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Abstract

Let h > w > 0 be two fixed integers. Let H be a random hypergraph whose hyperedges
are uniformly of size h. To w-orient a hyperedge, we assign exactly w of its vertices positive
signs with respect to the hyperedge, and the rest negative. A (w, k)-orientation of H consists
of a w-orientation of all hyperedges of H , such that each vertex receives at most k positive
signs from its incident hyperedges. When k is large enough, we determine the threshold of the
existence of a (w, k)-orientation of a random hypergraph. The (w, k)-orientation of hypergraphs
is strongly related to a general version of the off-line load balancing problem. The graph case,
when h = 2 and w = 1, was solved recently by Cain, Sanders and Wormald and independently by
Fernholz and Ramachandran, thereby settling a conjecture made by Karp and Saks. Motivated
by a problem of cuckoo hashing, the special hypergraph case with w = k = 1, was solved in
three separate preprints dating from October 2009, by Frieze and Melsted, by Fountoulakis and
Panagiotou, and by Dietzfelbinger, Goerdt, Mitzenmacher, Montanari, Pagh and Rink.
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1 Introduction

In this paper we consider a generalisation to random hypergraphs of a commonly studied orientation
problem on graphs. An h-hypergraph is a hypergraph whose hyperedges are of all of cardinality h.
Let h > w be two given positive integers. We consider Gn,m,h, the probability space of the set of
all h-hypergraphs on n vertices and m hyperedges with the uniform distribution. A hyperedge is
said to be w-oriented if exactly w distinct vertices in it are marked with positive signs with respect
to the hyperedge. The indegree of a vertex is the number of positive signs it receives. Let k be
a positive integer. A (w, k)-orientation of an h-hypergraph is a w-orientation all hyperedges such
that each vertex has indegree at most k. If such a (w, k)-orientation exists, we say the hypergraph
is (w, k)-orientable; for w = 1 we simply say k-orientable. Of course, being able to determine the
(w, k)-orientability of an h-hypergraph H for all k solves the optimisation problem of minimising
the maximum indegree of a w-orientation of H. If a graph (i.e. the case h = 2) is (1, k)-oriented,
we may orient each edge of the graph in the normal fashion towards its vertex of positive sign, and
we say the graph is k-oriented.

Note that a sufficiently sparse hypergraph is easily (w, k)-orientable. On the other hand, a
trivial requirement for (w, k)-orientability of an h-hypergraph with m edges is m ≤ kn/w, since
any w-orientation has average indegree mw/n. In this paper, we show the existence and determine
the value of a sharp threshold (defined more precisely in Section 2) at which a random h-hypergraph
from Gn,m,h fails to be (w, k)-orientable, provided k is a sufficiently large constant. We show that
the threshold is the same as the threshold at which a certain type of subhypergraph achieves a
critical density. In the above, as elsewhere in this paper, the phrase “for k sufficiently large” means
for k larger than some constant depending only on w and h.

1.1 Applications to load balancing, and some previous results

The hypergraph orientation problem is motivated by classical load balancing problems which have
appeared in various guises in computer networking. A seminal result of Azar, Broder, Karlin and
Upfal [2] is as follows. Throw n balls sequentially into n bins, with each ball put into the least full
of h ≥ 2 randomly chosen boxes. Then, with high probability, by the time all balls are allocated,
no bin contains many more than (ln lnn)/ ln h balls. If, instead, each ball is placed in a random
bin, a much larger maximum value is likely to occur, approximately ln n/(ln ln n). This surprisingly
simple method of reducing the maximum is widely used for load balancing. It has become known
as the multiple-choice paradigm, the most common version being two-choice, when h = 2.

One application of load balancing occurs when work is spread among a group of computers,
hard drives, CPUs, or other resources. In the on-line version, the jobs arrive sequentially and are
assigned to separate machines. To save time, the load balancer decides which machine a job goes to
after checking the current load of only a few (say h) machines. The goal is to minimise the maximum
load of a machine. Mitzenmacher, Richa and Sitaraman [19] survey the history, applications and
techniques relating to this. In particular, Berenbrink, Czumaj, Steger and Vőcking [2, 3] show an
achieveable maximum load is m/n + O(log log n) for m jobs and n machines when h ≥ 2.

Another application of load balancing mentioned by Cain, Sanders and the second author [5]
is the disk scheduling problem, in which any w out of h pieces of data are needed to reconstruct a
logical data block. Individual pieces can be initially stored on different disks. Such an arrangement
has advantageous fault tolerance features to guard against disk failures. It is also good for load
balancing: when a request for a data block arrives, the scheduler can choose any w disks among
the h relevant ones. See Sanders, Egner and Korst [20] for further references.

These load balancing problems correspond to the (w, k)-orientation problem for h-uniform hy-
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pergraphs, with w = 1 in the case of the job scheduling problem. The machines (bins) are vertices
and a job (ball) is an edge consisting of precisely the set of machines to which it can be allocated.
A job is allocated to a machine by assigning a positive sign to that vertex. The maximum load is
then equal to the maximum indegree of a vertex in the (w, k)-oriented hypergraph.

1.2 Off-line version

In the on-line versions, the edges of the hypergraph arrive one by one, but the off-line version, in
which the edges are all exposed at the start, is also of interest. For instance, in the disk scheduling
problem, the scheduler may be able to process a large number of requests together, to balance the
load better. Of course, the on-line and off-line versions are the same if h = 1, i.e. there is no choice.
For h = 2, the off-line version experiences an even better improvement than the on-line one. If
m < cn items are allocated to n bins, for c constant, the expected maximum load is bounded above
by some constant c′ depending on c.

To our knowledge, previous theoretical results concern only the case w = 1 (this also applies
to on-line problem). For w = 1 it is well known that an optimal off-line solution, i.e. achieving
minimum possible maximum load, can be found in polynomial time (O(m2)) by solving a maximum
flow problem. As explained in [5], it is desirable to achieve fast algorithms that are close to optimal
with respect to the maximum load. There are linear time algorithms that achieve maximum load
O(m/n) [10, 16, 18].

A central role in solutions of the off-line orientation problem with (w, h) = (1, 2) is played by the
k-core of a graph, being the largest subgraph with minimum degree at least k. The sharp threshold
for the k-orientability of the random graph G(n,m) = Gn,m,2 was found in [5], and simultaneously
by Fernholz and Ramachandran [13]. These were proofs of a conjecture of Karp and Saks that
this threshold coincides with the threshold at which the (k + 1)-core has average degree at most
2k. (It is obvious that a graph cannot be k-oriented if it has a subgraph of average degree greater
than 2k.) In each case, the proof analysed a linear time algorithm that finds a k-orientation
asymptotically almost surely (a.a.s.; i.e. with probability 1−o(1) as n → ∞) when the mean degree
of the (k + 1)-core is slightly less than 2k. In this sense, the algorithms are asymptotically optimal
since the threshold for the algorithms succeeding coincides with the threshold for existence of a
k-orientation. The proof in [13] was significantly simpler than the other, which was made possible
because a different algorithm was employed. It used a trick of “splitting vertices” to postpone
decisions and thereby reduced the number of variables to be considered.

Since the preparation of the original version of the present paper, three preprints appeared
by Frieze and Melsted [11], Fountoulakis and Panagiotou [12], and by Dietzfelbinger, Goerdt,
Mitzenmacher, Montanari, Pagh and Rink [9] which independently study the threshold of (1, 1)-
orientability of Gn,m,h, i.e. the case w = k = 1. This has applications to cuckoo hashing. However,
there seems to be no easy way to extend the proofs in [9, 11, 12] to solve for the case k > 1, even
when w = 1.

1.3 Our contribution

We solve the generalisation of the conjecture of Karp and Saks mentioned above, for fixed h > w > 0,
provided k is sufficiently large. That is, we find the threshold of (w, k)-orientation of random h-
hypergraphs in Gn,m,h. The determination of this threshold helps to predict loads in the off-line
w-out-of-h disk scheduling problem, where the randomness of the hypergraph is justified by the
random intial allocation of file segments to disks. We believe furthermore that the characterisation
of the threshold in terms of density of a type of core, and possibly our method of proof, will
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potentially help lead to fast algorithms for finding asymptotically optimal orientations.
Our approach has a significant difference from that used in the graph case when (w, h) = (1, 2).

The algorithm used in [13] does not seem to apply in the hypergraph case, at least, splitting vertices
cannot be done without creating hyperedges of larger and larger size. The algorithm used by [5], on
the other hand, generalises in an obvious way, but it is already very complicated to analyse in the
graph case, and the extension of the analysis to the hypergraph case seems formidable. However,
in common with both approaches, we first find what we call the (w, k + 1)-core in the hypergraph,
which is an analogue of the (k + 1)-core in graphs. We use the differential equation method to
determine the size and density of this core. From here, we use the natural representation of the
orientation problem in terms of flows. It is quite easy to generalise the network flow formulation
from the case h = 2, w = 1 to the arbitrary case, giving a problem that can be solved in time
O(m2) for m = Θ(n). Unlike the approaches for the graph case, we do not study an algorithm
that solves the load balancing problem. Instead, we use the minimum cut characterisation of the
maximum flow to show that a.a.s. the hypergraph can be (w, k)-oriented if and only if the density
of its (w, k + 1)-core is below a certain threshold. When the density of the (w, k + 1)-core is above
this threshold, it is trivially too dense to be (w, k)-oriented.

Even the case w = 1 of our result gives a significant generalisation of the known results. We
prove that the threshold of the orientability coincides with the threshold at which certain type of
density (in the case w = 1, this refers to the average degree divided by h) of the (w, k + 1)-core is
at most k, and also the threshold at which a certain type of induced subgraph (in the case w = 1,
this refers to the standard induced subgraph) does not appear. For the graph case, our method
provides a new proof (for sufficiently large k) of the Karp-Saks conjecture that we believe is simpler
than the proofs of [5] and [13].

We give precise statements of our results, including definition of the (w, k+1)-core, in Section 2.
In Section 3 we study the properties of the (w, k+1)-core. In Section 4, we formulate the appropriate
network flow problem, determine a canonical minimum cut for a network corresponding to a non-
(w, k)-orientable hypergraph, and give conditions under which such a minimum cut can exist.
Finally, in Section 5, we show that for k is sufficiently large, such a cut a.a.s. does not exist when
the density of the core is below a certain threshold. Proofs not given in this paper will be provided
in a longer version [14].

2 Main results

Let h > w > 0 and k ≥ 2 be given constants. For any h-hypergraph H, we examine whether a
(w, k)-orientation exists. We call a vertex light if the degree of the vertex is at most k. For any
light vertex v, we can give v the positive sign with respect to every hyperedge x that is incident to
v (we call this partially orienting x towards to v), without violating the condition that each vertex
has indegree at most k. Remove v from H, and for each hyperedge x incident to v, simply update
x by removing v. Then the size of x decreases by 1, and it has one less vertex that needs to be
given a positive sign. If a hyperedge becomes of size h − w, we can simply remove that hyperedge
from the hypergraph. Repeating this until no light vertex exists, we call the remaining hypergraph
Ĥ the (w, k + 1)-core of H. Every vertex in Ĥ has degree at least k + 1, and every hyperedge in
Ĥ of size h − j requires a (w − j)-orientation in order to complete a w-orientation of the original
hyperedge in H.

Instead of considering the probability space Gn̄,m̄,h, we may consider Mn̄,m̄,h, the probability
space of random uniform multihypergraphs with n̄ vertices and m̄ hyperedges, such that each
hyperedge x is of size h, and each vertex in x is chosen independently, uniformly at random from
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[n̄]. Actually Mn̄,m̄,h may be a more accurate model for the off-line load balancing problem in
some applications, and as we shall see, results for the non-multiple edge case can be deduced from
it. For a nonnegative integer vector m = (m2, . . . ,mh), we also define the probability space Mn,m,
being the obvious generalisation of Mn,m,h to non-uniform multihypergraphs in which mi is the
number of hyperedges of size i.

All our asymptotic notation refers to n → ∞. For clarity, we consider H ∈ Mn̄,m̄,h. We use
n, mh−j and µ for the number of vertices, the number of hyperedges of size h − j and the average

degree of Ĥ. We parametrise the number m̄ of edges in the hypergraphs under study by letting
µ̄ = µ̄(n) denote hm̄/n̄, the average degree of H ∈ Mn̄,m̄,h (or of H ∈ Gn̄,m̄,h).

Our first observation concerns the distribution of Ĥ and its vertex degrees. Let Multi(n,m, k+1)
denote the multinomial distribution of n integers summing to m, restricted to each of the integers
being at least k + 1. We call this truncated multinomial.

Proposition 2.1 Let h > w ≥ 1 be two fixed integers. Let H ∈ Mn̄,m̄,h and let Ĥ be its (w, k+1)-
core. Conditional on its number n of vertices and numbers mh−j of hyperedges of size h − j for

j = 0, . . . , w − 1, the random hypergraph Ĥ is distributed uniformly randomly on multihypergraphs
with all vertices of degree at least k + 1 and having the same parameters n and mh−j for each j.

Furthermore, the degree distribution of Ĥ is the truncated multinomial distribution Multi(n,m, k+1)
where m =

∑
(h − j)mh−j.

The following theorem shows that the size and the number of hyperedges of Ĥ are highly
concentrated around the solution of a system of differential equations. It covers any h > w ≥ 2
for sufficiently large k. For special case w = 1, the concentration result was already known for all
k ≥ 0, for example in [5, Theorem 3]. The particular system of differential equations is given in
the long version of the paper [14].

Theorem 2.2 Let h > w ≥ 2 be two fixed integers. Assume ck ≤ µ̄ := hm̄/n̄ for some constant
c > 1. Let H ∈ Mn̄,m̄,h and let Ĥ be its (w, k + 1)-core. Let n be the number of vertices and

mh−j the number of hyperedges of size h − j of Ĥ. Then, provided k is sufficiently large, there
are constants α > 0 and βh−j > 0, which are determined by the solution of a certain differential
equation system that depends only on µ̄, k, w and h, for which a.a.s. n ∼ αn̄ and mh−j ∼ βh−jn̄
for 0 ≤ i ≤ w − 1. The same conclusion (with the same constants) holds if H ∈ Gn̄,m̄,h.

The differential equation system is rather complicated so it is not included here.
Let P be a hypergraph property and let Mn,m,h ∈ P denote the event that a random hypergraph

from Mn,m,h has the property P. Following [1, Section 10.1], we say that P has a sharp threshold
function f(n) if for any constant ǫ > 0, P(Mn,m,h ∈ P) → 1 when m ≤ (1−ǫ)f(n), and P(Mn,m,h ∈
P) → 0 when m ≥ (1 + ǫ)f(n).

Recall that n denotes the number of vertices and mh−j denotes the number of hyperedges of

size h−j in Ĥ. Let κ(Ĥ) denote
∑w−1

j=0 (w−j)mh−j/n. Then κ(Ĥ) defines a certain type of density

of Ĥ. We say that a hypergraph H has property T if its (w, k + 1)-core Ĥ satisfies the condition
that κ(Ĥ) is at most k. (Since w and k are fixed, we often drop them from the notation.) The
following theorem, proved using Theorem 2.2, immediately gives the corollary that there is a sharp
threshold function for the property T .

Theorem 2.3 Let H ∈ Mn̄,m̄,h. Let µ̄ be the average degree of H and let Ĥ be the (w, k + 1)-core
of H. Then for all sufficiently k, there exists a strictly increasing function c(µ̄) of µ̄, such that for
any fixed c2 > c1 > 1 and for any c1k < µ̄ < c2k, a.a.s. κ(Ĥ) ∼ c(µ̄).
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Corollary 2.4 There exists a sharp threshold function f(n̄) for the hypergraph property T in
Mn̄,m̄,h provided k is sufficiently large.

The function c(µ̄) in the theorem, and the threshold function in the corollary, are determined by
the solution of the differential equation system referred to in Theorem 2.1.

We have defined a (w, k)-orientation of a uniform hypergraph in Section 1. We can similarly
define a (w, k)-orientation of a non-uniform hypergraph G with sizes of hyperedges between h−w+1
and h to be a simultaneous (w−j)-orientation of each hyperedge of size h−j such that every vertex
has indegree at most k. By counting the positive signs in orientations, we see that if property T
fails, there is no (w, k)-orientation of Ĥ, and hence there is no (w, k)-orientation of H.

For a nonnegative integer vector m = (mh−w+1, . . . ,mh), let M(n,m, k + 1) denote Mn,m

restricted to multihypergraphs with minimum degree at least k+1. By Proposition 2.1, M(n,m, k+
1) has the distribution of the (w, k + 1)-core of H ∈ Mn̄,m̄,h conditioned on the number of vertices
being n and the number of hyperedges of each size being given by m. To emphasise the difference,
we will use G to denote a not-necessarily-uniform hypergraph in cases where we might use H for a
uniform hypergraph.

Given a vertex set S, we say a hyperedge x is partially contained in S if |x ∩ S| ≥ 2.

Definition 2.5 Let 0 < γ < 1. We say that a multihypergraph G has property A(γ) if for all
S ⊂ V (G) with |S| < γ|V (G)| the number of hyperedges partially contained in S is strictly less than
k|S|/2w.

In the following theorem, m = m(n) denotes an integer vector for each n.

Theorem 2.6 Let γ be any constant between 0 and 1. Then there exists a constant N > 0 depend-
ing only on γ, such that for all k > N and any ǫ > 0, if m(n) satisfies

∑w−1
j=0 (w − j)mh−j(n) ≤

kn − ǫn for all n, then G ∈ M(n,m(n), k + 1) a.a.s. either has a (w, k)-orientation or does not
have property A(γ).

We show in the forthcoming Corollary 4.2 that for certain values of γ, a.a.s. Ĥ has property A(γ)
if µ̄ is constrained to be at most hk/w. We will combine this with Corollary 2.4 and Theorem 2.6
and a relation we will show between Mn̄,m̄,h and Gn̄,m̄,h (Lemma 3.1), to obtain the following.

Corollary 2.7 Let h > w > 0 be two given integers and k be a sufficiently large constant. Let f(n̄)
be the threshold function of property T whose existence is asserted in Corollary 2.4. Then f(n̄) is
a sharp threshold for the (w, k)-orientability of Mn̄,m̄,h and Gn̄,m̄,h.

For any vertex set S ⊂ V (H), define the subgraph induced by S with parameter w to be the subgraph
of G on vertex set S whose set of hyperedges is {x′ = x∩S : x ∈ H, s.t. |x′| ≥ h−w+1}. Call this
hypergraph HS. Let d(HS) denote the degree sum of vertices in the hypergraph HS and let e(HS)
denote the number of hyperedges in HS. From the above results we will obtain the following.

Corollary 2.8 The following three graph properties have the same sharp threshold in Mn̄,m̄,h and
in Gn̄,m̄,h.

(i) H is (w, k)-orientable.

(ii) H has property T .

(iii) There exists no H ′ ⊂ H as an induced subgraph with parameter w such that d(H ′) − (h −
w)e(H ′) > ks.

The proofs of Proposition 2.1, Theorem 2.2, 2.3 and 2.6 will appear in [14].
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3 Analysing the size and density of the (w, k + 1)-core

A model of generating random graphs via multigraphs, used by Bollobás and Frieze [4] and
Chvatál [7], is described as follows. Let Pn̄,m̄ be the probability space of functions g : [m̄]× [2] → [n̄]
with the uniform distribution. Equivalently, Pn̄,m̄ can be described as the uniform probability
space of allocations of 2m̄ balls into n̄ bins. A probability space of random multigraphs can be
obtained by taking {g(i, 1), g(i, 2)} as an edge for each i. This model can easily be extended
to generate non-uniformly random multihypergraphs by letting m = (m2, . . . ,mh) and taking
Pn̄,m = {g : ∪h

i=2[mi]× [i] → [n̄]}. Let Mn̄,m be the probability space of random multihypergraphs
obtained by taking each {g(j, 1), . . . , g(j, i)} as a hyperedge, where j ∈ [mi] and 2 ≤ i ≤ h. (Loops
and multiple edges are possible.) Note that Mn̄,m, where m = (m2) = (m̄), is a random multi-
graph; it was shown in [7] that if this is conditioned on being simple (i.e. no loops and no multiple
edges), it is equal to Gn̄,m̄,2, and that the probability of a multigraph in Mn̄,(m̄) being simple is
Ω(1) if m̄ = O(n̄). This result is easily extended to the following result, using the same method of
proof.

Lemma 3.1 Assume h ≥ 2 is a fixed integer and m = (m2, . . . ,mh) is a non-negative integer
vector. Assume further that

∑h
i=2 mi = O(n̄). Then the probability that a multihypergraph in

Mn̄,m is simple is Ω(1).

Cain and the second author [6] recently introduced a new model to analyse the k-core of a
random (multi)graph or (multi)hypergraph, including its size and degree distribution. This model
is called the pairing-allocation model. A generalisation of this, the partition-allocation model, is
defined below. We will use this model to prove Theorem 2.6 and to analyse a randomized algorithm
called the RanCore algorithm, defined later in this section, which outputs the (w, k + 1)-core of a
given h-hypergraph.

Given h ≥ 2, n, m = (m2, . . . ,mh), L = (l2, . . . , lh) and a nonnegative integer k such that
D − ℓ ≥ kn, where D =

∑h
i=2 imi and ℓ =

∑h
i=2 li, let V be a set of n bins, and M a collection

of pairwise disjoint sets {M1, . . . ,Mh}, where Mi is a set of imi balls partitioned into parts, each
of size i, for all 2 ≤ i ≤ h. Let Q be an additional bin aside from V . It may assist the reader to
know that Q ‘represents’ all the hyperedge incidences at vertices of degree less than k, and li is
the number of these incidences in edges of size i. The partition-allocation model P(V,M,L, k) is
the uniform probability space whose elements are the allocations of balls to bins defined as follows.
Let C = {c2, . . . , ch} be a set of colours. Colour the balls in Mi with ci. (The role of the colours is
only to denote the size of the part a ball lies in.) Then allocate the D balls uniformly at random
(u.a.r.) into the bins in V ∪ {Q}, such that the following constraints are satisfied:

(i) Q contains exactly ℓ balls;

(ii) each bin in V contains at least k balls;

(iii) for any 2 ≤ i ≤ h, the number of balls with colour ci that are contained in Q is li.

We call Q the light bin and all bins in V heavy. To assist with the analysis in some situa-
tions, we consider the following algorithm which clearly generates a probability space equivalent to
P(V,M,L, k). We call this alternative the allocation-partition algorithm since it allocates before
partitioning the balls. First, allocate D balls randomly into bins {Q} ∪ V with the restriction that
Q contains exactly ℓ balls and each bin in V contains at least k balls. Then colour the balls u.a.r.
with the following constraints:

(i) exactly imi balls are coloured with ci;
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(ii) for each i = 2, . . . , h, the number of balls with colour ci contained in Q is exactly li.

Finally, take u.a.r. a partition of the balls such that for each i = 2, . . . , h, all balls with colour ci

are partitioned into parts of size i.
To prove Theorem 2.2, we will convert the problem to a question about P(V,M,L, k + 1), in

particular the (w, k + 1)-core of the hypergraph induced in the obvious way by the bins containing
at least k + 1 balls.

A deletion algorithm producing the k-core of a random multigraph was analysed in [6]. The
differential equation method [22] was used to analyse the size and the number of hyperedges of
the final k-core. The degree distribution of the k-core was shown to be a truncated multinomial.
We now extend this deletion algorithm to find the (w, k + 1)-core of H in Mn̄,m̄,h and Gn̄,m̄,h,
analysing it using the partition-allocation model. We also prove Proposition 2.1 by considering the
allocation-partition algorithm which generates P(V,M,0, k + 1).

The deletion algorithm referred to above is the following, and is expressed in the setting of
representing multihypergraphs using bins for vertices, where each hyperedge x is a set h(x) of |x|
balls. Initially let LV be the set of all light vertices/bins, and let LV = V (H) \ LV be the set of
heavy vertices. A light ball is any ball contained in LV .

RanCore Algorithm to derive the (w, k + 1)-core
Input: an h-hypergraph H. Set t := 0.

While neither LV nor LV is empty,
t:=t+1;
Remove all empty bins;
U.a.r. choose a light ball v, let x be the hyperedge that contains v, and let u be the
vertex/bin that contains v;
If |x| ≥ h − w + 2, update x with x \ {u},

otherwise, remove this hyperedge x from the current hypergraph. If any vertex/bin

u ∈ LV becomes light, move u to LV together with all balls in it;
If LV is empty, ouput the remaining hypergraph, otherwise, output the empty graph.

The output is clearly the (w, k + 1)-core of the input hypergraph H.
Theorems 2.2 and 2.3 are proved in [14] by analysing the RanCore algorithm and the differential

equations that result. These equations can be numerically solved when the values of h, w, k and
µ are given. Table 3 gives the results of some computations, where h, w and k are given, µ̃ is
the average degree of the hypergraph at the threshold for T given in Corollary 2.4, and µ̂ is the
corresponding average degree of its core Ĥ. By Corollary 2.7, discussed in the next section, µ̃ is also
our main target, the threshold for orientability. Note that µ̂ must be at least hk/w by the definition
of property T , and that it follows from the trivial upper bound of the orientability threshold given
in the introduction part that µ̃ is at most hk/w.

h w k µ̃ µ̂

3 2 4 5.485 6.65086

3 2 10 14.766 15.5872

3 2 40 59.991 60.0773

10 2 4 19.99999 20.0003

Table 1: Some numerical computation results
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4 The (w, k)-orientability of the (w, k + 1)-core

In this section we prove Corollary 2.8 assuming Theorem 2.6, and study the basic network flow
formulation of the problem that is used in the next section to prove Theorem 2.6.

The proof of the following lemma is provided in [14].

Lemma 4.1 Let H ∈ Mn̄,m̄,h and let Ĥ be the (w, k + 1)-core of H. Let c1 be a constant that can

depend on k, with the constraint that 2 ≤ c1 < h2e2µ̄. Let 0 < γ = ϕ(k, c1) =
(
c1/h

2e2µ̄
)2

. Then

a.a.s. for all S ⊂ V (Ĥ) with |S| < γn, the number of hyperedges partially contained in S is less
than c1|S|.

We next show that for any fixed 0 < γ < 1, Ĥ a.a.s. has property A(γ), defined in Definition 2.5.

Corollary 4.2 Assume that H ∈ Mn̄,m̄,h with m̄ ≤ hk/w, and that Ĥ is the (w, k + 1)-core of H.

Let γ = e−4h−6/4. Then provided k ≥ 4w, a.a.s. either Ĥ is empty or Ĥ has property A(γ).

Proof. Apply Lemma 4.1 with c1 = k/2w. Clearly c1 < ch2e2k, and c1 ≥ 2 provided k ≥ 4w.
Then γ ≤ φ(k, c1). By Definition 2.5, Ĥ a.a.s. has property A(γ).

Proof of Corollary 2.7 Let Ĥ be the (k + 1)-core of the random multihypergraph H ∈ Mn̄,m̄,h.
Let ǫ > 0 be any constant. By Theorem 2.3, there exists a constant δ > 0, such that a.a.s. if
m̄ ≤ f(m̄) − ǫn̄, then

∑w−1
j=0 (w − j)mh−j ≤ kn − δn. By Theorem 2.6 and Corollary 4.2, there

exists a constant N depending only on h and w such that provided k > N , Ĥ a.a.s. has a (w, k)-
orientation. On the other hand, if m̄ ≥ f(m̄) + ǫn̄, then a.a.s.

∑w−1
j=0 (w − j)mh−j ≥ kn + δn,

and hence clearly Ĥ is not (w, k)-orientable. Therefore f(n̄) is a sharp threshold function for
the (w, k)-orientation of Mn̄,m̄,h. By Lemma 3.1, f(n̄) is also a sharp threshold function for the
(w, k)-orientation of Gn̄,m̄,h.

Let G be a non-uniform multihypergraph with the sizes of its hyperedges between h−w+1 to h.
In the rest of the paper, we will use the following notations. Let Eh−j = {x ∈ E(G) : |x| = h − j}.
For any given S ⊂ [n], let mh−j,i(S) := |{x ∈ Eh−j : |x ∩ S| = i}| for any 0 ≤ i ≤ h − j. When the
context is clear we may drop S from the notation. Let S denote the set [n] \S and let d(S) denote
the sum of degrees of vertices in S.

Recall the definition of induced subgraph with parameter w above the statement of Corollary 2.8
in Section 2. The following Lemma generalises Hakimi’s theorem [15, Theorem 4] for graphs, and
is proved in [14] using network flows and the max-flow min-cut theorem in a fashion similar to
that used for numerous combinatorial problems (see [8, 21] for examples). A similar network flow
setting was used in [20, Section 3.3] to study the load balancing problem with w = 1 and h = 2.

Lemma 4.3 A multihypergraph G with sizes of hyperedges between h − w + 1 and h has a (w, k)-
orientation if and only if

d(HS) − (h − w)e(HS) ≤ k|S|, for all S ⊂ V (G).

The following corollary is immediate.

Corollary 4.4 A hypergraph H ∈ Gn̄,m̄,h has a (w, k)-orientation if and only if for any S ⊂ V (H),

d(HS) − (h − w)e(HS) ≤ k|S|.
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Proof of Corollary 2.8. This follows directly from Corollary 2.7 and Corollary 4.4.

For any vertex set S, define

∂∗(S) = d(S) −
w−1∑

j=0

h−j∑

i=w−j+1

(i − (w − j))mh−j,i, (4.1)

which measures a type of expansion in the hypergraph. For each hyperedge x of size h − j which
intersects S with i vertices, its contribution to ∂∗(S) is w − j ≥ 0 if i ≥ w − j + 1 and i ≥ 0
otherwise. Therefore ∂∗(S) ≥ 0 for any S. The following lemma characterises the existence of the
(w, k)-orientation of G in terms of ∂∗(S). (For the proof, see [14].)

Lemma 4.5 The following two graph properties of a multihypergraph G with sizes of hyperedges
between h − w + 1 and h are equivalent.

(i) d(HS) − (h − w)e(HS) ≤ k|S|, for all S ⊂ V (G);

(ii) ∂∗(S) ≥ k|S| +

(
w−1∑

j=0

(w − j)mh−j

)
− kn, for all S ⊂ V (G).

It follows from Lemma 4.3 and Lemma 4.5 that G is (w, k)-orientable if and only if Lemma 4.5
(ii) holds.

For any S ⊂ V (G), let

qh−j(S) =

h−j∑

i=1

imh−j,i, η(S) =

w−1∑

j=0

h−j−1∑

i=1

mh−j,i. (4.2)

In other words, qh−j(S) denotes the contribution to d(S) from hyperedges of size h − j and η(S)
denotes the number of hyperedges which intersect both S and S. When the context is clear, we
may use qh−j and η instead to simplify the notation.

Recall that given a vertex set S, a hyperedge x is partially contained in S if |x ∩ S| ≥ 2. Let
ρ(S) denote the number of hyperedges partially contained in S and let ν(S) denote the number of
hyperedges intersecting S.

The following lemma, proved in [14], shows that, instead of checking Lemma 4.5 (ii), we can
check that certain other events do not occur.

Lemma 4.6 Suppose that for some S ⊂ V (G),

∂∗(S) < k|S| +




w−1∑

j=0

(w − j)mh−j


− kn. (4.3)

Then all of the following hold:

(i) ρ(S) > k|S|/w;

(ii) ν(S) < k|S|;

(iii) (h − w)ρ(S) > d(S) − k|S|;

(iv) If, in addition,

w−1∑

j=0

w − j

h − j
qh−j(S) ≥ (1 − δ)k|S| for some δ > 0, then η(S) < h2δk|S|.
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5 Proof of Theorem 2.6

Recall from Section 2 that M(n,m, k+1) is Mn,m, which is a random multihypergraph with given
edge sizes, restricted to multihypergraphs with minimum degree at least k + 1. In this section we
discuss the only remaining proof, that of Theorem 2.6. This theorem relates the orientability of
M(n,m, k + 1) to a kind of density. Recall that this probability space was important because, by
Proposition 2.1, it gives the distribution of the (w, k + 1)-core Ĥ of H ∈ Mn̄,m̄,h conditioned on
the values of n, the number of vertices and mh−j, the number of hyperedges of size h − j for each
j, in the core.

It is clear, that given values of n and m, the probability space of random multihypergraphs
generated by P([n],M,0, k + 1), with |Mh−j| = (h − j)mh−j (h = 0, . . . , w − 1), is equivalent to
M(n,m, k + 1). So we may, and do, make use of the partition-allocation model for proving results
about M(n,m, k + 1). For the full proof of Theorem 2.6 we refer to [14]. An outline is as follows.

In this setting, ǫ > 0 and k ≥ 2 are fixed. Let G be a random multihypergraph from the
probability space M(n,m, k + 1). Without loss of generality, we may assume that ǫ < 1

2 since ǫ
may be taken arbitrarily small. By the hypothesis of Theorem 2.6, we consider only m such that∑w−1

j=0 (w − j)mh−j ≤ kn − ǫn. We may also assume that
∑w−1

j=0 (w − j)mh−j ≥ kn − 2ǫn since
otherwise, by Theorem 2.3, we can simply add a set of random hyperedges so that the assumption
holds. This is valid because (w, k)-orientability is a decreasing property (i.e. it holds in all subgraphs
of G whenever G has the property).

Let qh−j(S) and η(S) be as defined in (4.2). The partition-allocation model gives a good
foundation for proving that a.a.s. has certain properties concerning the distribution of vertex degrees
and intersections of hyperedge sets with vertex sets. Using this and various other probabilistic tools,
we show that

(a) the probability that G ∈ M(n,m, k + 1) has property A(γ) and contains some set S with
|S| < γn for which both Lemma 4.6(ii) and (iii) holds is o(1);

(b) there exists δ > 0, such that when k is large enough, a.a.s.
∑w−1

j=0
w−j
h−j qh−j ≥ (1 − δ)k|S|, and

the probability of G ∈ M(n,m, k + 1) containing some set S with γn ≤ |S| ≤ (1 − γ)n and
η(S) < h2δk|S| is o(1).

We also show the deterministic result that

(c) no multihypergraph G with property A(γ) contains any sets S with |S| > (1 − γ)n for which
Lemma 4.6(i) holds.

It follows that the probability that G has property A(γ) and contains some set S for which all parts
(i)–(iv) of Lemma 4.6 hold is o(1). Then by Lemmas 4.5 and 4.6,

P(G ∈ A(γ) ∧ G is not (w, k)-orientable) = o(1).

Finally, Lemma 3.1 shows that the result applies to random (simple) hypergraphs as well.
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