
Rate of convergence of the short cycle distribution in

random regular graphs generated by pegging

Pu Gao and Nicholas Wormald∗

Department of Combinatorics and Optimization
University of Waterloo

p3gao@math.uwaterloo.ca, nwormald@math.uwaterloo.ca

Abstract

The pegging algorithm is a method of generating large random regular graphs beginning
with small ones. The ǫ-mixing time of the distribution of short cycle counts of these random
regular graphs is the time at which the distribution reaches and maintains total variation
distance at most ǫ from its limiting distribution. We show that this ǫ-mixing time is not
o(ǫ−1). This demonstrates that the upper bound O(ǫ−1) proved recently by the authors is
essentially tight.

1 Introduction

Different random graph models have been applied to analyse the behavior of real-world networks.
The most classical and commonly studied one is the Erdős-Rényi model [1], which is the probability
space of random graphs on n vertices with each edge appearing independently with some probability
p. The properties of the random network (degree distribution, connectivity, diameter, etc.) vary
when p is assigned different values. However, the Erdős-Rényi model cannot produce scale-free
networks [2], whose degree distribution obeys the power law. The scale-free network caught a lot
of attention because a diverse group of networks of interest are thought to be scale-free, such as
the collaboration network and the World Wide Web. The preferential attachment model was first
introduced by Yule [13] and then studied by many other authors [3, 7] in an attempt to simulate
the properties of such scale-free networks.

A new type of peer-to-peer ad-hoc network called the SWAN network was introduced recently
by Bourassa and Holt [4]. The underlying topology of the SWAN network is a random regular
graph. In the SWAN network, clients arrive and leave randomly. To accommodate this, the
network undergoes changes in structure using an operation called “clothespinning” (for arriving
clients), and its reverse (for clients leaving), together with some other occasional adjustments to
repair the network when these operations cause a problem, such as disconnection. Cooper, Dyer
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and Greenhill [6] defined a Markov chain on d-regular graphs with randomised size to model (a
simplified version of) the SWAN network. The moves of the Markov chain are by clothespinning
or the reverse. They obtained bounds on the mixing time of the chain. Along the way, they
showed that, restricted to the times when the network has a given size, the stationary distribution
is uniform. Thus, for this simplified version of the SWAN network, the limiting distribution of
graphs coincides exactly with the model of random regular graphs which has already received the
most attention from the theoretical viewpoint.

The related pegging algorithm to generate random d-regular graphs for constant d was first
introduced by the authors in [10], where the clothespinning operation is called pegging. (The
notion of pegging was also extended to odd degree graphs.) The pegging algorithm simply repeats
pegging operations, without performing the reverse. This gives an extreme version of the SWAN
network, in which no client ever leaves the network. By studying this extreme case we hope to gain
knowledge of the properties of the random SWAN network in the case that it grows quickly, as
opposed to the more steady-state scenario studied in [6]. Other models of random regular graphs
generated algorithmically are discussed in [10].

Fix d ≥ 3. For most models of random d-regular graphs, there are small numbers of short cycles
and rarely any more complex structures, so the local structure is basically determined by the short
cycle distribution. Although only describing local structure, the short cycle distribution has played
a major role in the theory of contiguity of random regular graphs, which includes results on many
global properties such as hamiltonicity (see [12]). In the random d-regular graph generated by
pegging, the joint distribution of short cycle counts (up to some fixed length K) was proven to be
asymptotically Poisson in [10]. Moreover, let (σt)t≥0 be a sequence of distributions which converge
to a distribution π. The ǫ-mixing time τ ∗

ǫ

(

(σt)t≥0

)

was defined in [10] to be the minimum T ≥ 0
such that dTV (σt, π) ≤ ǫ for all t ≥ T , where dTV denotes total variation distance. For the joint
distribution of short cycle counts mentioned above, the ǫ-mixing time was shown using coupling to
be O(ǫ−1). It is often easy to find a coupling, but hard to find one that gives an optimal bound.
Our goal in this paper is to show that the upper bound achieved by coupling in [10] is tight, in the
sense that the ǫ-mixing time is not o(ǫ−1).

The proof focusses on the number of 3-cycles. During the pegging algorithm, the number of
3-cycles undergoes a random walk with transitions that are related to those of a Markov chain
with limiting Poisson distribution. This was the technique used in the coupling argument in [10]
to bound the total variation distance. The lower bound we obtain can be intuitively explained by
“mistakes” made by this random walk that are of order 1/t after t steps. Actually, in a sense it is
easy to show that such mistakes do occur occasionally, and the difficult part is to show that the
mistakes do not usually cancel each other out.

For simplicity, we do not consider the case of odd d here. We expect that our method would
show the same result in that case, but it would be more complicated to check the details.

2 Main result

We first recall the pegging algorithm to generate random regular graphs. In [10], the pegging
operation was defined on a d-regular graph as follows for d even.

• Choose a set F of d/2 pairwise non-adjacent edges uniformly at random.
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• Delete the edges in F .

• Add a new vertex u, together with d edges joining u to each endvertex of the edges in F .

The newly introduced vertex u is called the peg vertex, and we say that the edges deleted are pegged.
Figure 1 illustrates the pegging operation with d = 4.

Figure 1: Pegging operation when d = 4

A similar operation for d odd was also defined in [10], but in the present paper we will consider
only the case d even in detail. Thus, we henceforth assume that d is a fixed even integer, and at
least 4.

The pegging algorithm starts from a nonempty d-regular graph G0, for example, Kd+1, and
repeatedly applies pegging operations. For t > 0, the random graph Gt is defined inductively to be
the graph resulting when the pegging operation is applied to Gt−1. Clearly, Gt contains nt := n0 + t
vertices. We denote the resulting random graph process (G0, G1, . . .) by P(G0, d).

For any fixed k, let Yt,d,k denote the number of k-cycles in Gt ∈ P(G0, d) and let σt,d,k denote
the joint distribution of Yt,d,3, . . . , Yt,d,k. Theorem 2.2 in [10] is essentially the following.

Theorem 2.1 For any fixed k, Yt,d,3, Yt,d,4, . . . , Yt,d,k are asymptotically independent Poisson ran-
dom variables with means µi = ((d − 1)i − (d − 1)2)/(2i), for 3 ≤ i ≤ k, and the ǫ-mixing time of
(σt,d,k)t≥0 is O(1/ǫ).

The main result of this paper is that the ǫ-mixing time τ ∗
ǫ

(

(σt,d,k)t≥0

)

is not o(1/ǫ). In other
words, there exists c > 0 such that τ ∗

ǫ

(

(σt,d,k)t≥0

)

> c/ǫ for arbitrarily small ǫ > 0.

Theorem 2.2 For fixed G0 and k ≥ 3, the ǫ-mixing time of the sequence of short cycle joint
distributions in P(G0) satisfies τ ∗

ǫ

(

(σt,d,k)t≥0

)

6= o (ǫ−1).

Let Po(µ3, . . . , µk) denote the joint distribution of independent Poisson random variables with
means µi for 3 ≤ i ≤ k, where µi is as defined in Theorem 2.1. Note that Theorem 2.1 essentially
states that there exists a constant C > 0 such that for all ǫ and t ≥ C/ǫ, dTV (σt,d,k,Po(µ3, . . . , µk)) ≤
ǫ. Putting ǫ = C/t and using the fact that nt = n0 + t gives the following.

Corollary 2.1 For any fixed integer k ≥ 3, dTV (σt,d,k,Po(µ3, . . . , µk)) = O(n−1
t ).
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We note here that the difficulty in proving results about the random process P(G0, d) lies in the
lack of existence of a simple model by which probabilities of events can be calculated. Instead we
are forced to find arguments that work with probabilities conditional upon the graph Gt existing
at time t. The basic relevant observation is that the total number of ways to apply a pegging
operation to Gt when d = 4 is

Nt = nt(2nt − 7) (2.1)

since this is the number of pairs of nonadjacent edges.

3 Proof of the theorem

We begin with a simple technical lemma that will be used several times in the remaining part of
the paper. The lemma holds for any c > 0 and p, though in our application we need only the case
that p < c.

Lemma 3.1 Let c > 0, p, a and ρ be constants with p < c. If (an)n≥1 is a sequence of nonnegative
real numbers with a1 bounded, such that

an+1 =
(

1 − cn−1 + O(n−2)
)

an + ρn−p + γ(n)

for all n ≥ 1, then

an =

{ (

ρ/(c − p + 1)
)

n−p+1 + O(n−p) if γ(n) = O(n−(p+1)),
(

ρ/(c − p + 1)
)

n−p+1 + o(n−p+1) if γ(n) = o(n−p).

Proof. When γ(n) = O(n−(p+1)), we have

an+1 = exp
(

−
c

n
+ O(n−2)

)

an +
ρ

np
+ O(n−(p+1)). (3.1)

Iterating this gives

an = a1 exp

(

−

n−1
∑

i=1

c

i
+ O(i−2)

)

+

n−1
∑

i=1

exp

(

−

n−1
∑

j=i+1

c

j
+ O(j−2)

)

( ρ

ip
+ O(i−(p+1))

)

= a1 exp (−c log n + O(1)) +
n−1
∑

i=1

exp
(

−c log(n/i) + O(i−1)
)

( ρ

ip
+ O(i−(p+1))

)

= O(n−c) +
n−1
∑

i=1

ρic−p

nc

(

1 + O(i−1)
)

=
ρ

(c − p + 1)
n−p+1 + O(n−p).

When γ(n) = o(n−p), by simply modifying the above computation we obtain

an = O(n−c) +

n−1
∑

i=1

ρic−p

nc
(1 + o(1)) =

ρ

(c − p + 1)
n−p+1 + o(n−p+1).
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Lemma 3.1 follows.

Define Ψ(i, r) to be the set of graphs with i vertices, minimum degree at least 2, and excess r,
where the excess of a graph is the number of edges minus the number of vertices. Define Wt,i,r to
be the number of subgraphs of Gt in Ψ(i, r). The following lemma was proven in [10] and is useful
in this paper to bound the expected numbers of specific subgraphs.

Lemma 3.2 [10, Lemma 3.3] For fixed i > 0 and r ≥ 0,

EWt,i,r = O(n−r
t ).

Let [x]j denote the j-th falling factorial of x.

Lemma 3.3 For any fixed nonnegative integer j,

E([Yt,3]j) = 3j + O(n−1
t ).

Proof. Multiplying an equation near the end of the proof of [10, Lemma 3.5] by j! gives

E([Yt+1,3]j) − E([Yt,3]j) =
9j

nt
E([Yt,3]j−1) −

3j

nt
E([Yt,3]j) + O(n−2

t

(

1 + E(j[Yt,3]j−1)
)

.

We apply induction on j, starting with E([Yt,3]0) = 1. The error term is then simply O(n−2
t ).

Hence for any j ≥ 1,

E([Yt+1,3]j) =

(

1 −
3j

nt

)

E([Yt,3]j) +
9j · 3j−1

nt
+ O(n−2

t ).

Applying Lemma 3.1 with c = 3j ≥ 3, ρ = 9j · 3j−1 and p = 1, we obtain the result claimed.

For simplicity, we prove the main theorem for the case d = 4 in detail, and then at the end
discuss the case of fixed d > 4. We drop the notation d from the subscript of Yt,d,k and σt,d,k as
convenience in this case. By considering just the events measurable in the σ-algebra generated by
Yt,3, we see immediately that

dTV (σt,3, π3) ≤ dTV (σt,k, πk)

where πk is the limit of σt,k. Hence, it suffices to show that the ǫ-mixing time for σt,3, which is the
distribution of Yt,3, is not o(ǫ−1). For convenience, in the rest of the paper we use the notation Yt

to denote Yt,3.
Let C∗

4 denote the graph consisting of a 4-cycle plus a chord (i.e. K4 minus an edge), and let Wt

denote the number of subgraphs of Gt that are isomorphic to C∗
4 . Lemma 3.2 implies that a.a.s.

Wt = 0. That is, a.a.s. all triangles are isolated, where an isolated triangle is a 3-cycle that shares
no edges with any other 3-cycle. We also need more information on the distribution of the number
of isolated triangles in the presence of one copy of C∗

4 . In the following lemma, we show that this
has the same asymptotic distribution as Yt. This distribution is to be expected, since the creation
of a copy of C∗

4 will leave an asymptotically Poisson number of isolated triangles. Until the C∗
4

disappears due to some pegging operation, this Poisson number of isolated triangles will undergo
transitions with similar rules to Yt and will therefore remain asymptotically Poisson. Instead of
fleshing this argument out into a proof, it seems simpler to provide a complete argument using the
method of moments, although this conceals the coincidence to a greater extent.
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Lemma 3.4 Conditional on Wt = 1, the random variable Yt − 2 has a limiting distribution that is
Poisson with mean 3.

Proof. Let Ut,j denote [Yt − 2]jI{Wt = 1}, i.e. the product of the j-th falling factorial of Yt − 2
and the indicator random variable of the event that Wt = 1. Note that if we can show

E(Ut,j) → 3j P(Wt = 1), (3.2)

then E([Yt − 2]j | Wt = 1) → 3j . Lemma 3.4 then follows by the method of moments applied to
the probability space obtained by conditioning on Wt = 1. So we only need to compute P(Wt = 1)
and E(Ut,j). We show that P(Wt = 1) = 27/(4nt) + O(n−2

t ), and show by induction on j that

E(Ut,j) =
27

4nt
3j + O(n−2

t ), (3.3)

for any integer j ≥ 0. This gives (3.2) as required.
Consider P(Wt = 1) first. Our way of estimating this quantity is by computing separately the

expected numbers of copies of C∗
4 that are created, or destroyed, in each step. There are two ways

to create a C∗
4 . One way is through the creation of a new triangle which shares an edge with an

existing triangle, which we will call C. This requires two edges adjacent to different vertices of C
(but not being edges of C) to be pegged. This is illustrated in Figure 2, where v is the peg vertex,
and the two dashed edges e1 and e2 are pegged. Given C, if C is an isolated triangle, there are
exactly 12 ways to choose such two edges. Otherwise, C is part of an existing C∗

4 and the number
of pegging operations using such a type of C is O(Wt). Overall, the expected number of C∗

4 created
in this way is therefore

(

12Ŷt +O(Wt)
)

/Nt, where Ŷt is the number of isolated triangles in Gt. The
other way of creating a C∗

4 from a triangle C is as illustrated in Figure 3, where e1 is an edge in
C, and e2 is incident with some vertex of C, but not adjacent to e1. Given C, there are 3 ways to
choose e1, and for each chosen e1, there are 2 ways to choose e2. Hence, there are 6 ways to choose
the pair (e1, e2), and the expected number of C∗

4 created in this way is 6Yt/Nt.

1

e2 e2

e

v

e1

Figure 2: pegging operation to create a C∗
4 , first case

Clearly Yt = Ŷt + O(Wt). So the expected number of C∗
4 created in each step is 18Ŷt/Nt +

O(Wt/Nt) = 9Yt/n
2
t + O(n−3

t ) + O(Wtn
−2
t ).

The expected number of C∗
4 destroyed in each step is easily seen to be 5Wt(2nt−7)/Nt = 5Wt/nt.

Thus

E(Wt+1 − Wt | Wt) =
9Yt

n2
t

−
5Wt

nt

+ O(Wtn
−2
t + n−3

t ).
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1
2

1

Figure 3: pegging operation to create a C∗
4 , second case

Taking expected values and using the tower property of conditional expectation, this gives

EWt+1 −EWt =
9EYt

n2
t

−
5EWt

nt
+ O(EWtn

−2
t + n−3

t ).

Since EYt = 3 + O(n−1
t ), and EWt = O(n−1

t ), this yields

EWt+1 =

(

1 −
5

nt

)

EWt +
27

n2
t

+ O(n−3
t ).

Applying Lemma 3.3 and Lemma 3.1 with c = 5, p = 2 and ρ = 27, we obtain that EWt =
27/(4nt) + O(n−2

t ). Since P(Wt = i) ≤ E([Wt]i) = O(n−i
t ) by Lemma 3.2,

P(Wt = 1) = 27/(4nt) + O(n−2
t ). (3.4)

Next we compute E(Ut,j) by induction on j ≥ 0. The base case is j = 0, for which we begin by
noting that E(Ut,0) = P(Wt = 1) = 27/(4nt) + O(n−2

t ) as shown above. Now assume that j ≥ 1
and that (3.3) holds for all smaller values of j. Given the graph Gt, the expected change in Ut,j/j!
when t changes to t + 1 is, as explained below,

E

(

Ut+1,j

j!
−

Ut,j

j!

∣

∣

∣

∣

Gt

)

=

((

9 + O((1 + Yt + Yt,4)/nt)

nt

)

[Yt − 2]j−1

(j − 1)!

)

I{Wt = 1}

+

(

9

n2
t

+ O
(

n−3
t

)

)

(j + 1)[Yt]j+1

(j + 1)!
I{Wt = 0}

+f(j, Gt)

−

(

(3j + 5)[Yt − 2]j/j!

nt
+ O(n−2

t )

)

I{Wt = 1}, (3.5)

where f(j, Gt) denotes some assorted “error” terms described below. Note that, given Wt = 1,
[Ut,1]j/j! is simply the number of subgraphs of Gt containing precisely j isolated triangles, so we
may just compute the change in the number of such subgraphs in those cases where no copies
of C∗

4 are created or destroyed. The first term on the right in (3.5) is the positive contribution
when Wt = 1 and the pegging step creates one new isolated triangle. Any set of j − 1 isolated
triangles, together with the new triangle, can potentially form a new set of j isolated triangles. A
new triangle is created from pegging the two end-edges of a 3-path, the number of which in Gt
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is 4 · 3 · 3 · nt/2 + O(Yt) = 18nt + O(Yt). Dividing this by Nt gives rise to the main term. The
error term O(1 + Yt + Yt,4) accounts for choices of such edges which, when pegged, create two or
more triangles (when both edges pegged are contained in a 4-cycle) or cause some existing triangle,
including possibly the C∗

4 , to be destroyed, or cause the new triangle or an existing one not to be
isolated.

The second term on the right in (3.5) accounts for the contribution when Wt = 0 due to the
creation of a C∗

4 , when the set of j isolated triangles are all pre-existing. We have noted above
that a new C∗

4 can be created only from a triangle. So, when Wt = 0, a positive contribution to
Ut+1,j − Ut,j can arise from each set of j + 1 isolated triangles, such that a new C∗

4 comes from
pegging near one of these triangles as in Figure 2 and 3. There are [Yt]j+1/(j +1)! different (j +1)-
sets of triangles, and for each (j + 1)-set, there are j + 1 ways to choose one particular triangle.
There are 18 ways to peg two edges to create a C∗

4 from any given triangle. This, together with
Nt = 2n2

t (1 + O(n−1
t )), explains the significant part of this term and the first error term. There is

also a correction required when the pegging that creates a C∗
4 also “accidentally” destroys one or

more of the other triangles in the (j + 1)-set. This occurs only if the two triangles destroyed are
near each other, so they create a small subgraph with more edges than vertices. This correction
term is a sum of terms of the form [Yt]j′Wt,i′,1/n

2
t for a few different values of i′ and j′, whose

expected value is O(n−3
t ).

The third term, f(j, Gt), is a function that accounts for all other positive contributions, i.e.
counts all other cases of newly created sets of j isolated triangles together with a copy of C∗

4 . The
situations included here are those in which

(a) Wt = 1 and j′ ≥ 2 new triangles are created, which only happens if both edges pegged are
contained in a 4-cycle, contributing O(I{Wt = 1}[Yt]j−j′Yt,4/n

2
t ), or

(b) Wt = 1, the copy of C∗
4 is destroyed (leaving behind a new isolated triangle) and simultaneously

another is created, contributing O(I{Wt = 1}[Yt]j−1/n
2
t ) or

(c) Wt ≥ 2, and all but one of the copies of C∗
4 are destroyed, possibly creating a number of

isolated triangles and possibly destroying one. This contributes terms of the form O(I{Wt ≥
2}[Yt]j′/nt) for various j′ ≤ j + 1, or

(d) Wt = 0, a C∗
4 is created along with an isolated triangle, which is contained in the set of j

isolated triangles. When this happens, there must be a triangle sharing a common edge with
a 4-cycle, so that the triangle turns into C∗

4 when two edges of the 4-cycle are pegged, whilst
the other edge of the 4-cycle together with two new edges forms an isolated triangle. Figure 4
illustrates how this works. This case contributes O(I{Wt = 0}[Yt]j−1Wt,5,1/n

2
t ).

We note here for later use that each of these cases involves a subgraph with excess at least 1,
and at least 2 in the case (c). For instance I{Wt = 1}[Yt]j−j′Yt,4 ≤ Wt[Yt]j−j′Yt,4 counts subgraphs
with j− j′ distinct triangles, a 4-cycle and a copy of C∗

4 . Such subgraphs have at most 3(j− j′)+8
vertices and excess at least 1. By Lemma 3.2, the expected number of such subgraphs is O(n−1

t ).
Using this argument, we find that E(f(j, Gt)) = O(n−3

t ).
The last term in (3.5) accounts for the negative contribution to Ut+1,j −Ut,j . Let Fi be the class

of subgraphs consisting of i isolated triangles, for some fixed i. Then Ut,j/j! counts the number of
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Figure 4: pegging operation to create a C∗
4 and a new triangle.

copies of subgraphs of Gt that are contained in Fj if Wt = 1, and is counted as 0 if Wt 6= 1. The
negative contribution comes when an edge contained in some copy of a member of Fj is destroyed,
or an edge contained in the C∗

4 is destroyed. In the first case, each copy of an f ∈ Fj in Gt+1 that
is destroyed contributes −1. The number of subgraphs of Gt that are in Fj is [Yt − 2]j/j!, and for
each copy there are 3j ways to choose an edge. Hence the expected contribution of this case is
−3j[Yt − 2]j/(j!nt). In the second case, the destruction of C∗

4 kills the contribution of any copy
of f ∈ Fj to Ut+1,j , since Wt+1 becomes 0. Hence the negative contribution is −[Yt − 2]j/j!, the
number subgraphs in Fj. There are 5 edges in C∗

4 , hence the probability that the C∗
4 is destroyed

is 5/nt. So the expected negative contribution by destroying the C∗
4 is −5[Yt − 2]j/(j!nt).

Taking expectation of both sides of (3.5) and using the tower property of conditional expectation,
we have

E

(

Ut+1,j

j!

)

− E

(

Ut,j

j!

)

=
9

nt
E

(

Ut,j−1

(j − 1)!

)

+
9(j + 1)

n2
t

E

(

[Yt]j+1I{Wt = 0}

(j + 1)!

)

−
3j + 5

nt

E

(

Ut,j

j!

)

+ O(n−3
t ).

Note the error term O(n−3
t ) includes E(f(j, Gt)) (as estimated above), as well as E((1+Yt+Yt,4)[Yt−

2]j−2I{Wt = 1}/(j − 2)!n2
t ), E([Yt]j+1I{Wt = 0}/(j!n3

t )) and E(I{Wt = 1}/n2
t ). This bound holds

because Yt[Yt − 2]j−2I{Wt = 1}/(j − 2)! counts subgraphs with j − 1 triangles and a copy of C∗
4 ,

Yt,4[Yt − 2]j−2I{Wt = 1}/(j − 2)! counts subgraphs with one 4-cycle, j − 1 triangles and a copy
of C∗

4 , and [Yt]j+1I{Wt = 0}/j! counts subgraphs with j + 1 triangles, and hence by Lemma 3.2
E((1 + Yt + Yt,4)[Yt − 2]j−2I{Wt = 1}/(j − 2)!) = O(n−1

t ), E([Yt]j+1I{Wt = 0}/j!) = O(1), and
E(I{Wt = 1}) = P(Wt = 1) = O(n−1

t ).
Clearly for all fixed j ≥ 0,

E([Yt]jI{Wt = 0}) = E([Yt]j + O([Yt]jI{Wt ≥ 1})) = E([Yt]j) + O(E([Yt]jWt)). (3.6)

Hence by Lemma 3.3 we have E([Yt]jI{Wt = 0}) = 3j + O(n−1
t ). Together with E(Ut,j−1) =

27/(4nt)3
j−1 + O(n−2

t ) by the induction hypothesis, we derive

E(Ut+1,j/j!) =

(

1 −
3j + 5

nt

)

E(Ut,j/j!) +
9

nt
·

27

4nt
·

3j−1

(j − 1)!
+

9

n2
t

·
3j+1

j!
+ O(n−3

t ).

By Lemma 3.1 we obtain (3.3) as required.
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Proof of Theorem 2.2: As mentioned above, it is enough to show that the ǫ-mixing time for
σt,3, i.e. the distribution of Yt, is not o(ǫ−1).

A random walk (Xt)t≥0 was defined in [10] as follows, and was used to derive the upper bound
of the ǫ-mixing time by the coupling technique. Define Bt,3 := {i ∈ Z+ : (9 + 3i)/nt ≤ 1}, and
the boundary of Bt,3 to be ∂Bt,3 := {i ∈ Bt,3 : i + 1 /∈ Bt,3}. The notation w.p. denotes “with
probability.”

For Xt ∈ Bt,3 \ ∂Bt,3,

Xt+1 =







Xt − 1 w.p. 3Xt/nt

Xt w.p. 1 − 3Xt/nt − 9/nt

Xt + 1 w.p. 9/nt.

For Xt ∈ ∂Bt,3,

Xt+1 =

{

Xt − 1 w.p. 3Xt/nt

Xt w.p. 1 − 3Xt/nt.

For Xt /∈ Bt,3,
Xt+1 = Xt w.p. 1.

As was observed in [10], the Poisson distribution with mean 3, Po(3), is a stationary distribution
of the Markov chain (Xt)t≥0. Let the random walk Xt be defined as above and X0 take the stationary
distribution Po(3), so Xt has the same distribution for all t ≥ 0. Let (Xt)t≥0 walk independently of
(Yt)t≥0 as generated by the graph process (Gt)t≥0. We aim to estimate the total variation distance
between Yt and Xt.

Define δt = P(Xt = 0) − P(Yt = 0). Then

dTV (Xt, Yt) ≥ |δt|.

From the definition of δt, we have

δt+1 = P(Xt = 0)P(Xt+1 = 0 | Xt = 0) − P(Yt = 0)P(Yt+1 = 0 | Yt = 0)

+P(Xt 6= 0)P(Xt+1 = 0 | Xt 6= 0) − P(Yt 6= 0)P(Yt+1 = 0 | Yt 6= 0). (3.7)

Without loss of generality, we may assume that n0 ≥ 9. Then from the transition probability
of Xt we have

P(Xt+1 6= 0 | Xt = 0) =
9

nt
for all t ≥ 0. (3.8)

Now we estimate P(Yt+1 6= 0 | Yt = 0). We consider the creation of a new triangle. Given an
edge e of Gt, a new triangle is created containing e if and only if the two pegged edges e1 and e2

are both adjacent to e. Of course, in a view of the definition of pegging, they must be incident
with different end-vertices of e. Since Gt is 4-regular, the number of ways to choose such e1 and e2

is precisely 9 conditional on Yt = 0. It follows that the expected number of new triangles created
is 9 · 2nt/Nt. By (2.1),

E(Yt+1 | Yt = 0) =
9 · 2nt

nt(2nt − 7)
=

9

nt
+

63

2n2
t

+ O(n−3
t ).

10



Conditional on Yt = 0, there is no chord in any 4-cycle. Then it is impossible to create more than
two triangles in a single step. Hence P(Yt+1 ≥ 3 | Yt = 0) = 0. Hence we obtain

P(Yt+1 = 1 | Yt = 0) + 2P(Yt+1 = 2 | Yt = 0) =
9

nt
+

63

2n2
t

+ O(n−3
t ). (3.9)

To create two triangles in a single step, it is required to peg two non-adjacent edges both
contained in a 4-cycle. For any 4-cycle, there are precisely two ways to choose two nonadjacent
edges, so

P(Yt+1 = 2 | Yt = 0, Yt,4 = j) =
2j

Nt
=

j(1 + o(1))

n2
t

,

and thus

P(Yt+1 = 2 | Yt = 0) =
∞
∑

j=0

j(1 + o(1))

n2
t

P(Yt,4 = j | Yt = 0). (3.10)

By Corollary 2.1, Yt and Yt,4 are asymptotically independent Poisson, with means 3 and 9 respec-
tively, and the total variation distance between the joint distribution of (Yt, Yt,4) and its limit is at
most O(n−1

t ). So P(Yt,4 = j | Yt = 0) = e−99j/j! + O(n−1
t ). Hence

∑

j≤log nt

j(1 + o(1))

n2
t

P(Yt,4 = j | Yt = 0) =
9

n2
t

+ o(n−2
t ). (3.11)

It was shown in Theorem 2.1 of [10], that EY 3
t,4 = O(1). By Corollary 2.1, the total variation

distance between the distribution of Yt and its limit Po(3) is O(n−1
t ). So P(Yt = 0) = e−3+O(n−1

t ).
Then by the Markov inequality,

P(Yt,4 ≥ j | Yt = 0) = P(Y 3
t,4 ≥ j3 | Yt = 0) ≤

1

j3
E(Y 3

t,4 | Yt = 0) = O(1/j3).

Thus

∑

j>log nt

j(1 + o(1))

n2
t

P(Yt,4 = j | Yt = 0) = o(n−2
t ). (3.12)

By (3.9)–(3.12),

P(Yt+1 = 2 | Yt = 0) =
9

n2
t

+ o(n−2
t ), (3.13)

P(Yt+1 = 1 | Yt = 0) =
9

nt
+

27

2n2
t

+ o(n−2
t ), (3.14)

P(Yt+1 6= 0 | Yt = 0) =
9

nt

+
45

2n2
t

+ o(n−2
t ). (3.15)

From (3.7), (3.8) and (3.15),
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δt+1 = P(Xt = 0)

(

1 −
9

nt

)

− (P(Xt = 0) − δt)

(

1 −
9

nt
−

45

2n2
t

+ o(n−2
t )

)

+P(Xt 6= 0)P(Xt+1 = 0 | Xt 6= 0) − (P(Xt 6= 0) + δt)P(Yt+1 = 0 | Yt 6= 0)

= δt

(

1 −
9

nt
+ O(n−2

t ) −P(Yt+1 = 0 | Yt 6= 0)

)

+P(Xt 6= 0) (P(Xt+1 = 0 | Xt 6= 0) −P(Yt+1 = 0 | Yt 6= 0))

+P(Xt = 0)

(

45

2n2
t

+ o(n−2
t )

)

. (3.16)

It only remains to estimate P(Xt+1 = 0 | Xt 6= 0) and P(Yt+1 = 0 | Yt 6= 0). From the definition of
the random walk of (Xt)t≥0,

P(Xt+1 = 0 | Xt 6= 0) =
P(Xt = 1)P(Xt+1 = 0 | Xt = 1)

P(Xt 6= 0)

=
3

nt

P(Xt = 1)

P(Xt 6= 0)
. (3.17)

The calculation of P(Yt+1 = 0 | Yt 6= 0) is not so straightforward. Given any two distinct edges ei

and ej , we can define a walk ei, el1 , el2 , . . . , elk , ej, such that every two consecutive edges appearing
in the walk are adjacent. The distance of ei and ej is defined to be the length of the shortest walk
between ei and ej . For instance, if ei and ej are adjacent, then their distance is 1. Conditional
on Yt = 1, i.e. the number of triangles in Gt being 1, if this triangle is destroyed without creating
any new triangles, then one of the edges contained in the triangle must be pegged. Call it e1. The
other edge e2 being pegged must be chosen from those whose distance from e1 is at least 3. Let R
be the rare event that at least one 4-cycle shares a common edge with this triangle, and R be the
complement of R. There are 3 ways to choose e1 and 21 edges within distance 2 from e1, including
e1 itself, if R occurs. Otherwise, there are in any case O(1) edges within distance 2 from e1. Hence

P(Yt+1 = 0 | Yt = 1) =
3(2nt − 21)

Nt

P(R | Yt = 1) +
3(2nt − O(1))

Nt

P(R | Yt = 1).

Note that the occurrence of R implies that Wt,5,1 ≥ 1. So by Lemma 3.2,

P(R | Yt = 1) ≤
P(R)

P(Yt = 1)
= O(n−1

t ).

Noting that (2.1) implies 1/Nt = 1/(2n2
t )(1 + 7/2nt + O(n−2

t )),

P(Yt+1 = 0 | Yt = 1) =
3

nt
−

21

n2
t

+ O(n−3
t ). (3.18)

Given Yt = j for any j ≥ 3, to destroy all j triangles in a single step, it is required either to peg
an edge contained in j triangles, and hence a small subgraph with excess at least 2, or to peg two
edges such that one edge is contained in at least one triangle, and the other edge contained in at
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least two triangles. The latter is a small subgraph with excess at least 1. Both cases imply that
for j ≥ 3,

P(Yt+1 = 0 | Yt = j) = O(n−3
t ). (3.19)

Now we only need to compute P(Yt+1 = 0 | Yt = 2). To destroy two triangles in a single step,
either the two triangles are isolated and the algorithm pegs two edges which are contained in two
triangles, or the two triangles share a common edge and the algorithm pegs the common edge, i.e.
the chord of a C∗

4 . Conditional on Yt = 2, the number of C∗
4 can be either 0 or 1. Let Wt denote

the number of C∗
4 as before. If Wt = 0, the two triangles are isolated, and then two edges contained

in different triangles are pegged, so P(Yt+1 = 0 | Yt = 2, Wt = 0) = 9/Nt. If Wt = 1, then the
algorithm pegs the chord of the C∗

4 . So P(Yt+1 = 0 | Yt = 2, Wt = 1) = (2nt − 7)/Nt. Thus

P(Yt+1 = 0 | Yt = 2)

=
9

Nt
(1 − P(Wt = 1 | Yt = 2)) +

2nt − 7

Nt
P(Wt = 1 | Yt = 2)

=
9

Nt

+
2nt − 16

Nt

P(Wt = 1 | Yt = 2). (3.20)

By Lemma 3.4, P(Yt = 2 | Wt = 1) = e−3 + o(1) and therefore using (3.4),

P(Wt = 1 | Yt = 2) =
P(Yt = 2 | Wt = 1)P(Wt = 1)

P(Yt = 2)
=

3 + o(1)

2nt
+ O(n−2

t ).

Combining this with (3.20) and (2.1), we have

P(Yt+1 = 0 | Yt = 2) =
6 + o(1)

n2
t

+ O(n−3
t ). (3.21)

From (3.18), (3.19) and (3.21) we have

P(Yt+1 = 0 | Yt 6= 0) =

(

3

nt

−
21

n2
t

+ O(n−3
t )

)

P(Yt = 1)

P(Yt 6= 0)
+

6 + o(1)

n2
t

P(Yt = 2)

P(Yt 6= 0)
+ O(n−3

t ). (3.22)

By Corollary 2.1, dTV (Xt, Yt) = O(n−1
t ), and so (3.17) gives

P(Xt+1 = 0 | Xt 6= 0) − P(Yt+1 = 0 | Yt 6= 0)

=
3

nt

(

P(Xt = 1)

P(Xt 6= 0)
−

P(Yt = 1)

P(Yt 6= 0)

)

+
21

n2
t

P(Xt = 1)

P(Xt 6= 0)
−

6 + o(1)

n2
t

P(Xt = 2)

P(Xt 6= 0)
+ O(n−3

t )

=
3

nt

O(dTV (Xt, Yt)) +
36e−3

(1 − e−3)n2
t

+ o(n−2
t ).

Combining this with (3.16) and (3.22) gives

δt+1 ≥ δt(1 − γ(t)) +
3(1 − e−3)

nt
O(dTV (Xt, Yt)) +

117e−3

2n2
t

+ o(n−2
t ), (3.23)

where γ(t) = 9/nt + P(Yt+1 = 0 | Yt 6= 0) + O(n−2
t ) ≥ 9/nt + O(n−2

t ). For a contradiction, assume
that dTV (Xt, Yt) = o(n−1

t ). Then (3.23) gives
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δt+1 ≥ δt(1 − γ(t)) +
117e−3

2n2
t

+ w(nt),

for some function w(nt) such that w(nt) = o(n−2
t ).

Let (at)t≥0 be defined as a0 = δ0 and for all t ≥ 0,

at+1 = at(1 − γ(t)) +
117e−3

2n2
t

+ w(nt).

Clearly δ0 ≥ a0. Assume δt ≥ at for some t ≥ 0. Then

δt+1 ≥ δt(1 − γ(t)) +
117e−3

2n2
t

+ w(nt) ≥ at(1 − γ(t)) +
117e−3

2n2
t

+ w(nt) = at+1.

Hence δt ≥ at for all t ≥ 0. By Lemma 3.1, at = Θ(n−1
t ). Hence δt = Ω(n−1

t ), which contradicts
the assumption that dTV (Xt, Yt) = o(n−1

t ). So dTV (Yt,Po(3)) is not o(n−1
t ). Clearly

dTV (Yt,k,Po(µ3, . . . , µk)) ≥ dTV (Yt,Po(3)),

where Po(µ3, . . . , µk) is the joint independent Poisson distribution with means µ3, . . . , µk, and µi

is as stated in Theorem 2.1, for all 3 ≤ i ≤ k. So dTV (Yt,k,Po(µ3, . . . , µk)) is not o(n−1
t ).

The analysis for even d > 4 is analogous but more complicated. The random walk (Xt)t≥0 and
(Yt)t≥0 are defined similarly, as follows. First, define Bt,3 := {i ∈ Z+ : ((d/2− 1)(d− 1)2 +3i)/nt ≤
1}, and the boundary of Bt,3 to be ∂Bt,3 := {i ∈ Bt,3 : i + 1 /∈ Bt,3}.

For Xt ∈ Bt,3 \ ∂Bt,3,

Xt+1 =







Xt − 1 w.p. 3Xt/nt

Xt w.p. 1 − 3Xt/nt − (d/2 − 1)(d − 1)2/nt

Xt + 1 w.p. (d/2 − 1)(d − 1)2/nt.

For Xt ∈ ∂Bt,3,

Xt+1 =

{

Xt − 1 w.p. 3Xt/nt

Xt w.p. 1 − 3Xt/nt.

For Xt /∈ Bt,3,
Xt+1 = Xt w.p. 1.

It was shown in [10] that Po(µ), the Poisson distribution with mean µ = ((d − 1)3 − (d − 1)2)/6,
is a stationary distribution of the Markov chain (Xt)t≥0. The variable δt is defined the same as
before. In order to bound δt, we need to compute

P(Yt+1 6= 0 | Yt = 0), P(Yt+1 = 0 | Yt 6= 0).

The calculation follows exactly the same path as in the case d = 4, though much more complicated.
As an example, we explain the calculation of Nt, the number of possible pegging operations at step
t. We also show as another example, the calculation of At, the number of pegging operations which
create a triangle at step t, conditional on the number of triangles in Gt being 0.
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Since Gt is d-regular, the number of edges in Gt is mt = dnt/2. At step t + 1, the algorithm
chooses d/2 non-adjacent edges. There are mt ways to choose the first edge, and mt − (2d − 1)i
ways to choose the (i + 1)-th edge for 1 ≤ i ≤ d/2 − 1, if we ignore the case that two or more of

the previous i edges chosen are of distance 2, which will have a contribution of O
(

m
d/2−2
t

)

to the

total count. Hence,

Nt =
1

(d/2)!





d/2−1
∏

i=0

(mt − (2d − 1)i) + O
(

m
d/2−2
t

)





=
m

d/2
t

(d/2)!

(

1 −
d

4

(

d

2
− 1

)

(2d − 1)m−1
t + O(m−2

t )

)

.

Conditional on Yt = 0, if a triangle is created that contains an edge e ∈ Gt, the pegging algorithm
pegs two edges e1 and e2 that are adjacent to e but at different end-vertices of e, together with
d/2 − 2 other non-adjacent edges. There are mt options for the choice of e, and for each fixed e,
there are exactly (d − 1)2 ways to choose e1 and e2, since Yt = 0. Thus the number of ways to
create a triangle when Yt = 0 is

At = mt(d − 1)2 1

(d/2 − 2)!





d/2−1
∏

i=2

(mt − (2d − 1)i + 1) + O
(

m
d/2−2
t

)





= (d − 1)2 m
d/2−1
t

(d/2 − 2)!

(

1 −

(

(2d − 1)

(

d

2
+ 1

)(

d

4
− 1

)

−

(

d

2
− 2

))

m−1
t + O(m−2

t )

)

.

Hence the expected number of triangles created, conditional on Yt = 0, is,

At

Nt

=
(d − 1)2

(

d
2
− 1
)

nt

+
(d − 1)2(d − 2)

dn2
t

(

5d

2
− 3

)

+ O(n−3
t ).

We omit the calculational details of the probabilities of other events. Table 1 gives the significant
terms in the probabilities of all events required to compute P(Yt+1 6= 0 | Yt = 0) and P(Yt+1 = 0 |
Yt 6= 0), as examined in detail in the special case when d = 4. The values of the constants a1, a2,
µ, k1, k2 in Table 1 are given in Table 2.

Hence

δt+1 = δt (1 − γ(t)) + P(Xt 6= 0)

(

3

nt
O(dTV (Xt, Yt)) −

k1

n2
t

P(Xt = 1)

P(Xt 6= 0)
−

k2

n2
t

P(Xt = 2)

P(Xt 6= 0)
+ O(n−3

t )

)

+P(Xt = 0)
a1 − a2

n2
t

+ o(n−2
t )

= δt (1 − γ(t)) +
O(dTV (Xt, Yt))

nt
+ e−µ

(

a1 − a2 − µk1 −
µ2

2
k2

)

n−2
t + o(n−2

t ).
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P(Yt+1 = 2 | Yt = 0) a2/n
2
t + o(n−2

t )

P(Yt+1 6= 0 | Yt = 0)
(d−1)2( d

2
−1)

nt
+ (a1 − a2)n

−2
t + o(n−2

t )

P(Yt+1 = 0 | Yt = 1) 3
nt

+ k1

n2
t

+ O(n−3
t )

P(Yt+1 = 0 | Yt = 2, Wt = 0) 9(d−2)
d

n−2
t + O(n−3

t )

P(Yt+1 = 0 | Yt = 2, Wt = 1) 1
nt

+ O(n−2
t )

P(Wt = 1) 3µ
4d

(d − 2)2(d − 1)n−1
t + O(n−2

t )

P(Yt+1 = 0 | Yt 6= 0)
(

3
nt

+ k1

n2
t

+ O(n−3
t )
)

P(Yt=1)
P(Yt 6=0)

+ k2

n2
t

P(Yt=2)
P(Yt 6=0)

+ O(n−3
t )

Table 1: Significant probabilities

where γ(t) ≥ (d − 1)2(d/2 − 1)/nt + O(n−2
t ) ≥ 9/nt + O(n−2

t ). We only need to show that

a1 − a2 − µk1 −
µ2

2
k2 6= 0.

By substituting the values of a1, a2, k1 and k2 in terms of d, and simplifying, we get

a1 − a2 − µk1 −
µ2

2
k2 = −

(d − 1)2(d − 2)(64 − 134d + 91d2 − 25d3 + 2d4)

8d
,

which has no integral roots but 1 and 2, so

a1 − a2 − µk1 −
µ2

2
k2 6= 0 for all even d ≥ 4.

Hence the ǫ-mixing time is not o(ǫ−1) for any even d ≥ 4.

4 Discussion

For any fixed d ≥ 3, it is well known that the random d-regular graphs with the uniform distribution
are d-connected and have diameter O(log n) a.a.s. (See [12] for terms and facts not referenced here.)
These properties are of central interest where the graphs are used as communication networks.
The first author determined the connectivity of random regular graphs in P(G0, d) in [9], which
supports the conjecture given in [10], that the probability space of d-regular graphs in the uniform
model is contiguous with that of those generated by the pegging model. If the conjecture holds, it
implies that the random regular graphs in P(G0, d) are a.a.s. d-connected with diameter O(log n).
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a1
(d−1)2(d−2)

d

(

5d
2
− 3
)

a2
2((d−1)4−(d−1)2)(d−2)+(d−1)4(d−2)(d−4)(d−6)

8d

c d
4

(

d
2
− 1
)

(2d − 1)

l 3 + 3(d − 2) + 2(d − 2)(d − 1)

µ (d−1)3−(d−1)2

6

k1
6c
d
− 6

d

((

d
2
− 1
)

l + 1
2
(2d − 1)

(

d
2
− 1
) (

d
2
− 2
))

k2
1
d

(

9(d − 2) + 3
2µ

(d − 1)(d − 2)2
)

Table 2: Value of the constants appearing in Table 1

In any case, the logarithmic diameter is common among random networks with average degree
above 1. In the Erdős-Rényi model of random graphs, the components of the random graph a.a.s.
all have diameter O(log n) if the edge probability p is at least c/n for some c > 1. Ferholz and
Ramachandran [8] showed that the diameter of random sparse graphs with given degree sequences is
a.a.s. c(1+o(1)) logn, when the degree sequences satisfy some natural convergence conditions, and
they determined the value of c. Bollobás and Riordan [5] proved that the random graphs generated
by the preferential attachment model a.a.s. have diameter asymptotically log n/ log log n. We are
currently studying the diameter of the graphs generated by the pegging process P(G0).
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[2] Albert-László Barabási, Scale-Free Networks, Scientific American, (May 2003), 288:60-69.
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