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Abstract

We consider a random instance I of k-SAT with n variables and m clauses, where
k = k(n) satisfies k − log2 n → ∞. Let m0 = 2kn ln 2 and let ε = ε(n) > 0 be such that
εn→∞. We prove that

lim
n→∞

Pr(I is satisfiable) =

{
1 m ≤ (1− ε)m0

0 m ≥ (1 + ε)m0

1 Introduction

An instance of k-SAT is defined by a set of variables, V = {x1, x2, . . . , xn} and a set of clauses
C1, C2, . . . , Cm. We will let clause Ci be a sequence (λi,1, λi,2, . . . , λi,k) where each literal λi,l is
a member of L = V ∪ V̄ where V̄ = {x̄1, x̄2, . . . , x̄n}. In our random model, each λi,l is chosen
independently and uniformly from L. 1
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1We are aware that this allows clauses to have repeated literals or instances of x, x̄. The focus of the paper is

on k = O(lnn), although the main result is valid for larger k. Thus most clauses will not have repeated clauses
or contain a pair x, x̄. For moderate size k we could repeat the calculations for randomly chosen clauses without
repeats or instances of x, x̄. We doubt that this would change the nature of our main result, Theorem 1, but it
would complicate its derivation. Of course, for k > n we would be forced to repeat literals or introduce instances
of x, x̄ into each clause.

1



            

Random k-SAT has been well studied, to say the least. If k = 2 then it is known that there is
a satisfiability threshold at around m = n. More precisely, if ε > 0 is fixed and I is a random
instance of 2-SAT then

lim
n→∞

Pr(I is satisfiable) =

{
1 m ≤ (1− ε)n
0 m ≥ (1 + ε)n

This was proved in Chvatál and Reed [7] and sharpened by Goerdt [13], Fernandez de la Vega [9],
Verhoeven [16] and Frieze and Sorkin [11]. The tightest results presently known are due to Bol-
lobás, Borgs, Chayes, Kim and Wilson [3]. Thus random 2-SAT is now pretty much understood.

For k ≥ 3 the story is very different. It is now known that a threshold for satisfiability exists
in some (not completely satisfactory) sense, Friedgut [10]. There has been considerable work on
trying to find estimates for this threshold in the case k = 3 – Chao and Franco [5, 6], Broder,
Frieze and Upfal [4], Frieze and Suen [12], Achlioptas [1], Achlioptas and Sorkin [2], the last
mentioned paper giving a lower bound of 3.26. Upper bounds have been pursued with the same
vigour – Kirousis, Kramakis, Krizanc and Stamatiou [15], Janson, Stamatiou and Vamvakari
[14], Dubois, Boufkhad and Mandler [8], the last-mentioned paper giving an upper bound of
4.506.

For larger values of k, even less is known. It was shown in [7] that if m < 2k

4kn and k is
constant then a random instance of k-SAT is satisfiable with probability tending to 1 and that
if m > 2kn ln 2 then it is unsatisfiable with probability tending to 1 as n → ∞. This is where
it stands for such k. While the focus has been on constant k (in particular k = 2, 3) it is also
worth considering k → ∞. Sometimes allowing parameters to grow simplifies the problem and
this is the case here. We prove the following sharp threshold:

Theorem 1. Suppose ω = k − log2 n→∞. Let

m0 = − n ln 2

ln(1− 2−k)
= (2k +O(1))n ln 2. (1)

so that 2n
(
1− 1

2k

)m0
= 1 and let ε = ε(n) > 0 be such that εn→∞. Let I be a random instance

of k-SAT with n variables and m clauses. Then

lim
n→∞

Pr(I is satisfiable) =

{
1 m ≤ (1− ε)m0

0 m ≥ (1 + ε)m0.

This sheds considerable light on the likely threshold for k fixed but large and we conjecture that
the threshold here is ckn where ck ∼ 2k ln 2 (where ∼ is interpreted as k →∞ arbitrarily slowly).
We also conjecture that the upper bound on the width of the scaling window implied by this
theorem, 2kω′ for any ω′ →∞, is tight. The theorem says nothing about algorithms for finding
satisfying assignments below the threshold or for proving unsatisfiability above the threshold.
Are there polynomial time algorithms which work with high probability in this context?

2 Proof of Theorem 1

Our method of proof is quite straightforward. Let X = X(I) denote the number of satisfying
assignments for I. When m ≥ (1 + ε)m0 we show that E(X)→ 0 and when m ≤ (1− ε)m0 we
use the second moment method to show that Pr(X > 0)→ 1.
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The upper bound: There are 2n possible assignments of truth values to V . Let AT denote the
“all-true” assignment in which xj = T for j = 1, 2, . . . , n. Assume that m ≥ (1 + ε)m0. Then

E(X) = 2nPr(AT satisfies I) = 2n
(

1− 1

2k

)m
=

(
1− 1

2k

)m−m0

(2)

≤ exp

{
−m−m0

2k

}
= 2−εn(1+o(1)) → 0.

The lower bound: Now assume that m = (1 − ε)m0 where εn → ∞ arbitrarily slowly. It is
sufficient to consider this case. The result for larger ε will follow by monotonicity.

First observe that
E(X) = 2εn(1+o(1)) →∞.

We use the inequality

Pr(X > 0) ≥ E(X)2

E(X2)
.

For this we need to estimate E(X2). Thus

E(X2) = E(X)

n∑

t=0

(
n

t

)(
1− 2

2k
+

(
t

2n

)k)m
(3)

and so by (2)

E(X2)

E(X)2
= 2−n

n∑

t=0

(
n

t

)(
1− 2

2k
+
(
t

2n

)k
(
1− 1

2k

)2

)m
(4)

= 2−n
n∑

t=0

(
n

t

)(
1 +

(
t

2n

)k − 1
22k(

1− 1
2k

)2

)m
. (5)

Explanation of (3): We let t denote the number of j for which xj = T in some assignment A
and then consider the probability that both AT and A are satisfying assignments. For a fixed j,
if we choose clause j at random, the probability that at least one of A,AT does not satisfy Cj

is precisely 2
2k
−
(
t

2n

)k
.

Let ut denote the tth term of the sum in (5). Then using Stirling’s formula in the form s! =
(s/e)s

√
2πseσ/(12s) where |σ| ≤ 1 we obtain

lnut ≤ n lnn− t ln t− (n− t) ln(n− t) +m

(
t

2n

)k
+O

( m
22k

)
.

We put t = τn and focus on the function

f(τ) = −τ ln τ − (1− τ) ln(1− τ) + ατk (6)

where α = m/(2kn) ≤ ln 2 + o(1) by (1). Thus

ut ≤ nnenf(t)(1 + o(1)) (7)

uniformly in the range [0, n].

Differentiating (6) with respect to τ we get

f ′(τ) = ln
1− τ
τ

+ αkτk−1. (8)
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We then parameterise τ = 1+β
2 and search for zeros of

g(β) = f ′
(

1 + β

2

)
= ln

(
1− β
1 + β

)
+

αk

2k−1
(1 + β)k−1.

Differentiating this with respect to β,

g′(β) = − 2

1− β2
+
αk(k − 1)

2k−1
(1 + β)k−2. (9)

Note also that

g′(β) =
αk

2k−1
−
(

2− αk(k − 1)

2k−1

)
β +O

(
β2
)

β → 0. (10)

It follows from (9) that f is strictly concave in the range [0, τ2], τ2 = 1+β2

2 , β2 = 1− 5 ln k
k , since

then (1 + β)k−2 < 2k/k2 (k sufficiently large). Within this interval there is by (10) a unique
maximum occurring at τ0 = 1+β0

2 where

β0 =
αk

2k
+O

(
k3

22k

)
.

Now (5) implies that for t = 1+β
2 n, |β − 1

2 | ≤ n−1/2 lnn,

ut =

(
n

t

)(
1 +O

(
km lnn

n1/222k

))
=

(
n

t

)
(1 + o(1))

when k = O(lnn), whilst for k >> lnn

ut =

(
n

t

)(
1 +O

((
1 + β

4

)k))m
=

(
n

t

)
exp

(
O

(
m

(
1 + β

4

)k))
=

(
n

t

)
(1 + o(1)).

Furthermore, if β1 = n−1/2 lnn and t1 =
(

1+β1

2

)
n then for some β̃ ∈ [β0, β1],

f

(
1 + β1

2

)
= f

(
1 + β0

2

)
+

1

2
f ′′(β0)(β1 − β0)2 +

1

6
(β1 − β0)3f ′′′(β̃)

= f

(
1 + β0

2

)
− (β1 − β0)2 +O

(
k2

2k
(β1 − β0)2 + (β1 − β0)3

)

≤ f

(
1 + β0

2

)
− (lnn)2

2n
.

Putting t2 = τ2n we see that

t2∑

t=0

ut ≤ (1 + o(1))

t1∑

t=0

(
n

t

)
+ (t2 − t1)ut1 ≤

(1 + o(1))2n + e−(lnn)2/32n = (1 + o(1))2n. (11)

Now let t3 =
(
1− 1

k

)
n and let t = (1− θ)n ∈ [t2, t3]. Then, from (5),

ut ≤
(
n

t

)(
1 +

(1− θ)k − 1

(2k − 1)(1− 2−k)

)m

≤ exp

(
n

(
θ ln

(e
θ

)
+

(
m(1− θ)k

2kn

)(
1 +O(2−k)

)))

≤ exp
(
n
(
θ ln

(e
θ

)
+ (1− θ)k ln 2

(
1 +O(2−k)

)))

≤ 2n exp(−n(1− o(1)e−1) ln 2)
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where the second-last step uses (1) and the last step uses θ ln
(
e
θ

)
= o(1) and (1− θ)k ≤ e−1.

Thus

t3∑

t=t2

ut = o(2n). (12)

Now for t ≥ t3, t = (1− θ)n, (8) gives

f ′(1− θ) = ln θ − ln(1− θ) + αk(1− θ)k−1 ≥ ln θ − ln(1− θ) + αk/e.

So, clearly f ′(1− θ) ≥ αk/50 for θ ≥ e−αk/3. Putting t4 = bn(1− e−αk/3)c it follows that

f(t/n) ≤ f(t4/n)− αk

50
(t4 − t)/n t3 ≤ t ≤ t4.

Consequently, since k →∞, (7) implies that

t4∑

t=t3

ut = (1 + o(1))ut4 . (13)

Before proceeding, we note from (4) that

un =
2n

E(X)
= o(2n) (14)

and similarly

un−1 =
2n

E(X)
n

(
1 +

1

2k − 1

(
(1− 1/n)k − 1

))m

=
2n

E(X)
n exp

(
−mk

2kn
(1 +O(k/n))

)
(15)

= o(2n). (16)

for k = O(lnn). Here we assume ε lnn → 0 which is consistent with our assumption that
εn→∞. For larger k, the right-hand side of (15) is much smaller and thus causes no problem.

Case 1: eαk/3 > n.
In this case t4 = n− 1 and then we use (13), (14) and (16) to see

n∑

t=t3

ut = o(2n). (17)

Case 2: eαk/3 ≤ n.
For θ ≤ e−αk/3 we see that

f ′(1− θ) = ln θ + αk +O(k2e−αk/3).

Consequently,

θ ≥ 1

n
implies f ′(1− θ) ≥ ln

(
2k

n

)
+O(k2e−αk/3)→∞.

So

n∑

t=t4

ut = (1 + o(1))un = o(2n). (18)

The proof of the lower bound now follows from (11), (12), (17) and (18). 2
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