] \ S = A ∪ B. We will argue that there
must be an edge from A to B in G. We are done if there is such an edge already in
H. Otherwise, since H is linked in G, there is an A− B edge in G, unless A or B is a
union of singleton components of H \S. But then, as H is monosingular, either A or B
consists of a single vertex. Say, A = {v}. However, v has d neighbours in G and, since
|S| = d− 1, at least one of them must belong to B.

Recall that Td−2 is the end of phase d − 2 as defined in the Introduction, and that,
by (1), a.a.s. there are at least cn active vertices remaining in GTd−2

, for some fixed
positive constant c.

Let γ be a fixed positive constant for which the ratio γ/c is sufficiently small (in a
sense to be made precise at a point in the argument below). We say that a set S ⊆ [n]
is good if all non-singleton components of GTd−2

\ S have each size at least γn and
contain each at least log2 n active vertices of GTd−2

. We show later that a.a.s. GTd−2
is

monosingular (see Lemma 7), and all (d− 1)-vertex sets of GTd−2
are good.

Recall that phase d− 1 consists of adding a randomly chosen perfect matching M of
the vertices of degree d− 1 in GTd−2

. We next show that if all (d− 1)-sets of GTd−2
are

good, then M a.a.s. makes GTd−2
linked in the final graph, which then, due to Lemma 5,

becomes d-connected.

Lemma 6 Suppose that all vertex sets S in GTd−2
of size d − 1 are good. Then a.a.s.

GTd−2
is linked in the final graph.

Proof. Since we condition here on the event that all vertex sets S in GTd−2
of size d− 1

are good, we may argue for a fixed graph H = GTd−2
. For each (good) (d − 1)-set S

of H let C1(S), . . . , CjS(S) be the non-singleton, connected components of H \ S. Note
that jS < 1/γ. We will prove that, given S and a partition [jS] = I ∪ J , the probability
that no edge of M joins A =

⋃
i∈I Ci(S) with B =

⋃
i∈J Ci(S) is o(n−d+1). As there are

less than nd−1 sets S and less than 21/γ = O(1) choices of I and J , this will complete
the proof.

Suppose that H contains s active vertices. Let a be the number of active vertices in
A, and b the number in B. Assume a ≤ b. Because S is good, we have a ≥ log2 n, and
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note that also a + b ≤ s. We extend the definition of m(i) to be m(i − 1) in the case
that i is odd. Similar to the proof of Lemma 4, the probability that no matching edge
joins an active vertex in A to an active vertex in B is at most

nd−1m(a)m(b)

m(s)
= O(nd−1)

√
aabb

ss
= O(nd−1)(a/s)a/2 = O(nd−1)2− log2 n/2 = o(n−d+1),

where the factor nd−1 accounts for choosing the matching edges to S.

It remains to show that a.a.s. all sets S in GTd−2
of size d− 1 are good and GTd−2

is
monosingular. We first prove that a.a.s. there are no (d− 1)-sets in GTd−2

which isolate
a relatively small subgraph other than a singleton.

Lemma 7 With probability 1 − o(1), no (d − 1)-element set S ⊆ [n] isolates in GTd−2

a subgraph containing strictly between 1 and γn vertices. In particular, a.a.s GTd−2
is

monosingular.

Proof. In the bulk of this proof, we argue about the process for t < T (defined in
Section 1), which permits us essentially to assume that such Gt has at least cn active
vertices. To justify this formally requires a little attention, and eventually uses (1).

Fix a (d−1)-element set S and an `-element set C, 2 ≤ ` < γn. We will show that the
probability that C is a union of connected components of GTd−2

\ S is extremely small,
conditional upon T = Td−2. (Note that we do not demand that C forms a connected
component.) Then later we will sum over all S and C.

For C to exist as above, all edges incident with vertices in C join to vertices in
C ∪ S. To explain the analysis, we redefine the star process to include fractional times.
In between Gt and Gt+1, introduce a sequence of graphs defined as follows. For j =
d − δ(Gt) + 1, define Gt+1/j to be the same as Gt but with a distinguished vertex v of
degree d − j + 1 randomly chosen. Then form Gt+2/j by adding an edge from v to a
randomly chosen active vertex. Then repeat for Gt+3/j, and so on until Gt+1 is formed
as required, with the random star of j − 1 arms, centred at v. During these non-integer
times, we refer to v as the current star centre. At integer times, the star is complete and
there is no current centre. All previously defined stopping times (Ti, T , etc.) remain
with respect to integer times only, but the event Tt = {T > t} is still meaningful for
fractional t. Note, however, that now Tt implies only that A(Gt) ≥ cn− d+ 1.

We first demonstrate our argument in a simplified version and obtain a bound weaker
than we need. For a fractional time t, and k ≥ 1, define Atk to be the event that t is
precisely the kth fractional time at which an edge is added with the current star centre
in C. Also define Btk to be the event that the edge added at fractional time t is the kth
edge with current star centre in C, and moreover joins to a vertex in C ∪ S. Then

P(Btk | Atk ∩ Tt) ≤
`+ d− 2

cn− d = p (4)
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since there are at least cn − d active vertices in Gt (other than v) when t < T , and at
most l + d− 2 in S ∪ C \ {v}.

Define Bk = Bk(S,C) =
⋃
t<T Btk, that is, the event that the kth edge with current

star centre in C has its other end in C ∪ S and occurs before time T . Since Bk ⊆⋃
t(Atk ∩ Tt), we have, with p as in (4),

P(Bk) =
∑

t

P(Btk | Atk ∪ Tt)P(Atk ∩ Tt) ≤ p
∑

t

P(Atk) ≤ p.

We next show that for any m ≥ 1,

P

(
m⋂

k=1

Bk
)
≤ pm. (5)

As in (4),
P(Bt2 | B1 ∩ At2 ∩ Tt) ≤ p

and so

P(B1 ∩ B2) =
∑

t

P(Bt2 | B1 ∩ At2 ∩ Tt)P(B1 ∩ At2 ∩ Tt) ≤ pP(B1) ≤ p2.

Iterating this inequality gives (5).
Unfortunately, there may be an insufficient number of star centres chosen in C during

the process to yield a large enough value of m for (5) to be useful. So we now strengthen
this argument to include the fractional times when edges join a current star centre in S
to a vertex in C. Note that there can be at most d(d − 1) such times. If at any such
time, the next edge added joins the current star centre to a vertex in C, we call this a
rare event. We will now focus on those times when the star centre in S produces a rare
event.

Given R ⊆ {1, . . . , d(d − 1)}, we can make a slight modification of the argument
above, redefining Atk to be the event that t is precisely the kth fractional time at which
the current star centre is either in C, or in S for the ith time, for some i ∈ R. Also Btk
becomes the sub-event of Atk in which the edge added to Gt has both ends in C ∪S and
at least one end in C. The result is again (5), but this is for each possible set R. For
every deterministic process in which there are m edges with both ends in C ∪ S and at
least one end in C, there exists a set R corresponding to just those edges coming from
a star centre in S. Summing over all possible D = 2d(d−1) sets R, we deduce that the
probability that there are precisely m edges occurring before time T , each with an end
in C, and such that none of these have an end outside S ∪ C, is at most Dpm.

If, as happens a.a.s. T = Td−2, then all vertices in C have degree at least d−1 in GT ,
and so at least `(d− 1)/2 edges have at least one end in C. Hence, the probability that
S disconnects C conditional upon T = Td−2 can be bounded above by

P

(
m⋂

k=1

Bk(S,C) | T = Td−2

)
≤ (D + o(1))p`(d−1)/2.
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Consequently, for each ` = 2, . . . , γn, the expected number of sets of size d − 1 of GT

disconnecting a component of size `, conditional upon T = Td−2, is bounded by summing
this over all choices of S and C, resulting in

∑

S

∑

C

P

(
m⋂

k=1

Bk(S,C) | T = Td−2

)
≤ (D + o(1))

(
n

d− 1

)(
n

`

)(
`+ d

cn− d

)`(d−1)/2

≤ Dnd−1

((en
`

)( `+ d

cn− d

)(d−1)/2
)`

= Dnd−1

(
K`

cn

)`(d−3)/2

,

where K is a suitable constant which depends on c and d only. For example, by bounding

`+ d ≤ 5`d/6 and cn− d ≥ 5cn/6, one can take K = (ed)
d−1
d−3 c−

2
d−3 .

Choose γ = c/(2K). Summing this over ` ≥ 3 and taking d sufficiently large (say
d > 7) gives the following bound on the probability (conditional upon T = Td−2) of
existence of a set of size d − 1 which disconnects in GT a component of size between 3
and γn, inclusive:

nd−1

γn∑

`=3

(
K`

cn

)`(d−3)/2

≤ nd−1

log2 n∑

`=3

(
K log2 n

cn

)3(d−3)/2

+ nd−1

γn∑

`=log2 n

2−
d−3

2
log2 n

≤ (log n)3(d−3)+2nd−1−3(d−3)/2 + nd2− log2 n = o(1).

Finally, if ` = 2 then the lower bound onm used above can be increased tom ≥ 2d−3,
yielding the estimate

Dnd−1

(
K`

cn

)2d−3

= O(n−d+2) = o(1)

on the expected number of sets S disconnecting a component C of size 2. The lemma
follows, since T = Td−2 a.a.s.

It remains to prove that, with probability 1 − o(1), for all (d − 1)-sets S, all large
components of GTd−2

\ S have many active vertices. Here “large” means with size at
least γn and “many” means at least log2 n. The remainder of the section is devoted to
proving this.

Fix a subset S ⊂ [n] with d− 1 vertices. For each time step t ≥ 0, up until the end
of phase d − 2, we consider the connected components of the graph Gt \ S. As before,
we assume t < T , so that there are at least cn active vertices remaining at time t. We
will obtain a lower bound on the number of active vertices in each component, relative
to the size of the component at that time, and a couple of other parameters including
the number of edges from the component to S. Eventually, we will show that, unless
something extremely unusual happens, the process does not form any large components
with only few active vertices.

To make this precise, we define a component of Gt \ S to be small if it has active
size less than log3 n + d + 1. For the star added to Gt, define C to be the set of small

11



            

components of Gt \S containing vertices of the star, and call the addition of the star to
Gt a rare step with respect to S if:

(i) the star centre is in a component in C, and

(ii) for some w > 0, the number of edges of the star with both ends in components in
C is exactly w + |C|.

Note that the notions of a small component and of a rare step differ from those
defined in Section 2.

In the event of such a step, we say that the star centre acquires a weight w with
respect to S. For a component C of Gt \ S, we can identify the rare steps that have
occurred from time 0 to time t and involved star centres which now belong to C. The
weight w(C) of C is defined to be the sum of the weights of these vertices.

We next show that rare steps really are rare.

Lemma 8 With probability 1 − o(1), for all (d − 1)-element sets S ⊆ [n] and all com-
ponents C of GTd−2

\ S we have w(C) < d.

Proof. Fix a subset S ⊂ [n] with d − 1 vertices and an integer w > 0. In view of
equation (1), it suffices to show that the probability that some rare steps with respect
to S of total weight w have occurred before time T is O((log6 n/n)w). Lemma 8 will
follow by taking w = d and summing over the O(nd−1) choices for S.

As in the proof of Lemma 7, we compute various probabilities conditioning on Tt.
Let Rt

w be the event that a rare step of weight w occurs at time t. We will bound
P(Rt

w ∩ Tt) by a bound on P(Rt
w | Tt).

To estimate P(Rt
w | Tt), suppose that |C| = r. Then the corresponding star has

some r+w edges involving r small components. We bound the probability of this event
as follows. First select r − 1 edges, each terminating in a distinct small component not
containing the star centre. These edges, together with the star centre, determine the r
small components used. Then select w + 1 edges, each terminating in an active vertex
contained in one of these pre-selected components. Since there are at least cn active
vertices available in the entire graph Gt, the probability that this rare step occurs at a
given time t before T is

P(Rt
w ∩ Tt) ≤ P(Rt

w | Tt) = O(log3(w+1) n/nw+1).

For a sequence of rare steps, we can use conditioning as in the proof of Lemma 7
just after (5). So the probability that i rare steps of weights w1, . . . , wi occur at times
t1 < . . . < ti < T is, with w =

∑
`w`,

P

(
i⋂

`=1

Rt`
w`
| Tti

)
= O

(
i∏

`=1

(
log3 n

n

)w`+1
)

= O

((
log3 n

n

)w+i
)
.
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Hence, summing over i ≤ w, over the O(ni) choices of t1, . . . , ti, and the bounded
number of partitions w1 + . . . + wi of w, the probability that some rare steps with
respect to S of total weight w have occurred before time T is

w∑

i=1

∑

t1,...,ti

∑

w1+···+wi=w
P

(
i⋂

`=1

Rt`
w`
∩ Tti

)
= O

(
ni
(

log3 n

n

)w+i
)

= O

((
log6 n

n

)w)
.

We will show in Section 4 the following deterministic lower bound on the number of
active vertices contained in a component. Let s(C) be the number of edges from C to
S, let k(C) be the number of vertices in C, and recall that A(C) is the number of active
vertices contained in C.

Lemma 9 For sufficiently large d, consider any deterministic trajectory of the star
d-process, and any t < T . Then for all (d − 1)-element sets of vertices S, and all
components C of Gt \ S, we have

A(C) ≥ f(C)− 4w(C)− 3s(C),

where
f(C) = min{log3 n,

√
k(C) + s(C)}.

Armed with Lemma 9 we may now quickly finish the proof of Theorem 3.

Proof of Theorem 3. By Lemma 7 and Lemma 8, a.a.s. for every subset S ⊂ [n] of
size d− 1 and every non-singleton component C of GTd−2

\ S we have

k(C) ≥ γn, w(C) < d, and s(C) ≤ d2

(the last fact is always true). Hence, by Lemma 9,

A(C) ≥ f(C)− 4d− 3d2 ≥ min{log3 n,
√
γn} − 4d− 3d2 ≥ log2 n

which proves that with probability 1− o(1), all (d− 1)-sets in GTd−2
are good.

Combining this with Lemma 6 shows that GTd−2
is a.a.s. linked in the final graph

of the random star d-process. By Lemma 7, GTd−2
is also a.a.s. monosingular. Thus,

Lemma 5 with H = GTd−2
yields that the final graph is a.a.s. d-connected, when d is

large enough, thereby proving Theorem 3.

4 A deterministic result: proof of Lemma 9

To complete the proof of Theorem 3 it only remains to establish Lemma 9. We will use
the following simple inequalities, first of which is easily proved by induction on r and
the other is elementary (the proofs are omitted).
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Lemma 10 (a) If r ≥ 1 and a1, . . . , ar ≥ d where d is sufficiently large, then
√√√√

r∑

`=1

a` ≤
r∑

`=1

√
a` − 4(r − 1).

(b) If a ≥ 4 and 0 ≤ a0 ≤ a then

√
a− a0 ≥

√
a− a0

2
.

Proof of Lemma 9. Fix a (d− 1)-element set S. We proceed by induction on t. The
inequality in Lemma 9 holds at t = 0 when all components are isolated vertices, since
they all have active size 1 and s = w = 0.

Next take any t ≥ 0 and assume that the inequality in Lemma 9 holds at time t.
Consider the star added to Gt. Let us denote it by X, and its centre by x. Suppose
firstly that x ∈ S. Let C ′ be a component of Gt \ S, and let j ≥ 0 be the number of
vertices of the star X contained in C ′. Then C ′ is also a component of Gt+1 \ S, but
in this step the functions A, s and f may change. So when viewed as a component of
Gt+1 \ S, we denote it by C. Then

A(C) ≥ A(C ′)− j, s(C) = s(C ′) + j, f(C) ≤ f(C ′) + j, w(C) = w(C ′),

where of course functions such as A(C ′) are computed before adding X and those like
A(C) are computed after. Therefore

f(C)− 4w(C)− 3s(C) ≤ f(C ′)− 4w(C ′)− 3s(C ′)− 2j ≤ A(C ′)− 2j ≤ A(C),

as required.
In the remainder of the proof we consider the case that x /∈ S. Let C denote the

component of Gt+1 \ S containing x.
Suppose that at least one of the components of Gt \ S contained in C contains at

least log3 n+ d+ 1 active vertices (that is is not small). Since X contains at most d+ 1
vertices, at least log3 n vertices must remain active in C, and thus A(C) ≥ log3 n ≥
f(C)− 4w(C)− 3s(C), as required. So for the remainder of the proof, we may assume
that all components of Gt \ S contained in C are small.

Note that for every such component C ′ there are two possibilities. If C ′ received a star
centre at some time in the past, then it has a vertex of degree d and so k(C ′) + s(C ′) ≥
k(C ′) ≥ d + 1. Otherwise, all edges incident with vertices in C ′ must join to S, from
which it follows that k(C ′) = 1. We then call C ′ a 1-component. If the only vertex in C ′

becomes inactive upon the addition of X, and is not x, then it must have been incident
with all d − 1 vertices of S, and so k(C ′) + s(C ′) = d. All the other components, that
is, 1-components either containing x, or remaining active in Gt+1, will be called spare.

Suppose that X joins m spare components and r other components C1, . . . , Cr of
Gt \ S. It follows that

k(C`) + s(C`) ≥ d, (6)
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for each ` = 1, . . . , r.
We next examine how many vertices can become inactive when X is added. Let w0

denote the weight of x after this step. By definition,

w0 = max{|E(X)| − r −m, 0} ,

so

|E(X)|+ 1 = |V (X)| ≤ r +m+ w0 + 1. (7)

But in all cases m− ξ of these vertices are 1-components of Gt \S which remain active,
where

ξ =

{
1 x is in a 1-component,

0 otherwise.

Hence the number of vertices which become inactive when X is added is at most r +
w0 + 1 + ξ. Since there are initially A(C`) active vertices in C`, and one in each of the
m spare 1-components, we have

A(C) ≥
(

r∑

`=1

A(C`)

)
+m− r − w0 − 1− ξ. (8)

We aim to show that the component C of Gt+1\S satisfies the inequality in Lemma 9.
Define k` = k(C`), s` = s(C`) and w` = w(C`) for 1 ≤ ` ≤ r, and

s0 = s(C)−
r∑

`=1

s`,

and note that

m = k(C)−
r∑

`=1

k`

and

w0 = w(C)−
r∑

`=1

w`.

We examine three cases for the rest of the proof.

Case 1. r = 0
In this case we have k(C) = m, w0 = 0 and ξ = 1, and, by (8), we will be done if

m+ 3s0 ≥
√
m+ s0 + 2. (9)

This easily holds for s0 ≥ 1. Otherwise, we have m = d+ 1 and (9) is valid for d ≥ 3.

Case 2.
√
k` + s` < log3 n for all 1 ≤ ` ≤ r.
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Consequently, f(C`) =
√
k` + s` for 1 ≤ ` ≤ r. By the induction hypothesis,

A(C`) ≥ f(C`)− 4w` − 3s` =
√
k` + s` − 4w` − 3s`

for 1 ≤ ` ≤ r. By (6), Lemma 10 applies, and together with (8) implies

A(C) ≥
(

r∑

`=1

√
k` + s`

)
− 4(w(C)− w0)− 3(s(C)− s0) +m− r − w0 − 1− ξ

≥
√
k(C) + s(C)−m− s0 − 4w(C)− 3s(C) + 3r + 3s0 + 3w0 +m− 5− ξ

≥
√
k(C) + s(C) − 4w(C)− 3s(C) + 3r +

5s0

2
+ 3w0 +

m

2
− 5− ξ

≥ f(C) − 4w(C)− 3s(C) + 3r +
5s0

2
+ 3w0 +

m

2
− 5− ξ.

Hence the required inequality in Lemma 9 follows provided

6r + 5s0 + 6w0 +m ≥ 10 + 2ξ. (10)

Note that s0 is at least the number of edges in Gt from the m spare 1-components
to S. But for these components, all incident edges go to S. So, if m ≥ 1, we have

s0 ≥ δ(Gt) = dGt(x) ≥ d− (r +m+ w0) (11)

by (7), because |E(X)| = d− dGt(x). Hence

6r + 5s0 + 6w0 +m ≥ 5r + d+ 4s0 + 5w0 ≥ 5 + d,

which implies (10) when d ≥ 7. So we may assume m = 0, which gives 2 ≤ |E(X)| ≤
r + w0 by (7), and by the fact that δ(Gt) ≤ d− 2. This, again, implies (10).

Case 3.
√
k1 + s1 ≥ log3 n.

Here f(C1) = log3 n, and for 2 ≤ ` ≤ r we have by the induction hypothesis and (6)
that A(C`) ≥ f(C`)− 4w(C`)− 3s` ≥

√
d− 4w(C`)− 3s`, and so (8) implies

A(C) ≥ log3 n− 3(s(C)− s0)− 4(w(C)− w0) + (r − 1)
√
d+m− r − w0 − 1− ξ.

So, we are done if

(r − 1)
√
d− r + 3s0 + 3w0 +m ≥ 1 + ξ. (12)

Since the right hand side of (12) is at most 2, it is immediately satisfied if r ≥ 2 and
d ≥ 16. For r = 1, inequality (12) follows unless s0 = w0 = 0. Thus, we are left with
having to show m ≥ 2 + ξ under the conditions r = 1 and s0 = w0 = 0. If m ≥ 3,
this is trivially true. If m = 1 or m = 2, we note that (11) is still valid which yields a
contradiction for d ≥ 4. If m = 0, then a component of Gt \ S contains the entire star
X, which contradicts the assumption w0 = 0, as X has at least two edges.
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