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Abstract

We study the asymptotic behavior of the terms in sequences satisfying recur-
rences of the form a,, = ap,—1 + Zz;g (n, k)aga,—j where, very roughly speaking,
f(n, k) behaves like a product of reciprocals of binomial coefficients. Some examples
of such sequences from map enumerations, Airy constants, and Painlevé I equations
are discussed in detail.

1 Main results

There are many examples in the literature of sequences defined recursively using a con-
volution. It often seems difficult to determine the asymptotic behavior of such sequences.
In this note we study the asymptotics of a general class of such sequences. We prove
subexponential growth by using an iterative method that may be useful for other recur-
rences. By subexponential growth we mean that, for every constant D > 1, a,, = o(D")
as n — o0. Thus our motivation for this note is both the method and the applications
we give.

Let d > 0 be a fixed integer and let f(n,k) > 0 be a function that behaves like a
product of some powers of reciprocals of binomial coefficients, in a general sense to be
specified in Theorem 1. We deal with the sequence a,, for n > d where ag4, agi1,- -, a2q-1 >
0 are arbitrary and, when n > 2d,

4y = any+ Y (0, k)agany. (1)

Without loss of generality,
we assume that f(n, k) = f(n,n — k)

since we can replace f(n,k) and f(n,n — k) in (1) with 2(f(n, k) + f(n,n — k)).
Theorem 1 proves subexponential growth. Theorem 2 provide more accurate estimates
under additional assumptions. In Section 2, we apply the corollary to some examples.

Theorem 1 (Subexponential growth) Let a, be defined by recursion (1) with ag > 0.
Suppose there is a function R(z) defined on (0,1/2], an o > 0 and an r such that

(a) 0 < R(z) <r <1,

(b) lim, o, R(z) =0,

(¢) 0< f(n,k) =0 (n=*RF"(k/n)) uniformly for d <k <n/2.
Then a, grows subexponentially; in fact,

a, = (1+0(n"Y)ay_1. (2)
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Proof: We first note that the a,, are non-decreasing when n > 2d — 1.

Our proof is in three steps. We first prove that a, = O(C™) for some constant
C > 2. We then prove that C' can be chosen very close to 1. Finally we deduce (2) and
subexponential growth.

First Step: Since the bound in (c) is bounded by some constant times the geometric
series n~r*~4 with ratio less than 1, ZZ;S f(n,k) = O(n™®). Hence we can choose M
so large that Zz;jf(n, k) < 1/4 when n > M. Next choose C' > 2 so large (C' =
max{ag, i1, ---, G241, apr, 2} will do) that a,, < 2C™ for n < M. By induction, using the
recursion (1), we have for n > M

a, < 2C"1 4+ (1/4)4C™ < C" 4 CM = 20™.

Second Step: By (b) there is a A in (0,1/2) such that R(z) < 55 for 0 < z < A. Fix
any D < C such that a, = O(D"), which is true for D = C by the First Step.

Split the sum in (1) into An < k < (1 — A\)n and the rest, calling the first range of k
the “center” and the rest the “tail”. Noting r < 1, the center sum is bounded by

n/2 n/2
2 > fnk)agan—p = O(D" > rk_d) = O ((r*D)"). (3)
k=X n+1 k=An+1
Since a; are increasing, the tail sum is bounded by
An An
23 f(n.k)aran—, = O *)an—y Y  R(x)* D" (4)
k=d k=d

= O )an1 »_(DR@)F = O (n"a,1),

where the last equality follows from the fact that DR(z) < 1/2. Combining (3) and (4),
a, = (14+0(n™) an_1+ O((r*D)"). (5)

When 72D > 1, induction on n easily leads to a, = O((r*D’)") for any D' > D, an
exponential growth rate no larger than r*D’.

Since r* has a fixed value less than one, we can iterate this process, replacing D by
r*D’ at the start of the Second Step. We finally obtain a growth rate D > 1 with r*D < 1.
This completes the second step.

Third Step: With the value of D just obtained, the last term in (5) is exponentially
small and hence is O(n"%a,,—1). Thus we obtain (2) which immediately implies subexpo-
nential growth of a,, since 1 + O(n~%) < D for any D > 1 and sufficiently large n. 1

To say more than (2), we need additional information about the behavior of the f(n, k).
When f(n,k)/f(n,d) is small for each k in the range d+1 < k < n —d — 1, the first and
last terms dominate the sum. The following theorem is based on this observation.
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Theorem 2 (Asymptotic behavior) Assume (a)-(c) of Theorem 1 hold. Suppose fur-
ther that there is a 3 > 0 such that

f(n, k)

F(n, d) = O(n™Pr*=1Y uniformly for d+1<k<n/2. (6)

Then
loga, = 2aq Z fk,d)+ O<Z f(k,d) (k= +k‘5)). (7)

k=2d+1 k=2d

Proof: We assume n > 2d. Remove the k = d and k = n — d terms from the sum in (1).
We first deal with the remaining sum. Theorem 1 gives a; = O(DF) for all D > 1, so we
can assume D < 1/r. Using (6)

n—d—1 n/2

j{: f(n, k)aran_, = C)<f(n,d)n‘5an_1> jg: ph—d=1pk

k=d+1 k=d+1
= 0 (f(n, d)n_ﬁan_1> .
Combining this with (1), we obtain
Gn = Qp-1+ 2adf(n> d)a'n—d + f(na d)O(n_ﬁ)a’n—l
= s (1 + 2a4f(n, d) + {O(n™) + O(n~")} f(n, d)),
Taking logarithms and noting for expansion purposes that f(n,d) = O(n™%), we obtain
loga, —loga,—1 = 2a4f(n,d)+O ((n~*+n"7) f(n,d)).

Sum over n starting with n = 2d + 1. The theorem follows immediately when we note
that the constant terms can be incorporated into the O( ) in (7) since the sum therein is
bounded below by a nonzero constant. |

Corollary 1 Assume the conditions of Theorem 2 hold and f(n,d) = ©(n™%).
o Ifa <1, then a, = exp (O (n'72)).
o Ifa>1, then a, = K + O(n'=®) for some constant K.

o If f(n,d) — A/n are the terms of a convergent series, then a, ~ Cn?% for some
positive constant C'.

Proof: Since av > 0 and > 0, (7) gives loga, = O(3_;_,,.1 k~*). The case o < 1 follows
immediately; for a > 1, we see that a, is bounded and nondecreasing and therefore has
a limit K. For m > n, (2) gives log(a;,/a,) = O(n'~®) uniformly in m. Letting m — oo,
we obtain the claim regarding o > 1.

For ae = 1, the first sum in (7) is Alogn + B + o(1) for some constant B, and the last
sum in (7) converges. 1
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2 Examples

We apply Theorem 2 and Corollary 1 to some recursions which arise from combinatorial
applications. In our examples, f(n, k) behaves like a product of the reciprocal of binomial
coefficients, which satisfies the conditions of Theorems 1 and 2. A more general case of
interest is when f(n, k) takes the form of the product of functions like

lal [a],
g(n7 k) -
lal,,
for some constant a > 0, where [z], = z(x+1)--- (z+k—1) = Fgfc(z)k), the rising factorial.

We note that when a =1, g(n, k) = (Z)_l.
We begin with some useful bounds. When a > 0 and 1 < k <n/2,

s k) = [[— - (+k) 5)

j:0a+n—/<:—|—j a+mn

< %Mﬁ(

1+a/k
1+a/n

) — O ((k/n)") = O (n~"(3k/2n)*")

since k(2/3)*~1 is bounded. So g satisfies the condition on f in Theorem 1(c), with o = 1.
Similarly, when a > 0 and d < k < n/2,

g(n, k) _

(n,d) H atdt = O (n'(3k/2n)* 4 1). (9)

atn—k+td+

k—d—1

Q
o

J
This is in accordance with (6) with g = 1.
Example 1 (Map enumeration constants) There are numbers ¢, appearing in the

asymptotic enumeration of maps in an orientable surface of genus n, whose value does
not concern us here. Define u,, by

s s, 25\
= () -

Then u; = 1/10 and u,, satisfies the following recursion [3]

n—1

Uy = Up_q + Zf(n, k)ugt,_ for n>2, (10)
k=1

where
/5l [1/5) g (455 [4/5], ks

f(n7 k) -
From the observations above, the conditions of Theorem 2 are satisfied with d = 1,
R()\) = (3\/2)? and a = 8 = 2. Hence, u, ~ K for some constant K. Unlike the proof
in [3], this does not depend on the value of u;. |1
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Example 2 (Airy constants) The Airy constants 2,, are determined by €, = 1/2 and
the recurrence [7]

n—1
Q, = Bn—4)nQ,_1 + ()Qk n_k for mn>2.
1

k=

Let Q, =n![2/3],_,3"a,. Then a, satisfies (1) with d = 1 and

2/3]k1 [2/3] k1
2/3]-

Theorem 2 applies with d = 1, R(A\) = 3A/2 and o = = 1. Since

f(n> k) =

1 1 4/3

o) = 5im = w - a7m)

and a; = 1/6, we have a,, ~ Cn'/3 for some constant C.
We note that it is possible to apply the result of Olde Daalhuis [13] to obtain a full
asymptotic expansion for €2,. Let

3l
Then the recursion for €2,, becomes
n—1
Ap=(n—4/3)Apy + > ApAy_y, n > 2.
k=1
It follows that the formal series 4
D
n>1
satisfies the Riccati equation
F) 4+ (14 1) Fz) - F2(z) — 2 =0
z — z) — z)—— =0.
3z 6z

It then follows from the result of Olde Daalhuis [13] that
A 1 E‘X’ bel'(n — k), asn — oo
~Y —_—
n o - k ) )

where by = 1 and b, can be computed using the recursion

k+1

— ]{Z Zbk+1 —j415 21
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In particular, we have

1 1
Q, ~ —TI'(n)3"n! = —(n!)?3", asn — oco.
2m 2mn
It is well known that solutions to the Riccati equation have infinitely many singulari-
ties, hence F'(z) (via its Borel transform [2]) cannot satisfy a linear ODE with polynomial
coefficients. This implies that the sequence A,, (and hence €2,,) is not holonomic. 1

Example 3 The following recursion, with ¢ > 0 and ¢ # 1/2, appeared in [6]. The
Airy constants are the special case ¢ = 1. The case ¢ = 2 corresponds to the recursion
studied in [9, 10], which arises in the study of the Wiener index of Catalan trees. We have
C, = He=y2 and, for n > 2,

v
B I'(nt+ (n/2) — 1) 1 (n
e (T S ey By R  \k ChCont 1
Define a,, by C,, = n! g(n)a,, where g(1) =1 and
o D(kO+ (k/2) — 1)

’:1

T((k— 1)+ (k/2) = 1)

k=2
Then (11) becomes
n—1
_ g(k)g(n — k)
an = Gp-1 _'_kz:; 4g(n) AgQpn—k,

so f(n, k) = g(k)g(n —k)/4g(n).
With a fixed and x — oo and using 6.1.47 on p.257 of [1] (or using Stirling’s formula),
we have

I'(z 4+ a) 4 (1 N a(aQ; 1)

) +0(1/z ))

- <1+a2—;1)a<1+0(1/x2)> (12)
_ <x+a;1)a<1+0(1/x2)). (13)

When m > 1, (13) gives us

o(m) = ﬁ((2€+1)l;:—€—3)£<1+O(1/k2)>

k=2
m ¢
= O(1) <(£ +1/2"] ] (k; - ;;T?’l))
= O(1) ((t+1/2)" [a]m_l)é, where a = %71
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Hence ¢

la],_ylal,, 4,
la],—
where the absolute values have been introduced to allow for a < 0. A slight adjustment

of the argument leading to (8) and (9) leads to

f(n, k) = ©(1)

f(n, k) = O(n~*(3k/2n)" ") and JJZEZ’ I;; — O(n~!(3k/2n) t—d=1)

for 1 < k < n/2. Hence Theorem 2 applies with a = § = ¢, and a,, converges to a
constant when ¢ > 1 by Corollary 1. 1

It is interesting to note that there is a simple relation between the sequence u, in
Example 1 and the sequence a,, in Example 3 with ¢ = 2. It is not difficult to check that
the f(n,k) defined in Example 3 is exactly five times the f(n,k) in Example 1: since
a; = buy, we have a,, = bu, for all n > 1. This simple relation suggests a relationship
between the number of maps on an orientable surface of genus g and the gth moment of
a particular toll function on a certain type of trees. Using a bijective approach, Chapuy
[4] recently found an expression for t, as the gth moment of the labels in a random
well-labelled tree.

3 A convolutional recursion arising from Painlevé I

The following is recursion (44) in [11].

n—2

an = (n— 1) %01 + Zakan_k, n>1 n>3. (14)
k=2

It follows from Proposition 14 of [11] that, for 0 < a; < 1 and ay = a; — a?,

an = c(ag)((n — 1)H)? (1 — 3(n2f21()2(:1 3_) %) + 5n> , (15)

where ¢(«7) depends only on «;, and
5, = O(1/n").

We note that «,, for n > 3 depends only on as. The proof of (15) relies on the fact
that 0 < ap < 1/4 for 0 < oy < 1. It is conjectured in [11] that the asymptotic expression
(15) actually holds for a wider range of values of a.

For n > 1, let
Oy,

P e
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Then, as shown in [11], p, satisfies recursion (1) with d = 2 and

(n—k—1Dl(k—1)N">
f<n,k>=( —5 )

We note here f(n,2) = O(n=*). It follows from Theorem 2 that

pn =p(1+¢€,) for any as > 0,

where p = p(ay) is a positive constant and ¢, = O(1/n?).
It is also interesting to note that, with oy = 1/50, ag = 49/2500, the sequence «, is
related to the sequence u, in Example 1 by

= [1/5], [4/5],_, tn.

As mentioned in [11], the formal series v(t) = . a,t™" satisfies

t2" 4+t — (t 4 2a1)v + tv® + a; = 0, (16)
and hence, with
t= —8\/63:5/2,
25

y(z) = (2/6)2(1 — 2v(t)) satisfies the following Painlevé I:
y" = 6y* — .

This connection with Painlevé I is used in [8] to show that the sequence v, is not holonomic
(It follows that w,, and t, in Example 1 are also not holonomic). The proof uses the fact
that solutions to Painlevé I have infinitely many singularities and hence cannot satisfy a
linear ODE with polynomial coefficients.

In the following we apply the techniques of [14] to prove that (15) holds for any complex
constant «q. It is convenient to introduce the formal series

up(z) = v(2?) = anz_" = Zanz_2".
n=2 n=1
It follows from (16) that u = ug(z) is a formal solution to the differential equation

1 1 2
_u//+ _u/_ (1 ‘l— «

1 2, 01

The Stokes lines for this differential equation are the positive and the negative real axes.
When the negative real axis is crossed the Stokes phenomenon switches on a divergent
series

o0
uy(z) = Ke¥271/2 g cnz ",
n=0
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in which the Stokes multiplier K is a constant (depending on the constant a;). To
determine the coefficients ¢, we observe that wu; is a solution of the linear differential
equation

1 1 20
Zu'll+£u'1— (14—? —QUO) U1 =0.

Hence, for the coefficients ¢, we can take ¢y = 1 and for the others we have

1 1 2 n+1
ney, = Z <n a 5) o ka—;bkcn+1—k7 n =1

The first five coeflicients are

i c—i c——75 —I—goz 0—3675 —I—Ea
16° 2 5127 P 8192 ' 37% * T 524988 ' 24 %

In a similar manner it can be shown that when the positive real axis is crossed the Stokes
phenomenon switches on a divergent series

co=1, ¢ =

Uy (2) = iKe #2712 Z(—l)"cnz_".

n=0

This is all the information that is needed to conclude that
K & ren—FLk—1

Z(_l)kck—( . 2)

i = bgp ~ — 92n—k—(1/2)
k=0

, as n — oo.

By taking the first 4 terms in this expansion we can verify that (15) holds for any complex
constant ;.

For more details see [12], [13] and [14]. (It’s best to get the version of the first reference
on the website http://www.maths.ed.ac.uk/ adri/public.htm.)
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