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Abstract: Understanding the dynamics of network evolution
rests in part on the representation chosen to characterize the
evolutionary process. We offer a simple, three-parameter
representation based on subgraphs that capture three important
properties of social networks: leadership, team alignment or
bonding among members, and diversity of expertise.  When
plotted on this representation, the evolution of a typical small
group such as start-ups or street gangs has a spiral trajectory,
moving toward a tentative fixed point as membership increases to
two dozen or so. We show that a simple probabilistic model for
recruitment and bonding can not explain these observations, and
suggest that strategic moves among group members may come
into play.

Social networks, small groups, dynamics, evolution, models

  I      INTRODUCTION

Small groups are defined here as a collection of less than
100 individuals or agents. They are typically formed by one or
two individuals, who then enlist other colleagues for support
and expertise.  Examples are start-ups, non-profit initiatives,
small businesses, street gangs and terrorist cells. The most
obvious goal of the leadership is to foster a shared vision by
expanding the group’s capabilities through recruitment, at the
same time increasing alignments between members to improve
group effectiveness. At some juncture, the capabilities of the
group may also be broadened through diversification [15]. We
propose three parameters that capture these aspects of group
evolution, and provide a useful representation for studying
differences between small groups. Using this representation,
the observed evolution of a typical small group is shown to
have a spiral trajectory. This result is not consistent with
recruitment and alignments (bonding) among members
occurring with fixed probabilities. Rather, we suggest that
small group formation likely involves more complex
processes, such as members engaged in strategies to improve
their influence in the group.

         II    THE REPRESENTATION

  Let Gn be an unlabeled graph with n vertices. Each vertex
vi of Gn corresponds to a group member (i) and each
undirected edge e(i,j) indicates a symmetrical relationship
between two group members. Each individual will have at
least one relation to another. We assume that Gn will be a

connected graph. This characterization is very simple, and can
easily be augmented using directed edges, for example. If Gn

is not stationary, but is evolving, we so indicate by Gn
+.

Unfortunately, even with our simple characterization, the
number of different graphical forms explodes rapidly as the
number of vertices increases. A group of only 8 individuals
has over 10,000 different graphs for reciprocal relationships;
for 12 individuals, there are over 100 billion; for 16 members
the number explodes to O[1023]. Hence pictorial
representations are implausible and must be replaced by
focusing on a few key parameters that capture regularities
underlying classes of graphical forms. Over the past decade or
so, popular characterizations have included degree
distributions, edge probabilities, characteristic path lengths,
clique number, diameter, chromatic numbers, spectral
coefficients – there are dozens choices [13, 18]. In the area of
social networks, such choices have led to distinctions such as
random graphs [4], scale-free or multiscale graphs [2, 10],
small world graphs [23] and peer-to-peer graphs [5]. Almost
all of these parameterizations are applied to characterize large
scale graphs (>>1000 nodes) and are of limited value for small
group studies (< 100 nodes.) One notable exception are motifs
that appear as induced subgraphs in large networks [13, 24] or
the studies of subgraph cascades [11, 22]. Our proposal
follows these leads, identifying three types of subgraphs that
capture important characteristics of small group formation and
development.

Our proposal is that the evolution of a group Gn
+ -> G+

n+1

entails the interplay of leadership, team building, and
heterogeneity in expertise.  For example, the members of a
football team include those proficient in running and catching,
others are effective blockers, there is the quarterback, the
kicker, etc. All of these aptitudes must be highly coordinated,
with not many, but only one leader calling the plays.

Similarly, a start-up company needs not only the initial
visionary leadership, but usually venture capital financing,
special expertise for product development, etc. Again, the
successful start-up functions smoothly as a highly motivated
team. There is leadership, close alignments among team
members, and a range of different talents. Each of these three
factors can be associated with different types of subgraphs,
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which in turn can be used to parameterize the group structure.
Accordingly, we define the following three parameters of a
group:

A. Leadership L

Our choice is based on vertex degree, di, with the vertice(s)
having the highest degree taken as the leader(s) [21]. The
motivation is that small groups are usually created by one
individual who then recruits others. Start-ups are typical: the
founder maintains control and in these initial stages is the hub
of the group. The graphical form is a “star” subgraph Sk having
one dominant vertex (the founder) and k-1 vertices all of
degree one (the first recruits). If Gn = Sk, the leadership index
for Sk is defined to be “1”.  Following Freeman [8], the
leadership index for any graph is then given by:

     L = (dmax − dii=1

n∑ ) / ((n − 2)(n −1))             1.

where di is the degree of vertex vi. This relation sums the
difference in the degree of a vertex with respect to the
maximum degree in Gn, and normalizes this sum by the

maximum possible sum,    ((n −1
i=1

n∑ ) −1) = (n − 2)(n −1)

which is derived from the case when Gn = Sn.

Figure 1. Subgraphs that capture the key properties of groups and their
evolution. Left: Graphs with maximal or near-maximal values of the L, B, D
parameters. Right: new L, B, D values when subgraphs at left are revised
with one edge addition (top), with one deletion (middle), or with two
deletions (bottom.)

As discussed by Freeman [8] several other variations of this
simple index are possible. For large networks, especially when
one desires a measure of the influence a vertex has over the
spread of information, path-length measures of “centrality” are
more compelling (e.g. [14].) Our choice for representing small
groups, however, captures the essence of a basic sub-graph
motif, typical of start-ups, street gangs, and terrorist cells in
their early stages [1, 19, 25]. Although here we only consider
networks with strong bi-directional edges, the leadership index
can easily be amended for graphs with directed edges (e.g.
hierarchical trees.) Such situations are common in military or
business organizations. In these cases, the leadership measure
should be revised to count the total in-degree for each vertex.

B. Bonding B

  As team is built and the small group grows, members find
affinities based on common goals. In small groups, these
alignments are Granovetter’s strong bonds [9], which are
represented as new edges between vertices in Gn

+. With
increasing connectivity, if vertex vk is joined to both vertices
vi and vj, then in social networks the likelihood increases that
vi and vj are also joined. (In other words, if the friend of your
friend is also your friend, then you belong to a tightly bonded
clique.) A popular measure for this clustering of vertices
about a vertex is the number of triangles about that vertex,
normalized by the maximum achievable by a graph with the
same number of (directed) paths of length 2:

      B = 6 * (# triangles) / (# paths _ length _ two)              2.

with the factor “6” needed to correct for the number of
(directed) paths associated with any triangle [13]. Note that if
Gn is the fully connected graph Kn, then bonding B i s
maximal with value “1”, whereas for the “star” graph Sn or
for any tree Tn, the bonding will be zero.  Hence when L is
one, B will be zero, and vice versa. This interdependence
among these two parameters, and also the third parameter D
described below, suggests that a useful dimensionality
reduction in the representation is possible, as will be seen
shortly.

Other definitions of bonding could be used. For example,
the number of triangles could be calculated (and normalized)
locally about each vertex and summed over all vertices. (This
is the clustering coefficient used by Watts and Strogatz [22].)
A table by Newman [13] compares the values of three
versions of “clustering coefficients”, showing high
correlations over most of their ranges. For our study, the
definition (2) typically used in describing social networks
appears to be the most sensitive to the different types of
observed small group evolution effects.

C.  Diversity (or heterogeneity) D

 In the early stages of group formation, at some point there
is the need to add additional expertise beyond that of the
initial recruits. For example, start-ups will seek VC support;
or terrorist cells, such as the Madrid cell, will need access to
explosive devices [1]. Such needs for diversity bring small
teams into the evolving group. A “bow-tie” illustrates our
diversity measure (Fig 1.) The minimum unit is the dipole K2

consisting of two connected members forming a partnership
or “mini-team”.  Diversity emerges when two such dipoles
are separated by a minimum of two edge steps, which we call
independent dipoles. Diversity increases with an increasing
number of such pairs of independent dipoles. Note that we
have excluded counts based on pairs of individual vertices
separated by two or more edge steps, as occurs in the star Sn

graph above. These vertices of degree one will be considered
as “new recruits” – a category discussed later. To obtain the



diversity measure, the number of pairs of independent dipoles
in Gn with n ≥ 4  are normalized using the count of the
number of induced squares in the complete bipartite graph

KF[n/2], C[n/2] as follows:

   D= Sqrt[(# independent _ dipoles) / (1
2
* n
2
(n
2
−1))2 ]         3.

It is clear that each pair of independent dipoles in a graph
corresponds precisely to an induced square (i.e. a closed path
of length 4 with no diagonals) in the complement of the graph.
This number is maximized, overall graphs on n vertices when
n is even by the complete bipartite graph [20]. (Note that when
n is odd, the Floor(F) and Ceiling(C) of n/2 apply.) The square
root in the definition is used to bring the measure into a more
appropriate range for comparison between graphs that are of
the density we will be considering, but does not change the
maximum possible value of D, namely “1”.  (In the results to
follow, we computed the denominator in expression (3)
rounded to the nearest even integer. This procedure was a
convenient approximation for cases when n was odd.)

Again, like the L and B parameterizations, other measures
related to our diversity measure have been proposed. For
example, Caldarelli et al [6] also count 4-cycles, but in the
graph Gn, not its complement. Like our diversity measure, the
intent is to unveil hidden, higher-order properties of complex
networks. But the motivations underlying the two measures are
quite different.

Figure 2. Regions of some familiar graphs are indicated on the projection of
L, B, D onto the 1, 1, 1 plane. The blue circle indicates the terminal
equilibrium location of evolving small groups.

D.  The L, B, D  simplex:

The interdependence of the L, B, D parameterizations have
already been noted (see also Fig 1.)  Without excessive loss
of information, we can project the L, B, D values onto their
<1,1,1> plane as follows:

          l = L/(L + B + D)
         b = B/(L + B + D)                                        4.
         d = D/(L + B + D).

Fig. 2 illustrates. Here the simplex has been divided  into
nine parts, with the interior triangle roughly corresponding to
some common types of graphs. The interior triangles near
each vertex correspond to regions of dominance of one
parameter. For example, if l >> b, d, then the region abuts the
l = 1 point and includes variations on star-like subgraphs Sn.
Similarly, near b = 1, we find the complete graphs Kn, and
near d = 1 are rings Rn (i.e. graph cycles) or “umbels” Un.
The latter are extreme cases of sparse graphs where clusters
of small complete graphs are linked through one central
vertex.

Also shown on the plot by a blue circle is the approximate
equilibrium location for small groups. Note that this location
is on the leadership side of the d, l bisector through b = 1,
roughly on the partition l > b,d. and well to the right of the
region of small Erdös-Rényi random graphs. (The random
graph area illustrated is for 20 vertex graphs of varying
probabilities; as n increases, the region moves toward l = 0.)

Figure 3. Three evolutionary trajectories (blue) show different probabilities of
bonding (30% largest circles; 10% middle circles; 3% smallest circles) and
constant member recruitment of 30%.   The green locus shows the l, b, d values
for 20 vertex Erdös-Rényi random graphs, with edge probabilities as indicated.

                          III    The REPRESENTATION

An obvious question is whether the evolution of small
groups can be modeled probabilistically. The l, b, d simplex
provides a convenient representation for testing this
possibility. We consider one very simple probabilistic model
defined as follows:

Let the connected graph G+
n with n vertices represent the

group structure, with vertex v1 of maximal degree taken as
the leader.  Also let pR be a fixed probability for recruitment
and pB > 0 the fixed probability for choosing new edges in
G+

n. For each iteration in the evolutionary growth add only
one new vertex vn+1, with vn+1 linked to only one old vertex,
chosen uniformly with probability pR from the n nodes.
(Note that for small pR values and small n, several iterations
may be required to add a node.)  During this same iteration,
also sample the available free edges in G+

n+1 and with



probability  0 < pB < 1 add new edges to G+
n+1.  Finally, if

any vertex vk has a degree larger than that of v1, then add a
new edge {v1, vj} where vj is the newest vertex of minimal
degree (typically the vertex vn+1.)

Although other models for group evolution might be
proposed, our choice above is meant to be a fair
representation of actual practice. With the exception of
member drop-outs (see discussion to follow), variations were
found to make little difference in the general form of the
evolutionary trajectories.

A. Simple Example

  Fig. 3 illustrates the behavior. For each iteration G+
n ->

G+
n+1 let p B = 10% probability of two unlinked members

(vertices) bonding, and pR = 30% be the probability of adding
one new member (vertex) for each iteration. The seed for our
example is the star graph S3  with v1 having degree 2 – the
most common seed observed for group formation.  A
sequence of iterations sampled for n= 4, 5, 6, 8,10, 20, 40,100
is shown by the middle blue curve. Note that this middle
curve, as well as the other two curves, one for pB=0.03, the
other for pB=0.3, all eventually head to b  = 1. Other
simulations (such as seeds along the b = 0 border) show that
for fixed probabilities p R and pB  > 0, all evolutionary
trajectories eventually will move toward b = 1. We formalize
this intuition below.

B Asymptotic Behavior

 To support the inference that the probabilistic trajectories
illustrated in Fig. 3 will move toward b = 1, we prove that for
bonding probability pB > 0, and recruitment probability pR >
0, the fraction of free edges in the evolving graph Gn

+ will
tend to zero for sufficiently large n. This implies that the
location of Gn

+ can be approximated by b = 1 (i.e. a complete
graph Kn ) for very large n.  To see why this implication
holds, assume the number of free edges (i.e. the number of
edges in the complement of Gn

+) is at most εn2 . There are at
most n2 squares in the complement of Gn

+ containing any
given edge (n choices for each of the two other vertices in the
square), so the number of squares in the complement of Gn

+

is at most εn4 . Hence D, which has a normalizing factor of
order n4, must be a small multiple of ε . Similarly, the
numerator in the definition of L is bounded as follows

                 (dmax − di
i=1

n

∑ ) ≤ (n −1− di
i=1

n

∑ )

which is the sum of its vertex degrees in the complement of
Gn

+, i.e. twice its number of edges, which is at most 2εn2 .
Thus L is also bounded above by a small constant times ε .
Thus, as ε → 0 , D and L tend to 0.

Theorem 1: Let the connected graph Gn
+ grow iteratively,

adding with probability pR = 1 a new vertex vn-1  to  one of
the vertices already in Gn

+ , choosing that vertex from a

uniform distribution. In the same iteration also add with
probability pB > 0 new edges between unlinked vertices in
Gn+1

+. Then as n increases, the fraction of free edges in Gn+1
+

is likely to approach  0 as n -> inf.

Proof: Begin with a S3 seed with vertex vo joined to v1, v2 ,
and a recruitment probability pR =1. Consider then any edge

that can possibly be  added to a vertex vi  in  Gn
+ that is not

added by recruitment. After i iterations, there will be i –2

such  edges to lower numbered vertices. For each such edge,
the probability in each successive iteration that an edge is not
added is (1 – p B). Hence the probability that edge is not
present after the nth iteration is (1-pB)(n-i) . By linearity of
expectation, the expected number of these edges absent after
iteration n is thus (i-2) (1-pB)(n-i). Summing over all iterations

from i = 3 to n gives the number βn of non-recruited edges

absent after iteration n . Using the well-known

inequality (1− p) < e− p , the sum βn is bounded as follows:

Est(βn ) = (i − 2)* (1− pB)n−i
i=3

n

∑ < (i − 2)*
i=3

n

∑ epB(n−i )

< n *
i=3

n

∑ e− pB(n−i ) < n
j=0

n−3

∑ e− pB* j                 5.

where j = n –i.

Note that the sum of the exponential in the last term is some
constant, c. Recall that excluding the n edges recruited, there
will be n(n-3)/2  possible edges that could be absent. Hence
the fraction of absent edges will be at most c*n/O[n2], which
tends to 0 as n goes to infinity.  

Remark:  For any fixed pair {pB > 0 and pR  > 0}, the
trajectory of small graph evolution can be closely
approximated by the following mapping to a new pair  {pB’ >
0  and pR’ = 1}:

      pB ' = 1− (1− pB)pR / (1− (1− pR)(1− pB))              6.

For this more general case, we need to revise the (1 - pB)n-i

probability used in the first sum of equation (5) to include  pR
< 1. Consider the pair of vertices in G{ vi, vj }. The continued
absence of edge Eij between two recruitments requires that no
bonding occurred over the sequence of iterations between
those two recruitments.  Equation (7) gives the geometric
series, which is simplified to (8). This expresses the
probability p(Eij / vi )  of not adding E ij between t w o

consecutive recruitments, expressed as the sum of the
probabilities of increasing numbers of iterations passing
between recruitments with no bonding occurring between vi

and vj.

 p(Eij / vi ) = (1− pB)ipR + (1− pB)2 (1− pR)pR

                  +(1− pB)3(1− pR)2 pR + ..                           7.



                  ≅ (1− pB)pR / (1− (1− pR)(1− pB)) .           8.

Hence just before the (n – i )th vertex is added, the
probability no edge having been formed between vi and vj is
given by

           p(En ) ≅ (pR(1− pB) / (1− (1− pR)(1− pB)))n−i

                      = (1− pB ')n−i                                              9.

Solving for B’ gives the desired approximation  (6). Note
that if this mapping is applied, then for any pR > 0 and 0 < pB
the asymptote in the simplex for Gn

+  will approximate b = 1
in the l b d simplex.

With respect to the above theorem and remarks, the addition
of a vertex that created a new dipole with probability pD will
not change the asymptotic result. For example, the new vertex
could be joined to Gn

+ with two added edges that created an
induced hexagon C6. In the limit, two such edge additions will
have no effect on the evolving trajectory, because as n
increases, bonding will eventually link dipole members to
other vertices, reducing the diversity count, and moving the
trajectory on l,b,d toward one determined by an {pB, pR = 1}
pair for some pB.

Figure 4. Loci of evolution from S3 for two simulations, with values for pR,
pB,  pQ of 0.30, 0.30, 0.30 for the left panel, and 0.60, 0.30, 0.40 for the right
panel.  The behavior is very haphazard.

C. Edge Deletions

If edges in Gn
+ can be deleted, Theorem 1 and the remarks

do not apply. Such deletions could arise by imposing
conditions on edge densities or vertex degrees [3, 23]. An
extreme case would be to include a fixed probability pQ for
removing edges, but again keeping Gn

+ connected. The two
examples in Fig. 4 were both created in this manner using
fixed probabilities for pR, pB, pD , pQ of {0.30, 0.30, 0, 0.30}
and {0.60, 0.30, 0, 0.40} respectively.

Note reversals in direction are now common, leading to
chaotic-like behaviors. This haphazard behavior can continue
for several hundred iterations for appropriate choices of
parameters. Further studies are needed to establish fixed
points and the chaotic-like regime. However, for some para-

meters there is a trend toward a stable edge probability
whenever the size of Gn

+ begins to increase monotonically. In
this case, the trajectory moves toward a fixed point in the l,b,d
simplex, as suggested especially by the left panel in Fig. 4.

The behavior of the trajectories in Fig. 4 suggests that a
feedback condition could be imposed to control the evolution
of a group toward any desired l,b,d fixed point. Such a global
constraint on group evolution may be worth exploring.

          IV     START-UP GROUP EVOLUTION

Fig. 5 presents averaged data of the evolution of six small
groups (two start-ups, one scientific initiative, one
educational initiative, one street gang, and one terrorist cell,)
These data were gathered by interviews of members of the
groups, or from public sources, with the group structures
drawn as bi-directional graphs. Although simple in form, the
dynamics of the start-up evolution is complex when analyzed
in terms of the actual graph structures. Hence for each
significant stage in the group’s evolution, the L, B , D values
were calculated and averaged. These averages are shown in
Fig. 5. To give a modicum of insight into the processes
involved, we have divide the evolution into seven stages (top
of  panel.)

Figure 5. An example of how L, B, D vary in the evolution of a small group.
The size of the group is shown on the bottom line.

The group begins with a leader and two recruits. (See
number of vertices at bottom of graph.) The next step is to
build a team by bonding and recruitment. This reduces
leadership dominance, as shown by the decline in L . As
bonding increases, leadership is threatened by a competing
maximal node. This requires additional recruitment by the
leader, or manipulation of bonds through minor
reorganizations.  By stage four, additional recruitment of one
or more small K3 cliques has diversified the group. Further
alignments (bonding) of these new members then ensues. In
the final stages, a crude balance between leadership
dominance, bonding and diversity is achieved.



Figure 6. The red spiral on the right panel shows typical small group
evolution, averaged over six small groups. The green curve shows the
positions of 20 vertex random graphs with edge probabilities as indicated.

Fig. 6 shows the transformation of the L, B , D values of
Fig. 5 onto the l, b, d simplex. Now the trajectory is very
clear, mapping into a red spiral. This spiral reflects the same
trends shown in Fig. 5, with a move upward along the d = 0
locus as bonding increases, followed by a leftward turn
toward d = 1 as diversity emerges. This is the beginning of a
counterclockwise motion toward a potential equilibrium point
where a balance among leadership dominance, bonding and
diversity emerges. Note that this evolutionary process does
not enter the random graph region. .

Note the general trend in the simplex is quite different from
the probabilistic evolution given earlier in section 3. For these
start-ups, bonding dominates in the early stages, causing a
counter-clockwise movement in the trajectory; for the simple
probabilistic evolution in Fig 3, however, all the curves move
clockwise. The key point is that this trajectory is neither
haphazard, nor does it follow any of the probabilistic curves
in Fig. 3.

                          V     DISCUSSION

Leadership, bonding and diversity as broad concepts are
three of the main features in studies of small groups. The l,b,d
simplex provides a simple, but revealing representation for
small  group evolution. Although it is possible to define other
parameters that that measure leadership, bonding and
diversity in broad terms, changing our definitions slightly
would not be expected to lead to significantly different
conclusions in the form of evolutionary processes as depicted
in the simplex. In this representation, the trajectories show
clearly whether trends are toward a dominant leadership (i.e.
a dictator), or to cohesion among members, or to diversity
(such as seen in many grass roots organizations.) Strategic
moves among members are typically reflected by a change in
the trajectory toward one of the vertices. In contrast, if group
evolution is a (fixed) probabilistic process (for recruitment,
bonding or diversity), all trajectories will move toward the
random graph region in the simplex, and eventually toward

b  = 1 if edges and vertices can only be added. With
probabilistic edge deletions, haphazard trajectories result (Fig.
4.)

The relation between small group evolution (n < 100) and
that for very large networks (n > 1000) has only begun to be
explored. Some proposals for the structure of large networks
use global constraints (i.e. probabilities linked to the degree
distribution, preferential attachments, etc.), whereas others
might use constraints that are more local such as degree
conditions or edge probabilities [3, 13]. These latter
influences are generally limited no more than two or three
edge steps. Hence, for large networks, the simplex might be
more properly applied to their subgraphs, with the subgraphs
in turn being treated as independent sets of agents in a
network with hierarchical structure. This raises the problem
of defining more formally a “small group” and its threshold
for the leap into one of the larger networks that others have
characterized [7, 13, 16, 17]. Relevant work are studies of
changes in network structure initiated by a cascade of
influence triggered by a particular small group structure [11,
22].

Cascades are an iterative example of a local dynamics that
propagates thru the network. One might envision an analogy
in a small group where the connectivity (alignments) of one
member enhances that member’ status, or favors some
particular goal. A simpler form of such dynamics would be
for members to ponder possible alignments and recruitments,
taking into account the goals of other members. Although the
payoffs are unclear (financial, social status, vision for group,
etc.), this scenario is one form of a game. The l,b,d simplex
offers a potential tool for studying group evolution as a game,
because the consequences of new alignments or
manipulations can be calculated for any potential group
structure. In principal, optimal trajectories can be discovered,
thwarting others along the way. Obviously, however, given
the explosion of possible undirected graph types as n
increases (e.g. for n = 8, we already have 10K forms), even a
two-step look-ahead game is very complex. Nevertheless,
given the objectives of each group member (and the recruits),
in principal one could calculate whether there is an
equilibrium structure.
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