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Abstract

We give a general result showing that the asymptotic behaviour of high moments determines
the shape of distributions which are asymptotically normal. Both the factorial and non-
factorial (non-central) moments are treated. This differs from the usual moment method in
combinatorics, as the expected value may tend to infinity quite rapidly. Applications are
given to submap counts in random planar triangulations, where we use a simple argument to
asymptotically determine high moments for the number of copies of a given subtriangulation in
a random 3-connected planar triangulation. Similar results are also obtained for 2-connected
triangulations and quadrangulations with no multiple edges.

1 Introduction

It is well known that the moments, or factorial moments, determine many distributions (such as
Poisson or normal). In combinatorial situations, another version of this effect is often used: if for a
sequence {Xn} of nonnegative integer random variables, the factorial moments {E[Xn]k} for each
fixed integer k tend towards those of a Poisson random variable X, then Xn tends towards X in
distribution. Here [x]k denotes x(x− 1) · · · (x− k + 1).
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The condition that X is fixed is not necessary: if the factorial moment of Xn is asymptotic to that
of Yn, where the variables Yn are Poisson with bounded expectation, then the total variation distance
between the distributions of Xn and Yn tends to 0. The boundedness condition is needed if there is
no knowledge of the rate of convergence of the moments. However, since the moments of a Poisson or
normal random variable determine its distribution, perfect knowledge of the moments would imply
a convergence result regardless of the behaviour of EXn. In many combinatorial applications, the
moments can only be determined approximately (asymptotically). In that case one method which
incorporates the factorial moments, at least for an asymptotically Poisson random variable, is to use
Bonferroni’s inequalities. These quantify the determination of the distribution from the moments,
but with an alternating sum which contains potentially damaging cancellation if EXn grows with n.
For instance, Erdős and Rényi [5] showed asymptotic normality of the number of trees in a certain
sort of random graph, where EXn grows logarithmically and their asymptotic evaluation of the
factorial moments determines the asymptotic behaviour of the centralised, standardised moments.
However, their method required them to bound the convergence rate of the asymptotics for the
factorial moments. Indeed, without such bounds, one cannot deduce asymptotic normality from
the raw asymptotic behaviour of a fixed set of moments when EXn →∞, a point overlooked in the
discussion in Ruciński [13].

A number of other ways have been used to prove asymptotic normality in combinatorics (see
Janson et al. [7, Chapter 6] for example) but they tend to rely on the random variable in question
being a sum of nearly independent indicator variables, such that the expectation of each of them
can be estimated. However, for our main application, submaps of planar maps as in Section 4, the
variables in question have never been successfully put into such a form.

However, a given factorial moment is commonly easy to determine asymptotically, and sometimes
this applies to the higher factorial moments as well, by which we mean the kth factorial moment
where k → ∞. We show in Section 2 that the asymptotic behaviour of a certain set of higher
factorial moments suffices to determine the shape of distributions which are asymptotically normal,
provided the variance is neither too small nor too large compared with the expectation. Part of the
difficulty here is that we are dealing with non-central moments, which are the simplest to compute in
combinatorial situations. Two short applications are then given in Section 3 to show how to obtain
an existing result on the number of components in a certain random forest, and the distribution
of nonoverlapping subwords of a word. In Section 4, applications are given to submap counts in
random planar triangulations and quadrangulations.

Although the ordinary (non-factorial) moments tend to be less natural to compute in combi-
natorial applications, we also provide the corresponding result for these in Section 2. Note that
approximation by Poisson is doomed to failure when the expectation and variance are not asymp-
totically equal, which is the general case for both of these results.

We use P, E, and V to denote the probability, expectation, and variance of a random variable,
respectively.
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2 Basic moment results

All asymptotics refer to n → ∞. It is easy to verify that if (Xn − µn)/σn, σn > 0, has standard
normal distribution, then

E[Xn]k ∼ µkn exp

(
k2(σ2

n − µn)

2µ2
n

)

provided k = O(µn/σn) and µn grows significantly faster than σn. The first result given here shows
that this statement is to a large extent reversible.

Theorem 1 Let sn > −µ−1
n and

σn =
√
µn + µ2

nsn, (2.1)

where 0 < µn →∞. Suppose that
µn = o(σ3

n), (2.2)

and a sequence {Xn} of nonnegative random variables satisfies

E[Xn]k ∼ µkn exp

(
k2sn

2

)
(2.3)

uniformly for all integers k in the range cµn/σn ≤ k ≤ c ′µn/σn for some constants c ′ > c > 0.
Then (Xn − µn)/σn tends in distribution to the standard normal as n→∞.

Before proving this, we deal with a corresponding result for to the central moments EXk, as it
is slightly simpler and proved more easily. For (Xn−µn)/σn with the standard normal distribution,

EXk
n ∼ µkn exp

(
k2σ2

n

2µ2
n

)

provided k = O(µn/σn) and µn grows significantly faster than σn.

Theorem 2 Suppose that µn/σn →∞ and that a sequence {Xn} of nonnegative random variables
satisfies

EXk
n ∼ µkn exp

(
k2σ2

n

2µ2
n

)
(2.4)

uniformly for all integers k in the range cµn/σn ≤ k ≤ c ′µn/σn for some constants c ′ > c > 0.
Then (Xn − µn)/σn tends in distribution to the standard normal as n→∞.

Proof: Let

ζn =
µn
σn

ln

(
Xn

µn

)
. (2.5)

Then for t = kσn/µn, (2.4) gives

Eetζn → et
2/2 (n→∞) (2.6)

uniformly for t taking a certain set of values which are in an asymptotic sense dense in (c, c′). Since
the function et

2/2 is monotonic for t > 0, the convergence in (2.6) is equivalent to convergence for
all t ∈ (c, c′). Hence ζn converges weakly to the standard normal variable η (see for example [3,

3



            

Problem 30.4, p. 397]). Then, since σn/µn → 0 and Xn = µne
ζnσn/µn , the Taylor expansion of the

exponential function yields (Xn − µn)/σn
d→ η as required.

Proof of Theorem 1: From (2.2) it follows that [µn]k ∼ µkn exp(−k2/2µn) for k = O(µn/σn).
Thus, as with (2.6), if we set

Qn =
[Xn]k
[µn]k

, and t = k
σn
µn

the assumption (2.3) implies the convergence

EQn → et
2/2 (2.7)

uniformly for t ∈ (c, c′). We will use the fact that for a ≥ b > k,

k log(a/b) ≤ log
[a]k
[b]k
≤ k log

(
a− k
b− k

)
≤ k log(a/b)

1− k/b (2.8)

where the last step is easily verified by differentiation with respect to a. Define ζn as in (2.5), put
ε = k/(rµn) and fix 0 < r < 1. Since ε→ 0, applying (2.8) with a = Xn and b = µn when Xn ≥ µn,
and with a = µn and b = Xn when rµn ≤ Xn ≤ µn, we obtain

Tn := |etζn −Qn| ≤ |Qn −Q1−ε
n | ≤

{
min(Qn, εQn logQn) Xn ≥ µn
εQ1−ε

n log(1/Qn) rµn ≤ Xn < µn.

Finally, for Xn < rµn, note that Qn ≤ (Xn/µn)k = etζn → 0. Noting that Xn < 1 iff Qn < 1, we
may split the expectation of Tn into four re ions: Xn < rµn, rµn ≤ Xn < µn, 1 ≤ Qn ≤ ε−1/2 and
Qn > ε−1/2, and obtain

ETn ≤ o(1) +O(ε) + ε(ε−1/2 log ε−1/2) + E[QnI(Qn≥ε−1/2)]→ 0

where the last term is estimated by applying (2.7). From this, (2.7) implies (2.6) which then implies
the theorem by the argument in the proof of Theorem 1.

3 Two quick applications

Pittel and Weishaar [8] obtained the exact factorial moments of a random variable T = T (n) which
counted the trees in a certain random forest: E[Tn]k = ([n]k)

2/[2n− 1]k. Applying Theorem 1 with

µn = n/2, σn =
√
n/8, and sn = −3/(2n), we deduce the convergence of (Tn − µn)/σn to standard

normal, a result which they obtained using an entirely different argument.
It is well-known that the distribution of subword occurrences in a random word is asymptotically

normal. (See [9] for references on this subject.) Here we give a quick application of Theorem 1
to this problem. Let W be a word of length r in an alphabet of a letters, and let Xn denote the
number of occurrences of W in a random word of length n. Assume that W has the property that
separate occurrences of W cannot have nonzero overlap. Then

E[Xn]k = [n− k(r − 1)]k/a
rk
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since k occurrences of W can be determined by selecting the k positions of its first letter in the
sequence of length n− k(r − 1) obtained by deleting all other letters of the k occurrences.

Set µn = n/ar and suppose r ≥ 1 and a ≥ 2 are any functions of n such that µn →∞. Then r =
O(log n), and (2.3) holds with sn = (1−2r)/n for all k = O(

√
n), so that σ2

n = µn(1− (2r−1)/ar).
It is easy to see that c

√
µn ≤ σn <

√
µn for some positive constant c . So Xn is asymptotically

normal with mean µn and variance σ2
n.

4 Submaps of random maps

Throughout this section, a map is a connected graph G embedded in the plane with no edge
crossings. Loops and multiple edges are allowed in G. A map is rooted if an edge is distinguished
together with a vertex on the edge and a side of the edge. The distinguished vertex and edge are
called the root vertex and the root edge of the map. The face on the distinguished side of the root
edge is called the root face. Two rooted maps are considered the same if there is a homeomorphism
from the plane to itself which transforms one rooted map to the other and preserves the rooting.
A triangulation (quadrangulation) is a map such that all faces are triangles (quadrangles). It is
well-known that a triangulation is 2-connected if and only if it contains no loops, and it is 3-
connected if and only if it contains no loops or multiple edges. Let Tn(T n) be the number of rooted
3-connected (2-connected) triangulations with n + 2 vertices, and let Qn be the number of rooted
quadrangulations with n+ 2 vertices, and no multiple edges. It is known by [4, 14] that

Tn =

√
6

32
√
π
n−5/2(256/27)n(1 + c1/n+O(1/n2)), (4.1)

T n =

√
3

4
√
π
n−5/2(27/2)n(1 + c2/n+O(1/n2)), (4.2)

Qn =
8
√

3

27
√
π
n−5/2(27/4)n(1 + c3/n+O(1/n2)), (4.3)

where c1, c2 and c3 are constants. We will see that the actual values of c1, c2 and c3 do not contribute
to our results. Throughout this section, all probability distributions are uniform over a given family
of rooted maps. We consider rooted maps for accessability by generating function techniques. By
the results in [12], any almost sure property of one of the classes of rooted maps in this paper is
also an almost sure property of the corresponding unrooted versions.

The theory of submaps of a random map was begun in [10] and [11] and extended in a general
way in [2], where it is shown that a random rooted map with n edges almost surely contains at
least cn copies of any given planar submap for some positive constant c. In [6] it was shown that
the number XM of copies of a given map in a random 3-connected triangulation with n+ 2 vertices
is sharply concentrated around 2rn(27/256)j, where j + 3 is the number of vertices in M and there
are r ways to root M . This result, which also applies to near-triangulations M (i.e., maps with all
internal faces triangles), was obtained by deriving asymptotic expressions for the first two moments
using somewhat complicated multivariate asymptotic analysis of the generating functions. With
Theorem 1 available, we can derive a stronger result—the asymptotic distribution of XM—using a
much simpler combinatorial argument which estimates the factorial moments of XM . The method
also works for other families of maps. As an example, we also derive similar results for 2-connected
triangulations and quadrangulations with no multiple edges.
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Although the simple argument used in this paper gives the asymptotic distribution for the
number of copies of a submap, it does not provide any bound on the rate of convergence. To some
extent this complements the results of [2], where the limiting distribution is not obtained but an
exponentially small bound is found for the probabilty that the number of submaps lies in a certain
range which is well away from the expected number. On the other hand, it is possible to bound the
upper tail of the distribution more sharply from the factorial moment than is done in Theorem 1.

In the following we use ηn = ηn(M) to denote the number of copies of a subtriangulation M
in a random rooted 3-connected triangulation with n + 2 vertices. Any such M is necessarily 3-
connected. For simplicity, we only count copies that do not contain the root face of the random
triangulation. Note that ηn(M) differs from the total number of copies by at most 1, since no two
copies of M can share an interior face.

Lemma 1 For each n, let M be a planar 3-connected triangulation with j + 3 vertices. Suppose
there are r distinct ways to root M . Then for kj = o(n),

E ([ηn]k) = rk[2(n− kj)− 1]k

(
27

256

)kj (
1 +

5kj

2n
+O(k2j2/n2)

)
.

Proof: Let Dn(M) be the number of rooted triangulations with n+ 2 vertices and with a copy of
M distinguished. Removing the distinguished copy of M from such a rooted triangulation yields a
3-connected triangulation which has n+ 2− j vertices and has a face distinguished. We can reverse
this process by inserting M back in r different ways. This gives an r-to-1 mapping. Hence

Dn(M) = r(2(n− j)− 1)Tn−j,

and by (4.1)

E(ηn(M)) =
Dn(M)

Tn
= 2rn

(
1− 2j + 1

2n

)
Tn−j
Tn

(4.4)

= 2rn
(

27

256

)j (
1 +

3j − 1

2n
+O(j2/n2)

)
. (4.5)

Similarly for each integer k with kj = o(n), we can consider 3-connected triangulations with k
distinguished copies of M , where the distinguished copies are given a linear ordering. It is important
to note that different copies of M cannot overlap since M is 3-connected. Hence the above argument
also gives

E ([ηn]k) = rk[2(n− kj)− 1]k
Tn−kj
Tn

= rk[2(n− kj)− 1]k

(
27

256

)kj (
1 +

5kj

2n
+O(k2j2/n2)

)
.

Theorem 3 Let r be as defined in Lemma 1, put

µn = 2rn
(

27

256

)j
, σn =

√

µn −
(4j + 1)µ2

n

2n
,

and assume µn →∞. Then (ηn − µn)/σn tends in distribution to the standard normal as n→∞.
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Proof: We first note that

µn −
(4j + 1)µ2

n

2n
= µn

(
1− r(4j + 1)

(
27

256

)j)
.

We also note that r = 1 when j = 0, 1, and hence
(

1− r(4j + 1)
(

27

256

)j)
> 0.

When j ≥ 3, we use r ≤ 4× 3(j + 1), and hence

r(4j + 1)
(

27

256

)j
≤ 48(j + 1)2

(
27

256

)j
.

It is easy to see that the right hand side of the above inequality is decreasing for j ≥ 3 and is less
than 1 at j = 3. Hence

c1
√
µn < σn < c2

√
µn

for some positive constants c1 and c2, and µn/σn = O(
√
µn) = O(

√
n). Since µn →∞, this implies

j = O(log n), and hence

[2(n− kj)− 1]k = (2n)k exp

(
−k

2(4j + 1)

4n

)
(1 + o(1))

for k = O(
√
n), and (using Lemma 1)

E([ηn]k) = µkn exp

(
−k

2(4j + 1)

4n

)
(1 + o(1)).

The theorem now follows from Theorem 1.
It is clear that the above argument works equally well for other families of maps with specified

face degrees, provided that their asymptotical expressions similar to (4.1) are known and the submap
considered has the required non-overlapping property. For example, using (4.2) and (4.3), we obtain
the following.

Theorem 4 (i) Let M be a 3-connected triangulation which has j + 3 vertices and r distinct
rootings. Let ηn be the number of copies of M in a random rooted 2-connected triangulation
with n+ 2 vertices. Define

µn = 2rn(27/2)−j, σn =

√

µn −
(4j + 1)µ2

n

2n
,

and suppose µn → ∞. Then (ηn − µn)/σn tends in distribution to the standard normal as
n→∞.

(ii) Let M be a quadrangulation which has j+ 4 vertices, r distinct rootings, and contains no sepa-
rating quadrangles. Let ηn be the number of copies of M in a random rooted quadrangulation
with n+ 2 vertices and with no multiple edges. Define

µn = rn(27/4)−j, σn =

√

µn −
(2j + 1)µ2

n

n
,

and suppose µn → ∞. Then (ηn − µn)/σn tends in distribution to the standard normal as
n→∞.

7



         

We remark that the precise range of j in which µn →∞ can be determined when the behavior of
r = r(j) is known. Suppose µn = 2rnρ−j, and c1j

β ≤ r ≤ c2j
β for some constants c1 > 0, c2 > 0,

and β ≥ 0. Then µn → ∞ when j < (log n + β log log n)/ log ρ − Ωn, and µn → 0 when j >
(log n + β log log n)/ log ρ + Ωn, where Ωn is any function which goes to ∞ as n → ∞. Moreover,
µn = O(1) when |j − (log n + β log log n)/ log ρ| = O(1), and hence Lemma 1 implies that ηn is
asymptotically Poisson with mean µn.
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