
Avoiding a Giant Component II

Tom Bohman∗ and Alan Frieze†

Department of Mathematical Sciences,
Carnegie Mellon University

Pittsburgh PA 15213

Nicholas C. Wormald‡

Department of Mathematics and Statistics,
University of Melbourne

VIC 3010,
Australia.

June 23, 2003

Abstract

Let e1, e2, . . . be a sequence of edges chosen uniformly at random from the edge set of the
complete graph Kn (i.e. we sample with replacement).

Our goal is to choose, for m as large as possible, a subset E ⊆ {e1, e2, . . . , e2m}, |E| = m,
such that the size of the largest component in G = ([n], E) is o(n) (i.e. G does not contain
a giant component). Furthermore, the selection process must take place on-line; that is, we
must choose to accept or reject an ei based on the previously seen edges e1, . . . , ei−1.

We describe an on-line algorithm that succeeds whp1 for m = .9668n. Furthermore, we
find a tight threshold for the off-line version of this question; that is, we find the threshold
for the existence of m out of 2m random edges without a giant component. This threshold
is m = c∗n where c∗ satisfies a certain transcendental equation, c∗ ∈ [.9792, .9793]. We also
establish new upper bounds for more restricted Achlioptas processes.

1 Introduction

Let e1, e2, . . . be a sequence of edges chosen uniformly at random from the edge set
of the complete graph Kn (i.e. we sample with replacement). We discuss an on-line
algorithm which for some integer m, chooses m edges out of {e1, e2, . . . , e2m}, such
that whp there is no “giant component” i.e. component of size Ω(n). (The latter

∗Supported in part by NSF grant DMS-0100400. e-mail tbohman@andrew.cmu.edu
†Supported in part by NSF grant CCR-9818411. e-mail alan@random.math.cmu.edu
‡Research supported in part by the Australian Research Council and in part by Carnegie Mellon University

Funds. e-mail nick@ms.unimelb.edu.au
1A sequence of events En is said to occur with high probability (whp) if limn→∞Pr(En) = 1

1

denotes a function bounded below by a positive constant times n, for n sufficiently
large.) We endeavor in this to make m as large as possible and achieve m = .9668n
rigorously, as well as a bound m = .9760n which is nonrigorous only because of
possible errors in floating point computations in solving a system of thousands of
differential equations. We will also show that this is close to an upper bound for
this type of process. The reader will recall the classic result of Erdős and Rényi [3]
that selecting m random edges with no rejections, m can be at most (.5 + o(1))n
before the giant component appears.

This can be seen as a development along the lines of a problem posed by Achliop-
tas. Let e1, e

′
1; e2, e

′
2; . . . ; ei, e

′
i; . . . be a sequence of ordered pairs of edges chosen

uniformly at random from the edge set of the complete graph Kn. This sequence is
used to form a graph by choosing at stage i, i = 1, 2, . . . , one edge from ei, e

′
i to be

an edge in the graph, where the choice at stage i is based only on the observation
of the edges that have appeared by stage i. It was shown in Bohman and Frieze [1]
that whp at least .545n edges could be chosen in this way without constructing
a component of size more than (ln n)A for some constant A > 0. This answered
a question posed by Achlioptas as to whether or not such an on-line procedure
existed, in which more than cn edges could be included whp, for some c > 0.5.
We will refer to a process which makes the on-line choice of one edge from each
presented pair as an Achlioptas process.

In both the problems discussed in this paper and the problem posed by Achlioptas,
the number of edges chosen is equal to half the number of edges seen. But in the
current setting there is more flexibility: we may reject all ‘bad’ edges, even if
many of them occur consecutively. Given this increased flexibility, one would
expect that the model we consider here could accommodate more edges before a
giant component appears. We shall see below that this is indeed the case. That is,
we give an upper bound whp on the number of edges handled by any Achlioptas
process which is below the rigorous lower bound m = .9668n mentioned above.

For ease of notation, we assume that each random edge et is an ordered pair
(xt, yt) of vertices chosen uniformly at random from [n] × [n]. Thus, we choose
with replacement and we allow xt = yt. However, excluding loops and multiple
edges will not change the result, as the probability that there are none in our
model is bounded away from zero, noting that we only ever consider O(n) edges.
Hence, showing that our model satisfies a property whp implies that the same
holds when restricted to no loops or multiple edges. In order to state our results
we must also define a special constant c∗. For c > 1/4 define t = t(c) < 1 by

te−t = 4ce−4c.

Let c∗ be the unique solution to the equation

L(c) :=
t2

8c
+ 1− t

4c
− c = 0. (1)

Observe that L(c) is positive at c = 1/4, negative at c = 1 and monotone decreas-
ing in between. Observe further that c∗ ∈ [.9792, .9793].

2

Theorem 1.

(a) There is an on-line algorithm that whp selects at least m = b.96689nc out of
2m sequentially presented random edges without creating a component of size
more than 200.

(b) Let η > 0 be any positive constant, and define c∗ as above.

(1) If m′ = b(c∗ + η)nc and X is a collection of 2m′ random edges then whp
all Y ∈

(
X
m′

)
produce graphs H = ([n], Y) that have components of size

Ω(n).

(2) There exists a constant C (depending on η) such that there is a polynomial
time algorithm which whp chooses m′′ = b(c∗ − η)nc edges out of 2m′′

random edges without creating a component with more than C vertices.

(c) If e1, e
′
1; e2, e

′
2; . . . ; em, e′m is a sequence of m ≥ 0.97765n pairs of random

edges then whp all edge sets of the form Y = {f1, . . . , fm} where fi ∈ {ei, e
′
i}

for i = 1, . . . ,m produce graphs H = ([n], Y) that have components of size
Ω(n).

(d) Each Achlioptas process whp creates a component of size Ω(n) before accept-
ing 0.964446n edges.

Note that parts (a) and (d) of Theorem 1 ‘separate’ the process we introduce here
from the Achlioptas processes. In other words, a small change in the rules for our
choices results in a significant change in the maximum number of edges we can
have in the generated graph before a giant component appears. A similar situation
arises in the problem known as ‘20 questions with a liar.’ In that problem, one
player tries to determine which element from a set of n is being held by a second
player by asking a series of yes/no questions, with the complication that the player
answering the questions is allowed to lie some positive proportion of the time. It
turns out that there are different thresholds for that problem depending on the
rules imposed on the liar [5].

Our proof of Theorem 1(a) relies on the numerical solution of a large system of
differential equations. We are confident that with the investment of more time
(both computer time and attention to the analysis) our method can be used to
achieve even better results. In fact, our calculations make it seem possible that the
threshold described in part (b) can be achieved on-line. For the sake of brevity,
however, we refrain from getting the best possible result out of our method. We
state and prove a result sufficient to establish the separation mentioned above.

Of course, there are a number of interesting questions that remain open here. In
addition to the question of whether or not the threshold described in part (b) can
be achieved on-line, there are a number of other interesting questions we can ask
about the behavior of these models around the phase transition.

3

We will prove the upper bounds in the next section. Section 3 deals with the
algorithm we use for part (a).

2 Upper Bounds

Throughout this discussion we set m = bcnc for some constant c ≤ 1, and G is
the random graph on vertex set [n] consisting of 2m random edges (each edge is
an ordered pair of randomly chosen vertices, as noted above).

We begin by proving a general density lemma. For constants ε, δ > 0 let Aε,δ be
the event that there exists S ⊆ [n] such

(a) |S| < δn,

(b) the graph G[S] contains more than (1 + ε)|S| edges.

Lemma 1. If ε > 0 and δ = δ(ε) = 2ε (4ce)−1−1/ε then Pr (Aε,δ) = o(1).

Proof. Since the property in question is monotone increasing we can work within
the independent model G′ = Gn,4c/n (see Theorem 2.2 in [2]). Also, we can assume
without loss of generality that G[S] is connected.

We bound the probability of the existence of S in one of two ways, depending on
s := |S|. First, assume 4 ≤ s ≤ (log n)/6 and let As be the event that there exists

S ∈
(
[n]
s

)
such that G′[S] is a spanning connected graph containing at least s + 1

edges. We have

Pr(As) ≤
(

n

s

)
ss−2

((s
2

)
2

)
ps+1

≤
(ne

s

)s

ss−2 s4

8

(
4c

n

)s+1

=
cs2

2n
(4ce)s

= o(n−1/2).

For log n/6 < s < δn let As be the event that there exists S ∈
(
[n]
s

)
such that G′[S]

4

is a spanning connected graph containing at least (1 + ε)s edges.

Pr(As) ≤
(

n

s

)
ss−2

((s
2

)
εs

)
ps(1+ε)

≤ (ne)s

s2

(se

2ε

)εs
(

4c

n

)(1+ε)s

=
1

s2

[
4ce

(
4ce

2ε

)ε (s

n

)ε
]s

<
1

s2
.

Thus
n∑

s=4

Pr(As) = o(1)

as required.

In the proofs of the upper bounds, we also make use of the following simple
observations. Let V1 be the set of isolated vertices in G, let V2 be the set of
vertices of degree 1 in G and let M be the set of isolated edges in G. It follows from
straightforward mean and variance calculations that whp we have the following:

αn := |V1| = ne−4c + γn2/3, (2)

βn := |V2| = 4ce−4cn + γn2/3, (3)

νn := |M | ≥ 2ce−8cn + γn2/3. (4)

where −1 < γ < 1, different at each occurrence.

2.1 Proof of Theorem 1(b)

By elementary calculus, there exists an absolute constant A > 0 such that if
c = c∗ + x then

L(c) = −Ax + O(x2) as x→ 0. (5)

First assume that c = c∗ + η, and recall that m′ = b(c∗ + η)nc = m in this
case. Assume that Aε,δ does not occur. Assume further that G has a unique giant
component K such that

(i) K has (1− t
4c

)n + o(n) vertices, and

(ii) The rest of G consists of a forest with t2

8c
n + o(n) edges and maximum tree

size O(log n) together with O(log n) vertices in unicyclic components.

5

It is known, [2], [4], that G satisfies (i) and (ii) whp. Let Y be a set of m′ edges
of G and let H = ([n], Y). Now, we apply Lemma 1, but letting S be the vertex
set of a component of H that is contained in K. The number of edges of Y which
also belong to to K is at least

cn− t2

8c
n− o(n) =

(
1 +

−L(c)

1− t/4c

)
|K|(1 + o(1))

∼
(

1 +
Aη + O(η2)

1− t/4c

)
|K|

≥ (1 + Aη)|K| (6)

since t > 0, for sufficiently small η and large n. Hence, S can be chosen so that it
spans at least (1 + Aη)|S| edges of H. It follows by Lemma 1 that whp such S
has size at least δ(Aη)n, and (b1) follows.

Now assume that c = c∗ − η. Again, we may assume G has a unique largest
component satisfying (i) and (ii). Moreover, we may assume that the forest in (ii)
has at most ζn vertices in trees of size greater than C, for a certain function ζ → 0
as C →∞. (C will be chosen later to make ζ sufficiently small.)

We explain how to carefully choose the desired set Y of at least m = bcnc edges.
First of all, Y will contain all of the edges in trees of G of size less than C. By
(ii), with the strengthening stated above, this contains all but ζn + O(log n) of
the edges outside the largest component K. To complete Y we will need, by the
argument leading to (6), to choose a further

cn− t2

8c
n + ζn− o(n) ≤ (1− Aη)|K|+ ζn (7)

edges.

Note that the expected number of vertices of degree j in G is less than n(4cn/(n−
1))j/j!, for all j. Thus for any ∆ > 0 the expected value of the number, Z, of
edges in G incident with vertices of degree more than ∆ is at most

n
∑
j>∆

(4cn/(n− 1))j/(j − 1)! < ζ ′(∆)n

where ζ ′(∆) → 0 as ∆ → ∞. By a standard argument, the variance of this
number of edges is o(n2). For fixed ∆ to be chosen later, we delete all vertices of
degree greater than ∆ from K (as none of these will be used in Y), and choose an
arbitrary spanning forest F of the resulting subgraph of K. Then by Chebyshev’s
inequality whp the number of edges incident with deleted vertices is less than
2ζ ′(∆)n, and so

|E(F)| ≥ |K| − 2ζ ′(∆)n (8)

since |E(K)| ≥ |K| − 1.

Claim 1. If T is a tree with at least ∆2 vertices and maximum degree at most
∆ then we can delete edges of T to obtain a forest F ′ in which every subtree has
between ∆ and ∆2 vertices.

6

Proof For each edge of such a tree T , let ρ(e) be the size of the smaller of the
two components of T − e. Let e∗ = (x, y) maximize ρ(e). If ρ(e∗) ≥ ∆ then each
component of T − e∗ by induction has the required set of edges, and we are done.
So we may assume ρ(e∗) < ∆. Let the edges in the larger component of T −e∗ and
adjacent to e∗ be e1, e2, . . . , ek. Since e∗ = (x, y) maximizes ρ(e), for each i, the
smaller component of T − ei is the one not containing e∗, and has ρ(ei) ≤ ∆ − 1
vertices. Hence T has at most 1 + ∆(∆− 1) vertices, a contradiction. This proves
the claim.

Applying the claim to the tree components in F containing more than ∆2 vertices,
we see that we can find at least |E(F)|(1−1/∆) edges inside K which span a graph
whose maximum component size is at most ∆2. Now set C = ∆2 and recall that
ζ and ζ ′ can be made arbitrarily small by choosing C sufficiently large. Thus for
some C, by (8) we can find the edges we need to satisfy (7). 2

2.2 Proof of Theorem 1(c)

If c := m/n > 0.97765 then there exists ε > 0 such that

1− c− e−4c − 2ce−8c − c
(
2e−4c − e−8c

)2
< −ε. (9)

As above, we set δ = 2ε (4ce)−1−1/ε and consider the graph H := ([n], Y).

Suppose that H has no component having more than δn vertices, that (2), (3), (4)
hold and that the event Aε,δ does not (all of which is true whp, by Lemma 1 and
the observations after it). Letting S = [n] \ {V1 ∪ V2} and applying the falseness
of Aε,δ to the components of H[S],

|E(H[S])| ≤ (1 + ε)|S|. (10)

We observe that if both ei and e′i are incident with vertices of degree 1 then one of
these is not in Y , and this increases the minimum edge density of H[S]. Let M ′

be the set of edges that contain a vertex of degree 1 in G. Since |M ′| = βn− νn,
whp the number of indices i such that both ei and e′i are in M ′ is greater than
(βn − νn)2/4m − n2/3. Assuming that this inequality holds, it follows from (10)
that

(1 + ε)(n− αn− βn) ≥ cn− (|M ′| − |{i : ei, e
′
i ∈M ′}|)

= cn− βn + νn + |{i : ei, e
′
i ∈M ′}|

≥ cn− βn + νn +
(βn− νn)2

4nc
− n2/3,

and hence

1− c− e−4c − 2ce−8c − c
(
2e−4c − e−8c

)2 ≥ −ε + εe−4c(1 + 4c)−O(n2/3). (11)

This violates (9) for n sufficiently large. 2

7

Remark. We could make a slight improvement in Theorem 1(c) by considering
edges that do not contain degree 1 vertices, but do lie in small components of G.
Since this improvement is rather small, it is excluded for the sake of brevity. For
the same reason we omit similar improvements of the bound given in Theorem 1(d).

2.3 Proof of Theorem 1(d)

We follow the density argument of the proof of Theorem 1(c); that is, for Y =
{f1, . . . , fm} we consider the edge density of the graph H[S] where H = ([n], Y)
and S = [n] \ {V1 ∪ V2}, and obtain a contradiction to the assumption that H

has no component having more than δn vertices, with δ = 2ε (4ce)−1−1/ε with ε
sufficiently small.

Our goal is to show that the edge density of H[S] is large; in particular, we show
that many of the edges of M ′ are not in Y . As in the proof of Theorem 1(c), we
use the fact that for any index i such that ei, e

′
i ∈ M ′ one edge in {ei, e

′
i} is not

in Y . We shall now get an additional improvement in |M ′ \ Y | from a similar
observation that uses the assumption that the edge set Y is chosen by an online
algorithm. Let Bi be the set of vertices in the graph Gi := ([n], {e1, e

′
1, . . . , ei, e

′
i})

of degree 1. If both ei and e′i contain exactly one vertex in Bi then, conditional
upon exactly one of the edges ei−1, ei winding up in M ′ (i.e. exactly one of the two
degree 1 vertices in ei∪e′i ‘surviving’ as a degree 1 vertex) with probability 1/2 the
edge chosen by the online algorithm will be the one that is not in M ′. Informally,
we may say that the probability that the online algorithm ‘chooses the right edge’
is 1/2, although this may be misleading since it takes the point of view that the
remaining edges are not revealed, and yet the right choice is not known until they
are. We shall take advantage of these as well as a large number of other ‘mistakes’
of similar types that any algorithm will make whp.

We need to quantify the difference made by the ‘mistakes’. Let I denote the set
of values of i such that both ei and e′i contain at least one vertex of Bi. This set is
partitioned as follows. For 1 ≤ k ≤ 3, let Ik denote the set of values of i ∈ I such
that exactly k +1 vertices of ei and e′i are in Bi. These sets are further partitioned

according to the edge pairs arriving after ei, e
′
i: let I(j)

k be the set of times i ∈ Ik

that exactly j of the k + 1 vertices in Bi and in ei and e′i are of degree 1 in G
(0 ≤ j ≤ k + 1).

For each i ∈ I1, the algorithm chooses one edge ei or e′i. Conditioning on i ∈ I(1)
1 ,

the remaining edges in the process cause exactly one of the two edges to be in M ′,
and by the symmetry of the situation, with probability 1/2, this is the edge not

chosen by the algorithm. Thus, for each i ∈ I(1)
1 , this pair of edges produces an

edge in M ′ \ Y with probability 1/2. As in the proof of part (c) for each i ∈ I(2)
1 ,

the pair of edges ei, e
′
i produces an edge in M ′ \ Y with probability 1.

For i ∈ I2, the best edge for the algorithm to choose is the one containing two

8

vertices in Bi; if this is chosen, then, conditioning on i ∈ I(1)
2 , the edges generated

in the rest of the process are not incident with the other vertex in Bi (thereby
giving an edge in M ′ \ Y) with probability 1/3. If the algorithm chooses the
other edge, an even better bound is obtained; that is, 1/3 is a lower bound in

all cases. For each i ∈ I(2)
2 , we may similarly assume that the algorithm chooses

the one hitting two vertices in Bi, and an edge results in M ′ \ Y with probability

2/3. Finally, for each i ∈ I(3)
2 , an edge results in M ′ \ Y with probability 1. For

i ∈ I(j)
3 , a similar argument gives probabilities 1/2 when j = 1, 5/6 when j = 2,

and 1 when j = 3 or 4.

Hence, the expected number of edges in M ′ \ Y due to these events is at least EQ

where, putting I
(j)
k = |I(j)

k |,

Q =
1

2
I

(1)
1 + I

(2)
1 +

1

3
I

(1)
2 +

2

3
I

(2)
2 + I

(3)
2 +

1

2
I

(1)
3 +

5

6
I

(2)
3 + I

(3)
3 + I

(4)
3 .

In fact, we can say more: the probabilities of creating edges in M ′ \ Y calculated
above are valid even when conditioning on the history of the process up to time i.

It follows that the total number of such edges resulting from i ∈ I(j)
k is bounded

below in distribution by the corresponding binomial random variable, and so whp

| |M ′ \ Y | −Q| < n2/3. (12)

If Jk denotes the total number of vertices of degree 1 in G that are in the edges ei

or e′i for some i ∈ Ik then for k = 1, 2, 3,

Jk =
k+1∑
j=1

jI
(j)
k . (13)

Let J ′
3 denote the number of unordered pairs of vertices of degree 1 in G and in ei

or e′i, summed over i ∈ I3. That is, J ′
3 = 1

2

∑4
j=2 j(j − 1)I

(j)
3 . Then

3J ′
3 = I

(2)
3 + 3I

(3)
3 + 6I

(4)
3 .

In combination with (13) we then obtain

Q =
1

2
J1 +

1

3
J2 +

1

2
J3 −

1

6
J ′

3.

By elementary calculations, for fixed x > 0 and integer r, the probability that xn
pairs of randomly chosen edges from n vertices do not intersect r specified vertices
is asymptotic to e−4rx as n→∞. Insisting the edges are distinct makes negligible
difference to this. Hence (analogous to (2), the probability that exactly s vertices of
ei and e′i are in Bi is asymptotic to

(
4
s

)
e−4si/n(1− e−4i/n)4−s. With s− 1 = k ≥ 2,

this gives Pr(i ∈ Ik). For k = 1 a similar calculation holds, but in that case
the requirement that the two vertices must be in different edges causes

(
4
s

)
to be

9

replaced by 4. Thus, the contribution from i to J1 is 4e−8i/n(1−e−4i/n)2 ·2e−4(c−i/n).
The sum of this quantity over i is given asymptotically by an integral:

EJ1/n ∼
∫ c

0

4e−8x(1− e−4x)2 · 2e−4(c−x) dx ∼ e−4c(1− e−4c)3,

and similarly

EJ2/n ∼
∫ c

0

4e−12x(1− e−4x) · 3e−4(c−x) dx ∼ 1

2
e−4c − 3

2
e−12c + e−16c,

EJ3/n ∼
∫ c

0

e−16x · 4e−4(c−x) dx ∼ 1

3
e−4c − 1

3
e−16c,

EJ ′
3/n ∼

∫ c

0

e−16x · 6e−8(c−x) dx ∼ 3

4
e−8c − 3

4
e−16c,

from which

EQ/n ∼ 2

3
e−4c − 9

8
e−8c +

1

2
e−12c − 1

24
e−16c. (14)

Each random variable I
(j)
k is sharply concentrated, by a standard martingale ar-

gument (such as by [4, Corollary 2.27]). This gives sharp concentration of Q; that
is, for some λ→ 0, Pr(|Q−EQ| < λn)→ 1. So by (12), it follows that |M ′ \Y |/n
is also given asymptotically by (14) whp.

We can now turn to the edge density argument on H[S]. Arguing as in the
equations leading to (11), we have

(1 + ε)(n− αn− βn) = (1 + ε)|S|
≥ |E(G[S])|
≥ cn− |M ′|+ |M ′ \ Y |
= cn− βn + νn + |M ′ \ Y |.

We have a contradiction if

1− c− e−4c − 2ce−8c − 2

3
e−4c +

9

8
e−8c − 1

2
e−12c +

1

24
e−16c < 0,

which holds for c > 0.9644456.

2

3 The Algorithm

In this section we present the algorithm which achieves the result claimed in
Theorem 1(a), as well as the lower bound .9760n nonrigorously. We set Et =
{e1, e2, . . . , et}, and denote by At the set of edges from Et that are actually chosen
by the algorithm. Thus A0 = E0 = ∅. The algorithm we use runs in Phases

10

k = 2, 3, The choice to transition from one phase to the next is governed by
a function g : N → R such that g ↓ 1/2, which can be viewed as a parameter
of the algorithm. During phase k, the algorithm accepts those edges that form
components of size at most k and transits to the next phase when the proportion
of chosen edges drops below g(k).

1. Begin
2. A← ∅
3. k ← 2
4. t← 1
5. l← 0
6. repeat
7. l← size of largest component of A ∪ {et}
8. if l ≤ k then
9. A← A ∪ et

10. t← t + 1
11. else if |A|/t < g(k) then
12. k ← k + 1
13. else t← t + 1
14. until l = n
15. End

Note that at every step the algorithm has chosen at least half of the edges presented
so far. Furthermore, at any step of the algorithm, the size of the largest component
in the graph is at most the current phase.

We analyze this using the ‘differential equations’ method for concentration of
random variables. We actually analyze a related algorithm which proceeds through
a bounded number of phases, up to kfinal. In the last phase the algorithm proceeds
until the proportion of edges chosen drops to 1/2. We keep track of the following
set of random variables as the algorithm proceeds: X(t) = (Xi(t), i = 0, 1, 2, . . .)
where X0(t) = A(t) and for i ≥ 1 the random variable Xi(t) denotes the number
of components with i vertices in the graph Γt = ([n], At). Thus if t lies in Phase
k, Xi(t) = 0 for i > k. During Phase k, for 1 ≤ i ≤ k,

E(Xi(t + 1)−Xi(t) | X(t)) =
i−1∑
j=1

j(i− j)Xj(t)Xi−j(t)

n2
− 2

k−i∑
j=1

ijXi(t)Xj(t)

n2
. (15)

(This equation is written for a process in which each edge is selected by choosing
an order pair of vertices with replacement. With high probability, the number
of times the same vertex is chosen twice for a given edge is at most log n say
during this whole process. We can therefore extend the process by this many
edges to obtain the same result for the true process. Alternatively, one can insert
error terms of order n−1 and the rest of the argument still applies.) Furthermore,

11

calculating the probability that the edge et+1 is accepted gives

E(X0(t + 1)−X0(t) | X(t)) =
k−1∑
i=1

k−i∑
j=1

ijXi(t)Xj(t)

n2
. (16)

This type of process can be closely approximated using differential equations. Set-
ting t = τn we consider the following sequence of systems of differential equations

(where we set x
(k)
i = x

(k)
i (τ) and consider only τ ≥ 0):

System k:

ẋ
(k)
0 =

k−1∑
`=1

k−∑̀
j=1

`jx
(k)
` x

(k)
j

ẋ
(k)
i =

i−1∑
j=1

j(i− j)x
(k)
j x

(k)
i−j − 2

k−i∑
j=1

ijx
(k)
i x

(k)
j , i = 1, 2, . . . , k.

(17)

For Phase 2 (which is the first sensible phase) we use the boundary conditions

x
(2)
0 (0) = 0, x

(2)
1 (0) = 1 and x

(2)
i (0) = 0 for i ≥ 2. Our next task is to determine

the times when we switch between phases. In the random process these will be
1 = t2 ≤ · · · ≤ tkfinal

≤ tkfinal+1. In the differential equations simulation we define
0 = τ2 ≤ · · · ≤ τkfinal

≤ τkfinal+1 where we inductively define

τk+1 = min
{

τ ≥ τk : x
(k)
0 (τ)/τ = g(k)

}
. (18)

When we switch between phases in the differential equations simulation we use
the following boundary conditions at the start τk+1 of Phase k + 1,

x
(k+1)
i (τk+1) = x

(k)
i (τk+1), 0 ≤ i ≤ k and x

(k+1)
k+1 (τk+1) = 0.

It follows directly from Theorem 5.1 of Wormald [6] that we have the following for
a fixed Phase k: if λ > 0 then

Xi(t) = nx
(k)
i (t/n) + O(λn), (19)

uniformly in t, for i = 0, . . . , k, with probability

1−O
(
λ−1e−nλ3

)
.

It suffices to take λ = n−1/4 here.

It remains to determine the exact values of the transition times τ3, · · · , τkfinal+1. In
particular, τkfinal+1 is the termination point for the algorithm. We calculate these
transition times numerically. We should note that in so doing, we are changing the
algorithm slightly. The algorithm that we are simulating is the one that transi-
tions between phases at the value of τ that is given by the numerical calculations,

12

rather than at the value given by (18). In order to achieve the bound given in the
statement of the theorem, we used Euler’s method to solve the differential equa-
tions, and g(k) = 1/2 +

√
1/(2k) and kfinal = 200 (we arrived at these parameters

through trial and error, we have no reason to believe that they are optimal). We
bounded the error in these calculations using methods set out in the subsection
below. Our goal here was not to determine the best possible result our algorithm
can give, but rather to give a proof that if the parameters are chosen properly then
whp the algorithm succeeds for m greater than the upper bound on the Achlioptas
processes given in Theorem 1(d) (i.e. our goal was to establish the separation of
problems discussed in the introduction). Furthermore, we attempt to achieve this
in the simplest way we can manage. The program (written in C) we used for the nu-
merical calculations is posted at http:/www.math.cmu.edu/~af1p/nogiant.txt.

Of course, there are other ways to solve the differential equation and bound the
error. We are confident that with the investment of more time (both computer time
and attention to the error analysis) results even closer to the upper bound given
in Theorem 1(b) can be achieved. For example, by using a Runge-Kutta method
(in the place of Euler’s method, which is used below) without error analysis but
with excellent convergence apparent, we obtain more than 0.976 with kfinal = 104.
This is pleasantly close to the upper bound in Theorem 1(c).

Error bounds

For simplicity we may take k and n fixed, and write the differential equation (17)
as

ẋi = Fi(x), 0 ≤ i ≤ k

where x = (x0, . . . , xk). This is an autonomous system, i.e. Fi does not depend
on t. Our goal in this section is to establish, in the simplest way we can manage,
that the error in our numerical approximation to the solution of this differential
equation is small.

We begin with a simple observation.

Claim 2. For any vector y we have

k∑
i=1

iFi(y) = 0

Proof.

k∑
i=1

iFi(y) =
k∑

i=1

i

(
i−1∑
j=1

j(i− j)yjyj−i − 2
k−i∑
j=1

jiyiyj

)

=
k∑

i=1

k−i∑
j=1

ijyiyj (2(i + j)− 2i− 2j)

= 0

13

Throughout this section we will make use of the following observation, that follows
immediately from the differential equation (17) and Claim 2: For t in Phase k we
have

k∑
i=1

ixi(t) = 1. (20)

Of course, (20) expresses the simple fact that at every stage of the algorithm every
vertex lies in exactly one component.

To solve the equations by Euler’s method, set x̃i(0) = xi(0) (0 ≤ i ≤ k) and then,
given x̃(t) = (x̃0, . . . , x̃k), try to compute

x̃i(t + h) = x̃i(t) + hFi(x̃(t)), 0 ≤ i ≤ k.

This is iterated for t = 0, h, 2h, When computed by machine, we actually have

x̃i(t + h) = x̃i(t) + hFi(x̃(t)) + ρi(t) (21)

where ρi(t) is the rounding error due to floating point approximation in machine
computation. In this discussion we assume

|ρi(t)| ≤ η(2 + 4k2h) ≤ 3η (22)

where η is the maximum error in a single floating point computation (note that we
can assume that we never do computations on numbers larger than 1). Of course,
our goal in this section is to show that the differences

ei(t) = xi(t)− x̃i(t), 0 ≤ i ≤ k

remain small throughout the numerical computations. We have

ei(t + h) = xi(t + h)− x̃i(t + h)

= xi(t) + hFi(x(t)) + τi(t)− (x̃i(t) + hFi(x̃(t)) + ρi(t))

= ei(t) + h(Fi(x(t))− Fi(x̃(t))) + τi(t)− ρi(t)

(23)

where τi is the truncation error, i.e.

τi(t) = xi(t + h)− xi(t)− hFi(x(t)).

Thus, our main tasks are in bounding τi(t) and the difference Fi(x(t))− Fi(x̃(t)).

We begin with the truncation error. By Taylor’s theorem,

τi(t) =
h2

2
ẍi(ξ)

for some t ≤ ξi ≤ t + h.

14

Claim 3. If ξ lies in phase k and 0 ≤ i ≤ k then

|ẍi(ξ)| ≤ 8k.

Proof. The key observation here is that the sum of the absolute values of the first
derivatives is at most a constant.

k∑
i=1

|ẋi(ξ)| ≤
k∑

i=1

(
i−1∑
j=1

j(i− j)xj(ξ)xi−j(ξ) + 2
k−i∑
j=1

ijxi(ξ)xj(ξ)

)

=
k−1∑
j=1

k−j∑
`=1

3j`xj(ξ)x`(ξ)

≤ 3

(
k∑

j=1

jxj(ξ)

)(
k∑

`=1

`x`(ξ)

)
= 3.

Now, we consider the second derivatives.

|ẍ0(ξ)| ≤
k−1∑
`=1

k−∑̀
j=1

(
j` |ẋj(ξ)|x`(ξ) + j`xj(ξ) |ẋ`(ξ)|

)
≤ 2

(
k∑

j=1

jxj(ξ)

)(
k∑

`=1

` |ẋ`(ξ)|

)
≤ 6k

For 1 ≤ i ≤ k we have

|ẍi(ξ)| ≤
i−1∑
j=1

(
j(i− j) |ẋj(ξ)|xi−j(ξ) + j(i− j)xj(ξ) |ẋi−j(ξ)|

)
+ 2

k−i∑
j=1

(
ij |ẋi(ξ)|xj(ξ) + ijxi(ξ) |ẋj(ξ)|

)
≤ 2

(
k∑

j=1

jxj(ξ)

)(
k∑

`=1

` |ẋ`(ξ)|

)
+ 2i2xi(ξ) |ẋi(ξ)| δi≤k/2

≤ 8k

where

δi≤k/2 =

{
1 if i ≤ k/2

0 otherwise.

Note that we use the easily verified fact that |ẋi(ξ)| ≤ 2 in the last inequality.

15

It follows from the Claim that, for t in phase k we have

|τi(t)| ≤ 4h2k. (24)

Now we consider Fi(x(t))−Fi(x̃(t)). Here we resort to the numerical computation
itself to verify that the error remains small (i.e. we are actually doing interval
arithmetic). We first define

f(t) =
k∑

i=1

iei(t) =
k∑

i=1

ixi(t)− ix̃i(t) = 1−
k∑

i=1

ix̃i(t)

for t in Phase k. We shall see that during the course of our simulations f(t) is
small (this is verified numerically). To show that Fi(x(t)) − Fi(x̃(t)) is small we
take advantage of all possible cancellation in the sum ei(t)+h(Fi(x(t)))−Fi(x̃(t)).
We have

ei(t) + h(Fi(x(t)))− Fi(x̃(t))) = ei(t) + h

(
i−1∑
j=1

j(i− j)(x̃jei−j + x̃i−jej + ejei−j)

−2
k−i∑
j=1

ij(x̃iej + x̃jei + eiej)

)

= ei(t)

(
1− 2hi

k−i∑
j=1

jx̃j

)
(25)

+ 2h
i−1∑
j=1

j(i− j)ejx̃i−j − 2h
k−i∑
j=1

ijx̃iej (26)

+ h
i−1∑
j=1

j(i− j)ejei−j − 2h
k−i∑
j=1

ijeiej. (27)

In our computations, we simply add in the absolute values of the errors in lines
(25) and (27) (note that line (25) will actually give a decrease in the error). We
do something slightly more sophisticated with the error in line (26). First note
that∣∣∣∣∣

i−1∑
j=1

j(i− j)ejx̃i−j −
k−i∑
j=1

ijx̃iej

∣∣∣∣∣
≤

min{k−i,i−1}∑
j=1

|jej||(i− j)x̃i−j − ix̃i|+
i−1∑

j=min{k−i,i−1}+1

j(i− j)|ej|x̃i−j

+
k−i∑

j=min{k−i,i−1}+1

ijx̃i|ej|. (28)

16

This gives us some cancellation when k is small with respect to i. when k is large
with respect to i, we invoke the fact that f(t) is small:∣∣∣∣∣

i−1∑
j=1

j(i− j)ejx̃i−j −
k−i∑
j=1

ijx̃iej

∣∣∣∣∣
≤

i−1∑
j=1

j(i− j)|ej|x̃i−j + ix̃i

∣∣∣∣∣
k∑

j=1

jej −
k∑

j=k−i+1

jej

∣∣∣∣∣
≤

i−1∑
j=1

j(i− j)|ej|x̃i−j + ix̃i

(
f(t) +

k∑
j=k−i+1

j|ej|

)
. (29)

The only remaining issue is the error in the x̃0(t). Note that this error has no
impact on the errors in x̃1(t), . . . , x̃k(t). It only has an impact on the termination
time of the process. As above, we use the fact that f remains small here:

e0(t + h) ≤
k∑

j=1

k−j∑
i=1

ij
(
x̃i |ej|+ x̃j |ei|+ |eiej|

)
≤

k∑
j=1

k−i∑
i=1

ij |eiej|+ 2
k∑

j=1

jx̃j min

{
k−j∑
i=1

i |ei| , f +
k∑

i=k−j+1

i |ei|

}
We terminate the algorithm when

x̃0(t)− e0(t)

t
≤ 1

2
.

By stopping when the error in x0 could take the proportion of accepted edges
below 1/2 we get a rigorous lower bound on how long the actual process lasts.

References

[1] T. Bohman and A.M. Frieze, Avoiding a Giant Component, Random Struc-
tures and Algorithms 19 (2001) 75-85 (addendum, Random Structures and
Algorithms 20 (2002) 126-130).

[2] B. Bollobás, Random Graphs, Academic Press, 1985 (Second Edition 2001).

[3] P. Erdős and A. Rényi, On the evolution of random graphs, Publ. Math. Inst.
Hungar. Acad. Sci. 5 (1960) 17-61.

[4] S. Janson, T. Luczak, and A. Ruciński, Random Graphs, Wiley - Interscience
Series, New York, 2000.

[5] J. Spencer, P. Winkler, Three thresholds for a liar, Combinatorics, Probability
and Computing 1 (1992) 81-93.

17

[6] N.C. Wormald, The differential equation method for random graph processes
and greedy algorithms, in Lectures on Approximation and Randomized Algo-
rithms (M. Karonski and H.J. Proemel, eds) (1999) 73-155.

18

