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Abstract

We present a heuristic for finding a large induced matching of cubic
graphs. We analyse the performance of this heuristic, which is a random
greedy algorithm, on random cubic graphs using differential equations
and obtain a lower bound on the expected size of the induced match-
ing, M, returned by the algorithm. A corresponding upper bound is
derived by means of a direct expectation argument. We prove that M
asymptotically almost surely satisfies 0.270413n ≤ |M| ≤ 0.282069n.

1 Introduction

An induced matching of a graph, G=(V,E), is a set of vertex disjoint edges,
M⊆ E, with the additional constraint that no two edges ofM have their end-
points connected by an edge of E \M. We are interested in finding induced
matchings of large cardinality.

Stockmeyer and Vazirani [12] introduced the problem of finding a maximum
induced matching of a graph, motivating it as the “risk-free marriage problem”
(find the maximum number of married couples such that each person is com-
patible only with the person (s)he is married to). This in turn stimulated much
interest in other areas of theoretical computer science and discrete mathemat-
ics as finding a maximum induced matching of a graph is a sub-task of finding
a strong edge-colouring of a graph (a proper colouring of the edges such that
no edge is incident with more than one edge of the same colour as each other,
see (for example) [6, 7, 10, 11]).

The problem of deciding whether, for a given integer k, a given graph has
an induced matching of size at least k is NP-complete [12], even for bipartite
graphs of maximum degree 4. It has been shown [4, 15], that the optimisa-
tion version of the same problem is APX-complete, even when restricted to 3k-
regular or 4k-regular graphs for any integer k ≥ 1. Maximum induced matching
is polynomial-time solvable for chordal graphs [2] and circular arc graphs [8].
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Recently, Golumbic and Lewenstein [9] have constructed polynomial-time algo-
rithms for maximum induced matching in trapezoid graphs, interval-dimension
graphs and co-comparability graphs and have given a linear-time algorithm for
maximum induced matching in interval graphs.

In this paper, we present a heuristic for finding a large induced matching
of cubic graphs. We analyse the performance of this heuristic, which is a
random greedy algorithm, on random cubic graphs using differential equations
and obtain a lower bound on the expected size of the induced matching, M,
returned by the algorithm. A corresponding upper bound is derived by means
of a direct expectation argument. We prove that M asymptotically almost
surely satisfies 0.270413n ≤ |M| ≤ 0.282069n.

Little is known on the complexity of this problem under the additional
assumption that the input graphs occur with a given probability distribution.
Zito [16] presented some simple results on dense random graphs.

The algorithm we present was analysed deterministically in [4] where it was
shown that, given an n-vertex connected cubic graph, the algorithm returns an
induced matching of size at least 3n/20 +O(1) and there exist infinitely many
cubic graphs for which the algorithm only achieves this bound.

Throughout this paper we use the notation P (probability), E (expectation),
u.a.r. (uniformly at random) and a.a.s. (asymptotically almost surely) (see,
for example, [1] for these and other random graph theory definitions). When
discussing any cubic graph on n vertices, we assume n to be even to avoid
parity problems.

In the following section we introduce the model used for generating cubic
graphs u.a.r. and in Section 3 we describe the notion of analysing the per-
formance of algorithms on random graphs using a system of differential equa-
tions. Section 4 gives the randomised algorithm and Section 5 gives its analysis
showing the a.a. sure lower bound. In Section 6 we give a direct expectation
argument showing the a.a. sure upper bound.

2 Generating Cubic Graphs u.a.r.

The model used to generate a cubic graph u.a.r. (see, for example, Bollobás
[1]) can be summarised as follows. For an n vertex graph

• take 3n points in n buckets labelled 1 . . . n with three points in each
bucket and

• choose u.a.r. a pairing of the 3n points.

If no pair contains two points from the same bucket and no two pairs contain
four points from just two buckets then this represents a cubic graph on n
vertices with no loops and no multiple edges. With probability bounded below
by a positive constant, loops and multiple edges do not occur (see, for example,
[13, Section 2.2]) . The buckets represent the vertices of the randomly generated
cubic graph and each pair represents an edge whose end-points are given by
the buckets of the points in the pair.

We may consider the generation process as follows. Initially, all vertices
have degree 0. Throughout the execution of the generation process, vertices
will increase in degree until the generation is complete and all vertices have
degree 3. During this process, we refer to the graph being generated as the
evolving graph.
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3 Analysis Using Differential Equations

One method of analysing the performance of a randomised algorithm is to use
a system of differential equations to express the expected changes in variables
describing the state of the algorithm during its execution. Wormald [14] gives
an exposition of this method and Duckworth [3] applies this method to various
other graph-theoretic optimisation problems.

In order to analyse our algorithm using a system of differential equations, we
incorporate the algorithm as part of a pairing process that generates a random
cubic graph. In this way, we generate the random graph in the order that the
edges are examined by the algorithm.

During the generation of a random cubic graph, we choose the pairs sequen-
tially. The first point, pi, of a pair may be chosen by any rule, but in order to
ensure that the cubic graph is generated u.a.r., the second point, pj , of that
pair must be selected u.a.r. from all the remaining free points. The freedom of
choice of pi enables us to select it u.a.r. from the vertices of given degree in the
evolving graph. Using B(pk) to denote the bucket that the point pk belongs to,
we say that the edge (B(pi), B(pj)) is exposed and this allows us to determine
the degree of the vertex represented by the bucket B(pj).

The algorithm we use to find an induced matching of cubic graphs is a
greedy algorithm based on selecting vertices of given degree. We say that
our algorithm proceeds as a series of operations. An operation is the process
of selecting an edge to add to the induced matching and the deletion of other
edges. For each operation, a vertex v is chosen u.a.r. from those of given degree.
An edge incident with v is selected to be added to the induced matching based
on the degree(s) of the neighbour(s) of v. Other edges are then deleted in
order to ensure that, after the next selection of an induced matching edge, the
matching remains induced. Incorporating this as part of a pairing process that
generates a random cubic graph, we select a vertex, v, u.a.r. from those of
given degree in the evolving graph, expose its incident edges and investigate
the degree(s) of its neighbour(s). An edge incident with v is selected to be
added to the induced matching based on the degree(s) of the neighbour(s) of
v. Further edges are then exposed in order to ensure the matching remains
induced. More detail is given in the following section.

In what follows, we denote the set of vertices of degree i of the evolving
graph by Vi and let Yi (=Yi(t)) denote |Vi| (at some stage of the algorithm
(time t)). We can express the state of the evolving graph at any point during
the execution of the algorithm by considering Y0, Y1 and Y2. In order to analyse
our randomised algorithm for finding an induced matching of cubic graphs, we
calculate the expected change in this state over one unit of time (a unit of
time is defined more clearly in Section 5) in relation to the expected change
in the size of the induced matching. Let M (=M(t)) denote the size of the
induced matching at any stage of the algorithm (time t) and let E(∆X) denote
the expected change in a random variable X conditional upon the history
of the process. We then regard E(∆Yi)/E(∆M) as the derivative dYi/dM ,
which gives a system of differential equations. The solutions to these equations
describe functions which represent the behaviour of the variables Yi. There is a
general result which guarantees that the solutions of the differential equations
almost surely approximate the variables Yi. The expected size of the induced
matching may be deduced from these results.
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4 The Algorithm

The degree of a vertex v in the evolving graph is denoted by deg(v). We denote
the set of all free points by P and use q(b) to denote the set of free points in a
given bucket b. The incorporated algorithm and pairing process, RANDMIM,
is given in Figure 1; a description is given below.

select u u.a.r. from V0;
select p1 u.a.r. from q(u);
select p2 u.a.r. from P ;
v ← B(p2);
M← (u, v);
isolate(u, v);
while (Y1 + Y2 > 0)
do

if (Y2 > 0)
select u u.a.r. from V2;
{p1} ← q(u);
select p2 u.a.r. from P ;
v ← B(p2);

else
select u u.a.r. from V1;
{p1, p2} ← q(u);
select p3 u.a.r. from P ;
a← B(p3);
select p4 u.a.r. from P ;
b← B(p4);
if (deg(a) > deg(b)) v ← a;
else if (deg(b) > deg(a)) v ← b;
else select v u.a.r. from {a, b};

M←M∪ (u, v);
isolate(u, v);

Figure 1: Algorithm RANDMIM

The function isolate(u, v) involves the process of exposing all the remaining
edges incident with the vertices corresponding to the the buckets u and v and
then exposing all remaining edges incident with the neighbours of u and v.
This ensures that the matching remains induced.

The first operation of the algorithm involves randomly selecting the first
edge of the induced matching and exposing the appropriate edges. We split
the remainder of the algorithm into two distinct phases. We informally define
Phase 1 as the period of time where any vertices in V2 that are created are
used up almost immediately and Y2 remains small. Once the rate of generating
vertices in V2 becomes larger than the rate that they are used up, the algorithm
moves into Phase 2 and all operations involve selecting a vertex from V2. Note
that the algorithm terminates when there are no remaining vertices of degree 1
or 2, which means that a connected component has been completely generated
and a maximal induced matching has been found in that component. It is well
known that cubic graphs are a.a.s. connected, so the result is a.a.s. a maximal
induced matching in the whole graph.
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There are two basic types of operation performed by the algorithm. A Type
1 operation refers to an operation where Y2=0 and a vertex is chosen from V1.
Similarly, a Type 2 operation refers to an operation where Y2 > 0 and a vertex
is chosen from V2. For Type 1, if (after exposing the edges incident with the
chosen vertex, u, from V1) exactly one of the neighbours, v, of u has degree
2, we add the edge (u, v) to the induced matching. Otherwise, we randomly
choose an edge to add to the induced matching from those edges incident with
u. For Type 2, we add to the induced matching, the edge incident with the
chosen vertex, u, from V2.

Figures 2 and 3 show the configurations that may be encountered by per-
forming operations of Type 1 and Type 2 respectively (a.a.s.). The larger cir-
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Figure 2: Type 1 operations
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Figure 3: Type 2 operations

cles represent buckets each containing 3 smaller circles representing the points
of that bucket. Smaller circles coloured black (respectively white) represent
points that were, without a doubt, free (respectively used up) at the start of
the operation. Smaller circles coloured grey represent points that were not
known to be free or used up at the start of the operation.

In all cases, the selected vertex is labelled u and the other end-point of
the induced matching edge chosen is labelled v. A vertex labelled v∗ denotes
that a random choice has been made between 2 vertices and this one was not
selected. After selecting a vertex u of given degree, the edges incident with
this vertex are exposed. Once we determine the degrees of the neighbours of
this vertex, we then make the choice as to which edge to add to the induced
matching. Only then are other edges exposed. Therefore, at the start of the
operation, we do not know the degrees of all the vertices at distance at most
two from the end-points of the selected induced matching edge. A vertex whose
degree is unknown is labelled either w or p. A vertex labelled p will have one
of its incident edges exposed and will subsequently have its degree increased
by one. We refer to these vertices as incs (as its degree is incremented). A
vertex labelled w will have all of its incident edges exposed and we refer to
these vertices as rems (as they are removed from the set Vi). Should any rem
be incident with other vertices of unknown degree, then these vertices will be
incs.

Once an induced matching edge, e, has been selected, all edges incident
with the end-points of e are exposed and subsequently all edges incident with
the neighbours of the end-points of e are exposed.
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5 The Lower Bound

Theorem 1 For a random cubic graph on n vertices, the size of a maximum
induced matching is asymptotically almost surely greater than 0.270413n.

Proof We define a clutch to be a series of operations in Phase i involving
an operation of Type i and all subsequent operations up to but not including
the next operation of Type i. Increment time by 1 unit for each clutch. We
calculate E(∆Yi) and E(∆M) for a clutch in each Phase.

5.1 Preliminary Equations For Phase 1

The initial opertion of Phase 1 is of Type 1 (at least a.a.s.). We consider opera-
tions of Type 2 first and then combine the equations given by these operations
with those given by the operations of Type 1.

Operations of Type 2 involve the selection of a vertex u from V2 (which
has been created from processing a vertex from V1). Let s (=s(t)) denote the
number of free points available in all buckets at a given stage (time t). Note

that s=
∑2
i=0(3− i)Yi. For our analysis it is convenient to assume that s > εn

for some arbitrarily small but fixed ε > 0.
The expected change in Yi due to changing the degree of an inc from i to

i+ 1 by exposing one of its incident edges (at time t) is ρi + o(1) where

ρi = ρi(t) =
(i− 3)Yi + (4− i)Yi−1

s
, 0 ≤ i ≤ 2

and this equation is valid under the assumption that Y−1=0. To justify this,
note that when the point in the inc was chosen, the number of points in the
buckets corresponding to vertices currently of degree i is (3− i)Yi, and s is the
total number of points. In this case Yi decreases; it increases if the selected
point is from a vertex of degree i− 1. These two quantities are added because
expectation is additive. The term o(1) comes about because the values of all
these variables may change by a constant during the course of the operation
being examined. Since s > εn the error is in fact O(1/n).

The expected change in Yi due to exposing all edges incident with a rem
and its incident incs (at time t) is µi + o(1) where

µi = µi(t) =
(i− 3)Yi

s
+

(6Y0 + 2Y1)ρi
s

, 0 ≤ i ≤ 2.

The first term represents the removal of the rem from Vi (due to increasing
its degree to 3). The expected number of incs incident with a rem is (6Y0 +
2Y1)/s+ o(1) and each of these will have its degree increased by 1 (giving the
second term).

The expected change in Yi for an operation of Type 2 in Phase 1 (at time
t) is αi + o(1) where

αi = αi(t) =
(i− 3)Yi

s
+

(6Y0 + 2Y1)µi
s

− δi2, 0 ≤ i ≤ 2

in which

δij =





1 if i = j

0 otherwise.
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We now consider operations of Type 1. The expected change in Yi for
operation 1h given in Figure 2 (at time t) is βh,i + o(1) where

βa,i = βa,i(t) = −3δi1 + µi + ρi, 0 ≤ i ≤ 2,

βb,i = βb,i(t) = −δi0 − 2δi1 + µi + 2ρi 0 ≤ i ≤ 2 and

βc,i = βc,i(t) = −2δi0 − δi1 + 2µi + 2ρi, 0 ≤ i ≤ 2.

For an operation of Type 1 in Phase 1, the neighbours of u (the vertex
selected at random from V1) were in {V0∪V1} before the start of the operation,
since Y2=0 when the algorithm performs this type of operation. The probability
that these neighbours were in V0 or V1 are asymptotically 3Y0/s and 2Y1/s
respectively. Therefore, the probabilities that, given we are performing an
operation of Type 1 in Phase 1, the operation is of type 1a, 1b or 1c are given
by

P(1a) =
4Y 2

1

s2 + o(1),

P(1b) = 12Y0Y1

s2 + o(1) and

P(1c) =
9Y 2

0

s2 + o(1)

respectively.
We define a birth to be the generation of a vertex in V2 by processing a

vertex of V1 or V2 in Phase 1. The expected number of births from processing
a vertex from V1 (at time t) is ν1 + o(1) where

ν1 = ν1(t) = P(1a)

(
µ2 +

2Y1

s

)
+ P(1b)

(
µ2 +

4Y1

s

)
+ P(1c)

(
2µ2 +

4Y1

s

)
.

Here, for each case, we consider the probability that vertices of degree 1 (in
the evolving graph) become vertices of degree 2 by exposing an edge incident
with the vertex.

Similarly, the expected number of births from processing a vertex from V2

(at time t) is ν2 + o(1) where

ν2 = ν2(t) =
(6Y0 + 2Y1)µ2

s
.

Consider the Type 1 operation at the start of the clutch to be the first
generation of a birth-death process in which the individuals are the vertices
in V2, each giving birth to a number of children (essentially independent of
the others) with expected number ν2. Then, the expected number in the jth

generation is ν1ν2
j−1 and the expected total number of births in the clutch is

ν1/(1− ν2).
For Phase 1, the equation giving the expected change in Yi for a clutch is

therefore given by

E(∆Yi) = P(1a)βa,i + P(1b)βb,i + P(1c)βc,i +
ν1

1− ν2
αi + o(1). (1)

This assumes Y1 + Y2 is not zero, an eventuality which will be discussed later.
The equation giving the expected increase in M for a clutch in Phase 1 is given
by

E(∆M) = 1 +
ν1

1− ν2
+ o(1) (2)

since the contribution to the increase in the size of the induced matching by
the Type 1 operation in a clutch is 1 and for each birth we have a Type 2
operation (a.a.s.).
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5.2 Preliminary Equations For Phase 2

In Phase 2, all operations are considered to be of Type 2 and therefore a clutch
consists of one operation. The expected change in Yi is given by

E(∆Yi) = αi + o(1)

where αi remains the same as that given for Phase 1 and the expected increase
in M is 1 per clutch.

5.3 The Differential Equations

The equation representing E(∆Yi) for processing a clutch in Phase 1 forms
the basis of a differential equation. Write Yi(t)=nzi(t/n), µi(t)=nτi(t/n),
βj,i(t)=nψj,i(t/n), s(t)=nξ(t/n), αi(t)=nχi(t/n) and νj(t)=nωj(t/n). The dif-
ferential equation suggested is

z′i =
4z2

1

ξ2
ψa,i +

12z0z1

ξ2
ψb,i +

9z2
0

ξ2
ψc,i +

ω1

1− ω2
χi, 0 ≤ i ≤ 2 (3)

where differentiation is with respect to x and xn represents the number, t, of
clutches. From the definitions of µ, β, s, α and ν we have

τi = (i−3)
ξ zi + (6z0+2z1)((i−3)zi+(4−i)zi−1)

ξ2 , 0 ≤ i ≤ 2,

ψa,i = −3δi1 + τi + (i−3)zi+(4−i)zi−1

ξ , 0 ≤ i ≤ 2,

ψb,i = −δi0 − 2δi1 + τi + 2 (i−3)zi+(4−i)zi−1

ξ , 0 ≤ i ≤ 2,

ψc,i = −2δi0 − δi1 + 2τi + 2 (i−3)zi+(4−i)zi−1

ξ , 0 ≤ i ≤ 2,

ξ =
∑2
i=0(3− i)zi,

χi = (i−3)
ξ zi + 6z0+2z1

ξ τi − δi2, 0 ≤ i ≤ 2,

ω1 =
4z2

1

ξ2

(
τ2 + 2z1

ξ

)
+ 12z0z1

ξ2

(
τ2 + 4z1

ξ

)
+

4z2
1

ξ2

(
2τ2 + 4z1

ξ

)
and

ω2 = 6z0+2z1
ξ τ2.

Using the equation representing the expected increase in the size M of M
after processing a clutch in Phase 1 and writing M(t)=nz(t/n) suggests the
differential equation for z as

z′ = 1 +
ω1

1− ω2
. (4)

For Phase 2 the equation representing E(∆Yi) for processing a clutch sug-
gests the differential equation

z′i = χi, 0 ≤ i ≤ 2. (5)

The solution to these systems of differential equations represents the car-
dinalities of the sets Vi and M (scaled by 1

n ) for given t. For Phase 1, the
equations are (3) and (4) with initial conditions

z0(0) = 1, zi(0) = 0 (i > 0).
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The initial conditions for Phase 2 are given by the final conditions for Phase 1,
and the equations are given by (5).

In [14] is a general result which we use to show that during each phase,
the functions representing the solutions to the differential equations almost
surely approximate the random variables Yi/n and M/n with error o(1). For
arbitrarily small ε > 0, define D1 to be the set of all (t, z0, z1, z2, z) for which
t > −ε, ξ > ε, ω2 < 1 − ε, z > −ε and zi < 1 + ε where 0 ≤ i ≤ 2. D1

defines a domain for the variables t, zi and z so that [14, Theorem 6.1] may
be applied to the process within Phase 1. Equations (1) and (2) verify the
trend hypothesis of [14, Theorem 5.1], which is also used in [14, Theorem 6.1].
(Note in particular that since ξ > ε inside D1, the assumption that s > εn used
in deriving these equations is justified.) For [14, Theorem 6.1] we may also
eliminate a set of undesirable states, which we characterise by Y1 +Y2 ≤ 0. The
conclusion is that the random variables Yi/n and M/n a.a.s. remain within o(1)
of the corresponding deterministic solutions to the differential equations (3)
and (4) until a point arbitrarily close to where it leaves the domain D1, or
an undesirable state is achieved. Since the latter can only occur when the
algorithm has completely processed a component of the graph, and a random
cubic graph is a.a.s. connected, we may turn to examining the former.

We compute the ratio dzi
dz =

z′i(x)
z′(x) , and we have

dzi
dz

=

4z2
1

ξ2 ψa,i + 12z0z1
ξ2 ψb,i +

9z2
0

ξ2 ψc,i + ω1

1−ω2
χi

1 + ω1

1−ω2

, 0 ≤ i ≤ 2,

where differentiation is with respect to z and all functions can be taken as
functions of z. By solving (numerically) this system of differential equations,
we find that the solution hits a boundary of the domain at ω2=1− ε (for ε=0
this would be at time t ≥ 0.134887n). Formally, Phase 1 is defined as the
period of time from time t=0 to the time t0 representing the solution of ω2=1.

An argument similar to that given for independent sets in [14] or that given
for independent dominating sets in [5] ensures that a.a.s. the process passes
through phases as defined informally, and that Phase 2 follows Phase 1.

Once in Phase 2, vertices in V2 are replenished with high probability which
keeps the process in Phase 2. For Phase 2 and for arbitrary small ε, define
D2 to be the set of all (t, z0, z1, z2, z) for which t > t0 + ε, ξ > ε, z > −ε and
zi < 1 + ε where 0 ≤ i ≤ 2. Theorem 6.1 from [14] applies as in Phase 1 except
that here, a clutch consists of just one operation. Note that the increase in the
size of the induced matching per clutch processed in Phase 2 is 1, so computing

the ratio dzi
dz =

z′i(x)
z′(x) gives

dzi
dz

= χi, 0 ≤ i ≤ 2.

By solving this we see that the solution hits a boundary of D2 at ξ = ε (for
ε = 0 this would be approximately 0.270413n).

The differential equations were solved using a Runge-Kutta method, giving
ω2=1 at z ≥ 0.134887 and in Phase 2, z2=0 at z > 0.270413. This corresponds
to the size of the induced matching (scaled by 1

n ) when all vertices are used
up, thus proving the theorem. 2

6 The Upper Bound

We now establish an upper bound on the size of a maximum induced matching
of a random cubic graph.
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Theorem 2 For a random cubic graph on n vertices, the size of a maximum
induced matching is asymptotically almost surely less than 0.282069n.

Proof Consider a random n-vertex cubic graph G generated using the pair-
ing model given in Section 2. Let M(G, k, s) denote the number of maximal
induced matchings of G of size k (where s is the number of vertices in the set
S of vertices adjacent to the end-points of the matching edges). We calculate
E(M(G, k, s)) and show that when k = 0.282069n, E(M(G, k, s)) = o(1), for

every choice of S, thus proving the theorem. Let N(i) = (2i)!
i!2i .

Given a maximal induced matching of size k we have a set K of 2k vertices
that are the end-points of the matching edges, a set S of s vertices that are
adjacent to the end-points of the matching edges and a set R of the remaining
n− 2k − s vertices. By maximality, R forms an independent set.

The number of ways to choose the set K, the set S and the points in the
buckets corresponding to the end-points of the 2k matching edges is

(
n

2k

)(
n− 2k

s

)
N(k)32k.

Denote the number of ways to choose the 4k edges each incident with a
vertex in K and a vertex in S by a(k, s). For each vertex in S with j points
matched, these can be chosen in

(
3
j

)
ways. Hence the number of ways of doing

one such choice for each vertex in S has ordinary generating function f(x)
s

where

f(x) =

3∑

j=1

(
3

j

)
xj = (1 + x)3 − 1.

This implies
a(k, s) = (4k)![x4k]((1 + x)3 − 1)s

where the square brackets mean taking the coefficient.
The number of ways to pair the 3(n− 2k− s) points of R with points from

the remaining 3s− 4k free points in S is

(3s− 4k)!

(6s+ 2k − 3n)!

and the number of ways to complete the pairing is

(6s+ 2k − 3n)!

(3s+ k − 3n
2 )!23s+k− 3n

2

.

The total number of pairings is given by N(3n/2).
Combining these expressions, E(M(G,k,s)) is given by

(
n
2k

)(
n−2k
s

)
N(k)32k(4k)![x4k]((1 + x)3 − 1)s(3s− 4k)!N(3s+ k − 3n

2 )

(6s+ 2k − 3n)!N( 3n
2 )

which simplifies to

E(M(G, k, s)) =
n!32k(4k)![x4k]((1 + x)3 − 1)s(3s− 4k)!( 3n

2 )!23n−2k−s

(n− 2k − s)!s!k!(3s+ k − 3n
2 )!(3n)!

.

As [xu]g(x) ≤ g(x)
xu for all positive real values of x this implies

E(M(G, k, s)) ≤ n!32k(4k)!((1 + x)3 − 1)s(3s− 4k)!( 3n
2 )!23n−2k−3s

(n− 2k − s)!s!k!x4k(3s+ k − 3n
2 )!(3n)!

.
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Approximate using Stirling’s formula and re-write using f(y) = yy, κ = k/n
and γ = s/n. We have

E(M(G, k, s))
1
n ∼ 32κf(4κ)((1 + x̂)3 − 1)γf(3γ − 4κ)f( 3

2 )23−2κ−3γ

f(1− 2κ− γ)f(γ)f(κ)x̂4κf(3γ + κ− 3
2 )f(3)

, (6)

where x̂ = x̂(k, s) denotes the value that minimises this quantity and it may
be verified that this is given by the solution to the equation

4k

s
=

3x(x+ 1)2

(x+ 1)3 − 1
.

Using 3−2κ
6 ≤ γ ≤ 1 − 2κ, we find that for κ ≥ 0.282069 the expression

on the right of (6) tends to 0. A small amount of work is required to prove
that this is indeed the maximum. This may be achieved by computing the
derivative with respect to x. 2

References

[1] Bollobás, B.: Random Graphs. Academic Press, London, 1985.

[2] Cameron, K.: Induced Matchings. Discrete Applied Mathematics, 24:97–
102, 1989.

[3] Duckworth, W.: Greedy Algorithms and Cubic Graphs. PhD thesis, De-
partment of Mathematics and Statistics, University of Melbourne, Aus-
tralia. Submitted.

[4] Duckworth, W., Manlove, D. and Zito, M.: On the Approximability of
the Maximum Induced Matching Problem. Technical Report TR-2000-56
of the Computing Science Department, Glasgow University, UK, April
2000.

[5] Duckworth, W. and Wormald, N.C.: Minimum Independent Dominating
Sets of Random Cubic Graphs. Submitted.

[6] Erdös, E.: Problems and Results in Combinatorial Analysis and Graph
Theory. Discrete Mathematics, 72:81–92, 1988.
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