
Minimum Independent Dominating Sets

of Random Cubic Graphs

W. Duckworth∗ and N.C. Wormald†

Department of Mathematics & Statistics,
University of Melbourne, Australia

Abstract

We present a heuristic for finding a small independent dominating
set, D, of cubic graphs. We analyse the performance of this heuristic,
which is a random greedy algorithm, on random cubic graphs using dif-
ferential equations and obtain an upper bound on the expected size of
D. A corresponding lower bound is derived by means of a direct expec-
tation argument. We prove that D asymptotically almost surely satisfies
0.2641n ≤ |D| ≤ 0.2794n.

1 Introduction

A dominating set, S, of a graph, G, is a subset of the vertices of G such that
for every vertex v ∈ V (G), S contains either v itself or some neighbour of v in
G. An independent dominating set, D, of a graph, G, is a dominating set such
that no two vertices of D are connected by and edge of G. We are interested
in finding independent dominating sets of small cardinality.

The problem of finding a minimum independent dominating set of a graph is
one of the core, well-known, NP-hard graph-theoretic optimisation problems [4].
Halldórsson [5] showed that, for general n-vertex graphs, this problem is not
approximable within n1−ε for any ε > 0. Kann [6] showed that the same prob-
lem, when restricted to graphs of bounded degree, is APX-complete. Note that,
for d-regular graphs, it is simple to verify that this problem is approximable
within (d+ 1)/2.

Molloy and Reed [8] showed that, for a random n-vertex cubic graph G,
the the size of a smallest dominating set, D(G), asymptotically almost surely
satisfies 0.2636n ≤ |D(G)| ≤ 0.3126n. The algorithm they use to prove their
upper bound finds a minimum dominating set in the random 3-regular multi-
graph formed by taking the union of a Hamilton cycle on n vertices and a
uniformly selected perfect matching on the same vertex set. The simplistic ap-
proach would be to construct the dominating set by choosing every third vertex
around the Hamilton cycle. Molloy and Reed prove their upper bound by mod-
ifying this simplistic approach and considering the probability that a vertex is
adjacent to a member of the dominating set across a matching edge. A result
of Robinson and Wormald [10] ensures that the result obtained translates to
uniformly distributed random cubic graphs. Their lower bound is obtained by
means of a direct expectation argument.

∗Currently in the Department of Computing, Macquarie University, Australia
†Supported by the Australian Research Council

1

Reed [9] showed that the size of a minimum dominating set of an n-vertex
cubic graph is at most 3n/8 and gave an example of a cubic graph on eight
vertices with no dominating set of size less than 3, demonstrating the tight-
ness of this bound. Lam, Shiu and Sun [7] recently showed that the size of a
minimum independent dominating set of an n-vertex cubic graph is at most
2n/5 and gave an example of a cubic graph on ten vertices with no independent
dominating set of size less than 4.

In this paper, we present a heuristic for finding a small independent dom-
inating set of cubic graphs. We analyse the performance of this heuristic,
which is a random greedy algorithm, on random n-vertex cubic graphs using
differential equations and obtain an upper bound on the expected size of the
independent dominating set, D, returned by the algorithm. A corresponding
lower bound is calculated by means of a direct expectation argument. We show
that D asymptotically almost surely satisfies 0.2641n ≤ |D| ≤ 0.2794n.

A deterministic version of the randomised algorithm that we present in this
paper was analysed in [3] using linear programming. It was shown that, given
an n-vertex cubic graph, the deterministic algorithm returns an independent
dominating set of size at most 29n/70 + O(1) and there exist infinitely many
n-vertex cubic graphs for which the algorithm only attains this bound. In the
same paper, it was also shown that there exist infinitely many n-vertex cubic
graphs that have no independent dominating set of size less than 3n/8.

Throughout this paper we use the notation P (probability), E (expectation),
u.a.r. (uniformly at random) and a.a.s. (asymptotically almost surely) (see, for
example, Bollobàs [1] for these and other random graph theory definitions).
When discussing any cubic graph on n vertices, we assume n to be even to
avoid parity problems.

In the following section we introduce the model used for generating cubic
graphs u.a.r. and in Section 3 we describe the notion of analysing the per-
formance of algorithms on random graphs using a system of differential equa-
tions. Section 4 gives the randomised algorithm and Section 5 gives its analysis
showing the a.a. sure upper bound. In Section 6 we give a direct expectation
argument showing the a.a. sure lower bound.

2 Generating Random Cubic Graphs

The model used to generate a cubic graph u.a.r. (see, for example, [1]) may be
summarised as follows. For an n-vertex cubic graph

• take 3n points in n buckets labelled 1 . . . n with three points in each
bucket and

• choose u.a.r. a disjoint pairing of the 3n points.

If no pair contains two points from the same bucket and no two pairs contain
four points from just two buckets, this represents a cubic graph on n vertices
with no loops and no multiple edges. With probability bounded below by a
positive constant, loops and multiple edges do not occur (see, for example, [12,
Section 2.2]). The buckets represent the vertices of the randomly generated
cubic graph and each pair represents an edge whose end-points are given by
the buckets of the points in the pair.

We may consider the generation process as follows. Initially, all vertices
have degree 0. Throughout the execution of the generation process, vertices
will increase in degree until the generation is complete and all vertices have
degree 3. During this process, we refer to the graph being generated as the
evolving graph.

2

3 Analysis Using Differential Equations

One method of analysing the performance of a randomised algorithm is to use
a system of differential equations to express the expected changes in variables
describing the state of the algorithm during its execution. Wormald [13] gives
an exposition of this method and Duckworth [2] applies this method to various
other graph-theoretic optimisation problems.

The algorithm we use to find an independent dominating set, D, of cubic
graphs is a greedy algorithm based on selecting vertices of given degree. We
say that our algorithm proceeds as a series of operations. For each operation,
a vertex v is chosen u.a.r. from those of current minimum degree. A vertex is
chosen to be added to D from v and its neighbours based on the degree(s) of
the neighbour(s) of v. If v has a neighbour of degree strictly greater than that
of v, a vertex is chosen to be added to D u.a.r. from those of maximum degree
amongst the neighbours of v. Otherwise, we add v to D. The edges incident
with the chosen vertex and its neighbours are then deleted in order to ensure
that the dominating set remains independent. Any isolated vertices created,
which were not neighbours of the chosen independent dominating set vertex,
are then added to D. We refer to these vertices as accidental isolates.

In order to analyse our algorithm using a system of differential equations, we
incorporate the algorithm as part of a pairing process that generates a random
cubic graph. In this way, we generate the random graph in the order that the
edges are examined by the algorithm.

During the generation of a random cubic graph, we choose the pairs sequen-
tially. The first point, pi, of a pair may be chosen by any rule, but in order to
ensure that the cubic graph is generated u.a.r., the second point, pj , of that
pair must be selected u.a.r. from all the remaining free (i.e. unpaired) points.
The freedom of choice of pi enables us to select it u.a.r. from the vertices of
given degree in the evolving graph. Using B(pk) to denote the bucket that
the point pk belongs to, we say that the edge (B(pi), B(pj)) is exposed. Note
that we may then determine the degree of the vertex represented by the bucket
B(pj), without exposing any further edges incident with that vertex.

Incorporating our algorithm as part of a pairing process that generates a
random cubic graph, we select a vertex, v, u.a.r. from those of maximum degree
in the evolving graph and expose its incident edge(s). A vertex is selected to be
added to D based on the degree(s) of the new neighbour(s) of v. Further edges
are then exposed in order to ensure the dominating set remains independent.
More detail is given in the following section.

In what follows, we denote the set of vertices of degree i of the evolving
graph, at time t, by Vi = Vi(t) and let Yi = Yi(t) denote |Vi|. We can express the
state of the evolving graph at any point during the execution of the algorithm
by considering Y0, Y1 and Y2. In order to analyse our randomised algorithm
for finding an independent dominating set, D, of cubic graphs, we calculate
the expected change in this state over one unit of time (a unit of time is
defined more clearly in Section 5) in relation to the expected change in the
size of D. Let D = D(t) denote |D| at any stage of the algorithm (time t)
and let E∆X denote the expected change in a random variable X conditional
upon the history of the process. We then regard E∆Yi/E∆D as the derivative
dYi/dD, which gives a system of differential equations. The solutions to these
equations describe functions which represent the behaviour of the variables Yi.
There is a general result which guarantees that the solutions of the differential
equations almost surely approximate the variables Yi. The expected size of the
independent dominating set may be deduced from these results.

3

4 The Algorithm

In this section we present the algorithm incorporated with the pairing pro-
cess, for finding an independent dominating set of a random cubic graph. It
is noteworthy that relaxing the independence condition does not suggest any
alternative approach along similar lines, so in some sense we get independence
for free.

We denote the set of all free points in the evolving graph by P and use q(b)
to denote the set of free points in a given bucket b. The combined algorithm
and pairing process, RANDMIDS, is given in Figure 1; a description is given
below.

select u u.a.r. from V0;
D ← {u};
E ← {}
isolate(u);
Add any accidental isolates to D;
while (Y1 + Y2 > 0)
{

if (Y2 > 0)
select v u.a.r. from V2;
{p1} ← q(v);
select p2 u.a.r. from P ;
u← B(p2);
add the edge uv to E;

else
select v u.a.r. from V1;
{p1, p2} ← q(v);
select p3 u.a.r. from P ;
j ← b(p3);
select p4 u.a.r. from P ;
k ← b(p4);
add vj and vk to E;
if (j ∈ V2 ∧ k ∈ V1) u← k;
else if (j ∈ V1 ∧ k ∈ V2) u← j;
else if (j ∈ V2 ∧ k ∈ V2) u← v;
else select u u.a.r from {j, k};

D ← D ∪ {u};
isolate(u);
Add any accidental isolates to D;
}

Figure 1: Algorithm RANDMIDS

When the algorithm terminates, as we see below, D is the independent
dominating set of the graph, whose edge set is E. The function isolate(b)
involves the process of exposing all edges incident with b and its neighbours
(including adding those edges to E). This is achieved by randomly selecting
a mate for each free point of b and then exposing all edges incident with free
points in the buckets of these selected mates. Note that when isolate(b) is
applied, the accidental isolates are just all vertices which enter V3 but are not
b or its neighbours.

4

It is straightforward to verify that D is, in the end, an independent domi-
nating set of the graph. To see that it is dominating, note that all vertices enter
V3 eventually. Those entering V3 other than as accidental isolates, are either
a vertex being added to D or one of its neighbours. All accidental isolates are
also placed in D, so D is dominating. For independence, note that vertices can
only enter D from V0, V1 or V2. The function isolate(b) ensures that for any
vertex b to which it is applied, all neighbours of b enter V3 without entering D.
So the only possible edges between vertices in D are those between accidental
isolates. However, as every edge added to the graph is incident with a vertex
entering V3 inside the function isolate(b) (either b or one of its neighbours),
accidental isolates cannot be adjacent to each other.

The algorithm terminates when there are no vertices of degree 1 or 2 remain-
ing, which means that a connected component has been completely generated
and an independent dominating set has been found in that component. It is
well known that a random cubic graph is a.a.s. connected, so the result is a.a.s.
an independent dominating set in the whole graph.

The first operation of the algorithm is the operation that randomly selects
the first vertex of the independent dominating set. We split the remainder of
the algorithm into two distinct phases. We informally define Phase 1 as the
period of time where any vertices in V2 that are created are used up almost
immediately and Y2 remains small. Once the rate of generating vertices in V2

becomes larger than the rate that they are used up, the algorithm moves into
Phase 2 and all operations involve selecting a vertex from V2. The transition
point between phases is not obvious but arises in our analysis.

There are two types of operation performed by the algorithm. Figure 2
shows the preferred selection of independent dominating set vertex for a typ-
ical operation when a vertex is chosen from V1 and we shall call this Type 1.
Similarly we have Figure 3 when a vertex is chosen from V2 and we shall call
this Type 2. In both cases the independent dominating set vertex is chosen as
to maximise the number of edges exposed.

Figure 2: Type 1 operations

Figure 3: Type 2 operations

5

The larger circles represent buckets with the points of that bucket repre-
sented by smaller circles. Points that were (without a doubt) free (respectively
used up) at the start of an operation are coloured black (respectively white).
Other points are shaded. In all cases, the selected vertex is labelled v and the
independent dominating set vertex chosen is labelled u. Vertices of unknown
degree at the start of an operation are labelled wither w or p. We refer to these
vertices as rems (for “remove”) and incs (for “increase”) respectively. An inc
will have its degree increased by 1 for the next operation of the algorithm. A
rem will have all its incident edges exposed. Should any rem be incident with
another vertex of unknown degree, these vertices will be incs. Edges that are
certain to be exposed are represented by solid lines. For vertices of unknown
degree, incident dotted lines indicate that an edge is to be exposed if the point
that the edge is incident with is free.

5 The Upper Bound

We analyse the combined algorithm and pairing process using differential equa-
tions and in this way prove the following theorem.

Theorem 1 A random cubic graph on n vertices asymptotically almost surely
has a minimum independent dominating set with less than 0.2794n vertices.

Proof We define a clutch to be a series of operations in Phase i from an
operation of Type i up to but not including the next operation of Type i. We
proceed with an examination of each of the two phases, before giving a formal
definition of the distinction between the phases. Initially, one only needs to
assume that the process begins in Phase 1 and that in Phase 2 there are no
operations of Type 1.

5.1 Preliminary Equations For Phase 1

The initial operation of Phase 1 is of Type 1 (at least a.a.s.). A vertex v is
chosen u.a.r. from V1 and all edges incident with v are exposed. Once the
degrees of the neighbours of v are known, a vertex is chosen to be added to
the independent dominating set based on the criteria shown by Figure 2. The
next operation of the algorithm may be of Type 1 or Type 2 depending on the
size of the set V2. For simplicity, we consider operations of Type 2 first and
then combine the equations given by these operations with those given by the
operations of Type 1.

Operations of Type 2 involve the selection of a vertex v from V2 (which
has been created from processing a vertex from V1). Let s = s(t) denote the
number of free points available in all buckets at a given stage (time t). Note
that

s =
2∑

i=0

(3− i)Yi.

For our analysis it is convenient to assume that s > εn for some arbitrarily
small but fixed ε > 0. Later we discuss the last operations of the algorithm,
when s ≤ εn.

The expected change in Yi due to changing the degree of an inc from i to
i+ 1 by exposing one of its incident edges (at time t) is ρi + o(1) where

ρi = ρi(t) =
(i− 3)Yi + (4− i)Yi−1

s
, 0 ≤ i ≤ 2

and this equation is valid under the assumption that Y−1=0.

6

To justify this, note that when the point in the inc was chosen, the number of
points in the buckets corresponding to vertices currently of degree i is (3− i)Yi,
and s is the total number of points. In this case Yi decreases; it increases if
the selected point is from a vertex of degree i − 1. These two quantities are
added because expectation is additive. The term o(1) comes about because the
values of all these variables may change by a constant during the course of the
operation being examined. Since s > εn the error is in fact O(1/n).

The expected change in Yi due to exposing all edges incident with a rem
and its incident incs (at time t) is µi + o(1) where

µi = µi(t) =
(i− 3)Yi

s
+

(6Y0 + 2Y1)ρi

s
, 0 ≤ i ≤ 2.

The first term represents the removal of the rem from Vi. The expected number
of incs incident with a rem is (6Y0 + 2Y1)/s+ o(1) and each of these will have
its degree increased by 1 (giving the second term).

The expected change in Yi for an operation of Type 2 in Phase 1 (at time
t) is αi + o(1) where

αi = αi(t) =
(i− 3)Yi

s
+

(6Y0 + 2Y1)µi

s
− δi2, 0 ≤ i ≤ 2 (1)

in which δ denotes the Kronecker delta function.
We now consider operations of Type 1. The expected change in Yi for

operation 1h given in Figure 2 (at time t) is βh,i + o(1) where

βa,i = βa,i(t) = −2δi0 + 2µi, 0 ≤ i ≤ 2,

βb,i = βb,i(t) = −δi0 − 2δi1 + δi2 + 2µi, 0 ≤ i ≤ 2 and

βc,i = βc,i(t) = −3δi1 + 2ρi, 0 ≤ i ≤ 2.

For an operation of Type 1 in Phase 1, neighbours of v (the vertex selected
at random from V1) were in {V0∪V1} at the start of the operation, since Y2 = 0
when the algorithm performs this type of operation. The probability that these
neighbours were in V0 or V1 are asymptotically 3Y0/s and 2Y1/s respectively.
Therefore the probabilities that, given we are performing an operation of Type
1 in Phase 1, the operation is that of type 1a, 1b or 1c are given by

P(1a) = 9Y 2
0

s2 + o(1),

P(1b) = 12Y0Y1
s2 + o(1) and

P(1c) = 4Y 2
1

s2 + o(1)

respectively.
We define a birth to be the generation of a vertex in V2 by processing a

vertex of V1 or V2 in Phase 1. The expected number of births from processing
a vertex from V1 (at time t) is ν1 + o(1) where

ν1 = ν1(t) =
9Y 2

0

s2
× 2µ2 +

12Y0Y1

s2
× (1 + 2µ2) +

4Y 2
1

s2
× 4Y1

s
.

Here, for each case, we consider the probability that vertices of degree 1 (in
the evolving graph) become vertices of degree 2 by exposing an edge incident
with the vertex.

7

Similarly, the expected number of births from processing a vertex from V2

(at time t) is ν2 + o(1) where

ν2 = ν2(t) =
(6Y0 + 2Y1)µ2

s
.

Consider the Type 1 operation at the start of the clutch to be the first
generation of a birth-death process in which the individuals are the vertices
in V2, each giving birth to a number of children (essentially independent of
the others) with expected number ν2. Then, the expected number in the jth

generation is ν1ν2j−1 and the expected total number of births in the clutch is

ν1
1− ν2

.

For Phase 1, the equation giving the expected change in Yi for a clutch is
therefore given by

E∆Yi =
9Y 2

0 βa,i

s2
+

12Y0Y1βb,i

s2
+

4Y 2
1 βc,i

s2
+

ν1αi

1− ν2
+ o(1). (2)

This assumes Y1 + Y2 is not zero, an eventuality which will be discussed later.
In Phase 1, since |V2| is very small and |V1| is at least a constant times n,

the probability of an accidental isolate being created is negligible in any one
operation: when two edges are exposed they are highly unlikely to go to the
same neighbour. Thus, the expected increase in the size of the independent
dominating set is 1 for any single operation in Phase 1. So the equation giving
the expected increase in D for a clutch in Phase 1 is given by

E∆D = 1 +
ν1

1− ν2
+ o(1). (3)

5.2 Preliminary Equations For Phase 2

In Phase 2, all operations are considered to be of Type 2 and therefore a clutch
consists of one operation. The expected change in Yi is given by

E∆Yi = αi + o(1) (4)

where αi remains the same as that given for Phase 1. The expected increase
in D is given by

E∆D = 1 +
(

6Y0 + 2Y1

s

)2
Y2

s
+ o(1)

representing an increase of 1 for the chosen vertex plus a further increase de-
pending on the probability that there are accidental isolates created.

5.3 The Differential Equations

Equation (2) representing E∆Yi for processing a clutch in Phase 1 forms the
basis of a differential equation. Write Yi(t) = nzi(t/n), µi(t) = nτi(t/n),
βj,i(t) = nψj,i(t/n), s(t) = nξ(t/n), αi(t) = nχi(t/n) and νj(t) = nωj(t/n).
The differential equation suggested is

z′i =
9z2

0

ξ2
ψa,i +

12z0z1
ξ2

ψb,i +
4z2

1

ξ2
ψc,i +

ω1

1− ω2
χi, 0 ≤ i ≤ 2 (5)

8

where differentiation is with respect to x and xn represents the number, t, of
clutches. From the definitions of µ, β, s, α and ν we have

τi = (i−3)zi

ξ + (6z0+2z1)((i−3)zi+(4−i)zi−1)
ξ2 , 0 ≤ i ≤ 2,

ψa,i = −2δi0 + 2τi, 0 ≤ i ≤ 2,

ψb,i = −δi0 − 2δi1 + δi2 + 2τi, 0 ≤ i ≤ 2,

ψc,i = −3δi1 + 2((i−3)zi+(4−i)zi−1)
ξ , 0 ≤ i ≤ 2,

χi = (i−3)zi

ξ + (6z0+2z1)τi

ξ − δi2, 0 ≤ i ≤ 2,

ω1 = 18z2
0τ2

ξ2 + 12z0z1(1+2τ2)
ξ2 + 16z3

1
ξ3 ,

ω2 = (6z0+2z1)τ2
ξ , where

ξ =
∑2

i=0(3− i)zi.

Using the equation representing the expected increase in the size of D af-
ter processing a clutch in Phase 1 and writing D(t) = nz(t/n) suggests the
differential equation for z as

z′ = 1 +
ω1

1− ω2
. (6)

For Phase 2 the equation representing E∆Yi for processing a clutch suggests
the differential equation

z′i = χi, 0 ≤ i ≤ 2. (7)

The equation representing the increase in the size of D after processing a
vertex in Phase 2, suggests the differential equation for z as

z′ = 1 +
(

6z0 + 2z1
ξ

)2
z2
ξ
. (8)

The solution to these systems of differential equations represents the car-
dinalities of the sets Vi and D (scaled by 1/n) for given t. For Phase 1, the
equations are (5) and (6) with initial conditions

z0(0) = 1, zi(0) = 0 (i > 0).

The initial conditions for Phase 2 are given by the final conditions for Phase 1
and the equations are given by (7) and (8).

We use a result from [13] to show that during each phase, the functions rep-
resenting the solutions to the differential equations almost surely approximate
the variables Yi/n and D/n with error o(1). For this we need some definitions.

Consider a probability space whose elements are sequences (q0, q1, . . .) where
each qt ∈ S. We use ht to denote (q0, q1, . . . , qt), the history of the process up
to time t, and Ht for its random counterpart. S(n)+ denotes the set of all
ht = (q0, . . . , qt) where each qi ∈ S, t = 0, 1, All these things are indexed
by n and we will consider asymptotics as n→∞.

We say that a function f(u1, . . . , uj) satisfies a Lipschitz condition on W ⊆
Rj if a constant L > 0 exists with the property that

|f(u1, . . . , uj)− f(v1, . . . , vj)| ≤ L max
1≤i≤j

|ui − vi|

9

for all (u1, . . . , uj) and (v1, . . . , vj) in W , and note that max1≤i≤j |ui − vi| is
the distance between (u1, . . . , uj) and (v1, . . . , vj) in the `∞ metric.

For variables Y1, . . . , Ya defined on the components of the process, and W ⊆
Ra+1, define the stopping time TW = TW (Y1, . . . , Ya) to be the minimum t such
that (t/n, Y1(t)/n, . . . , Ya(t)/n) /∈W .

The following is a restatement of [13, Theorem 6.1]. We refer the reader to
that paper for explanations, and to [11] for a similar result with virtually the
same proof.

Theorem 2 Let Ŵ = Ŵ (n) ⊆ Ra+1. For 1 ≤ l ≤ a, where a is fixed, let
yl : S(n)+ → R and fl : Ra+1 → R, such that for some constant C0 and all
l, |yl(ht)| < C0n for all ht ∈ S(n)+ for all n. Let Yl(t) denote the random
counterpart of yl(ht). Assume the following three conditions hold, where in (ii)
and (iii) W is some bounded connected open set containing the closure of

{(0, z1, . . . , za) : P(Yl(0) = zln, 1 ≤ l ≤ a) 6= 0 for some n} .

(i) For some functions β = β(n) ≥ 1 and γ = γ(n), the probability that

max
1≤l≤a

|Yl(t+ 1)− Yl(t)| ≤ β,

conditional upon Ht, is at least 1− γ for t < min{TW , TcW }.
(ii) For some function λ1 = λ1(n) = o(1), for all l ≤ a

|E(Yl(t+ 1)− Yl(t) |Ht)− fl(t/n, Y1(t)/n, . . . , Ya(t)/n) | ≤ λ1

for t < min{TW , TcW }.
(iii) Each function fl is continuous, and satisfies a Lipschitz condition, on

W ∩ {(t, z1, . . . , za) : t ≥ 0},

with the same Lipschitz constant for each l.

Then the following are true.

(a) For (0, ẑ1, . . . , ẑa) ∈W the system of differential equations

dzl

dx
= fl(x, z1, . . . , za), l = 1, . . . , a

has a unique solution in W for zl : R→ R passing through

zl(0) = ẑl,

1 ≤ l ≤ a, and which extends to points arbitrarily close to the boundary
of W ;

(b) Let λ > λ1 +C0nγ with λ = o(1). For a sufficiently large constant C, with
probability 1−O(nγ + β

λ exp(−nλ3

β3)),

Yl(t) = nzl(t/n) +O(λn)

uniformly for 0 ≤ t ≤ min{σn, TcW } and for each l, where zl(x) is the
solution in (a) with ẑl = 1

nYl(0), and σ = σ(n) is the supremum of those
x to which the solution can be extended before reaching within `∞-distance
Cλ of the boundary of W .

10

First, we apply Theorem 2 to the Process within Phase 1. For arbitrary
small ε, define W to be the set of all (t, z0, z1, z2, z) for which t > −ε, ξ > ε,
ω2 < 1 − ε, z > −ε and zi < 1 + ε where 0 ≤ i ≤ 2. Also define Ŵ to be the
vectors for which z1 ≥ 0, z2 ≥ 0 and z1 + z2 > 0.

For part (i) of Theorem 2 we must ensure that Yi(t) does not change too
quickly throughout the process. As long as the expected number of births in
a clutch is bounded above, the probability of getting say nε births is O(n−K)
for any fixed K. This comes from a standard argument as in [13, page 141].
So part (i) of Theorem 2 holds with β = nε and γ = n−K . Near the start of
the process, operations may be of Type 1 or Type 2. Equations (2) and (3)
verify part (ii) for a function λ1 which goes to zero sufficiently slowly. (Note
in particular that since ξ > ε inside W , the assumption that s > εn used
in deriving these equations is justified. Also, since t < TcW , it follows that
Y1 + Y2 > 0, so that the next operation is of Type 1 or Type 2.) Part (iii)
of Theorem 2 is immediate from the form of the functions in equations (2)
and (3).

The conclusion of Theorem 2 therefore holds. This implies (taking λ → 0
sufficiently slowly) that the random variables Yi/n and D/n a.a.s. remain
within o(1) of the corresponding deterministic solutions to the differential equa-
tions (5) and (6) until a point arbitrarily close to where it leaves the set W , or
until t = TcW if that occurs earlier. Since the latter can only occur when the
algorithm has completely processed a component of the graph, and a random
cubic graph is a.a.s. connected, we may turn to examining the former.

We compute the ratio dzi/dz = z′i(x)/z′(x) and we have

dzi

dz
=

9z2
0

ξ2 ψa,i + 12z0z1
ξ2 ψb,i + 4z2

1
ξ2 ψc,i + ω1

1−ω2
χi

1 + ω1
1−ω2

, 0 ≤ i ≤ 2, (9)

where differentiation is with respect to z and all functions can be taken as
functions of z.

By solving (numerically) this system of differential equations, we find that
the solution hits a boundary of the domain at ω2=1− ε (for ε=0 this would be
at z ≥ 0.1375). At this point, we may formally define Phase 1 as the period of
time from time t=0 to the time t0 such that z = t0/n is the solution of ω2=1.

Our next aim is to show that by the time ε′n operations after the start of
Phase 2 (for some ε′ > 0), the variable Y2 is a.a.s. at least some constant times
n. For this, the main requirement is that the variable ν2 increases significantly
above 1, since ν2 − 1 is the expected increase in Y2 when processing a vertex
of in V2.

Unfortunately, the expected increase in ν2 due to processing a vertex from
V1 right near the end of Phase 1 is negative. So instead we consider the variable
ν̂2 defined by setting Y2 = 0 in the definitions of all variables; that is,

ν̂2 = ν̂2(t) =
(6Y0 + 2Y1)µ̂2

ŝ

where

µ̂2 = µ̂2(t) =
(6Y0 + 2Y1)ρ̂2

ŝ
,

ρ̂2 = ρ̂2(t) =
2Y1

ŝ
and

ŝ = 3Y0 + 2Y1.

11

Regarding ν̂2 as a function of Y0 and Y1 only, we may compute the expected
increase in ν̂2 due to an operation of Type 1 as

∂ν̂2
∂Y0

E0 +
∂ν̂2
∂Y1

E1 (10)

where Ei is the expected increase in Yi in such an operation. The latter can
be computed from the first three terms on the right side of (2). Plugging
in the values of Y0 and Y1 at the end of Phase 1 gives a positive quantity,
approximately 3.86. For a Type 2 operation, the same calculation is used, but
the values of E1 and E2 come from αi as seen in (2). The result is 3.93.

Since the formula given by (10) is Lipschitz, it must remain positive for
at least ε1n operations after reaching time t0 − εn, for ε1 sufficiently small.
Subject to the choice of ε1, we may take ε arbitrarily small. It now follows by
the usual large deviation argument that the increase in ν̂2 between time t0− εn
and a time t1 when ε1n operations have occurred in Phase 2 is a.a.s. at least
c for some positive constant c. By choosing ε sufficiently small, ν2 is a.a.s.
arbitrarily close to 1 at time t0 − εn, and so the same goes for ν̂2 since Y0 is
a.a.s. very small in Phase 1. Thus ν̂2 > 1 + c1 a.a.s. at time t1 for some c1 > 0.

Once this value of ν̂2 is attained, since ν̂2 = ν2 when Y2 = 0 we can choose a
c > 0 such that either Y2 > cn or ν2 > 1+c. In the former case we are well into
Phase 2 in the informal sense. In the latter case, due to the Lipschitz property
of ν2, for the next ε2n operations, processing a vertex from V2 produces an
expected 1 + c/2 new vertices of V2. Again, using the usual large deviation
argument, this ensures that with high probability the process moves in the
next ε2n operations into a state where V2 > c2n, and is thus, again, firmly
entrenched in Phase 2 in the informal sense. Thus, in either case, there will be
some time t2 which is followed by c2n consecutive operations of Type 2, which
means that the equations for Phase 2 are valid.

For Phase 2 and for arbitrary small ε, define W ′ to be the set of all
(t, z0, z1, z2, z) for which t > t2 − ε, ξ > ε, z > −ε and zi < 1 + ε where
0 ≤ i ≤ 2. Theorem 2 applies as in Phase 1 (with time shifted by subtracting
t2) except that here, a clutch consists of just one operation of Type 2. Note
also that the starting point of the process is randomised, which is permitted in
Theorem 2. Computing the ratio dzi/dz=z′i(x)/z′(x) gives

dzi

dz
=

χi

1 +
(

6z0+2z1
ξ

)2
z2
s

, 0 ≤ i ≤ 2.

By solving this we see that the solution hits a boundary of W ′ at ξ = ε (for
ε = 0 this would be approximately 0.2794n).

The differential equations were solved using a Runge-Kutta method, giving
ω2=1 at z ≥ 0.1375 and in Phase 2, z2=0 at z > 0.2794. This corresponds to
the size of the independent dominating set (scaled by 1/n) when all vertices
are used up, thus proving the theorem. 2

6 The Lower Bound

We now establish a lower bound on the size of a minimum independent domi-
nating set of a random cubic graph.

Theorem 3 For a random cubic graph on n vertices the size of a minimum in-
dependent dominating set is asymptotically almost surely greater than 0.2641n.

12

Proof Consider a random cubic graph G on n vertices. Let D(G, k) de-
note the number of independent dominating sets of G of size k. We calculate
ED(G, k) and show that when k = 0.2641n, ED(G, k) = o(1), thus proving
the theorem.

We denote the number of vertices of V (G) \ D(G) that are dominated by
1 vertex in D(G) by a and the number of vertices of V (G) \ D(G) that are
dominated by 2 vertices in D(G) by b. The remaining n− k− a− b vertices of
V (G) \D(G) are dominated by 3 vertices in D(G). Clearly b = 3n− 6k − 2a.
For this situation the expected number of independent dominating sets of G of
cardinality k is given by

ED(G, k) =
(n

k) (3k)! (n−k
a) 3a (n−k−a

b) 3b (3n−6k)! (3n
2)! 2(

3n
2)

(3n
2
−3k)! 2

3n
2 −3k (3n)!

=
n! 3a+b (3k)! (3n−6k)! (3n

2)! 23k

k! a! b! (n−k−a−b)! (3n
2
−3k)! (3n)!

.

Approximate using Stirling’s formula and rewrite using f(x) = xx, α = a/n,
β = b/n and κ = k/n and we have

(ED(G, k))
1
n ∼

3α+β f(3κ) f(3− 6κ) f(3
2) 23κ

f(κ) f(α) f(β) f(1− κ− α− β) f(3
2 − 3κ) f(3)

.

Substitute for β and we have

ED(G, k))
1
n ∼

33−6κ−α f(3κ) f(3− 6κ) f(3
2) 23κ

f(κ) f(α) f(3− 6κ− 2α) f(α+ 5κ− 2) f(3
2 − 3κ) f(3)

. (11)

We can now differentiate the expression on the right with respect to α and use
this to find that for κ = 0.2641 it is strictly less than 1. 2

References

[1] B. Bollobás. Random Graphs. Academic Press, London, 1985.

[2] W. Duckworth. Greedy Algorithms and Cubic Graphs. PhD thesis, Depart-
ment of Mathematics and Statistics, University of Melbourne, Australia,
2001.

[3] W. Duckworth and N.C. Wormald. Linear Programming and the Worst-
Case Analysis of Greedy Algorithms on Cubic Graphs. (In preparation.)

[4] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. Freeman and Company, 1979.

[5] M.M. Halldórsson. Approximating the Minimum Maximal Independence
Number. Information Processing Letters, 46(4):169–172, 1993.

[6] V. Kann. On the Approximability of NP-Complete Optimisation Problems.
PhD thesis, Department of Numerical Analysis, Royal Institute of Technol-
ogy, Stockholm, 1992.

13

[7] Peter Che Bor Lam, Wai Chee Shiu and Liang Sun. On the Independent
Domination Number of Regular Graphs. Discrete Mathematics, 202:135–
144, 1999.

[8] M. Molloy and B. Reed. The Dominating Number of a Random Cubic
Graph. Random Structures and Algorithms, 7(3):209–221, 1995.

[9] B. Reed. Paths, Stars and the Number Three. Combinatorics, Probability
and Computing, 5:277–295, 1996.

[10] R.W. Robinson and N.C. Wormald. Almost All Cubic Graphs are Hamil-
tonian. Random Structures and Algorithms, 3(7):117–125, 1992.

[11] N.C. Wormald, Differential equations for random processes and random
graphs, Annals of Applied Probability 5:1217–1235, 1995.

[12] N.C. Wormald. Models of Random Regular Graphs. Surveys in Combi-
natorics, 1999 (Canterbury), 239–298, Cambridge University Press, Cam-
bridge, 1999.

[13] N.C. Wormald. The Differential Equation Method for Random Graph
Processes and Greedy Algorithms. In Lectures on Approximation and Ran-
domized Algorithms, 73–155, PWN, Warsaw, 1999. Micha l Karoński and
Hans-Jürgen Prömel (editors).

14

