

Analysis of greedy algorithms on graphs with
bounded degrees

Nicholas C. Wormald∗

Department of Combinatorics and Optimization
University of Waterloo

Waterloo ON
Canada N2L 3G1

nwormald@uwaterloo.ca

Abstract

We give a general result on the average-case performance of certain greedy
algorithms. These are derived from algorithms in which the possible operations
performed at each step are prioritised. This type of prioritisation has occurred
in previously studied heuristics for finding large subgraphs with special proper-
ties in random regular graphs, such as maximum independent sets and minimum
dominating sets. The approach in this paper eliminates some of the complications
caused by prioritisation. The main results apply in general to random graphs with
a given degree sequence.

1 Introduction

The following greedy algorithm for finding independent sets was analysed for random
d-regular graphs in [9] (and also in the particular case d = 3 by Frieze and Suen [6]).
Start with a d-regular graph G. Pick any vertex v at random from those of minimum
degree, and put v into the independent set S. Delete v and its neighbours from G (as
they cannot be added to S). Repeat this step until there are no vertices left, at which
stage S is an independent set of the original graph G.

The asymptotic size of the independent set produced by this algorithm was deter-
mined a.a.s. (asymptotically almost surely, denoting that the probability tends to 1 as
n→∞). This gives the best asymptotically almost sure lower bound on the size of the
largest independent set in a random d-regular graph which is known for small d, and
possibly for all d. (The known bounds are not easily compared, due to the difficulty of
calculating them.)

∗Research supported by the Australian Research Council and by the Centre de Recerca Matematica,
Bellatera, Spain. This research was carried out while the author was affiliated with the Department of
Mathematics and Statistics, University of Melbourne

1

Actually, the procedure produces an independent dominating set, and the analysis
therefore gives, additionally, an asymptotically almost sure upper bound on the size of a
minimum dominating set, and moreover independent dominating set. For the case d = 3,
a much smaller bound is obtained by the algorithm used in [4]. That algorithm similarly
repeatedly chooses v of minimum degree, but v is not always placed in the dominating
set; depending on the degrees of the neighbours of v, in some cases a neighbour of v is
placed in the dominating set. In either case, we refer to the chosen vertex v as the one
being processed. These algorithms are called degree-greedy because the vertex processed
is chosen from those with the lowest degree.

Independent dominating sets are commonly known as maximal independent sets. We
are interested here in their dominating property, and it is just a bonus that they are
also independent. So we call the smallest one in a given graph a minimum independent
dominating set, rather than minimum maximal independent set.

The two algorithms mentioned above are analysed in similar ways. Letting Yi denote
the number of vertices of degree i (i = 1, . . . , d), the expected values of Yi are estimated
throughout the algorithm for each i using differential equations. It is shown that with
high probability the variables are concentrated near their expected values. In both [9]
and [4], the analysis has major complications, discussed further in Section 2, arising from
the fact that priority is given to vertices currently of minimum degree. We call such an
algorithm prioritised because vertices in some class are given priority of selection as v.

The main object of the present paper is to examine a rather different approach to
the problems addressed by these algorithms and related ones. The new approach is to
analyse associated algorithms which entirely avoid prioritising, by using a randomised
mixture of choices of the processed vertex degree in the general step. The particular
mixture used for any step will be prescribed in advance but will change over the course
of the algorithm in order to approximate the prioritised algorithm. This approach was
in some sense inspired by the proposal of Zito [13], to prescribe deterministically at
the beginning of the algorithm the degree of the vertex to be processed at each step.
However, unlike that approach, we attempt to use the randomised choice of degree to
obtain the same result as a degree-greedy algorithm, since the best-known algorithms
for these problems are degree-greedy.

We call the algorithms being introduced here deprioritised since there is no prioriti-
sation of the vertex degree, and yet they are designed to approximate the results of a
given prioritised algorithm. A more precise definition is in Section 3. Note that many
deprioritised algorithms can be derived by using the operations of the original (priori-
tised) algorithm. The first use of randomised choices between operations, in a related
setting, was by Achlioptas [1]. His algorithm “mTT” contains some deprioritisation,
but it also contains a prioritised choice. The net effect is quite different from what is
achieved with the fully deprioritised algorithms in the present paper.

This paper has objectives at several levels. One is to show that the intuitive idea
referred to above—averaging the operations according to how often they are performed in
the degree-greedy algorithm—gives the correct answer. The main object is to investigate
the requirements of making this intuitive idea rigorous. Another goal is to actually
reduce the number of conditions required to check. This might be hard to see, in a
cursory comparison of this paper with [9] and [4], but the justifications in those papers

2

require checking more complex conditions regarding derivatives. A further objective is
to present a more general result. This will simplify the issues when analysing further
algorithms of this type; such arguments in [9] and [4] require steps involving branching
processes and large deviation inequalities, and some of the details given are quite sketchy.
Finally, the approach taken shows indications of being very useful elsewhere, even when
the main results given here do not apply. This is explained more fully in Section 5.
The new results can also be applied to random graphs with given degrees which are
uniformly bounded.

In Section 2 we analyse the degree-greedy algorithms for independent and dominating
sets, using a result obtained via prioritised algorithms. This is proved in Section 3 from
a more general result which in is in turn proved in Section 4.

2 Theorem and examples for d-regular graphs

Throughout this section we assume d ≥ 3 is fixed (though the basic definitions apply for
d ≥ 1), with dn even. For all asymptotics we take n → ∞. We consider here, in more
detail, the greedy algorithms on random d-regular graphs for independent and domi-
nating sets described in Section 1. This gives motivation for the setting of Theorem 1,
which is tailored for algorithms like these. It provides the same asymptotic result that
we expect a degree-greedy algorithm to produce. We then apply it to the independent
and dominating set algorithms, and obtain the same lower bounds on maximum inde-
pendent sets, and upper bound on minimum independent dominating sets, as obtained
in [9, 4]. Its proof, given in the rest of the paper, uses analysis of the deprioritised
algorithm which we associate with a degree-greedy algorithm.

The standard model for random d-regular graphs is as follows. See Bollobás [2]
and the author’s survey [10] for a thorough discussion of this model and the assertions
made about it here, as well as other properties of random regular graphs. Take a set
of dn points in n buckets labelled 1, 2, . . . , n, with d points in each bucket, and choose
uniformly at random a pairing P = p1, . . . , pdn/2 of the points such that each pi is
an unordered pair of points, and each point is in precisely one pair pi. The resulting
probability space of pairings is denoted by Pn,d. Form a d-regular pseudograph on n
vertices by placing an edge between vertices i and j for each pair in P having one point
in bucket i and one in bucket j. This pseudograph is a simple graph (i.e. has no loops
or multiple edges) if no pair contains two points in the same bucket, and no two pairs
contain four points from just two buckets. The d-regular simple graphs on n vertices
graphs all occur with equal probabilities.

With probability asymptotic to e(1−d2)/4, the pseudograph corresponding to the ran-
dom pairing in Pn,d is simple. It follows that, in order to prove that a property is a.a.s.
true of a uniformly distributed random d-regular (simple) graph, it is enough to prove
that it is a.a.s. true of the pseudograph corresponding to a random pairing.

As in [9] and [11], we redefine this model slightly by specifying that the pairs are
chosen sequentially. The first point in a random pair can be selected using any rule
whatsoever, as long as the second is chosen uniformly at random from the remaining
points. This preserves the uniform distribution of the final pairing.

When a pair has been determined in the sequential process, we say that it has been

3

exposed. By exposing pairs in the order which an algorithm requests their existence, the
generation of the random pairing can be combined with the algorithm (as in [4, 9, 11]).
This can be explained alternatively as follows. Suppose that the pairing generation
consists of a sequence of operations op0, op1, . . ., each exposing at least one of the pairs.
An algorithm which examines edges in the same order as for the pairing generation can
be incorporated into the pairing generation by extending the definition of the operations
to do whatever other tasks the algorithm needs to carry out. (An example is below.)

The algorithm being referred to acts upon the final (pseudo)graph of the generation
process. It is convenient to regard the operations as sequentially deleting the exposed
pairs (edges) from this graph. For this reason, we refer to it as the deletion algorithm
being carried out, to distinguish it from the pairing generation. At each point, the graph
in the deletion algorithm contains all the edges of the final graph which have not yet
been exposed.

For example, the degree-greedy independent set algorithm from [9] and [11] can be
described in terms of operations incorporated into the pair generation, as follows. A
set S and the pairing are initially empty. Then for integer t ≥ 0, the operation opt
randomly selects a bucket v with the maximumum degree, the degree of a bucket being
the number of points in that bucket which are in exposed pairs. (This is equivalent to a
vertex of minimum degree in the graph in the deletion algorithm.) It then adds v to S
and exposes all the pairs involving points in v, and next exposes the pairs of all points
in all neighbouring buckets (i.e. buckets containing pairs in common with v). Any other
bucket attaining degree d is also added to S. These correspond to vertices which become
isolated in the deletion algorithm without ever being v or one of its neighbours. We call
these vertices, and the corresponding buckets, accidental isolates.

The setting of Theorem 1 requires a number of general definitions. The initial pairing
is empty, denoted by G0. We consider processes in which each operation opt is one of
Opi, i = 1, . . . , d, where Opi consists of selecting a bucket (vertex) v of degree d − i in
Gt uniformly at random, and then applying some specified set of (usually randomised)
tasks, to obtain Gt+1. (We use Opi for buckets of degree d− i because these correspond
to vertices of degree i in the corresponding deletion algorithm.) For the general setting,
we do not insist on always performing an operation on the bucket of maximum degree:
the tasks specified in Opi must be such that the operation can always be completed,
provided there is some bucket of degree at least d − i. A subset S of V (G) ∪ E(G) is
selected during the operations, with S0 = ∅ initially, and S = St for the pairing Gt.

For 0 ≤ i ≤ d, let Yi = Yi(t) denote the number of buckets of degree d− i in Gt (in
agreement with the convention of naming Opi). This is the number of vertices of degree
i in the graph in the deletion algorithm. The number of buckets of degree d (vertices of
degree 0) is

Y0 = n−
d∑

i=1

Yi, (2.1)

so this does not need to be calculated (but is useful in discussions). Also let Yd+1 denote
cardinality of the set St.

Let j denote d+1. (If we wished to keep track of other sets at the same time, we could
define j > d+ 1 and other variables Yd+2, . . . , Yj.) The process Y(t) = (Y1(t), . . . , Yj(t))
need not be Markovian; i.e., the probability distribution of Y(t) need not be determined

4

from the vector Y(t−1). But we require it to be so, in an asymptotic sense. Accordingly,
assume that the expected change in Yi, in going from Gt to Gt+1, conditional upon Gt

and opt, is determined approximately, depending only upon t, opt, and Y1(t), . . . , Yj(t).
In some sense, this is a measure of the rate of change of Yi. We express the assumption
by asserting that for some fixed functions fi,r (x,y) = fi,r (x, y1, . . . , yj),

E
(
Yi(t+ 1)− Yi(t) | Gt ∧ {opt = Opr}

)
= fi,r(t/n, Y1/n, . . . , Yj/n) + o(1) (2.2)

for i = 1, . . . , j, r = 1, . . . , d such that Yr(t) > 0. The convergence in o(1) is uniform
over all appropriate choices of t and Gt as functions of n with certain restrictions on
Gt which will be specified in the forthcoming theorem. Uniformity over r and i then
follows, since there are finitely many possibilities for these two variables.

To motivate the remaining general definitions, it is helpful to consider the typical
behaviour of the degree-greedy independent set algorithm. We now discuss this in terms
of the deletion algorithm described above. The initial graph is a d-regular graph on n
vertices. The first step must apply op0 = Opd. Typically G1 has some lower degree
vertices, so the next step is determined by its minimum degree. Both Opd and Opd−1

typically produce vertices of degree d− 1 but none of lower degrees when Yd−1 is small
(say o(n)), so the second step normally inolves Opd−1, as does the next, and this remains
so until a vertex of lower degree, say d−2, is produced. This causes a temporary hiccup,
with an Opd−2, followed by more steps of Opd−1. When vertices of degree d− 1 become
plentiful, vertices of lower degree are more commonly created, and the hiccups occur
more often. In this way, the prioritisation causes a rather complicated situation.

Suppose that at some step t in the process, an Opd−1 creates, in expectation, α
vertices of degree d− 2, and an Opd−2 decreases the number of vertices of degree d− 2,
in expectation, by τ . Then we expect each Opd−1 to be followed by (on average) α/τ
steps of Opd−2. At some stage τ may fall below 0, at which point the vertices of degree
d − 2 begin to build up and do not decrease under repeated applications of Opd−2.
Then vertices of degeree d− 2 take over the role of vertices of degree d− 1, and we say
informally that the first phase of the process has finished and the second has begun. (The
definition is necessarily imprecise because the endpoint of a phase is hard to pin down
when observing the performance of one run of the algorithm.) The process may continue
through further phases; typically, the kth phase begins with an increasing abundance of
vertices of degree d− k. Note that by the assumptions above, the asymptotic values of
α and τ in the first phase are the cases k = 1 of the general definitions

αk(x,y) = fd−k−1,d−k (x,y) ,
τk(x,y) = −fd−k−1,d−k−1 (x,y) ,

(2.3)

where

x =
t

n
, y(x) =

Y(t)

n
. (2.4)

During phase k, what is the expected trajectory of the variables Yi? The limiting
behaviour of the scaled version Yi/n will (we shall see) be independent of n. Since each
Opd−k is followed (on average) by αk/τk steps of Opd−k−1, we expect the proportion of
steps involving an operation of the former type to be 1/(1 +αk/τk) = τk/(τk +αk), and

5

of the latter type to be αk/(τk +αk). This suggests that, if yi as prescribed in (2.4) were
a differentiable function of a real variable, its derivative would satisfy

dyi
dx

= F (x,y, i, k) (2.5)

where

F (x,y, i, k) =

{
τk

τk+αk
fi,d−k (x,y) + αk

τk+αk
fi,d−k−1 (x,y) k ≤ d− 2

fi,1 (x,y) k = d− 1.
(2.6)

Our assumptions will ensure that the phases proceed in an orderly fashion, and that the
last possible phase is k = d− 1, in which all operations are Op1.

Having described the typical behaviour of the degree-greedy independent set algo-
rithm, we may point out some of the difficulties of its analysis. One problem is that
the expected change in the variables depends on what this minimum degree is, and this
follows a random process itself. It would require justification to argue as above about
the proportion of steps involving an operation of a given type. The other problem is
that the analysis in between phases does not proceed very smoothly.

We will work with the parameters of fi,` in the domain

Dε = {(x,y) : 0 ≤ x ≤ d, 0 ≤ yi ≤ d for 1 ≤ i ≤ j, yd ≥ ε} (2.7)

for some prechosen value of ε > 0. (The upper bounds on x and yi are chosen so as to
contain all conceivably relevant (x,y). A positive lower bound on yd is included to avoid
the singularities of the functions fi,r in the applications we will consider.) The behaviour
of the process will be described in terms of the function ỹ = ỹ(x) = (ỹ1(x), . . . , ỹj(x))
defined as follows, with reference to an initial value x = x0 = t0/n of interest:

ỹi(x0) = Yi(t0)/n, i = 1, . . . , j, and inductively for k ≥ 1, ỹ is the
solution of (2.5) with initial conditions y(xk−1) = ỹ(xk−1), extending
to all x ∈ [xk−1, xk], where xk is defined as the infimum of those
x > xk−1 for which at least one of the following holds: τk ≤ 0 and
k < d − 1; τk + αk ≤ ε and k < d − 1; ỹd−k ≤ 0; or the solution is
outside Dε or ceases to exist.

(2.8)

The interval [xk−1, xk] represents phase k, and the termination condition ỹd−k = 0 is
necessary to ensure that the process does not revert to the conditions of phase k − 1.
(This, if it did occur, could still be analysed by similar methods, but to permit this
would make the descriptions of the phases difficult; it does not seem to occur in practice
for the algorithms of interest here.) Typically it will eventuate that ỹd−k(xk−1) = 0 but
ỹd−k(x) > 0 for x greater than, but close to, xk−1, which permits phase k to endure for a
non-empty interval [xk−1, xk], provided τk stays positive on such an interval. We require
this inductive definition of ỹ to continue for phases k = 1, 2, . . . ,m, where

m denotes the smallest k for which either k = d−1, or any
of the termination conditions for phase k in (2.8) hold at
xk apart from xk = inf{x ≥ xk−1 : τk ≤ 0}.

(2.9)

6

To simplify the discussion, we will impose conditions to ensure that the intervals
representing phases 1, 2, . . . ,m in the definition of ỹ are nonempty. These conditions
are

τk > 0 and τk + αk > ε at (xk−1, ỹ(xk−1)) (1 ≤ k ≤ min{d− 2,m}), (2.10)

fd−1,d−1 > 0 at (x0, ỹ(x0)),
f ′d−k,d−kτk + fd−k,d−k−1f

′
d−k−1,d−k > 0 at (xk−1, ỹ(xk−1))+ (1 < k ≤ min{d− 2,m}),
f ′d−k,d−k > 0 at (xk−1, ỹ(xk−1))− (1 < k ≤ m),

f ′1,1 > 0 at (xd−2, ỹ(xd−2))+ if m = d− 1,
(2.11)

with f ′ denoting df(x,ỹ(x))
dx

and (x, ỹ(x))+ and (x, ỹ(x))− referring to the right-hand and
left-hand limits as functions of x.

We may now state the first main result of this paper, to be proved later using
deprioritised algorithms.

Theorem 1 Let d ≥ 3, for 1 ≤ i ≤ d let Yi(t) denote the number of buckets of degree d−
i in Gt, and let Yd+1(t) denote |St|. Assume that for some fixed ε > 0 the operations Opr
satisfy (2.2) for some fixed functions fi,r(x, y1(x), . . . , yd+1(x)) and for i = 1, . . . , d+ 1,
r = 1, . . . , d, with the convergence in o(1) uniform over all t and Gt for which Yr(t) > 0
and Yd(t) > εn. Assume furthermore that

(i) there is an upper bound, depending only upon d, on the number of pairs exposed, and
on the number of elements added to S (i.e. |St+1|−|St|), during any one operation;

(ii) the functions fi,r are rational functions of x, y1, . . . , yd+1 with no pole in Dε defined
in (2.7);

(iii) there exist positive constants C1, C2 and C3 such that for 1 ≤ i < d, everywhere
on Dε, fi,r ≥ C1yi+1 − C2yi when r 6= i, and fi,r ≤ C3yi+1 for all r.

Define ỹ as in (2.8), set x0 = 0, define m as in (2.9), and assume that (2.10) and (2.11)
both hold. Then there is a randomised algorithm on Pn,d for which a.a.s. there exists
t such that |St| = nỹd+1(xm) + o(n) and Yi(t) = nỹi(xm) + o(n) for 1 ≤ i ≤ d. Also
ỹi(x) ≡ 0 for xk−1 ≤ x ≤ xk, 1 ≤ i ≤ d− k − 1 (1 ≤ k ≤ m).

Note The hypotheses of the theorem relate to the behaviour of all the operations, but
it is really only the behaviour of Opδ which matters, where δ is the minimum vertex
degree of Gt. This should be expected, since in the prioritised algorithm, it is only the
behaviour of the operation with highest priority which counts; the other operations may
not even be defined! (See the discussion of Example 2 below.) Nevertheless, we insist
on having Opr defined for r > δ (provided Yr > 0); otherwise, it would be much more
awkward to state the hypotheses which would correctly lead to an equivalent conclusion.

Example 1. Independent sets in random d-regular graphs.

Consider the degree-greedy algorithm for independent sets from [9, 11] described
above. Here, in the specification of Opr (which first selects a random bucket of degree

7

d− r), the set of randomised tasks consists of exposing all the pairs involving points in
v and points in all neighbouring buckets, and adding v and any accidental isolates to S.

We may verify the hypotheses of Theorem 1. It is shown in [9] that (2.2) holds when
Yd(t) > εn (for any ε > 0) with the definition

fi,r = −δir − r
iyi
s

+ r((i+ 1)yi+1δi+1≤d − iyi)
d∑

`=2

(`− 1)`y`
s2

(2.12)

for 0 ≤ i ≤ d, where y0 is defined as 1 − ∑d
`=1 y` in accordance with (2.1) and (2.4).

Here, for any statement Q, define δQ = 1 if Q is true and 0 otherwise, and let δi` denote
δi=`. Also s =

∑d
`=1 `y` (noting that Yi here was denoted by Yd−i in [9]). It follows

that (2.2) also holds for i = d + 1 with fd+1,r defined as 1 + f0,r, since in each Opr, an
extra vertex is added to the independent set S and the expected number of accidental
isolates is f0,r as defined in (2.12).

It may help to sketch, nonrigorously, the derivation of (2.12). (See [9] for the full
story). The bucket v has degree d− r before the operation and 0 afterwards, hence the
term −δir. The probability that when a pair is exposed, the other point is in a bucket
of degree d − i, is asymptotic to iYi/σ where σ =

∑d
`=1 `Y`. Thus riyi/s stands for

the expected number, of the r buckets found adjacent to v, which have degree i. The
rest of the formula comes from the expected changes due to the buckets of “distance” 2
from v. For each bucket of degree d− ` adjacent to v (the expected number of which is
`Y`/σ) there are (`− 1) pairs exposed (we can ignore pairs exposed from both ends —
they are rare) and the expected number of buckets of degree d− i each of these reaches
is iYi/σ. This contributes negatively to the expected change in Yi, whilst buckets of
degree d− i− 1 which are reached contribute positively. This explains (2.12) (omitting
justification of the omission of some insignificant terms).

Hypothesis (i) of the theorem is immediate since in any operation only the pairs
involving points in one bucket and its neighbours are exposed, and a bounded number
of vertices are added to S (as there are certainly less than d2 accidental isolates). The
functions fi,r satisfy (ii) because from (2.12) their (possible) singularities satisfy s = 0,
which lies outside Dε since in Dε, s ≥ yd ≥ ε. Hypothesis (iii) follows from (2.12)
again using s ≥ yd ≥ ε and the boundedness of the functions yi (which follows from the
boundedness of Dε). Thus, defining ỹ as in (2.8) with t0 = 0, Yd(0) = n and Yi(0) = 0
for i 6= d, we may solve (2.5) numerically to find m, verifying (2.10) and (2.11) at the
appropriate points of the computation. It turns out that these hold for each d which
was treated numerically in [9], and that in each case m = d − 2, for sufficiently small
ε > 0. For such ε, the value of ỹd+1(xm) may be computed numerically, and then by
Theorem 1, this is the asymptotic value of the size of the independent set S at the
end of some randomised algorithm. So the conclusion is that a random d-regular graph
a.a.s. has an independent set of size at least nỹd+1(xm) + o(n). Note also that (by the
theorem) ỹi(x) ≡ 0 in phase k for 1 ≤ i ≤ d−k−1, and by the nature of the differential
equation, ỹi(x) will be strictly positive for i > d − k. So by (2.8) and (2.9), the end of
the process (for ε arbitrarily small) occurs in phase d− 2 when either τk + αk ≤ ε or ỹ2

becomes 0. Numerically, we find it is the latter. This is numerically more stable as a
check for the end of the process than checking when ỹd reaches 0, since the derivative of
the latter is very small.

8

In [9], the differential equations computed were actually different (but equivalent)
and only the algorithm with priority constraints was considered. The resulting bounds
for independent sets were the same as the argument above gives. However, the method of
analysis required verification of more complicated conditions than the use of Theorem 1.

Note that in applying this theorem, the type of algorithm being used is immaterial.
All that is important is the operations and their expected effects. It no longer matters
that the differential equations mimic the algorithm which repeatedly selects the vertex v
of minimum degree, adds v to the independent set, and then deletes v and its neighbours
from the graph.

Example 2. Independent dominating sets in random 3-regular graphs.

A similar randomised greedy algorithm was used in [4] to obtain upper bounds on
the size of a minimum independent dominating set (minimum maximal independent
set) in a random cubic graph. In this algorithm a random vertex v of minimum degree
is selected, and a vertex u is added to the dominating set S where u is either v or a
neighbour of v. The determination of u depends on the degrees of v and its neighbours:
if d(v) = 3, or d(v) = 2 and both neighbours have degree 2, then u = v; otherwise, u is
a neighbour of v of maximum possible degree (randomly chosen if there is a tie). Then
u and its neighbours are deleted, any resulting vertices of degree 0 (accidental isolates)
are added to S, and the step is repeated.

For the analysis here, the operation is called Opr if r is the degree of v in the deletion
algorithm; i.e. the corresponding bucket has degree 3−r in the current pairing. Op2 was
only defined in [4] in the case that the neighbours of v do not have degree 1 (which was
sufficient for the purpose there, since this is always true when the degree-greedy priority
rule is used). It was shown that under this assumption, for r = 1 and 2, 1 ≤ i ≤ 3, (2.2)
holds with

fi,1 =
−iyi + (6y3 + 2y2)µi

s
− δi1,

fi,2 =
9y2

3(−2δi3 + 2µi) + 12y3y2(−δi3 − 2δi2 + δi1 + 2µi) + 4y2
2(−3δi2 + 2ρi)

s2

where

µi =
−iyi + (6y3 + 2y2)ρi

s
,

ρi =
−iyi + (i+ 1)yi+1δi+1≤3

s
, 1 ≤ i ≤ 3,

and δ and s are as in (2.12). The justification of these equations is similar to those in
the previous example. Moreover, it is easy to show that the corrsponding equation for
r = 3 is

fi,3 = −δi3 − 3µi

(assuming the neighbours of the chosen vertex do not have degree less than 3). We
now need to remove the assumption that the neighbours of v do not have degree less
than r in Opr (r = 2 and 3). An easy way to do this is to extend the definition of the
operations so that, if v does have any such neighbours, the operation just exposes all

9

points in v, and adds any accidental isolates to the dominating set. Then the formulae
for fi,2 and fi,3 above are modified by the addition of rational functions, of a type
similar to the present functions, and whose denominator is a power of s. (This much
is fairly easy to see; getting the correct functions only a little more work.) In the case
of fi,2, the extra terms all have y1 as a factor, accounting for the probability that v
has a neighbour of degree 1. Since in the solution ỹ1 = 0 (by the last statement in
Theorem 1) and the differential equation does not involve fi,3, these extra terms can be
ignored. The final variable is y4, for the size of the dominating set constructed by the
algorithm. For each operation, Y4 gains 1 plus the number of accidental isolates. It is
shown in [4] that f4,1 = 1 + (6y3 + 2y2)2y1/s

2 and f4,2 = f4,3 = 1 (again ignoring the
extra terms for neighbours of degree less than r, which does not affect the result, or its
validity, for the same reasons as before). Verification of the hypotheses of Theorem 1
is much as in the previous example, though condition (2.10) and the first in (2.11)
are easily checked directly from the initial conditions, so the only condition requiring
a special numerical check is the last in (2.11), that f ′1,1 > 0 at (x1, ỹ(x1)). Numerical
solution of the differential equation (2.5) (with ε ≈ 10−5) shows that m = 2, with
x1 ≈ 0.1419, ỹ2(x1) ≈ 0.219 > 0 and y3 ≈ 0.236. We may substitute these values
into the derivative of f1,1 with respect to x along the solution, to see that f ′1,1 ≈ 3.9.
Further numerical solution of the differential equation gives ỹ4(x2) ≈ 0.27941. Moreover,
ỹi(x2) ≈ 0 for 1 ≤ i ≤ 3, and these variables represent all the vertices not yet dominated.
So by Theorem 1, there is a randomised algorithm on Pn,d which at some point has
|S| ≈ 0.27941n and has dominated virtually all of the vertices of the graph. Numerically,
we find that ỹ4(x2) +

∑3
i=1 ỹi(x2) < 0.27942. Thus, adding the remaining vertices into

the dominating set (or some of them, as required in a greedy fashion) gives the almost
sure upper bound 0.27942n on the size of the minimum independent dominating set in
a random cubic graph. This is, because of the nature of the proof of Theorem 1, the
same result as obtained in [4] for the degree-greedy algorithm.

3 Deprioritised algorithms

In this section we introduce the precise deprioritised algorithms to be used to approx-
imate greedy algorithms. We state a general result, Theorem 2, and use it to prove
Theorem 1. Theorem 2 is proved in the next section.

First, the algorithms described in the examples in Section 2, as well as some obvi-
ous variations, can be put into the following framework. (Most of the assumptions in
Section 2 will be used again, as well as some introduced in this section.) Working in
this generality enables us to isolate the arguments which do not depend on the pair-
ings introduced in Section 2. Consider for each n > 0 a discrete-time Markov process
G0, G1, . . . = {Gt}t≥0, so that Gt = Gt(n). Here, G0 may be a random function of n.
For example, it may be a (partial) pairing as in Section 2, or a graph. Assume that
each transition from Gt to Gt+1 is an instance of one of a finite set of d operations
Op1, . . . ,Opd. We denote the particular one of these applied to Gt to obtain Gt+1 by
opt. In general, applying Opi to Gt will itself involve some randomised steps. It many
not be possible to apply every operation to every possible object Gt, but we assume
there is a set of j ≥ d functions of Gt, Y1 = Y1(t) = Y1(Gt), . . . , Yj = Yj(t) = Yj(Gt), for

10

t = 0, 1, . . ., such that

the application of Opi to Gt is defined if i ≤ d and Yi(Gt) > 0. (3.1)

(Note that j is no longer set equal to d + 1 as in Section 2.) We thus define Opi to
be permissible for Gt iff Yi > 0. Note that in this setting, Yi(t) becomes a random
variable, though for convenience we sometimes refer to its value on a given trajectory
of the process.

Along with this, assume that for all instances of the process, for all t ≥ 0

Yi(t) ≥ 0 (1 ≤ i ≤ d). (3.2)

The other variables, Yd+1, . . . , Yj, are unconstrained.
For the degree-greedy algorithms mentioned in Section 1, the choice of operations is

prioritised. Thus, at each step t, the operation to be performed is determined by the Yi
as follows: Opδ must be applied to Gt, where δ = min{i : i ≤ d, Yi(t) 6= 0}. Under these
circumstances, as long as the fi,j are well enough behaved, we would expect the rate
of change of Yi to approximately equal fi,δ(Gt) (x,y) with x and y as in (2.4). To help
ensure good behaviour of the algorithm, we require that the Yi and fi,k satsify Lipschitz
conditions. Here, by f being Lipschitz on a domain D, we mean that for some C > 0,
for all ε′ > 0, |f(x) − f(x0)| < Cε′ whenever |x − x0| < ε′ with x, x0 ∈ D. We are
primarily interested only in the following closed domain Dε,M ⊆ IRj+1 where ε and M
are fixed positive constants to be defined in the particular applications:

Dε,M = {(x,y) : 0 ≤ x ≤M, |yi| ≤M (1 ≤ i ≤ j), 0 ≤ yi (1 ≤ i < d), yd ≥ ε}. (3.3)

Note that under the change of variables (2.4), Yi(t) ≤ Mn inside Dε,M . The following
restricts the Yi rather more strongly than is necessary (see [11, Theorem 5.1]) but suffices
for many purposes and makes for simpler proofs. The assumptions we use are:

(A1) for 1 ≤ i ≤ j and for some C > 0, Yi(t) < 9Mn/10 always and |Yi(t+1)−Yi(t)| <
C always;

(A2) for all 1 ≤ r ≤ d and all i, fi,r is Lipschitz on Dε,M .

We will also be assuming

the derivative of each fi,j along a trajectory of (2.5) is Lipschitz
in some neighbourhood of (xk, ỹ(xk)) (1 ≤ k < m).

(3.4)

In conjunction with (2.11), this will ensure that yd−k grows at the beginning of phase
k to ensure that the phase lasts for a significant time period, although the reasons for
this may not be clear at present.

We remark that in the applications considered here, xm turns out to be finite, and
at this point ỹi approaches 0 for each i ≤ d.

Priority constraints cause annoyance during the analysis in [9, 11]. Instead of ad-
hering to the priorities, consider another algorithm in which there is prescribed for each
Gt a probability vector p = p(n, x) = (p1, . . . , pd) which depends only upon n and x.
Here each pi is nonnegative, and

∑
i pi = 1. Given p, the probability that the next step

11

applies Opr to Gt is pr = pr(n, x), recalling that x = t/n. From (2.2) this implies by
linearity of expectation that

E(Yi(t+ 1)− Yi(t) | Gt) ∼
d∑

r=1

prfi,r (x,y) . (3.5)

We call this new algorithm the deprioritised p-algorithm corresponding to the original
algorithm.

At each step until the algorithm terminates, p must be such that

Opi is permissible for Gt for each i such that pi > 0. (3.6)

If this condition is ever violated for a particular t, we may define Gt+1 = Gt and say
that the algorithm has become stuck.

To make this approach workable, we impose some extra conditions on the functions
fi,r. For the applications of present concern, the following is satisfied in a natural way,
for the simple reason that when a vertex is removed from a random graph with given
degree sequence, the degrees of its neighbours are determined approximately from the
numbers of vertices of given degree. (It is still a stronger assumption than necessary to
obtain useful results.)

(B) There exist positive constants C1, C2 and C3 (which may depend on ε and M)
such that fi,r ≥ C1yi+1 − C2yi on Dε,M for 1 ≤ i < d and r 6= i, and fi,r ≤ C3yi+1

on Dε,M for 1 ≤ i < d and all r.

The following theorem gives a useful result even for algorithms applied to non-regular
graphs (or other more general applications), since the error terms depend only on the
maximum vertex degree of the initial graph. The key features of the proof are only
required when d ≥ 3, so this condition is imposed at the outset.

Theorem 2 Let ε,M > 0 and d ≥ 3, and define Dε,M as in (3.3). Assume that
the Markov process {Gt}t≥0 has operations Opi and variables Yi(Gt) satisfying (3.1)
and (3.2), and that (2.2) holds whenever (t/n, Y1(t)/n, . . . , Yj(t)/n) ∈ Dε,M . Also as-
sume the conditions (A1), (A2) and (B), as well as that Yi(0) = 0 for i < d and that

Yd(0) > c0n for some constant c0 > Cε, c0 < M (3.7)

(where C is the constant in (A1)). Setting Dε = Dε,M , define ỹ and xk as in (2.8) with
x0 = 0, and m as in (2.9), and assume that (2.10), (2.11) and (3.4) all hold. Then the
xk are all distinct, and there is a choice of p = p(n, x) such that, for the deprioritised
p-algorithm, a.a.s. Yi(t) = nỹi(t/n) + o(n) uniformly for 0 ≤ t ≤ x′mn and 1 ≤ i ≤ j,
where xm − x′m = o(1). Furthermore, for 1 ≤ k ≤ m,

ỹi(x) ≡ 0 (xk−1 ≤ x ≤ xk, 1 ≤ i ≤ d− k − 1). (3.8)

Notes

1 We define the statement that a.a.s. A(t) = B(t) + o(n) to mean that there exists a
function λ′(n) = o(n) for which |A(t)−B(t)| < λ′(n) a.a.s. Similar statements in
this paper should be interpreted the same way.

12

2 If the functions fi,r are not Lipschitz on Dε,M but on some subset of it which
corresponds to all feasible trajectories of the process, a similar theorem holds with
virtually the same proof.

3 Bounds on the error in the functions computed when solving the differential equa-
tions numerically permit verification of (2.10) and (2.11) because they involve
inequalities rather than equations (and in view of (3.4)). This implies that the
distinctness of the xk can be checked in the same way, since this follows from
simple inequalities holding at each xk ensuring that phase k does not immediately
terminate. On the other hand, numerical verification of the existence of a par-
ticular xk relies upon checking that the inequality in (2.8) which determines the
end of a phase is satisfied sharply shortly after the end of the phase. Luckily, this
happens in all applications so far considered.

4 The prioritised algorithm behaves similarly to the p-algorithm whose existence is
shown in Theorem 2, but this statement does not follow easily from Theorem 2.
In any case, for the applications of concern here, it is sufficient to know of any
algorithm behaving in a given way asymptotically.

Theorem 1 is essentially the specialisation of Theorem 2 to degree-greedy algorithms
on the pairing model; that is, algorithms on pairings in which the selection of the
operation Opi involves using the least i for which Yi > 0.

Proof of Theorem 1 For this theorem, we have j = d+1. Let us check the hypotheses
of Theorem 2, with ε > 0 chosen to be suitably small.

First, (3.1) holds by the specification that Opi can be performed whenever a bucket
of degree i exists, and (3.2) is immediate from the definition of Yi.

Let M = d, so that Dε = Dε,M as in (3.3). Equation (2.2) certainly applies inside
Dε. The first part of condition (A1) holds by the fact that Yi ≤ dn/2 + n always,
noting that d ≥ 3. (For i = d + 1 the value is at most the total number of vertices
and edges in the graph, and for smaller i it is at most n, the number of vertices.) The
second part holds by assumption (i) of the theorem’s hypotheses. Condition (A2) holds
since it follows from (ii) that the fi,r are analytic and have bounded derivatives on the
domain Dε,M , which is bounded. Condition (B) is given by (iii). Initially, Yd(0) = n,
so choosing ε > 0 sufficiently small, the lower bound (3.7) on Yd(0) is satisfied. The
graph is initially regular so Yi(0) = 0 for i < d. Equations, (2.10) and (2.11), required
for Theorem 2, are both asserted directly in the hypotheses of Theorem 1. Finally, (3.4)
follows easily from (ii), since the derivative of each fi,j along any trajectory of (2.5) is a
rational function of x and the yi and their derivatives along that trajectory. By (2.6),
these derivatives themselves are rational functions with no pole in Dε,M by the definition
of xk in (2.8). So by the conclusion of Theorem 2, there is a deprioritised algorithm for
which Yd+1(t) = nỹd+1(t/n) + o(n) a.a.s., where t = bnxmc. The main statement in the
Theorem 1 now follows by the Lipschitz condition (A2), which implies that the ỹi have
bounded derivatives and so |ỹi(xm) − ỹi(x′m)| = o(1). The last statement is just (3.8).

13

4 Proof of Theorem 2

The proof of Theorem 2 uses a deprioritised algorithm. For all but but an insignificant
part of the time, the randomised mixture of operations used, determined by p, is ar-
bitrarily close to the mixture which the original prioritised algorithm uses on average
at the corrsponding stage of its execution. There is also the necessity of building and
then maintaining a large number of vertices of each possible degree, so that the required
operations can always be carried out.

We will use the fact that for any choice of p satisfying a Lipschitz condition, the value
of Y = (Y1, . . . , Yj) a.a.s. follows close to the solution of the corresponding differential
equation. To establish this, we use the following result which is a simplified version of [11,
Theorem 6.1], which is an extension of [11, Theorem 5.1]. (See also [9, Theorem 1].)
First we need a few definitions. The real variables Y1, . . . , Ya are defined on any discrete-
time random process G0, G1, . . ., which depends on n. We write Yi(t) for Yi(Gt), and
for any domain D̂ ⊆ IRa+1 define the stopping time TD̂(Y1, . . . , Ya) to be the minimum

t such that (t/n, Y1(t)/n, . . . , Ya(t)/n) /∈ D̂. This is written as TD̂ for short. In the
following theorem, P and E denote probability and expectation for the random process.
Note that even G0 may be randomly distributed.

Theorem 3 For 1 ≤ i ≤ a, where a is fixed, let Yi be a real-valued function of the
components of a discrete time Markov process {Gt}t≥0. Assume that D̂ ⊆ IRa+1 is
closed and bounded and contains the set

{(0, y1, . . . , ya) : P(Yi(0) = yin, 1 ≤ i ≤ a) 6= 0 for some n}
and

(i) for some constant β
max
1≤i≤a

|Yi(t+ 1)− Yi(t)| ≤ β

always for t < TD̂,

(ii) for some functions fi : IRa+1 → IR which are Lipschitz on some open set D̂0

containing D̂ for all i ≤ a, and λ = λ(n) = o(1),

|E(Yi(t+ 1)− Yi(t) | G0, . . . , Gt)− fi(t/n, Y1(t)/n, . . . , Ya(t)/n) | ≤ λ

for t < TD̂ and 1 ≤ i ≤ a.

Then the following are true.

(a) For (0, ŷ1, . . . , ŷa) ∈ D̂ the system of differential equations

dyi
dx

= fi(x, y1, . . . , ya), i = 1, . . . , a

has a unique solution in D̂ for yi : IR→ IR passing through

yi(0) = ŷi,

1 ≤ i ≤ a, and which extends for positive x past some point, at which x = σ say,
at the boundary of D̂;

14

(b) Asymptotically almost surely

Yi(t) = nyi(t/n) + o(n) (4.1)

uniformly for 0 ≤ t ≤ min{σn, TD̂} and for each i, where yi(x) and σ are as in
(a) with ŷi = 1

n
Yi(0).

In part (b) of this theorem, “uniformly” refers to the convergence implicit in the
o() term. (We omit the hypothesis of [11, Theorem 5.1] that Yi is bounded above by a
constant times n, since this property follows anyway from the different hypothesis (i)
we have here, together with the assumption that D̂ is bounded.)

We will also need the following property of solutions of first order differential equa-
tions.

Lemma 1 Suppose that y satisfies the equations

dyi
dx

= gi(x,y)

for (x,y(x)) in a bounded open set D, with initial conditions y(0) = ŷ = ŷ(n). Let
z denote another solution, with initial conditions z(0) = ẑ = ẑ(n). Suppose that the
functions gi are Lipschitz on D and |ŷ(n) − ẑ(n)| → 0 as n → ∞. Let x1 = inf{x :
(x,y(x)) /∈ D or (x, z(x)) /∈ D}. Then |y(x)− z(x)| → 0 uniformly for x ∈ [0, x1).

Proof: This is standard, by the method of successive approximations (see [7, Theorem
2, Chapter 2] or [8, Section 3.22]).

The differential equation (2.5) corresponds by (3.5) to the deprioritised p-algorithm
with

pi =





τk
τk+αk

i = d− k,
αk

τk+αk
i = d− k − 1,

0 otherwise.

(4.2)

The proof of Theorem 2 relies on the fact that ỹ approximates the variables Yi/n as the
vector (y1, . . . , ya) in Theorem 3(b) a.a.s. The only great difficulty is that, due to the
priority constraints, it turns out that (4.2) does not give an algorithm which is always
compatible with the permissibility condition (3.6).

Proof of Theorem 2 The overall structure of the proof is to define a p-algorithm,
depending on some arbitrarily small ε1 > 0, whose scaled variables Yi/n agree with
the functions ỹi to error O(ε1). For the first ε1n steps, p is chosen to force Opd to be
used, which makes all variables strictly positive in the differential equations. From then
onwards, the variables remain strictly positive. The advantage of having the variables
positive is that every operation is then permissible in the algorithm. Then the theorem
follows upon letting ε1 go to 0. (One way of expressing the last step is to say that ε1 → 0
sufficiently slowly, while n→∞ quickly.) We treat phase 1, where k = 1, in detail since
it has some special features but also contains almost all of the ideas required for the
general case. We assume for the present that m > 1. (The places in the argument
which use this assumption will be signposted. The modifications required when m = 1
are covered in the discussion of the case k = m, which will be described at the end. They
affect only the argument pertaining to the part of the process where x = t/n ≈ xm.)

15

The proof is broken into six parts, referring to the behaviour of various functions on
given intervals.

Part 1: ỹ on [0, x1]
It is convenient to first make some observations about ỹ and verify that x1 > 0 = x0.

We will apply Theorem 3 (or, more conveniently, a standard result in the theory of
ordinary differential equations which implies Theorem 3(a)) to the solution of the differ-
ential equations (2.5) determining ỹ. Note that from the assumptions in the theorem,
the initial conditions are

ỹd(0) = Yd(0)/n > c0 > 0, ỹi(0) = 0 for i < d. (4.3)

Define
D̂ = Dε,M ∩Q (4.4)

where Q denotes the set of all points at which τ1 +α1 ≥ ε. Since Dε,M is a convex set, it

is easy to extend or amend the definitions of the functions fi,r to a bounded open set D̂0

containing Dε,M , so that the Lipschitz property in condition (A2) applies on the entirety

of D̂0 and satisfying τ1 + α1 > ε/2. For example, fi,r can be defined to take at x the

value it has on the closest point to x in D̂. These properties ensure that Theorem 3(a)
holds (as in [7, Chapter 2, Theorem 11]). Thus the solution ỹ is defined uniquely for
x > 0 past the boundary of D̂. To show that x1 > 0 = x0, it needs to be verified that
this solution satisfies

τ1 > 0, τ1 + α1 > ε, ỹd−1 > 0, |ỹi| ≤M (all i), ỹi ≥ 0 (all i ≤ d− 1), ỹd ≥ ε (4.5)

for all x in some nonempty open interval (0, c′). This will show that the solution does
not exit D̂ at x = 0, and hence exits at x = x1 > 0, or at some larger value of x (if for
instance τ1 = 0 at x1).

By the Lipschitz property of the fi,r and the condition τ1 + α1 > ε/2, for any initial
condition y(0) there is an upper bound on the absolute value of the derivatives of the yi,
as given in (2.5), on D̂0. This statement (and minor variations in which the derivatives
of the yi are similar functions involving the fi,r) will be used several times, so we call it

the boundedness principle. It follows that at any point x = (x, ỹ(x)) in D̂0, for c′ > 0
sufficiently small, and for some C ′,

||ỹ(x′)− ỹ(x)|| < C ′|x′ − x| (4.6)

for |x′−x| < c′. Hence, for c′ > 0 sufficiently small, for x ∈ (0, c′), (x, ỹ(x)) stays inside
D̂0 and, using (4.3), the upper bounds on |ỹi| and the lower bound on ỹd in (4.5) all
hold. Similarly, we may assume the inequalities τ1 > 0 and τ1 +α1 > ε for x in the same
interval, by (2.10) with k = 1. Additionally, note from (2.5) that

dỹd−1

dx
=

τ1

τ1 + α1

fd−1,d−1 (x, ỹ) +
α1

τ1 + α1

fd−1,d−2 (x, ỹ) .

By the initial conditions (4.3) and the upper and lower bounds in condition (B), α1 =
fd−2,d−1 = 0 at (0, ỹ(0)). So

F (0, ỹ(0), d− 1, 1) = fd−1,d−1(0, ỹ(0)) > 0 (4.7)

16

by the first inequality in (2.11). Thus the derivative (with respect to x) of ỹd−1 is strictly
positive at 0, and by the Lipschitz property of the functions in (2.6), it is therefore
bounded below by a positive constant when 0 < x ≤ c′ for c′ > 0 sufficiently small.
Hence

ỹd−1 > 0 for x ∈ (0, c′]. (4.8)

The only part of (4.5) remaining to be shown is ỹi ≥ 0 (for 1 ≤ i ≤ d− 2). The differ-
ential equation (2.5) with i = d − 2 shows that dỹd−2/dx = 0, and hence ỹd−2 = 0 for
x ∈ (0, c′) (since ỹd−2(0) = 0 by (4.3)). For 1 ≤ i < d−2, the initial values are all 0, and
condition (B) ensures, by downward induction on i beginning with the case i = d − 2
already established, that fi,r = 0 for r = d− 1 and d− 2, so that dỹi/dx = 0. We now
conclude that x1 > x0 = 0 and that

ỹi(x) ≡ 0 (0 ≤ x ≤ x1, 1 ≤ i ≤ d− 2), (4.9)

which is the case k = 1 of (3.8). For future reference, also note the following. Since (by
assumption) m > 1, the definition of x1 in (2.8) implies that

τ1(x1, ỹ(x1)) = 0. (4.10)

Part 2: p and ỹ(1) on [0, ε1]

To define the initial part of the p-algorithm, set ε1 > 0 with ε1 < x1, and satisfying
upper bounds specified by the condition (4.11) below and others imposed later. Put
pd = 1 and pi = 0 (i 6= d). With p = (p1, . . . , pd) for 0 ≤ t ≤ t1 = bε1nc, the first ε1n
operations of the p-algorithm are Opd. (Technically, if Yd dropped to 0 during these
operations, this algorithm would have to be terminated, but it will be ensured that this
cannot happen.) We call this part of phase 1 the preprocessing subphase.

Choose ε and ε1 so small that

C(ε+ ε1) < c0 (4.11)

where C is as in (A1) and c0 is from (3.7). Apply Theorem 3 to the variables Y1, . . . , Yj,
as determined by the p-algorithm, with

D̂ = Dε,M ∩ {(x,y) : x ≤ ε1},

and Dε,M as in (3.3). Note that part (i) of Theorem 3 holds by (A1), and (ii) holds

by (2.2) and (A2). We also use here the fact that when (t/n,Y(t)) ∈ D̂ we have Yd > 0,
so that Opd is always permissible, (3.6) holds, and the algorithm does not become
stuck. The conclusion from Theorem 3(b) is that a.a.s. Yi(t) = nyi(t/n) + o(n) for each
1 ≤ i ≤ j, where the yi satisfy the system

dyi
dx

= fi,d(x,y), yi(0) = Yi(0)/n (i = 1, . . . , j) (4.12)

for all t until either (t/n,Y(t)/n) /∈ D̂ or (t/n,y(t/n)) /∈ D̂ (at say t = t1). Here of
course y denotes (y1, . . . , yj). Note that the only boundary constraints of D̂ active at the
initial conditions are x = 0 and possibly yi = 0 (1 ≤ i ≤ d). Furthermore, neither vector

17

can leave D̂ at this point. This is because, firstly, the appropriate Yi are nonnegative
by (3.2), and, secondly, since yd(0) > c0 > 0, condition (B) with r = d ensures that for
i < d, either yi is at least some positive constant, or the derivative of yi is non-negative.
Thus, by downward induction on i, in place of (4.9) we have

yi > 0 on (0, ε1], (i = d− 1, d− 2, . . . , 1). (4.13)

By (A1) and (4.11), and (3.2) once more, it is true deterministically that the constraint
on D̂ which the vector (t/n,Y(t)/n) first violates is x = ε1, and that it cannot come
arbitrarily close to the other boundaries of Dε,M given by upper bounds on the Yi (and
on x since xm < M), or the lower bound on Yd. In view of the a.a.s. approximation of
this vector by (x,y), the solution of the differential equation must also exit the domain
D̂ at this boundary. Let us denote the solution of this equation by ỹ(1) (0 ≤ x ≤ ε1),

with components ỹ
(1)
i .

Then, in particular, from the above argument there exists c = c(ε1) > 0 for which

ỹ
(1)
i (ε1) > c (i = 1, . . . , d). (4.14)

Part 3: ỹ(1) on (ε1, x
(1)
1]

Recall that by choice, ε1 < x1. To continue the definition of the deprioritised algo-
rithm, first define ỹ(1)(x) for x > ε1 to satisfy the basic differential equation (2.5) with
k = 1 and with α1 and τ1 defined as the functions in (2.3). This is analogous with
the definition of ỹ in (2.8) for x ≤ x1, but with initial conditions given by the value

ỹ(1)(ε1), thus determining another version of x1, which we denote by x
(1)
1 . Note that the

definition of x
(1)
1 depends on ε1. We shall also be imposing further upper bounds on ε1.

Since what has been discussed holds for all ε1 sufficiently small, this is permissible.
To make the situation clear, the next immediate aim is to show that x

(1)
1 > ε1. In view

of the boundedness principle described above, by taking ε1 sufficiently small, we may
assume that ||ỹ(1)(ε1)− ỹ(1)(0)|| = ||ỹ(1)(ε1)− ỹ(0)|| is arbitrarily small. It follows that
we may assume that the inequalities in (2.10) involving τ1 and α1 holding at (0, ỹ(0))
also hold at (ε1, ỹ

(1)(ε1)). Thus (ε1, ỹ
(1)(ε1)) is interior to D̂ as defined in (4.4), so as

before the required solution of the differential equation exists, and moreover x
(1)
1 > ε1.

It also clarifies issues to establish that ỹ(1) and ỹ are (for small enough ε1) arbitrarily

close to each other, as are x
(1)
1 and x1. By taking ε1 arbitrarily small we may assume,

by the boundedness principle, that ||ỹ(1)(ε1) − ỹ(ε1)|| is arbitrarily small. Hence, since
ỹ(1) and ỹ satisfy the same differential equation, by Lemma 1 there is a fixed function
g with lim

x→0
g(x) = 0, such that

||ỹ(1)(x)− ỹ(x)|| < g(ε1) for all x ∈ [ε1, x
(1)
1]. (4.15)

Next consider |x(1)
1 − x1|. Note that ỹ(1) satisfies, at x

(1)
1 , some condition which

either determines a boundary of Dε,M or is one of the other conditions given in (2.8)
defining x1 there. We will show that it is indeed the condition τ1 ≤ 0. Consider first
the condition ỹ

(1)
d−1 ≤ 0 (recalling k = 1 here). For convenience, we first revisit x in the

interval [0, ε1], where the derivative of ỹ
(1)
d−1 is fd−1,d. The latter function is positive at

18

0 by condition B. As in the argument leading to (4.8), we observe that it must remain
positive for x ∈ [0, c′] (c′ > 0 sufficiently small, independent of ε1), and conclude (since

ỹ
(1)
d−1(0) = 0) that

ỹ
(1)
d−1(x) > c0x for 0 < x ≤ ε1,

where c0 is some positive constant, for ε1 sufficiently small. This inequality extends to
the interval 0 < x ≤ c′ by repeating the argument again, beginning with noting that
the appropriate derivative here is F , given by (2.5), and is positive at 0 again by (4.7).
Thus we may assume

ỹ
(1)
d−1 > c0x for x ∈ (0, c′]. (4.16)

Here c′ can be taken to be the same as c′ in (4.8), by setting each equal to the minimum
of the two.

To treat ỹ
(1)
d−1 for x > c′, first consider ỹd−1. Note that by the definition of x1,

ỹd−1 > 0 for x ∈ (0, x1), and by the termination condition ỹd−k ≤ 0 in (2.8) and the
assumption m > 1,

ỹd−1(x1) > 0. (4.17)

(If k = m this is of course not valid; in the treatment of that case in Part 6, a modification
to this argument is given which, roughly speaking, will redefine x(1)

m to be a little smaller
than xm.) Hence, by continuity of ỹd−1, it is bounded below by some positive constant
on [c′, x1]. Thus, by (4.15), for ε1 sufficiently small,

ỹ
(1)
d−1 > c′0 for x ∈ [c′, x1] (c′o, c

′ > 0) (4.18)

where c′0 and c′ are independent of ε1. From this and (4.16), and the boundedness

principle, the boundary ỹ
(1)
d−1 ≤ 0 cannot be reached for x ≤ min{x(1)

1 , x1 + c′′} for some
c′′ > 0 (and for ε1 sufficiently small). Here c′′ does not depend on ε1.

The other boundaries and conditions, except for the condition τ1 ≤ 0, can be dealt
with in a similar fashion, to show that they cannot come into effect for x ≤ min{x(1)

1 , x1+
c′′} (redefining c′′, of course). These arguments for the most part are easier, since for
example τ1 begins life positive, so there is no need to consider its derivative in order
to show that τ1 > 0 near x = 0. The only case different enough to require special
attention is the boundary of Dε,M given by ỹ

(1)
i = 0 for i < d− 1. The argument leading

to (4.9) can be combined with the initial conditions at x = ε1 in (4.14). This shows

firstly that the derivative of ỹd−2 is 0, so that ỹd−2(x) > 0 on [ε1, x
(1)
1], and secondly,

using inequalities rather than equalities as for (4.13), that

ỹ
(1)
i > 0 (1 ≤ i ≤ d− 2) (4.19)

on [ε1, x
(1)
1]. We turn to examining τ1. By (4.10) and (4.15),

τ1(x1, ỹ
(1)(x1))→ 0 as ε1 → 0. (4.20)

However, by the third inequality in (2.11) with k = 2, the derivative of τ1 is negative
at (x1, ỹ(x1)). By (3.4), this extends to give a negative upper bound on the derivative
of τ1 in a neighbourhood of (x1, ỹ(x1)), implying by (4.20) that τ1(x1, ỹ

(1)(x1)) is forced

to pass through 0 on such a neighbourhood for sufficiently small ε1. This yields x
(1)
1 <

19

x1 + c′′, so the other boundary conditions cannot come into play. It thus determines the
location of x

(1)
1 and yields

|x(1)
1 − x1| → 0 as ε1 → 0. (4.21)

Part 4: p-algorithm on (ε1, x
(1)
1]

For x ∈ [ε1, x
(1)
1], define p = (p1, . . . , pd) as given in (4.2) with k = 1 and with α1

and τ1 defined in (2.3) with y = ỹ(1). For the deprioritised p-algorithm to be feasible, it

is necessary that τ1(x, ỹ(1)(x)) and α1(x, ỹ(1)(x)) are nonnegative for x ∈ [ε1, x
(1)
1]. For

τ1, this is guaranteed by definition of x
(1)
1 , but for α1 it is not immediate and requires

a more careful examination of ỹ
(1)
d−2 (and also requires further restrictions on the size of

ε1). We basically argue that ỹ
(1)
d−1 is at least of the order of ε1, whereas ỹ

(1)
d−2 = O(ε21).

The lower bound in condition (B) with i = d− 2, r = d− 1 then shows that α1 > 0.

From the initial condition ỹ
(1)
d−1(0) = 0 and the boundedness principle, we have

ỹ
(1)
d−1(x) = O(ε1) for x ∈ [0, ε1]. So by the upper bound in condition (B), fd−2,d = O(ε1)

on the same interval, and hence by (4.12) and the fact that ỹ
(1)
d−2(0) = 0, it follows that

|ỹ(1)
d−2(ε1)| = O(ε21). Now the derivative of ỹ

(1)
d−2 on [ε1, x

(1)
1] given by (2.5) with k = 1 is

identically 0, so
|ỹ(1)
d−2| = O(ε21) for x ∈ [ε1, x

(1)
1]. (4.22)

From this, (4.16) and the lower bound in condition (B) with r = d−1, we obtain α1 > 0

for 0 < x < c′. For c′ ≤ x ≤ x
(1)
1 we obtain α1 > 0 similarly using (4.18), (4.22) and

condition (B), noting that the (possible) interval (x1, x
(1)
1) does not cause a problem,

by (4.21) and the boundedness principle.
We have now shown that the values of pi in (4.2) are indeed probabilities for x ∈

[ε1, x
(1)
1] with p = (p1, . . . , pd) defined as above, where τ1 = τ1(x, ỹ(1)(x)) and α1 =

α1(x, ỹ(1)(x)). Apply Theorem 3 to the deprioritised p-algorithm with

D̂ = Dε,M ∩Q ∩ {(x,y) : ε1 ≤ x ≤ x
(1)
1 , yi > 0 (i = d− 2 and d− 1)}

where Q is defined as for (4.4), trivially translating the theorem statement so that the
initial point is t = t1 ≈ ε1n rather than t = 0. The hypotheses of Theorem 3 are satisfied
as in the application in Part 2 for the p-algorithm with t ≤ t1, the only difference being
the check that the algorithm cannot become stuck for t < TD̂. In this case, the condition

in D̂ on positivity of yd−2 and yd−1 ensures that (3.6) holds for such t. We conclude that
a.a.s.

Yi(t) = nỹ
(1)
i (t/n) + o(n) (4.23)

for each 1 ≤ i ≤ j, uniformly for all t ≥ t1 until either (t/n,Y(t)/n) /∈ D̂ or
(t/n, ỹ(1)(t/n)) /∈ D̂.

In view of (4.18), the observation following it, and (4.19), (x, ỹ(1)(x)) cannot ap-

proach arbitrarily close to the boundaries ỹ
(1)
i = 0 (1 ≤ i ≤ d− 1) of D̂ for x ∈ [ε1, x

(1)
1]

(for fixed ε1). Since m > 1, by continuity the solution cannot approach arbitrarily close
to any other boundaries of D̂ either, apart from τ1 = 0. Thus, in view of (4.23), a.a.s.

(t/n,Y(t)/n) exits D̂ when t = bx(1)
1 c + 1. Incorporating the analysis in Part 2 for

t < t1, we have (4.23) a.a.s. for 0 ≤ t ≤ bx(1)
1 c.

20

Part 5: Phase k, 2 ≤ k ≤ m− 1
Now consider arbitrary k > 1 (but k < m, so in particular k < d− 1). We give some

details to show that the above argument for t/n in the interval [0, x
(1)
1], which should be

regarded as [x
(1)
0 , x

(1)
1] may be repeated inductively for the interval [x

(1)
k−1, x

(1)
k], where

|x(1)
k − xk| → 0 as εk → 0. (4.24)

The conclusions derived for the first phase become, in their general form, inductive
hypotheses for the general argument. The argument in each interval includes a prepro-
cessing subphase in which all operations are Opd. This introduces a positive quantity
εk which will be assumed to be sufficiently small for our purposes, and in particular
imposes a new upper bound on εk−1 (and hence on εi for i < k − 1) depending on εk.

The argument gives

|ỹ(1)(x)− ỹ(x)| < g(εk) for all x ∈ [x
(1)
k−1, x

(1)
k] (4.25)

for 1 ≤ k < m where lim
x→0

g(x) = 0. It also gives

Yi(t) = nỹ
(1)
i (t/n) + o(n) for each 1 ≤ i ≤ j uniformly on [x

(1)
k−1, x

(1)
k] a.a.s. (4.26)

There are only a few real differences in the argument, encountered in the discussion
below. Firstly, in phase k ≥ 2 the random variables Y1, . . . , Yd+1−k play the role of
Y1, . . . , Yd in phase 1, and Yd+2−k, . . . , Yd can be treated almost like Yd+1, . . . , Yj. In
particular, the inductive analogue of (4.17) is

ỹi(xk) > 0 (i ≥ d− k). (4.27)

Secondly, the derivative of ỹd−k at the start of a phase is 0, not positive as it was for

k = 1, so we argue with the second derivative. Thirdly, ỹ
(1)
i is positive, not 0, at x

(1)
k−1

for i ≤ d− k and k ≥ 2. (This affects the argument in a couple of places.) Fourthly, as
shown above, fd−k,d−k = 0 at (xk−1, ỹ(xk−1)) for k ≥ 2 by the fact that τk−1 = 0 here.
Lastly, there is a new effect occurring, that the upper bound on εk−1 involves a positive
function of εk (so, working backwards, the argument in later phases affects the upper
bound on ε1).

The proof in Part 1 that x1 > x0 is easily adapted to show that xk > xk−1 for
general k ≥ 2. For this, we assume as part of the inductive hypotheses the analogues
of (4.9), (4.10) and (4.17), and thus,

ỹd−k+1(xk−1) > 0, τk−1(xk−1, ỹ(xk−1)) = 0, ỹi(xk−1) = 0 for i ≤ d− k. (4.28)

The main modification required for the proof in Part 1 is the derivation of the gener-
alisation of (4.8), that ỹd−k > 0 for x ∈ (xk−1, xk−1 + c′]. In the case of k ≥ 2, the
right-hand derivative of ỹd−k at xk−1 is not positive. For, by (2.5), this derivative is

τk
τk + αk

fd−k,d−k (xk−1, ỹ(xk−1)) +
αk

τk + αk
fd−k,d−k−1 (xk−1, ỹ(xk−1)) .

This is equal to 0 since by the middle equation in (4.28), fd−k,d−k (xk−1, ỹ(xk−1)) =
0, and by condition (B) and the right equation in (4.28), αk = 0 at (xk−1, ỹ(xk−1)).

21

Differentiating again (and noting again the quantities above which are zero) gives the

second derivative of ỹd−k at xk−1, with respect to x, to be f ′d−k,d−k + f ′d−k−1,d−k
fd−k,d−k−1

τk
at (xk−1, ỹ(xk−1)) (where prime denotes differentiation with respect to x). Note that
τk > 0 by (2.10), so this second derivative is strictly positive by the second inequality
in (2.11). It follows that

c1θ
2 < ỹd−k(xk−1 + θ) < c2θ

2 (4.29)

for θ sufficiently small but positive. Thus we may assume that ỹd−k > 0 for x ∈
(xk−1, xk−1 + c′] (for c′ sufficiently small), as required. Note that the argument for (4.9)
now shows that (3.8) holds in general (with the only restriction k < m at present).

The other modification for Part 1 is, as required for (4.27), that ỹi, d− k + 1 ≤ i ≤
d− 1, which begins phase k at a positive value by (4.27), remains positive. This follows
easily in the same way as (4.19).

We conclude inductively that xk > xk−1 and hence that the first and third equations
in (4.28) hold with k replaced by k+ 1. The second follows similarly, arguing as for the
justification for (4.17).

We next repeat the argument in Part 2, on an interval [x
(1)
k−1, x

(1)
k−1 + εk], and Parts 3

and 4, on (x
(1)
k−1 + εk, x

(1)
k]. Let us examine Part 2. For [x

(1)
k−1, x

(1)
k−1 + εk], put pd−k+1 = 1

and all other pi equal to 0, put p = (p1, . . . , pd), and let ỹ(1) be the solution of the
equations

dyi
dx

= fi,d−k+1(x,y)

with initial value ỹ(1)(x
(1)
1) at x

(1)
1 . The argument goes through as for k = 1, and in

particular we obtain the generalisation of (4.13), that ỹ
(1)
i > 0 on [x

(1)
k−1, x

(1)
k−1 + εk] for

i ≤ d − k. (The fact that ỹ
(1)
i > 0 at x

(1)
k−1 follows from the generalisation of (4.19),

which is part of the inductive hypothesis.) A similar argument shows that the same
conclusion holds for d − k + 2 ≤ i ≤ d − 1. The case of i = d is exactly as before.
Finally, for i = d − k + 1 we rely on the inductive analogue of (4.18). This says that

ỹ
(1)
d−k > c′0 for x ∈ [c′, xk] and implies that ỹ

(1)
d−k+1 > c′0 at xk−1 which translates by the

usual argument to x
(1)
k−1.

For Part 3, define ỹ(1)(x) for x > x
(1)
k−1 + εk to satisfy (2.5) with αk and τk defined

as in (2.3), and p = (p1, . . . , pd) as given in (4.2). As with k = 1, define x
(1)
k as the

analogue of xk for ỹ(1). For this and Part 4, the structure of the argument should be
clear, so we mainly point out how it is modified to take account of the differences listed
above, as they are encountered.

Early in Part 3, we argue that |ỹ(1)(ε1) − ỹ(0)| → 0 as ε1 → 0. The required
generalisation is

|ỹ(1)(x
(1)
k−1 + εk)− ỹ(xk−1)| → 0 as εk → 0. (4.30)

This follows using (by the inductive version of (4.15)) ||ỹ(1)(xk−1) − ỹ(xk−1)|| → 0 as
εk−1 → 0, the inductive version of (4.21), and the boundedness principle.

The analogue of (4.16) is not valid, so requires modification. The derivative of ỹ
(1)
d−k

on [x
(1)
k−1, x

(1)
k−1 + εk] is bounded below by a positive constant (using condition B) and so

ỹ
(1)
d−k is at least c0εk at x

(1)
k−1 + εk, for some c0 > 0. On the other hand, the argument

leading to (4.29) shows that the first derivative of ỹd−k is 0 at xk−1, and the second

22

derivative is positive. By taking εk sufficiently small, and using (3.4), (4.24) and (4.30)

and the boundedness principle, the second derivative of ỹ
(1)
d−k is shown to be greater than

some positive constant (independent of εk) on the interval (x
(1)
k−1 + εk, x

(1)
k−1 + c′) for some

c′ > 0, whilst the first derivative is O(εk) at x
(1)
k−1 + εk. Here we assume (as at other

places) that εk−1 is sufficiently small, in particular smaller than εk. Together with the
statement above, this implies that

ỹ
(1)
d−k > c0εk on [x

(1)
k−1, x

(1)
k−1 + c′] (4.31)

for some c0 > 0 for εk sufficiently small. The rest of the argument in Part 3 goes through
as before, and gives in particular the inductive version of (4.21).

For Part 4, let x ∈ [x
(1)
k−1 + εk, x

(1)
k] and define p = (p1, . . . , pd) as given in (4.2).

The verification that α1 > 0 is a little different from the case k = 1. From (4.25), by

taking εk−1 sufficiently smaller than εk we can ensure that ỹ
(1)
d−k−1(x

(1)
k−1) = o(εk). Then

the argument as before using condition B and ỹ
(1)
d−k = O(εk) on [x

(1)
k−1, x

(1)
k−1 + εk] shows

that ỹ
(1)
d−k−1 = o(εk) on this interval. Since its derivative is zero on [x

(1)
k−1 + εk, x

(1)
k], we

have αk > 0 in view of (4.31) and condition B.

Part 6: Phase m
Finally, we turn attention to the case k = m. There are two points which differ for

this: firstly, if k = d−1 then the definition of the derivative in (2.5) and (2.6) is different
and the assumption in (2.11) is correspondingly different, and secondly, other conditions
may now occur at the point xk = xm. We treat the second difference first. What may
now occur at xm, and has possible relevance to the argument, is any of the following:
τk + αk = ε, ỹd−k = 0, x = M , |yi| = M , yi < 0 for 1 ≤ i < d, or yd = ε. To avoid this,
we make a special definition of x(1)

m as xm− ε2 where ε2 > 0. Taking ε2 sufficiently small,
we have by continuity exactly the same situation as for k < m. Thus (4.25) holds also
for k = m.

There is no change in the argument to show that (3.8) holds for k = m < d− 1. On
the other hand, it asserts nothing in the case k = m = d−1, so (3.8) is fully established.

With regard to k = d−1, the argument for this final phase of course requires altering
the definition of p so that p1 = 1 and pi = 0 for i > 1. The rest of the argument goes
through, though it only requires a much simpler version than for k < d− 1, since in this
case there are no requirements on α or τ . This is why the case k = d − 1 is excluded
from these conditions in (2.8) and in (2.10) and parts of (2.11). The altered assumption

in (2.11) is all that is required to ensure that ỹ
(1)
i is positive for the initial segment of

the last phase.
The main conclusion of this inductive argument is that (4.24), (4.25) and(4.26) hold

for each k. Combining these, we may choose εm to be a function of n which tends to
0 sufficiently slowly, with each εk correspondingly smaller as requried by the inductive
argument, and obtain a.a.s. Yi(t) = nỹi+o(n) uniformly for 0 ≤ t ≤ x(1)

m n and 1 ≤ i ≤ j,
where xm − x(1)

m = o(1).

23

5 Extensions

Duckworth et al. [5] and Zito [12] studied the performance of greedy algorithms as
heuristics for maximum induced matchings in random cubic graphs, and Duckworth [3]
studied similar heuristics for star packing, maximum 2-independent sets, and minimum
connected dominating sets in random cubic graphs. Hopefully, these studies can be
extended to random d-regular graphs using the results in the present paper. At least,
the methods may permit a simplified approach. For instance, extension of Example
2 in Section 2 to the d-regular version of the minimum (independent) dominating set
problem is presently under way using Theorem 1.

We may also elaborate now on the comment in the Introduction that the approach of
this paper may be useful even when the specific results proved here do not apply. There
is a good chance that a particular deprioritised algorithm can be analysed more easily
than the related prioritised algorithm, and it is clear that in many situations they can
give the same result to any desired accuracy. One approach would be to use the same
theoretical approach as in this paper, and show that one can approximate the original
algorithm arbitrarily closely by a deprioritised version.

A more computational approach is potentially simpler and so may also be worth
considering. Suppose that (2.2) holds, as well as conditions (A1) and (A2), but per-
haps some of the other hypotheses of Theorem 2 do not. Then ỹ may be computed
numerically, and it may be suspected that it gives an accurate representation of the
asymptotic behaviour of the algorithm. One way to establish this would be to compute
ỹ(1) numerically, as defined in the proof of Theorem 2, for given values of ε1, ε2 and
so on, such that the solution gives (x

(1)
1 , ỹ(1)(x

(1)
1)) sufficiently close to (x1, ỹ(x1)). Pro-

vided the trajectory of ỹ(1) does not touch the boundaries of Dε,M (apart from at x0),
the desired argument is likely to proceed successfully, with each phase only requiring a
simple application of Theorem 3. The result should be an almost sure bound on the size
of a set constructed by the algorithm, which is as close as desired to that of the result of
the prioritised algorithm (in the sense of having difference less than ε′n for any desired
ε′ > 0, by performing the numerical computation with ε1 etc. sufficiently small). The
initialisation subphases may not even be required after phase 1.

Acknowledgement I would like to thank the referees for numerous suggestions in
improving the presentation of the first version of this paper.

References

[1] D. Achlioptas, Setting 2 variables at a time yields a new lower bound for random
3-SAT, In 32nd Annual ACM Symposium on Theory of Computing (STOC 32),
Portland, Oregon pp. 28–37 (2000).

[2] B. Bollobás, Random graphs, Academic Press, London, 1985.

[3] W. Duckworth, Greedy algorithms and cubic graphs, Doctoral thesis, University of
Melbourne, 2001.

24

[4] W. Duckworth and N.C. Wormald, Minimum independent dominating sets of ran-
dom cubic graphs, Random Structures and Algorithms 21 (2002), 147–161.

[5] W. Duckworth, N.C. Wormald and M. Zito, Maximum induced matchings of ran-
dom cubic graphs, Journal of Computational and Applied Mathematics 142 (2002),
39–50.

[6] A.M. Frieze and S. Suen, On the independence number of random cubic graphs,
Random Structures and Algorithms 5 (1994), 649–664.

[7] W. Hurewicz, Lectures on Ordinary Differential Equations, M.I.T. Press, Cam-
bridge Massachusetts (1958).

[8] E.L. Ince, Ordinary Differential Equations, Longmans, London (1927).

[9] N.C. Wormald, Differential equations for random processes and random graphs,
Ann. Appl. Probab. 5 (1995), 1217–1235.

[10] N.C. Wormald, Models of random regular graphs. In Surveys in combinatorics,
1999 (Canterbury), J.D. Lamb and D.A. Preece (eds), pp. 239–298. Cambridge
University Press, Cambridge, 1999.

[11] N.C. Wormald, The differential equation method for random graph processes and
greedy algorithms. In Lectures on Approximation and Randomized Algorithms, M.
Karoński and H.J. Prömel (eds), pp. 73–155. PWN, Warsaw, 1999.

[12] M. Zito, Induced Matchings in Regular Graphs and Trees. In Proceedings of the
25th International Workshop on Graph Theoretic Concepts in Computer Science,
Lecture Notes in Computer Science vol. 1665, 89–100. Springer-Verlag, 1999.

[13] M. Zito, Greedy algorithms for minimisation problems in random regular graphs,
in Algorithms - ESA 2001 (F. Meyer auf der Heide, Ed.), LNCS 2161, pp. 524–536,
Springer-Verlag, 2001.

25

