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Abstract. A rainbow subgraph of an edge-coloured graph has all edges
of distinct colours. A random d-regular graph with d even, and having
edges coloured randomly with d/2 of each of n colours, has a rainbow
Hamilton cycle with probability tending to 1 as n→∞, provided d ≥ 8.

1. Introduction

An edge-coloured graph is a rainbow if no colour appears more than once.
We will study rainbow Hamilton cycles in edge-coloured graphs with n ver-
tices where the number of colours available is also n; thus a rainbow Hamil-
ton cycle uses each of the colours exactly once.

We consider in this paper only (random) regular graphs and (random)
colourings where each colour occurs the same number of times. If each colour
occurs on q edges, we thus have qn edges, and hence the vertex degrees are
2q. We use the standard notation G(n, d) for a uniformly chosen random
d-regular graph on n given (labelled) vertices. We will only consider the case
d = 2q even. (Hence there is no parity restriction on n.) Having sampled a
random graph G(n, 2q), we then randomly colour its qn edges by n colours
(1, . . . , n, say) with q edges of each colour, again choosing uniformly among
all possibilities. We denote the resulting randomly coloured random graph
by Gc(n, 2q).

Our main result is the following on randomly coloured random regular
graphs. (For some related results on the random graph G(n, m), see Cooper
and Frieze [3].) We say that an event holds with high probability (whp), if
it holds with probability tending to 1 as n → ∞. (All unspecified limits in
this paper are for n →∞.)

Theorem 1.1. Consider the randomly coloured random 2q-regular graph
Gc(n, 2q), with n colours and q edges of each colour. Then, whp, there
exists a rainbow Hamilton cycle if q ≥ 4, and not if q ≤ 3.

Recall that it was shown by Robinson and Wormald [16, 17] that G(n, d)
whp contains a Hamilton cycle as soon as d ≥ 3. In our setting, when
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d = 2q has to be even, we thus whp have Hamilton cycles, ignoring the
colouring, when d ≥ 4, but rainbow Hamilton cycles only when d ≥ 8. It
is nevertheless remarkable that whp some Hamilton cycle manages to pick
up an edge of each colour in a random 8-regular graph, when there are only
four edges of each colour to choose from.

Remark 1.2. In a similar direction, Robinson and Wormald [18] showed
that a random 3-regular graph with o(

√
n) randomly specified edges whp

has a Hamilton cycle passing through all the specified edges (and, more-
over, in randomly prespecified directions). It has further been shown by
Kim and Wormald [14] that a random 2q-regular graph whp has an edge-
decomposition into q Hamilton cycles, provided q ≥ 2.

It is natural to ask whether, similarly, a randomly coloured 2q-regular
graph with n colours and q edges of each colour, as above, whp has an edge-
decomposition into q rainbow Hamilton cycles. By computing the expected
number of such decompositions (similarly to the proof of Lemma 3.2 below),
it is easily seen that this is whp false when q ≤ 4. We leave the case q ≥ 5
(when the expected number tends to infinity) as an open problem.

The proof of Theorem 1.1 is based on the small subgraph conditioning
method introduced by Robinson and Wormald [16, 17], and further devel-
oped in [12], [15], [19] and [13, Chapter 9]. However, for this problem we
have to consider the colourings of the small subgraphs too, see Section 3.

Acknowledgements. This problem was suggested by Alan Frieze during
the Conference on Random Structures and Algorithms at Emory University,
Atlanta, 1995; he was originally intended as a coauthor but later declined
this. Consequently we are pleased to be able finally to dedicate this work to
him, marking 10 years since its beginnings, in which he was involved, and
60 since his.

We also acknowledge the assistance of the Maple algebraic manipulation
package for the variance calculations in Section 6. Although the proof we
found can be verified by hand, Maple was instrumental in finding that proof.

2. Multigraphs, a bipartite graph, and traffic rules

As usual in the study of random regular graphs (with small degree), it
is convenient to extend the study to multigraphs. Recall that a convenient
way (at least for theoretical purposes) to generate a random regular graph
is the so-called configuration model or pairing model, see e.g. [1] or [19]: We
start with nd points partitioned into n cells of d points each. We then take
a random pairing of the points into nd/2 pairs (assuming nd to be even).
Collapsing each cell to a vertex and regarding each pair as an edge, we obtain
a random d-regular multigraph that may contain loops and multiple edges;
we denote this random multigraph by G∗(n, d). (The points themselves are
called half-edges.) It is well-known, and easily seen, that if we condition
G∗(n, d) on being a simple graph (no loops nor multiple edges), then we
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obtain the uniformly distributed random regular graph G(n, d). Moreover,
it is well-known that for fixed d, the probability P(G∗(n, d) is simple) tends
to a non-zero limit as n →∞; hence, every property that G∗(n, d) has whp,
is whp enjoyed by G(n, d) too. In particular, we may (and will) prove
Theorem 1.1 by proving the following extension of it; we define G∗

c(n, 2q) by
analogy with Gc(n, 2q), by choosing uniformly at random a colouring of the
edges with n colours with q edges of each colour.

Theorem 2.1. Theorem 1.1 holds for the randomly coloured random regular
multigraph G∗

c(n, 2q) too.

We find it useful to introduce an associated bipartite graph. (This is
really a multigraph too, since it may have multiple edges.) Given the ran-
domly coloured multigraph G∗

c(n, 2q), add a new vertex on each edge. We
give each new vertex the colour of the edge it bisects, leaving the original
vertices uncoloured. Finally, we combine the q vertices of each colour into
a single coloured vertex of that colour. This gives us a 2q-regular bipartite
(multi)graph with n+n vertices; the original n vertices form one side of the
bipartition, and the n coloured vertices the other. Moreover, each coloured
vertex comes with a pairing of the edges (or half-edges) attached to it; this
pairing shows which pairs of edges correspond to edges in the multigraph.
We may think of the coloured vertices as having 2q attached half-edges ar-
ranged in a circle, with each half-edge matched to the opposite one. There
is then a one-to-one correspondence between walks in the multigraph and
walks in the bipartite graph (of twice the length, and beginning and ending
at blank vertices) that pass ‘straight ahead’ between matched half-edges at
each coloured vertex. In particular, rainbow Hamilton cycles in the multi-
graph correspond to Hamilton cycles in the bipartite graph that obey this
traffic rule.

The colours are no longer important in the bipartite graph, but it will be
convenient to refer to the two sets of vertices in the bipartition as ‘plain’
and ‘coloured’.

Conversely, we may start with the bipartite graph, with given traffic rules,
and obtain the original multigraph by combining the edges two by two at
the coloured vertices. Note that choosing the bipartite (multi)graph at ran-
dom using the configuration model (in its bipartite version, and with traffic
rules as above given in each coloured cell) gives back the random coloured
multigraph G∗

c(n, 2q) with the right distribution.
We let B∗(n, n; 2q) denote this random bipartite multigraph with traffic

rules as above, that is, with n + n vertices of degree 2q and with a random
pairing of the half-edges at each vertex in the coloured part of the biparti-
tion. (Although viewing it as a multigraph when referring to cycles etc., all
computations are done with the equivalent configuration model.) To prove
Theorems 1.1 and 2.1, it is enough to prove the following.

Theorem 2.2. The random bipartite multigraph B∗(n, n; 2q) whp has a
rainbow Hamilton cycle obeying the traffic rules if q ≥ 4, and not if q ≤ 3.



4 SVANTE JANSON AND NICHOLAS WORMALD

Remark 2.3. One may study random (regular) graphs with other traffic
rules at the vertices. In general, we may equip each vertex of degree d with
a (possibly directed, and possibly random) connection graph with d vertices
representing the incident edges; the edges in the connection graph show the
allowed connections between incoming and outgoing edges. In our case, the
connection graph is the complete graph (no restrictions) for one side of the
bipartition, and a matching with d/2 edges for the other side. We do not
know of any general study, but a few examples of this type have appeared
in the literature:

Garmo [8, 9] studied random railways; these are regular (typically cubic)
graphs where the vertices (representing switches) have connection graphs
that are stars. In [10], this was extended to graphs where a random subset
of the vertices have a star as connection graph and the rest the complete
graph.

Gamburd [7] studied long cycles in random oriented cubic graphs; here
the connection graph is a directed 3-cycle at each vertex.

3. Small subgraphs

The small subgraph conditioning method introduced by Robinson and
Wormald [16, 17] has been successfully applied to several problems, in par-
ticular in the theory of random regular graphs, see e.g. [13, Chapter 9], [19]
and [11]. (For applications to random hypergraphs, see [5, 4].)

As often pointed out by Alan Frieze, see [4, 5, 6], the method can be
regarded as an analysis of variance. The main idea is that we consider some
random variable, Y say, that counts occurrences of some structure, and let
a parameter n →∞. Typically, it is easy to prove that the expectation E Y
tends to infinity, but we want to show that P(Y > 0) → 1. If the vari-
ance Var(Y ) is o(E Y )2, then the second moment method (i.e. Chebyshev’s
inequality) immediately shows the desired result. The small subgraph con-
ditioning method applies to cases where the variance Var(Y ) is of the same
order as (E Y )2, by showing that the variance can be explained, up to a fac-
tor 1−o(1), by the interaction between the numbers of some small subgraphs
and the random variable Y . The desired conclusion Y > 0 whp then follows
by conditioning on the numbers of these small subgraphs and using Cheby-
shev’s inequality on the conditioned variables. For details, see [13, Theorem
9.12–Remark 9.18] and [19, Theorem 4.1]. We state the results there in the
following form (an immediate consequence of [19, Corollary 4.2]). We use
[x]m := x(x− 1) · · · (x−m + 1) to denote falling factorials.

Theorem 3.1. Let λi > 0 and δi ≥ −1 be real numbers for i = 1, 2, . . . and
suppose that for each n there are random variables Xi = Xi(n), i = 1, 2, . . .
and Y = Y (n), all defined on the same probability space G = Gn such that
Xi is nonnegative integer valued, Y is nonnegative and E Y > 0 (for n
sufficiently large). Suppose furthermore that
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(i) For each k ≥ 1, the variables X1, . . . , Xk are asymptotically inde-
pendent Poisson random variables with E Xi → λi,

(ii) if µi = λi(1 + δi), then

E(Y [X1]m1 · · · [Xk]mk
)

E Y
→

k∏
i=1

µmi
i (3.1)

for every finite sequence m1, . . . ,mk of nonnegative integers,
(iii)

∑
i λi δi

2 < ∞,
(iv) E Y 2/(E Y )2 ≤ exp(

∑
i λi δi

2) + o(1) as n →∞.
Then, if E is the event ∧δi=−1{Xi = 0}, P(Y > 0 | E) → 1. In particular, if
δ > −1 for every i, then Y > 0 whp.

We will actually use Theorem 3.1 with a doubly indexed sequence Xij ;
obviously, this is just a matter of notation.

In many applications of the small subgraph conditioning method, the
variables Xi are the numbers of cycles of different lengths. This has perhaps
misled some into the belief that the short cycles are expected to provide
the answer in all cases. But they play the central role for most problems
only because they are the only possible ‘unusual’ small subgraphs. The
subgraphs of fixed size in a random d-regular graph are very well behaved.
Near a random vertex, such a graph looks locally like a tree. But even that
statement can be misleading when we consider what comes shortly. The
thing to focus on is that, because whp no two short cycles are near each
other, the number of subgraphs of any particular type are determined by
the numbers of short cycles.

In our case, it will turn out that conditioning on the numbers of small
cycles in G∗

c(n, 2q) does not explain all of the variance of the number of rain-
bow Hamilton cycles; we have to consider also colourings. Note that for each
fixed length i, there are only a few cycles of length i (the expected number
is O(1)), and whp they are all rainbow, so we would expect no explanation
of variance to be caused by the numbers of intrinsically differently coloured
short cycles. However, we may consider, for example, the number of paths
of length i where the first and last edges have the same colour. The expected
number is Θ(1). These are intrinsically different from short rainbow paths,
and it turns out that these structures too will be significant in the analysis
of variance.

Perhaps surprisingly, there is even more to consider. The existence of two
short paths, each joining a blue edge to a red edge, is significant, even though
they are two different blue edges and two different red edges in distant parts
of the graph. However, this is not surprising given the discussion above
about small subgraphs. Colours are clearly relevant in our present problem,
so we should consider coloured subgraphs. Typical small subgraphs, not
necessarily neighbourhoods of vertices, are forests with distinctly coloured
edges. The numbers of small forests in which some of the edges are coloured
the same thus qualify as special small subgraphs. It was for this reason
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that the method was called small subgraph conditioning in [19], rather than
short cycle conditioning. This is indeed the first application of the method
in which the small subgraphs involved are disconnected.

To describe the general situation precisely, we work with the random
bipartite multigraph B∗(n, n; 2q) defined in Section 2, and let Y be the
number of Hamilton cycles in the multigraph that obey the traffic rules.
Recall that Y equals the number of rainbow Hamilton cycles in G∗

c(n, 2q).
Further, for each i ≥ 1 and j with 0 ≤ j ≤ i, we let Xij be the number
of cycles of length 2i in B∗(n, n; 2q) that violate the traffic rules at exactly
coloured j vertices. (Thus, Y = Xn0, but we are mainly interested in Xij for
small i.) Note that Xi0 equals the number of rainbow i-cycles in G∗

c(n, 2q),
and thus it whp equals the number of i-cycles in G∗

c(n, 2q), while Xi1 whp
equals the number of paths of length i+1 where the first and last edges have
the same colour. (This holds only whp, since for Xi1 the endpoints of the
path may coincide with each other or with some interior point.) We may
similarly interpret Xij for j ≥ 2, at least whp, as the number of certain
collections of j paths, generalising the example mentioned above, but we
leave the details to the reader.

We state three lemmas that will be proven in the following sections.

Lemma 3.2. Suppose that d = 2q ≥ 4. Then

E(Y ) = Θ
(

(d− 1)(d− 2)d−2

dd−2

)n

.

Hence, as n →∞, E(Y ) → 0 for d ≤ 6 but E(Y ) →∞ for d ≥ 8.

Lemma 3.3. Conditions (i) and (ii) in Theorem 3.1 are satisfied for the
variables (Xij)ij and

λij =
1
2i

(
i

j

)
(d− 1)i(d− 2)j ,

δij =

{
(−1)i+j 2j

(d−1)i(d−2)j , j > 0,

− 2
(d−1)i 1[i odd], j = 0.

Lemma 3.4. Suppose that d > 4. Then

E Y 2/(E Y )2 →
( d

d− 4

)1/2
.

Proof of Theorem 2.2. First note that if d ≤ 6, then E(Y ) → 0 by Lemma 3.2,
and thus P(Y > 0) → 0, i.e. Y = 0 whp. In other words, there is then whp
no rainbow Hamilton cycle in G∗

c(n, 2q).
For the remainder of the proof, assume that d = 2q ≥ 8. By Lemma 3.2,

E(Y ) → ∞. We want to show that Y > 0 whp. We employ Theorem 3.1
with Xij as defined above, and λij and δij as given in Lemma 3.3. Note that
δij > −1 for all i and j, so it remains only to show that the assumptions
(i)–(iv) in Theorem 3.1 hold. For (i) and (ii), this is Lemma 3.3.
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For (iii) and (iv) we split the sum into two parts.∑
i,j>0

λijδ
2
ij =

∑
i,j≥1

1
2i

(
i

j

)
4j

(d− 1)i(d− 2)j

=
∞∑
i=1

1
2i

(d− 1)−i
((

1 +
4

d− 2

)i
− 1

)
=

1
2

∞∑
i=1

1
i

(( d + 2
(d− 1)(d− 2)

)i
− 1

(d− 1)i

)
= −1

2
ln

(
1− d + 2

(d− 1)(d− 2)

)
+

1
2

ln
(
1− 1

d− 1

)
= −1

2
ln

d2 − 4d

(d− 1)(d− 2)
+

1
2

ln
d− 2
d− 1

=
1
2

ln
(d− 2)2

d(d− 4)

and ∑
i

λi0δ
2
i0 =

∑
i odd

1
2i

4
(d− 1)i

= − ln
(
1− 1

d− 1

)
+ ln

(
1 +

1
d− 1

)
= − ln

d− 2
d− 1

+ ln
d

d− 1
= ln

d

d− 2

Consequently,∑
i,j

λijδ
2
ij =

1
2

ln
(d− 2)2

d(d− 4)
+ ln

d

d− 2
=

1
2

ln
d

d− 4
.

This proves (iii), and together with Lemma 3.4 also (iv). �

4. Expectation

Proof of Lemma 3.2. There are n!2/2n ways to arrange the 2n vertices in
a cycle, with plain and coloured vertices alternating, and for each such
arrangement d(d−1) ways to choose the half-edges at each plain vertex and
d ways to choose the half-edges at each coloured vertex (obeying the traffic
rules). For each such choice, the probability that the selected 4n half-edges
are connected to each other in the specified order equals ((d − 2)n)!/(dn)!.
Consequently, using Stirling’s formula,

E Y =
d2n(d− 1)nn!2((d− 2)n)!

2n (dn)!
= Θ

(d2(d− 1)(d− 2)d−2

dd

)n
= Θ

(
f(d)

)n
,

where f(d) := (d−1)(1−2/d)d−2. We have f(4) = 3/4 < 1, f(6) = 80/81 <
1, f(8) = 5103/4096 > 1, and f(d) > (d− 1)e−2 > 1 for d > 8. �
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5. Short cycles

Proof of Lemma 3.3. We use arguments that have become standard for sim-
ilar problems for random ragular graphs, see e.g. [13, Section 9.4] or [19,
Section 4.2]; we will thus omit some details.

For (i), we use the method of moments. It suffices to show that

E
∏
ij

[Xij ]mij →
k∏

i=1

λ
mij

ij

for every finite set of non-negative integers {mij}. For convenience, we will
only treat the expectation of a single Xij ; as in all similar problems, the
argument extends immediately to (mixed) higher factorial moments.

To calculate E Xij , we count the appropriate oriented cycles with a des-
ignated initial vertex, which we require to be plain; this counts each cycle
2i times. The vertices in the cycle may now be chosen in [n]2i ∼ n2i ways.
Consider first the case j = 0, i.e. cycles obeying the traffic rules everywhere.
For each choice of vertices there are, as in Section 4, d(d−1) ways to choose
the half-edges at each of the i plain vertices and d ways to choose the half-
edges at each of the i coloured vertex. Finally, the probability of pairing the
4i chosen half-edges into 2i edges is 1/[dn]2i ∼ (dn)−2i. Hence,

2i E Xi0 =
d2i(d− 1)i[n]2i

[dn]2i
→ (d− 1)i.

For j > 0 we argue similarly. The traffic rules are to be violated at precisely
j coloured vertices. These may be chosen in

(
i
j

)
ways, and at each of them

there is additional factor of d − 2 for the choice of the out-going half-edge.
Hence we obtain, for all i and j,

2i E Xij =
(

i

j

)
d2i(d− 1)i(d− 2)j [n]2i

[dn]2i
→

(
i

j

)
(d− 1)i(d− 2)j ,

or E Xij → λij .
For (ii), we first observe that the left hand side of (3.1), by symmetry,

remains the same if we fix two half-edges at each vertex, always choosing
two opposite half-edges at the coloured vertices, and then replace Y by the
indicator that the chosen half-edges comprise a rainbow Hamilton cycle.
Denoting this event by H1, we thus want to show

E
(∏

ij

[Xij ]mij

∣∣∣H1

)
→

k∏
i=1

µ
mij

ij . (5.1)

Condition on H1, and let H1 be the (unique) rainbow Hamilton cycle
that uses the chosen half-edges. It is easily seen that the remainder of the
graph G∗

c(n, 2q) can be regarded as the random multigraph G∗
c(n, 2q − 2),

and that this is independent of H1. Hence, the left hand side of (5.1) equals
the expectation in the union of a random rainbow Hamilton cycle H1 and
an independent G∗

c(n, 2q − 2) on the same vertex set.
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For the same reasons as in (i), we will only consider a single expectation
E(Xij | H1). Consider first the case j = 0. We may, as for (i), choose the
vertices of the 2i-cycle in n2i(1+ o(1)) ways. We then decide whether the 2i
edges are in the Hamilton cycle H1 or in G∗

c(n, 2q−2); we denote the choices
by αs ∈ {1, 2} for s = 1, . . . , 2i. At a plain vertex where the incoming edge
is to have type α ∈ {1, 2} and the outgoing edge type β, there is for each
possible incoming half-edge aαβ choices of the outgoing, where the numbers
aαβ are conveniently collected in the matrix

A := (aαβ) =
(

1 d− 2
2 d− 3

)
.

At the coloured vertices there is only one choice for the outgoing edge, and
it has to have the same type as the incoming; we encode this as bαβ with
B := (bαβ) = ( 1 0

0 1 ), the identity matrix. Note that we have not counted the
number of incoming half-edges; this is because these numbers cancel when we
take into account the probability of making the connections; the probability
of connecting a half-edge of either type to some incoming half-edge of the
same type at a given vertex (in the opposite part of the bipartition) is
(1+ o(1))n−1. Moreover, the probability that all 2i connections are made is
(1 + o(1))n−2i, except in the case when all αs = 1, which is impossible for
n > i. Consequently,

2i E(Xi0 | H1) →
2∑

α1,...,α2s=1

aα1α2bα2α3 · · · bα2iα1 − ai
11b

i
11

= Tr(AB)i − 1 = Tr(Ai)− 1 = (d− 1)i + (−1)i − 1,

since A has the eigenvalues d−1 and −1. We have thus shown (5.1) for this
case, with

µi0 =
(d− 1)i + (−1)i − 1

2i
= λi0(1 + δi0)

as required.
For j > 0 we argue similarly. Now we have to choose j coloured vertices

where the traffic rule is violated, and for these vertices the matrix B is
replaced by

B := A−B =
(

0 d− 2
2 d− 4

)
.

Luckily, A and B = A−I commute, so all
(

i
j

)
choices of the violating vertices

give the same result, and thus, for j > 0,

2i E(Xij | H1) →
(

i

j

)
Tr(AiB

j) =
(

i

j

)
Tr

(
Ai(A− I)j

)
=

(
i

j

)(
(d− 1)i(d− 2)j + (−1)i(−2)j

)
,

which equals 2iλij(1 + δij) as required in this case too. �
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6. Variance

In this section we prove Lemma 3.4, thus completing the proof of Theo-
rem 1.1.

We compute E Y 2 by calculating the probability that a given ordered pair
of Hamilton cycles (H1,H2) are contained in the pairing corresponding to
B∗(n, n; 2q), and summing over all possible ordered (H1,H2).

The first part is similar to the treatment of H1 in Section 5. Let k denote
the number of coloured vertices in which the same half-edges are used by
both H1 and H2, and let j denote the number of blank vertices of this type.
If H1 6= H2 then the half-edges shared by the two cycles occur in k − j
“strings” of consecutive half-edges around H1. (Note that each string ends
at plain vertices.) The strings also occur in H2, though in a different order.
Together, H1 and H2 determine the pairs containing two of the half-edges at
k coloured vertices and four at all other coloured vertices, so 4n− 2k pairs
in all (as each pair contains just one coloured vertex). Hence, defining Hi

as the event that Hi occurs,

P(H2 | H1) =

(
(d− 4)n + 2k

)
!(

(d− 2)n
)
!

,

and we may write

E Y 2

(E Y )2
=

1 +
∑

k,j<n N(k, j) P(H2 | H1)
E Y

where N(k, j) is the number of different H2 (or, to be precise, sets of pairs
corrsponding to H2) overlapping any given cycle H1 with particular values
of k and j. The term 1 accounts for the case H2 = H1, when k = j = n.

Since E Y was given precisely in Section 4, all that is left to evaluate is
N(k, j). Note that the cardinality of the set S1 of plain vertices with three
half-edges contained in H1∪H2 is 2k−2j, and for the set S2 of plain vertices
with four half-edges, it is n− 2k + j.

By elementary counting, the number of ways to place k−j strings referred
to above onto H1 is

n

k

(
k

j

)(
n− k − 1
k − j − 1

)
.

Here the first factor converts the problem from a cyclical one to a linear one
in which the first coloured vertex is one of the k special ones. The second
factor is for deciding the relative positions of the k coloured vertices in a
sequence of k − j strings and the third is for deciding the positions of the
vertices not in strings.

The number of ways to choose the half-edges being used by H2 at each
plain vertex is (d − 2)|S1|((d − 2)(d − 3))|S2|, and (d − 2)n−k for the half-
edges at the set S3 of coloured vertices not used by H1 (obeying the traffic
rules). These choices determine the direction that H2 passes through each
vertex except for those in S1, which are determined by the direction it passes
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through each string. These directions can be chosen in 2k−j ways, giving

2k−j(d− 2)2n−k−j(d− 3)n−2k+j

ways to make these choices. (For convenience we will count oriented versions
of H2 and will divide by 2 at the end.)

Now that the order of half-edges used by H2 is determined at each vertex,
it remains to choose the remaining 2(n−k) pairs. These pairs must connect
the strings and the vertices in S2 ∪ S3 into a Hamilton cycle in a bipartite
fashion (regarding each string as a vertex) and connecting the ‘out’ half-edge
at a vertex to the ‘in’ one at the next. The number of such choices of pairs
is

(n− k)!(n− k − 1)!.
Multiplying all the displayed factors together and dividing by 2 to un-orient
H2 gives N(k, j). Combining with the earlier equations then produces

E Y 2

(E Y )2
=

1
E Y

+
∑
k<n

∑
j<k

f(n, d, k, j) (6.1)

where

f(n, d, k, j) =

n2(k − 1)! (n− k)! 32k−j(d− 2)2n−k−j(d− 3)n−2k+j
(
(d− 4)n + 2k

)
! (dn)!

(n− k)2(k − j)! (k − j − 1)! j! (n− 2k + j)!
(
(d− 2)n

)
! 2d2n(d− 1)nn!2

As usual, upon applying Stirling’s formula we find that the powers of n/e
cancel and we are left with

f(n, d, k, j) = f0(n, d, k, j)Gn
(
1 + O

( 1
j + 1

+
1

k − j
+

1
n− k

))
(6.2)

where

f0(n, d, k, j) =

√
(dn− 4n + 2k)nd

2π(d− 2)
√

k(n− k)j(n− 2k + j)
and (with κ = k/n, γ = j/n)

G =
2κ−γdd−2(d− 3)1+γ−2κ(d− 4 + 2κ)d−4+2κκκ(1− κ)3−3κ

(d− 1)(d− 2)2d−6+κ+γγγ(κ− γ)2κ−2γ(1− 2κ + γ)1−2κ+γ
(6.3)

= F (α, δ) :=
2α(t + 2)t(t− 1)δ−α(t− 2δ)t−2δ(1− δ)1−δδ3δ

(t + 1)t2t−2δ−α(1− δ − α)1−δ−αα2α(δ − α)δ−α

where δ = 1− κ, α = κ− γ and t = d− 2.
We seek the maximum value of F in the triangle

T =
{
(δ, α) : 0 ≤ α ≤ δ, δ + α ≤ 1

}
.

The partial derivatives of lnF are

∂(lnF )
∂δ

= ln
t2(t− 1)δ3(1− δ − α)
(t− 2δ)2(1− δ)(δ − α)

,
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∂(lnF )
∂α

= ln
2t(δ − α)(1− δ − α)

(t− 1)α2
. (6.4)

Setting these equal to zero gives necessary conditions for a stationary point
of F :

t2(t− 1)δ3(1− δ − α) = (t− 2δ)2(1− δ)(δ − α) (6.5)
and

(t + 1)α2 − 2tα + 2tδ(1− δ) = 0. (6.6)
Solving the first equation for α and substituting this into the second shows
that the value of δ at a stationary point in the interior of T must be a root
of

g(δ) = (1− δ)
(
(t− 2δ)2 − t2(t− 1)δ2

)2 − 2t3δ(1− 2δ)2(t− 2δ)2, (6.7)

which is quintic in δ. Now g factorises as

g(δ) = (t + 2)(δ0 − δ)h(δ) (6.8)

where

h(δ) = t5δ4 − 2δ(2δ3 + δ2 − 2δ + 1)t4 + (9δ4 − 12δ3 + 6δ2 + 1)t3

+ 2δ(δ − 1)(3δ2 + 2δ + 3)t2 − 4δ2(δ + 3)(δ − 1)t + 8δ3(δ − 1),

and δ0 = t/(t + 2) which, as we will show, determines the maximum value
of F in T .

The second derivative of h with respect to δ is

12t5δ2 + (−48δ2 − 12δ + 8)t4 + 12(9δ2 − 6δ + 1)t3

+ (72δ2 − 12δ + 4)t2 + (−48δ2 − 48δ + 24)t + 96δ2 − 48δ.

This can be rearranged as

12(t− 6)t4δ2 + (24δ2 − 12δ + 8)t4 + 12(9δ2 − 6δ + 1)t3 + 12δ(t2 − 4)

+ 12δ2(t2 − 6t) + 4(15δ2 − 6δ + 1)t2 + 24(δ2 − 2δ + 1)t + 96δ2,

in which each collected term is clearly nonnegative for t ≥ 6 and all δ ≥ 0.
Thus h is a convex function of δ for each t.

From (6.7) we compute firstly g(1/2) = (t− 1)2(t− 2)4/32 > 0, secondly

g(1/
√

t) < t2 − 2t5/2(1− 2/
√

t)2(t− 1)2 < 0

since t ≥ 6 and 25(1 − 2/
√

6)2 > 0.8, and thirdly, since t ≥ 6 implies
t2 − 7t + 8 > 0 and thus 1− 1/t < 2(1− 2/t)2,

g(1/t) < (1− 1/t)
(
(t− 2/t)4 − t2(t− 2/t)2

)
< 0.

Note that h has the same sign as g for 0 ≤ δ ≤ 1/2 as δ0 > 1/2. Thus h(1/2)
is positive and h(1/

√
t) and h(1/t) are negative. So by the convexity of h,

the only zeros of h for 0 < δ < 1 lie in 0 < δ < 1/t or 1/
√

t < δ < 1/2. We
show separately that these two subsets of T can hold no stationary points
of F .
Case 1: 0 < δ < 1/t
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Substituting α = βδ into lnF , and taking the second derivative with respect
to δ, we obtain

∂2 lnF (βδ, δ)
∂δ2

=
2t− βt− 4tδ + 2tδ2 − 2βtδ + 2βtδ2 + 2βδ

(1− δ)(1− δ − βδ)δ(t− 2δ)

Since α ≤ δ in T , we have β ≤ 1 and so the factors in the denominator are
all positive. The numerator is at least 2t−t−4tδ−2tδ > 0 as δ < 1/t ≤ 1/6.
Hence, lnF can have no local maximum in T for such δ.

Case 2: 1/
√

t < δ < 1/2
For such δ, from (6.6) we obtain 2tα > 2tδ(1 − δ), i.e. α > δ(1 − δ). So,
using (6.5), at a stationary point

(1− δ)2

δ2
=

1− δ − δ(1− δ)
δ − δ(1− δ)

<
1− δ − α

δ − α
=

(t− 2δ)2(1− δ)
t2(t− 1)δ3

and so, since δ2 > 1/t,

1− δ

δ
<

(t− 2δ)2

t(t− 1)
.

But this fails at δ = 1/2, and the derivative of the left hand side with respect
to δ is less than −4 for δ < 1/2, whilst that of the right is easily greater
than −4. So the inequality fails, and there is no such stationary point.

We conclude that δ = δ0 determines the unique local maximum in the
interior of T . The boundary of T must also be investigated. Consider-
ing (6.4), there is no local maximum at a boundary point with 0 < δ < 1,
since ∂(lnF )/∂α tends to ∞ as α tends to 0 from the right, and to −∞
as α tends to min(δ, 1 − δ) from the left. A similar argument applies to
eliminate (α, δ) = (0, 1) from consideration, since moving along the bound-
ary where α = 1 − δ, F is a smooth function times α−α. This leaves
only the point α = δ = 0, which is indeed a local maximum, with value
F (0, 0) = (1 + 2/t)t/(t + 1) < 1 for t ≥ 6.

To deduce that δ0 determines the unique global maximum in T , we only
need to observe that the corresponding value of α is α0 = 2δ0/(t + 1), and
that F (α0, δ0) = 1.

The rest of the argument is totally standard for such variance calcula-
tions, as in [6] for example, so we omit the justifications. The point (α0, δ0)
corresponds to κ = κ0 = 2/d, γ = κ0/(d− 1). Putting κ = κ0 + κ̂/

√
n and

γ = γ0 + γ̂/
√

n, and expanding ln(Gn) (G defined in (6.3)) about κ̂ = γ̂ = 0,
we find up to quadratic terms in κ̂ and γ̂

Gn ≈ ec1κ̂2+c2κ̂γ̂+c3γ̂2

where
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c1 = −d(d3 − 3d2 + 4d + 4)
4(d− 2)2(d− 3)

c2 =
d(d− 1)2

(d− 2)(d− 3)

c3 = −d(d− 1)2

4(d− 3)
.

Here c3 is clearly negative, and the determinant D = 4c1c3−c2
2 of the Hessian

of the quadratic form is positive, as we expect since the expansion is at a
local maximum. The routine argument now gives from (6.2)∑

k,j<n

f(n, d, k, j) ∼ f0(n, d, nκ0, nγ0)2πn/
√

D

=

√
d

d− 4
.

Recalling (6.1) and that E Y →∞ now establishes Lemma 3.4.

7. Rainbow matchings

In this section we briefly consider the analoguous problem of the existence
of a rainbow perfect matching in a randomly coloured random regular graph.
We will omit the details of the calculations.

The model is now slightly different. We consider a random regular graph
G(2n, d) with an even number of vertices (d may now be arbitrary), and
colour randomly the nd edges with n colours, d edges of each colour. We
then ask whether there exists a rainbow matching consisting of n disjoint
edges of different colours.

We can translate this to a random bipartite (multi)graph as above; now
the bipartite graph has 2n plain vertices of degree d and n coloured vertices
of degree 2d. Let Z be the number of rainbow perfect matchings; in the
bipartite version, Z is the number of decompositions of the graph into n
disjoint paths of length 2, with 2 plain and 1 coloured vertex each.

Calculations as above yield

E Z = d3n (2n)!
(
(2d− 2)n

)
!

(2dn)!
= Θ

(
n1/2

((d− 1)2d−2

d2d−3

)n
)

and it is easily checked that, as n →∞, E Z → 0 for d ≤ 6, while E Z →∞
for d ≥ 7. In particular, for d ≤ 6 there is whp no rainbow perfect matching.

Furthermore, for d ≥ 7, an argument similar to the one in [2] (and much
simpler than the proof of Lemma 3.4 above, since we only need to maximize
over one variable) yields

E(Z2)
(E Z)2

→ d− 1√
d(d− 3)

.
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Finally, defining Xij as before, Theorem 3.1 applies when d ≥ 7 with

λij =
1
2i

(
i

j

)
2j(d− 1)i+j ,

δij =
(−1)i+j

(d− 1)i+j
.

Hence there exists a rainbow perfect matching whp when d ≥ 7.
By analogy with the open problem in Remark 1.2 one might further

ask whether there exists a decomposition into d rainbow perfect match-
ings. Computing the expected number of such decompositions reveals that
when d ≤ 11, whp no such decomposition exists. This compares with the
corresponding result for uncoloured graphs, that G(2n, d) whp has a de-
composition into d perfect matchings as soon as d ≥ 3 [12, 15].
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