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ABSTRACT: A t-spanner of an undirected, unweighted graph G is a spanning subgraph S of Gwith the added property that for every pair of vertices inG, the distance between them in S is atmost t times the distance between them in G. We are interested in finding a sparsest t-spanner.In the general setting, this problem is known to be NP-hard for all t ≥ 2. For t ≥ 5, the problemremains NP-hard for planar graphs, whereas for t ∈ {2, 3, 4}, the complexity of this problemon planar graphs is still unknown. In this paper we present a polynomial time approximationscheme for the problem of finding a sparsest 2-spanner of a 4-connected planar triangulation.
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1 Introduction
A t-spanner of an undirected, unweighted graph G is a spanning subgraph S of Gwith the added property that for every pair of vertices in G, the distance betweenthem in S is at most t times the distance between them in G. We are interested infinding a sparsest t-spanner. This problem has many applications in areas as far afieldas distributed computing, networks, computational geometry, robotics and biology[1, 12, 13]. We refer to the quantity t as the dilation of the spanner. The cardinality ofthe edge set of a spanner denotes its size.Peleg and Ullman [13] introduced the concept of graph spanners as a means of con-structing synchronisers of hypercubic networks. They showed that the d-dimensionalhypercube has a 3-spanner with fewer than 7 × 2d edges. Duckworth and Zito [8]improved this upper bound result to at most 4× 2d and gave the first non-trivial lower
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bound results for finding sparse hypercube 3-spanners. In recent years, there has beena great deal of research in this area and many complexity results are now known.For general graphs, Peleg and Scha̋ffer [12] showed that the problem of findinga sparsest 2-spanner (S2S) is NP-hard. Since then, Cai [4] extended this result toinclude all dilations greater than 2. Cai and Keil [5] gave a linear time algorithm forS2S in graphs with maximum degree ∆ ≤ 4. They also showed that finding a sparsest
t-spanner of a graph with ∆ ≥ 9 is NP-hard for all t ≥ 2. Brandes and Handke[3] showed that for spanner dilations greater than 4, the problem remains NP-hard onarbitrary planar graphs. For t ∈ {2, 3, 4}, the complexity of the problem of finding asparsest t-spanner of a planar graph remains open.One way of dealing with the NP-hardness of an optimisation problem is to relaxthe optimality requirement and look for the existence of polynomial time algorithmswhich guarantee solutions whose size is close to that of the optimum. In what followswe say that an optimisation problem Π is approximable with (approximation) ratio ρ ifthere is a polynomial time approximation algorithm A that, for each input x, returns asolution of sizeA(x) withA(x)ρ−1 ≤ OPT(x) ≤ A(x)ρ, where OPT(x) denotes thesize of an optimal solution. Kortsarz [10] showed that for arbitrary n-vertex graphs,S2S is NP-hard to approximate with approximation ratio O(log n).In this paper we consider the approximability of finding a sparsest 2-spanner of a4-connected planar triangulation (S2S(4CPT)). After giving a number of polynomialtime reductions, we show how to exploit one of these reductions to devise a familyof polynomial time approximation algorithms Aε having performance ratio 1 + ε, forevery ε > 0. Such a family is called a polynomial time approximation scheme (PTAS).In Section 2 we introduce our graph theoretic notations and concepts. We also de-fine a number of optimisation problems that are related to S2S. In Section 3 we presentpolynomial time computable reductions of the S2S problem to these related optimi-sation problems. Section 4 contains the main result of this paper. After reviewing awell established technique for devising a PTAS for a given NP-hard problem on pla-nar graphs, we apply it to one of the problems under consideration and subsequentlydevise a PTAS for S2S(4CPT).
2 Preliminaries
The majority of our results rely upon the structural properties of 4-connected planartriangulations. In this section we give some basic definitions and remind the reader ofa few well known properties of such graphs. For other basic graph theory definitionssee (for example) [6].A 4-connected planar triangulation G is a maximally planar triangulated graphwith the additional property that it does not contain any separating triangles i.e. cyclesof length 3 which are not faces. It follows directly from the definition that such graphson n vertices have 3n − 6 edges, 2n − 4 faces (all of which are triangles) and everyedge belongs to precisely 2 triangles.Given a planar graph G, we construct its dual D(G) by representing each face of Gas a vertex of D(G) and connecting two vertices with an edge if and only if the twofaces of G represented by these two vertices share an edge of G. It is immediate that
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if G is a 4-connected planar triangulation on n vertices, then D(G) is a planar cubicgraph on 2n− 4 vertices.The face-edge-incidence graph of a planar graph G is a bipartite graph, B(G) =
(V1, V2, E), such that each edge of G is represented by a vertex v1 ∈ V1 and eachface of G is represented by a vertex v2 ∈ V2. An edge of B(G) connects v1 to v2 ifand only if the edge of G represented by v1 is part of the face of G represented by v2.It is immediate that if G is a 4-connected planar triangulation, then B(G) is a planarbipartite graph which is 2,3-regular i.e. every vertex in V1 has degree 2 and everyvertex in V2 has degree 3. We refer to a graph with these properties as a (2, 3)-regularbipartite graph.For a graph G, its line graph L(G) is constructed by representing each edge of Gby a vertex in L(G) and two vertices u, v ∈ V (L(G)) are connected by an edge ifand only if the edges of G represented by u and v share a common end-point in G.It is immediate that the line graph of the face-edge incidence graph of a 4-connectedplanar triangulation is planar and cubic.In Section 3 we reduce S2S(4CPT) to other well known graph theoretic optimisationproblems. We therefore include the following definitions :
• Maximum Edge Star Packing (MESP) [14] : A star packing (SP) of a graph H isa subgraph F of H such that each component is a star (i.e. is isomorphic to K1,rfor some r; we refer to K1,r as an r-star). The problem MESP is then to find a SPwith the maximum number of edges.
• Maximum Induced Matching (MIM) [14] : An induced matching (IM) of a graph
H is a vertex disjoint set of edgesM ⊆ E(H) such that no two edges inM arejoined by an edge in E(H) \M. The problem MIM is then to find an IM with themaximum number of edges.
• Maximum k-Independent Set (MkIS) [11] : For k ≥ 1, a k-independent set (kIS)of a graph H is a set of vertices I ⊆ V (H) such that for every pair of vertices in
I , the distance between them is at least k+ 1. The problem MkIS is then to find a
kIS with the maximum number of vertices.

3 Reductions
In this section we show that the problem S2S(4CPT) is polynomial time reducible toboth MESP and MIM. We also give a number of consequences of these reductions.Finally we note that the problem of finding a maximum induced matching of a graphis reducible to finding a maximum 2-independent set of its line graph.
3.1 Maximum Edge Star Packing
Throughout this section we will use G to represent a 4-connected planar triangulationand D(G) to represent its dual graph. Firstly, we reduce the problem S2S(4CPT) toMESP.LEMMA 3.1A graph S is a sparsest 2-spanner of a 4-connected planar triangulation G if and only
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if the edges of the dual of G corresponding to the edges in E(G) \ E(S) belong to amaximum star packing of D(G).
PROOF. We note that the proof of this result is tailored specifically to the class ofgraphs under consideration since it relies heavily on the fact that there is a one-to-onecorrespondence between edges of G and edges of D(G). For an edge e ∈ E(G), wedenote the corresponding edge inE(D(G)) by e′. In order to prove the lemma we willassociate a star packing of D(G) having |E(G)|− |S| edges with any given 2-spanner
S of G and a 2-spanner of G having |E(G)| − |F| edges with any given star packing
F of D(G).Let S be a 2-spanner of G. The edges in E(D(G)) corresponding to edges in
E(G)\E(S) form a star packingF . Since any edge e ∈ E(G)\E(S) must be spannedby two other edges f, g ∈ E(S), any subset of E(F) may not form a path of lengthgreater than 2. Suppose, by contradiction, the edge e′ represents an internal edge of apath of length greater than 2 in F . The edges f ′, g′ ∈ E(D(G)) corresponding to thetwo edges spanning e ∈ E(G) \ E(S) are both incident with the same end-point v ofthe edge e′. Therefore the degree of v in D(G) is at least 4, contradicting the fact that
D(G) is a cubic graph. Hence the components of F are r-stars for r ∈ {1, 2, 3}.Conversely let F be a star-packing of D(G) and define S to be the graph obtainedfromG by removing all edges inE(G) associated with edges in F . Each deleted edge
e of G is spanned by the edges in G corresponding to the two non-star edges incidentwith the leaf of the star containing e′.
The reduction described above has the following useful consequence.
LEMMA 3.2Any 2-spanner of an n-vertex 4-connected planar triangulation contains at least 3

2 (n−
2) edges.
PROOF. The greatest possible number of edges that can be deleted from G to form a2-spanner occurs when all stars in D(G) are 3-stars. In this instance, since every staris vertex disjoint and covers 4 vertices, the greatest number of vertex disjoint 3-stars,is given by

|V (D(G))|
4

=
n− 2

2
,

and since each star has 3 edges, this gives a lower bound on the size of an optimum2-spanner, |SOPT |, of G
|SOPT | ≥ 3 (n− 2)− 3(n− 2)

2
=

3(n− 2)

2
.

We [7] combined a greedy algorithm for MESP with the reduction in Lemma 3.1 andthe bound in Lemma 3.2 to show that S2S(4CPT) is approximable within 5
4 .
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3.2 Induced Matchings
Next we show that S2S(4CPT) is polynomial time reducible to finding a MIM of theface-edge incidence graph associated with the input graph. In what follows, let Grepresent a 4-connected planar triangulation and let B(G) = (V1, V2, E) representthe face-edge-incidence graph of G.
THEOREM 3.3The problem of finding a sparsest 2-spanner S of a 4-connected planar triangulation
G is polynomial time reducible to finding a maximum induced matching in the face-edge-incidence graph of G.
PROOF. Given any 2-spanner S of G, we show that this represents an induced match-ingM of B(G). Edges in E(G) \E(S) represent edges inM and more specifically,a matching edge has its endpoints at the vertex representing the deleted edge and thevertex representing the triangle whose remaining edges span the deleted edge.A matching edge (v1, v2) of B(G) represents a deleted edge of G as describedabove. Since v2 represents the triangle whose remaining edges span the deleted edge,there cannot be any other matching edges incident with any other neighbour of v2.This would indicate that the edges represented by these vertices would be deletedin G contradicting the fact that they span the missing edge. The edge representedby v1 is part of another triangle represented by v′2. No other matching edge may beincident with v′2 since this would indicate that (v1, v2) was not present in the matchingcontradicting the fact that it represents a deleted edge of G. The resulting matching istherefore induced.Given an induced matching of B(G), this represents a 2-spanner of G. A matchingedge (v1, v2) indicates that the edge e of G represented by v1 has been deleted. Sincethe matching is induced, no matching edge may be present that is incident with thevertices of V1 that represent the spanning edges of e.

The reduction from the S2S problem to the MIM problem holds in a more generalsetting than described here [15]. For our purposes we need only consider the specialcase when the input graph is a 4-connected planar triangulation. Using this reduction,and analysing a simple greedy heuristic that finds a large induced matching in B(G),we [7] showed that S2S(4CPT) is approximable with ratio 6
5 .

3.3 2-Independent Sets
We now establish a relationship between MIM and M2IS. Combining this result withthe one described above will enable us, in the next section, to prove our algorithmicresult.
LEMMA 3.4An induced matching M of a graph G is maximal if and only if the vertices of
L(G) (the line graph of G) corresponding to the the edges of M are a maximum2-independent set of L(G).
PROOF. Pairs of vertices at distance at least 3 in L(G) correspond to independent
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edges not joined by any other edge in G. This implies that the induced matchings of
G are in one-to-one correspondence with the 2-independent sets in L(G).
4 Approximation Schemes
In this section we prove that there exists a PTAS for the S2S(4CPT) problem. Ourmethod uses the results in Section 3 together with a technique developed by Baker[2] who proved the existence of a PTAS for a number of graph theoretic problems onplanar graphs. In all cases the original planar graph is decomposed into subgraphswith simpler combinatorial structure. Baker describes in detail a PTAS for finding amaximum independent set of a planar graph and then shows how, with minor modi-fications, the same technique may be used to devise a PTAS for several other graphtheoretic problems on planar graphs. We give a brief overview of this technique beforeshowing the minor modifications that are necessary in order to prove that S2S(4CPT)admits a PTAS. Before describing the algorithmic details, we provide the reader withthe relevant definitions.A graph G is outerplanar if it can be drawn in the plane in such a way that notwo edges cross and all its vertices belong to the external face. An edge of G willbe external (resp. internal) if it lies (resp. does not lie) on the external face. Cycleswith any number of non-crossing chords are examples of outerplanar graphs. An h-outerplanar graph may be defined as follows: A 1-outerplanar graph is simply anouterplanar graph as described above. Given a planar embedding E of a graph G then
G is said to be h-outerplanar if after the removal of the vertices in the outer face of
E along with their incident edges, every connected component is at most (h − 1)-outerplanar and at least one such component is (h− 1)-outerplanar.Baker’s technique relies on the fact that, for the problems under consideration, thereexists a linear time algorithm to solve these problems optimally when the input is re-stricted to outerplanar graphs. This algorithm, which is based on dynamic program-ming, can be generalised to show that the problems under consideration are solvableoptimally in time 2O(h)n on h-outerplanar graphs. Once this algorithm has been es-tablished, the PTAS for planar graphs is obtained by decomposing the planar graphinto a number h-outerplanar subgraphs (where h can be chosen to be O(log n)), solv-ing the problem exactly on these subgraphs and showing that the combination of thesesolutions gives a solution for the original problem that is very close to the optimalone. Baker’s detailed description of the algorithm for solving optimally the maximumindependent set problem (or M1IS in our notation) for h-outerplanar graphs may beapplied with minor modifications to MkIS (for k constant). Details of the modifi-cations are given in the next two lemmas. In fact, Baker [2] states that the dynamicprogramming technique used will work in general for problems that involve local con-ditions on nodes and edges.
LEMMA 4.1Let h and k be positive integers, with k being a fixed constant. Given an h-outerplanarembedding of an h-outerplanar graph G with n vertices, a maximum cardinality k-independent set of G can be obtained in time O((k + 1)hn).
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PROOF. We describe in detail the algorithm for h = 1 and sketch the proof for h > 1.Let G be an outerplanar graph in which any bridge has been replaced by a pair ofparallel edges. If G is 2-connected, let T = T (G) be the tree having one leaf forevery external edge in G, and one internal vertex for every face of G. Two vertices uand v in T are connected by an edge if and only if
• u and v correspond to two faces sharing an edge or
• u and v represent a face and an external edge of this face.

If G is not 2-connected the definition given so far generates a forest. In this case Tis obtained from this forest by repeatedly connecting, with an edge, distinct pairs ofvertices corresponding to faces that meet at a cutpoint (with the only constraint thatthe edge should not create a cycle) until all the trees in the forest have been joined.In all cases, a root of T and its so called leftmost child can then be chosen arbitrarily.This choice induces an ordering on the vertices of T . In particular the ordering on theleaves of T corresponds to traversing G starting from the leftmost vertex belonging tothe component corresponding to the chosen leftmost child of the root of T and thenfollowing the external edges of G in an anticlockwise directed walk. Each leaf in Tis labelled with the oriented external edge it represents. Each internal vertex v of T islabelled by the pair (i, j) if i and j are (respectively) the first and the last nodes in thelabels of its children. The vertex v represents the subgraph of G induced by i, j andall vertices in the directed walk from i to j.A k-independent set is computed as follows. For each vertex v in T with labelling
(i, j), associate a table giving the sizes of a k-independent set I , for the subgraphrepresented by the subtree rooted at v, such that I is maximal subject to specifieddistances from i and j to the vertices in I . The O((k + 1)2) values in the table arecomputed using dynamic programming, scanning all the vertices in the subtree rootedat v and eventually merging the tables associated to the children of v to form theentries of the table for v. In particular, the table for a leaf l in T contains entriescorresponding to the (illegal) case in which both endpoints of the edge correspondingto l are chosen to be in the k-independent set, the (legal) cases in which only oneendpoint is chosen or neither of them is chosen and those (illegal) cases in whichneither of the endpoints is chosen but there is a node in the k-independent set for thegiven edge at a positive distance at most k− 1 from at least one of the endpoints. Theprocedure that combines the tables for single edges to compute the k-independent setof the given outerplanar graph can be described using exactly the same pseudo-codeas in [2, Fig. 7]. It is clear that the only difference between our algorithm and theone for independent set [2] is in the way the values in the tables corresponding to facevertices in T are computed as a functions of previously computed values (functions
merge and adjust in Baker’s code). In particular, we need to keep track of whether ior j are at distance d ∈ {0, . . . , k} from a vertex in the k-independent set.In [2], Baker also gives full details on how to extend the algorithm described aboveto solve the maximum independent set problem (or M1IS in our notation) optimallyon h-outerplanar graphs. The algorithm is similar to the one for outerplanar graphs inthat it uses a particular combinatorial structure (similar to the tree T above) to guidethe construction of a number of tables that keep the information that is needed in order
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to compute the desired optimum. However the single tree T is replaced by a familyof trees, one for each level in the h-outerplanar graph. Furthermore, the simple ideaof recursing on the vertices of T , computing the tables for the leaves of T and thenmerging them to compute the tables for the internal vertices of T must be made morecomplex in order to achieve the desired aim. The same approach can be used for k-independent sets, the only difference being in the implementation of the procedures
adjust, merge, create and extend defined in [2, p. 171-172].
LEMMA 4.2M2IS admits a PTAS if the input graph is planar.
PROOF. The vertices of the input planar graphG are arranged into layers. The verticesof the external face of G are in layer 1. The vertices in layer i are defined inductivelyas external vertices of the graph obtained by deleting the vertices in layers 1 . . . i −
1. Denote the set of vertices in layer i by Vi. The graph induced by the verticesin h consecutive layers is an h-outerplanar graph. Let U be a 2-independent set ofmaximum cardinality in G and let h be an even constant. Since the sets
{i ∈ N : i ≡ 2r − 1 mod h+ 2} ∪ {i+ 1 ∈ N : i ≡ 2r − 1 mod h+ 2} and

1 ≤ r ≤ h/2 + 1

partition the set N, we have
h/2+1∑

r=1

∑

i≡2r−1 mod h+2

|(Vi ∪ Vi+1) ∩ U | = |U |.

Therefore there must exist an r with 1 ≤ r ≤ h/2 + 1 such that
∑

i≡2r−1 mod h+2

|(Vi ∪ Vi+1) ∩ U | ≤ |U |
h/2 + 1

=
2|U |
h+ 2

.

Let Wi denote the set of vertices belonging to layers j, where max{0, i−h} ≤ j < i.The graph induced by Wi is h-outerplanar. We use the algorithm described in Lemma4.1 to solve optimally M2IS in Wi. Let DPi denote an optimum 2-independent set inthis graph. The polynomial time approximation scheme returns the set
⋃

i ≡ 2r − 1 mod h+ 2
DPi.

As |DPi| ≥ |Wi ∩ U | for all i, the inequality above implies that
∑

i

|DPi| ≥
∑

i

|Wi ∩ U |

= |U | −
∑

i≡2r−1 mod h+2

|(Vi ∪ Vi+1) ∩ U |

≥ |U | − 2|U |
h+2 = h

h+2 · |U |.
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Therefore

|U |∑

i≡2r−1 mod h+2

|DPi|
≤ h+ 2

h
= 1 +

2

h
.

COROLLARY 4.3MIM admits a PTAS for (2, 3)-regular bipartite graphs.
PROOF. Given a (2, 3)-regular bipartite graph G, construct its line graph L(G). UsingBaker’s approach we find a large M2IS in L(G). The edges of G corresponding tothe vertices in the 2-independent set form an induced matching whose size is at least
1− (h+ 2)−1 times the size of an optimum induced matching in G.
THEOREM 4.4S2S(4CPT) admits a PTAS.
PROOF. The result of Lemma 3.2 gave us a lower bound on the size of a sparsest2-spanner of a 4-connected planar triangulation G, SOPT (G), and we have

SOPT (G) ≥ |E(G)|
2

.

For an upper bound, we construct the face-edge incidence graph of G, B(G). Fromthe results above we can find an induced matchingM in B(G) with
|M| ≥ MOPT (B(G))

1 + ε

whereMOPT (B(G)) is the maximum size of an induced matching of B(G). Usingthe reduction in Theorem 3.3 this matching represents a 2-spanner S of size |S| andwe have
|S| ≤ |E(G)| − MOPT (B(G))

1 + ε

=
|E(G)| −MOPT (B(G)) + ε|E(G)|

1 + ε

=
SOPT (G) + ε|E(G)|

1 + ε

≤ SOPT (G) + 2εSOPT (G)

1 + ε
.

This implies
|S|

SOPT (G)
≤ 1 +

ε

1 + ε
.
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5 Conclusions and Open Problems
In this paper we have considered the approximability of the problem of finding a spars-est 2-spanner of a 4-connected planar triangulation. We have shown that the problemof finding a sparsest 2-spanner of a 4-connected planar triangulation is polynomialtime reducible to two other known graph theoretic optimisation problems namely,maximum edge star packing in planar cubic graphs and maximum induced matchingin 2,3-regular bipartite planar graphs. By means of these reductions it is possible toprove a couple of non-trivial approximation results for this problem [7]. The possibil-ity of an improved approximation heuristic was left open in [7]. By exploiting one ofthe aforementioned reductions, we have shown that the problem of finding a sparsest2-spanner of a 4-connected planar triangulation admits a polynomial time approxi-mation scheme (PTAS). For NP-hard optimisation problems, a PTAS is one of thebest types of algorithm one can hope for [9]. Unfortunately we do not know whetherS2S(4CPT) is NP-hard. Therefore the existence of a PTAS leads to the obvious openquestion of whether the problem can actually be solved optimally in polynomial time.Further unanswered questions concern the existence of similar schemes (or even poly-nomial time exact algorithms) for the problem of finding a sparsest t-spanner of a4-connected planar triangulation or indeed, a general planar graph.
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