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Abstract

A d-process for s-uniform hypergraphs starts with an empty hypergraph on n
vertices, and adds one s-tuple at each time step, chosen uniformly at random from
those s-tuples which are not already present as a hyperedge and which consist en-
tirely of vertices with degree less than d. We prove that for d ≥ 2 and s ≥ 3, with
probability which tends to 1 as n tends to infinity, the final hypergraph is satu-
rated; that is, it has dn− sbdn/sc vertices of degree d and the remaining vertices
(if any) are of degree d− 1. This generalises the result for s = 2 obtained by the
second and third authors. In addition, when s ≥ 3, we prove asymptotic equiv-
alence of this process and the more relaxed process, in which the chosen s-tuple
may already be a hyperedge (and which therefore may form multiple hyperedges).
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1 Introduction

Let s, d and n be positive integers. Consider the random process G = G(s, d, n) which
adds s-tuples, one by one, to an originally empty s-uniform hypergraph on n vertices,
with the restriction that the next hyperedge is uniformly chosen out of all unused s-
tuples containing just vertices which have current degree less than d. Let us call the
process an s-graph d-process. After at most bdn/sc steps this process gets stuck at
a final hypergraph Gf , which, however, does not need to be d-regular, even when s
divides dn. For instance, Gf may contain a clique component of k vertices, each of
degree

(
k−1
s−1

)
≤ d − 1. Nevertheless, the process always lasts for at least bdn/sc − c

steps, where c = c(s, d). (This is because the subgraph of Gf induced by the vertices
with degree less than d must either have fewer than s vertices, or form a clique of size
k where

(
k−1
s−1

)
≤ d− 1, as above.)

We say that an event holds asymptotically almost surely (a.a.s.) if the probability
that it holds tends to 1 as n→∞. An s-graph d-process is said to saturate if the final
hypergraph has n − i vertices of degree d and the remaining i vertices all have degree
d − 1, where i = dn − sbdn/sc. (If dn is divisible by s then this means that the final
hypergraphs is d-regular.) Ruciński and Wormald [2] proved that for s = 2, that is for
the case of graphs, the final graph of a d-process a.a.s. is d-regular, when dn is even, or
has one vertex of degree d− 1 and the rest of degree d, when dn is odd. In other words,
the process a.a.s. saturates. We show in this paper that for s ≥ 3, an s-graph d-process
a.a.s. saturates.

We will achieve our goal by studying the following relaxed s-graph d-process GM =
GM(s, d, n), which allows multiple hyperedges. Call a vertex unsaturated if it has degree
less than d. At each step a hyperedge is chosen uniformly at random from the set of all
s-tuples of unsaturated vertices, regardless of whether it has been already chosen. The
relaxed process may also get stuck before saturation, but the number of unsaturated
vertices in the final hypergraph must be smaller than s. We will prove that the relaxed
process a.a.s. saturates and that a.a.s. it does not contain multiple hyperedges. Finally,
we establish asymptotic equivalence of the original (simple) process and the relaxed
process.

Unless otherwise stated, all asymptotics are as n → ∞, while both s and d are
constants with s ≥ 3 and d ≥ 2.

2 Results and structure of the argument

In what follows, we use the term s-graph to mean an s-uniform hypergraph of maximum
degree at most d, which may have multiple hyperedges. Let us now describe the processes
G(s, d, n) and GM(s, d, n) in more detail and establish some preliminary relation between
them. (We will often abbreviate G(s, d, n) and GM(s, d, n) to G and GM .) The underlying
set of both processes is the set of sequences of s-graphs on n vertices, π = (G0, . . . , Gf )
such that

(i) |E(Gt)| = t for 0 ≤ t ≤ f ,
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(ii) E(Gt) ⊂ E(Gt+1) for 0 ≤ t ≤ f − 1,

(iii) Gf is the final s-graph in the relevant process (simple or relaxed); that is, a
maximal hypergraph (or multi-hypergraph) with maximum degree at most d.

Here E(G) is the multiset of hyperedges of the s-graph G, and the value of f lies between
bdn/sc − c and bdn/sc, for c = c(s, d) constant.

Note that different sequences are produced by the two processes. The simple process
G may produce sequences where the final s-graph has s or more unsaturated vertices,
while the relaxed process GM only produces sequences where the final s-graph has at
most s− 1 unsaturated vertices. This difference causes some difficulties. For instance, a
sequence produced by G can appear as a subsequence in GM , where it is continued for a
few more steps. LetM be the set of all sequences satisfying (i)–(iii) above which contain
some multiple hyperedges. Partition the remaining sequences as S<s ∪ S≥s, where S<s
is the set of all sequences with no multiple hyperedges and at most s − 1 unsaturated
vertices in Gf , while S≥s is the set of all sequences with no multiple hyperedges and at
least s unsaturated vertices in Gf . Both G and GM can be considered as (non-uniform)
probability spaces with the underlying set

Ω =M∪S<s ∪ S≥s,
where the support of G is S<s ∪ S≥s and the support of GM is M∪ S<s. Given π =
(G0, . . . , Gf ) ∈ Ω, let ut be the number of unsaturated vertices in Gt, and let wt be
the number of hyperedges in Gt which contain only unsaturated vertices. We may now
complete the definition of G and GM , by assigning for each π ∈ S<s ∪ S≥s

PG(π) =

f−1∏

t=0

((
ut
s

)
− wt

)−1

,

while for π ∈M∪ S<s,

PGM (π) =

f−1∏

t=0

(
ut
s

)−1

.

In particular, for all π ∈ S<s we have PG(π) ≥ PGM (π). Except for very few cases, this
inequality is strict.

For every π ∈ S≥s there is a nonempty set Mπ ⊂M of sequences which are exten-
sions of π obtained by adding at most c = c(s, d) multiple hyperedges. (This corresponds
to taking the final s-graph Gf from the simple process π ∈ S≥s, and running a few more
steps of the relaxed process on this s-graph until it terminates.) Note that the sets
Mπ are mutually disjoint for all π ∈ S≥s. Call a non-empty event E ⊆ Ω persistent if
E ∩Mπ 6= ∅ for all π ∈ E ∩ S≥s.
Lemma 1 For every persistent event E ⊆ Ω,

PG(E) = O (PGM (E)) ,

where the constant hidden in O(·) depends on s and d only.

3



           

Proof. First, let us compare the probabilities of the elementary events in both spaces.
Take π = (G0, . . . , Gf ) ∈ S<s ∪ S≥s. Let rt = nd/s − t be the maximum residual time
(at time t). It is easy to check that for t = 0, . . . , f , we have wt ≤ (d − 1)ut/2 and
rts/d = n − st/d ≤ ut ≤ srt. Hence for some constants C0, C1, C2 depending on s and
d only, we have

PG(π) ≤
f−1∏

t=0

(
ut
s

)−1

·
f−1∏

t=0

(
ut
s

)
(
ut
s

)
− (d− 1)ut/s

≤
f−1∏

t=0

(
ut
s

)−1

· exp

(
f−1∑

t=0

C1 ut
−(s−1)

)

≤
f−1∏

t=0

(
ut
s

)−1

· exp




bdn/sc∑

rt=bdn/sc−f+1

C2 r
−(s−1)
t




< C0

f−1∏

t=0

(
ut
s

)−1

. (1)

When π ∈ S<s this simply says

PG(π) ≤ C0 PGM (π).

It remains to consider π = (G0, . . . , Gf ) ∈ S≥s. For any π′ = (G0, . . . , Gf , . . . , GF ) ∈
Mπ, we have F − f ≤ c = c(s, d) and ut ≤ uf ≤ srf ≤ sc for f ≤ t ≤ F − 1. It follows
that

PGM (π′) =
F−1∏

t=0

(
ut
s

)−1

≥
(
sc

s

)−c
·
f−1∏

t=0

(
ut
s

)−1

= c0

f−1∏

t=0

(
ut
s

)−1

where c0 = c0(s, d) =
(
sc
s

)−c
< 1. Combining this with (1) gives

PG(π) ≤ C0

f−1∏

t=0

(
ut
s

)−1

≤ C0

c0

PGM (π′).

Now, let E ⊆ Ω be a persistent event. For every π ∈ E ∩ S≥s, fix one π′ ∈ E ∩Mπ.
Then, by the above, and the obvious fact that PG(M) = 0,

PG(E) ≤ C0

∑

π∈E∩S<s
PGM (π) +

C0

c0

∑

π∈E∩S≥s
PGM (π′) ≤ C PGM (E),

with C = C0/c0.

If E is persistent then the above lemma allows one to prove that PG(E) = o(1) by
proving that PGM (E) = o(1), which is typically easier. Unfortunately, the event E that
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the process does not saturate is not persistent. To see this, consider π ∈ S≥s in which
Gf has exactly s unsaturated vertices, which all have degree d−1 and span a hyperedge.
Then Gf is the final graph of the simple process which has not saturated, so π ∈ E .
Now Mπ has a unique element π′ = (G0, G1, . . . , Gf , GF ) where F = f + 1 and GF is
the final s-graph in the relaxed process. Note that GF has no unsaturated vertices, so
the relaxed process has saturated and π′ 6∈ E .

Instead we work with a property Iτ which is defined for a given sequence τ = τ(n)→
∞. Namely, π = (G0, . . . , Gf ) ∈ Ω satisfies Iτ if τ > c and the unsaturated vertices in
the s-graph Gbdn/sc−τ are all of degree d−1 and form an independent set. This property
trivially (and deterministically) implies saturation. Moreover, for n sufficiently large
both the event Iτ and its negation ¬Iτ are persistent. (In fact something stronger is
true: if π ∈ Iτ ∩ S≥s then Mπ ⊆ Iτ , and similarly for ¬Iτ .) To show that Iτ holds
for GM a.a.s., we will first focus on the event that the process achieves minimum degree
d−1 at least some ω(n)→∞ steps from the end, deferring the question of independence
for later. For j = 0, . . . , d − 2, let Tj (respectively, TMj ) be the latest time t when the
minimum degree of Gt in G (respectively, GM) is j. The following lemma lies at the
heart of the whole argument.

Lemma 2 For s ≥ 3 and d ≥ 2, there is a sequence ω(n)→∞ such that a.a.s.

TMd−2 ≤
⌊
dn

s

⌋
− ω(n).

Using an adaptation of a simple lemma from [2] we will be able to conclude the following.
(The proofs of Lemma 2 and Corollary 1 are given later in this section.)

Corollary 1 There is a sequence τ = τ(n)→∞ such that a.a.s. GM ∈ Iτ .

It is now easy to prove the main result of this paper.

Theorem 1 For s ≥ 3 and d ≥ 2, the s-graph d-process G(s, d, n) and the relaxed
s-graph d-process GM(s, d, n) both a.a.s. saturate.

Proof. The fact that GM(s, d, n) a.a.s. saturates follows immediately from Corollary 1.
Next, recall that the event ¬Iτ is persistent for n sufficiently large. Applying Lemma 1
to ¬Iτ and using Corollary 1 we obtain the corresponding statement for G; namely,
there is a sequence τ = τ(n) → ∞ such that a.a.s G ∈ Iτ . This immediately implies
that G(s, d, n) a.a.s. saturates.

We now reveal our strategy of proof of Lemma 2. We will show that for some
α = α(n) → ∞, a.a.s. TM0 < bdn/sc − α. In that case, at time TM0 + 1 all vertices
have degree at least 1 and there is plenty of time to go. To look at the process in a
slightly different way, define the degree deficit of a vertex i at time t to be d− degGt(i).
Then TM0 + 1 is the first time at which the maximum degree deficit drops from d to
d− 1. This calls for induction on d, except that the initial situation now is different in
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that we have vertices of varying degrees (or degree deficits). In order to handle it, we
introduce a relaxed generalised s-graph d-process on the vertex set [n] as follows. Each
vertex i is assigned an initial degree deficit mi, where 1 ≤ mi ≤ d, with d = maximi.
(Note that each initial deficit is positive.) The process produces a sequence of s-graphs
(G0, G1, . . . , Gf ) on the vertex set [n], starting with the empty s-graph G0 (with no
hyperedges.) A vertex i of Gt is unsaturated if degGt(i) < mi. Let Ut be the set of
unsaturated vertices in Gt. At time t+ 1, the s-graph Gt+1 is formed from Gt by adding
a new hyperedge, chosen uniformly at random from the set of all subsets of Ut of size s.
Note that the sequences (G0, G1, . . . , Gf ) produced by a relaxed generalised s-graph
d-process also satisfy conditions (i)–(iii) given at the start of this section, under a new
definition of ‘final’ in (iii).

Let m =
∑n

i=1 mi be the total initial degree deficit. Then the generalised d-process
runs for at most bm/sc steps. Note that

n ≤ m ≤ dn

and that the total degree deficit at time t is m−st. A vertex i with degGt(i) = 0 is called
an isolate (at time t). Define Ut = |Ut| to be a random variable counting the unsaturated
vertices at time t, and let It be the number of isolates at time t with (maximum) deficit
d. Clearly

m− st
d

≤ Ut ≤ m− st− (d− 1)It. (2)

We now state three further lemmas which will imply Lemma 2. The first is just [2,
Lemma 3.1] adapted to hypergraphs. In fact, the situation here is easier, since we have
no “forbidden hyperedges”. We omit the proof.

Lemma 3 For s ≥ 2 and d ≥ 1, consider a relaxed generalised s-graph d-process, with
total initial deficit m. Fix j with 1 ≤ j ≤ s. For 0 ≤ u < v ≤ bm/sc, let P(j, u, v)
be the conditional probability that the vertices 1, . . . , j remain isolated in Gv, given they
were isolated in Gu. There exists an absolute constant C > 0 such that

P(j, u, v) ≤ C

(bm/sc − v + 1

bm/sc − u

)j

for all 0 ≤ u < v ≤ bm/sc.

The following lemma is proved in the next section using the differential equations
method from [4].

Lemma 4 For s ≥ 2 and d ≥ 2 consider a relaxed generalised s-graph d-process on n
vertices, with total initial deficit m. Let It be the number of isolates of deficit d at time
t. There exists a function w(x) satisfying

lim
x→1/s−

log(1/s− x)w(x)

(1− sx)
= − 1

d− 1
, (3)
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such that for all ε > 0, a.a.s.

It ≤ mw(t/m) + o(m)

for 0 ≤ t ≤ m/s − εm. (Here ‘a.a.s.’ is with respect to m and uniform over all initial
deficit assignments m1 + · · ·+mn = m. )

Let TRGj be the last time at which the maximum degree deficit (in the relaxed
generalised s-graph d-process) is d − j, for 0 ≤ j ≤ d − 2. (For the initial deficit
assignment mi ≡ d, this is the same as previously defined TMj .)

Lemma 5 For s ≥ 2 and d ≥ 2 consider a generalised s-graph d-process on n vertices,
with total initial deficit m. Then, for some α(n) → ∞ a.a.s. there are no isolates of
deficit d at time bm/sc − α(n). Equivalently, TRG0 < bm/sc − α(n) (or Ibm/sc−α(n) = 0)
a.a.s..

Proof. The result will follow if we show that for each integer α ≥ 2,

lim
m→∞

P(Ibm/sc−α ≥ 1) = 0. (4)

Indeed, from this it is a simple exercise to show that there exists a sequence α(m)→∞
for which (4) holds too. (Note that m = m(n)→∞ if and only if n→∞.)

Let vα = m/s− α. By Lemma 3, for all u < vα

P(Ivα ≥ 1) ≤ EIvα = E(E(Ivα |Iu))

≤ EIu · C
(

α + 1

m/s− u

)
(5)

By Lemma 4, for all ε > 0, setting uε = m/s− εm, a.a.s.

Iuε ≤ mw(1/s− ε) + o(m).

Since always Iu ≤ m, this yields that

EIuε ≤ mw(1/s− ε) + o(m).

To prove (4), for each δ > 0 choose ε so small that

w(1/s− ε) < εδ

2Cα
.

By (3), such a choice is always possible, since limε→0 log(1/ε) = ∞. Now choose suffi-
ciently large m0 so that for all m ≥ m0 we have uε < vα, and hence

EIuε <
εδm

C(α + 1)
.
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Consequently, by (5) with u = uε, P(Ivα ≥ 1) < δ.

With Lemma 5 at hand, we can quickly prove Lemma 2.

Proof of Lemma 2. We prove the statement in the lemma for relaxed generalized
processes by induction on d. For d = 2 it coincides with the statement of Lemma 5.
For d ≥ 3, we first apply Lemma 5, and then pretend that we start a new (relaxed
generalised) s-graph (d − 1)-process at time T0 + 1. More specifically, the new process
has possibly a smaller number of vertices n̂, and smaller deficiencies m̂i. Indeed, we
ignore any saturated vertices at time T0 + 1, namely those i with degGT0+1

(i) = mi, and

reset the value of mi by subtracting degGT0+1
(i), for all remaining vertices i. Hence the

new total deficit m̂ = Θ(n̂). The new maximum length of the process bm̂/sc ≥ α(n)
tends to infinity as n tends to infinity. But n̂ ≥ sbm̂/sc/d, and so n̂ and m̂ also tend to
infinity with n. We apply the inductive hypothesis to the new process, replacing d with
d− 1.

We conclude this section with a proof of Corollary 1.

Proof of Corollary 1. Pick up the process at time Td−2 + 1. By Lemma 2 we know
that a.a.s there are at least ω(n) steps to go, and as in the proof of Lemma 2, we
may view the remaining steps as a new, relaxed generalised s-graph 1-process. At time
bdn/sc−ω, in the underlying s-graph of the original process there are O(ω) hyperedges
spanned by the unsaturated vertices. Apply Lemma 3 with j = s, u = bdn/sc − ω and
v = bdn/sc − τ for τ = ω1/2, to each of these hyperedges in turn, to conclude that the
expected number of those of them which at time bdn/sc − τ still contain unsaturated
vertices is

O
(
ω
( τ
ω

)s)
= o(1).

Then a.a.s. the set of unsaturated vertices at remaining time τ is independent.

3 Analysis with differential equations

In this section we prove Lemma 4 by applying the following result on approximation
by differential equations [5, Theorem 3], which is a simplified version of [4, Theorem
6.1]. First some definitions. Given a variable m, let (X0, X1, . . . , Xfm) be a discrete-
time Markov chain with the state space Λ = Λm. We are interested in asymptotics as
m→∞.

Assume there are a random variables Y1, . . . , Ya of interest, where a is a constant,
given by Yi(t) = yi(Xt) where yi is a deterministic function yi : Λ → R for 1 ≤ i ≤
a. Note that (Y1(t), . . . , Ya(t)), t = 1, . . . , fn, forms a random process whose scaled
trajectory (t/m, Y1(t)/m, . . . , Ya(t)/m) is to be approximated.

For any domainD ⊆ Ra+1 define the stopping time TD(Y1, . . . , Ya) to be the minimum
t such that (t/m, Y1(t)/m, . . . , Ya(t)/m) /∈ D. This will be written as TD for short. We
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say something is true always if it holds with probability 1, which, for discrete probability
spaces, means that it holds for all elements of the underlying space which have non-zero
probability. By f : Rs → R being Lipschitz on a set D ⊆ Rs, we mean that for some
C > 0, for all ε′ > 0, |f(x)− f(x0)| < Cε′ whenever ||x− x0|| < ε′ with x, x0 ∈ D. (In
particular we can take || · || to be the `∞-norm on Rs.)

Theorem 2 With notation as above, assume that D ⊆ Ra+1 is closed and bounded and
contains the set

{(0, z1, . . . , za) : P(Yi(0) = zim, 1 ≤ i ≤ a) 6= 0 for some m}

of all possible initial points of the scaled process. Furthermore, assume that for 1 ≤ i ≤ a,

(i) for some constant β
max
1≤i≤a

|Yi(t+ 1)− Yi(t)| ≤ β

always for t < TD,

(ii) for some functions fi : Ra+1 → R which are Lipschitz on an open set containing
D,

E(Yi(t+ 1)− Yi(t) | Xt) = fi(t/m, Y1(t)/m, . . . , Ya(t)/m) + o(1)

always for t < TD.

Then the following are true.

(a) For all (0, ẑ1, . . . , ẑa) ∈ D the system of differential equations

dzi
dx

= fi(x, z1, . . . , za), i = 1, . . . , a

has a unique solution in D for zi : R → R passing through (0, ẑ1, . . . , ẑa), which
extends for positive x past some point at the boundary of D;

(b) Asymptotically almost surely,

Yi(t) = mzi(t/m) + o(m) (6)

uniformly for 0 ≤ t ≤ min{σm, TD} and for each i = 1, . . . , a, where zi(x) are as
in (a) with ẑi = Yi(0)/m, and σ denotes the least x-coordinate of the solution in
(a) on the boundary of D.

In part (b) of this theorem, “uniformly” refers to the convergence implicit in the o(m)
term of (6). If ∂D denotes the boundary of D, then σ from part (b) is defined by

σ = min {x > 0 | (x, z1(x), . . . , zd(x)) ∈ ∂D} .

Now we define the random variables to which we will apply this theorem. Take
Xt = Gt for t ≥ 0, where (G0, G1, ...) is the relaxed, generalised s-graph d-process on n
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vertices, and let Y
(t)
j be the number of vertices with degree deficit j in Gt for 1 ≤ j ≤ d.

Then It = Y
(t)
d , and Ut = Y

(t)
1 + · · ·+Y

(t)
d . Since all initial deficits are positive, the total

initial deficit m =
∑d

j=1 jY
(0)
j = Θ(n). We will do asymptotics with respect to m.

It is not difficult to show that

E(Y
(t+1)
j − Y (t)

j | Gt) =




s
(
Y

(t)
j+1 − Y (t)

j

)
/
(
Y

(t)
1 + · · ·Y (t)

d

)
for 1 ≤ j < d,

−sY (t)
d /

(
Y

(t)
1 + · · ·Y (t)

d

)
for j = d.

Now we switch to continuous variables. The variable zj will a.a.s. approximate Y
(t)
j /m.

For 1 ≤ j ≤ d, let

fj(z1, . . . , zd) =

{
s(zj+1 − zj)/(z1 + · · ·+ zd) for 1 ≤ j < d,

−szd/(z1 + · · ·+ zd) for j = d.

Then

E(Y
(t+1)
j − Y (t)

j | Gt) = fj(Y
(t)

1 /m, . . . , Y
(t)
d /m) (7)

for 1 ≤ j ≤ d.
Fix a constant ε > 0. We will define the domain D so that the solution exits

at a convenient point arbitrarily close to the end of the process, while avoiding the
singularities of the fj. Specifically, let

D = {(x, z1, . . . , zd) | −ε ≤ x ≤ 1/s− ε, −ε ≤ zj ≤ 1 + ε for 1 ≤ j ≤ d,

z1 + · · ·+ zd ≥ sε/2d} .

We check the conditions of Theorem 2. Clearly D is closed, bounded and independent of
m. Note also that D contains the set of all (scaled) possible initial points of the process,
namely the set

{
(0, ẑ1, . . . , ẑd) | P(Y

(0)
j = ẑjm for 1 ≤ j ≤ d) > 0 for some m

}
.

Furthermore, we have |Y (t+1)
j − Y

(t)
j | ≤ s always. So take β = s for part (i). For

1 ≤ j ≤ d, it is easy to see that fj is Lipschitz on some open set D0 containing D (for
instance, choose D0 open and bounded such that the closure of D0 does not contain any
singularities of fj). Hence (ii) follows from (7). Thus the conditions of the theorem are
satisfied. We conclude that a.a.s.

Y
(t)
j = mzj(t/m) + o(m) (8)

uniformly for 0 ≤ t ≤ min{σm, TD}, where for 0 ≤ j ≤ d, the functions zj(x) form the
unique solution of the system of differential equations

dzj
dx

= fj(z1, . . . , zd) for 1 ≤ j ≤ d
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on the domain D, with zj(0) = Y
(0)
j /m.

Now we determine the values of TD and σ. By (2) we see that Ut ≥ (m− st)/d. So

Ut ≥ sεm/d whenever 0 ≤ t ≤ m/s − εm. Clearly 0 ≤ Y
(t)
j ≤ m for all j, t. Therefore

the scaled trajectory (t/m, Y1(t)/m, . . . , Yd(t)/m) cannot approach any boundary of D
other than x = 1/s − ε. This proves that TD = dm(1/s− ε)e. So min{σm, TD} = σm.
Next we show that σ = 1/s− ε.

By (8), within D, inequalities satisfied by the components of the scaled trajectory

(t/m, Y
(t)

1 (t/m), . . . , Y
(t)
d (t/m)) are also satisfied (within additive error o(1)) by the

corresponding components of the differential equation solution F = (x, z1, . . . , zd) for
t ≤ σm. Thus, since the functions fi are Lipschitz, no boundary of D other than
x = 1/s − ε can be approached, to within distance o(1), by F (for m large enough).
Hence the solution of the differential equation may not reach any boundary of D other
than x = 1/s− ε, establishing that σ = 1/s− ε.

For the remainder of the proof we focus on It = Y
(t)
d , the number of isolates with

deficit d at time t. By (8), It a.a.s. satisfies

It ≤ mzd(t/m) + o(m)

for 0 ≤ t ≤ m/s− εm. But

dzd
dx

= − szd
z1 + · · ·+ zd

≤ − szd
1− sx− (d− 1)zd

for 0 ≤ x ≤ 1/s− ε, using (8) and the right hand inequality of (2). For if dzd/dx were
greater than this right hand side, it would be greater by at least some constant amount,
contradicting (8) for m large enough.

Let w(x) be the function which agrees with zd(0) at x = 0 and which has derivative
suggested by this upper bound. That is, w(x) is the solution of

dw

dx
= − sw

1− sx− (d− 1)w

with w(0) = I0/m. Then zd(x) ≤ w(x) for 0 ≤ x ≤ 1/s− ε, and so a.a.s.

It ≤ mw(t/n) + o(m) (9)

for 0 ≤ t ≤ m/s− εm. Simple calculations (as in [2, 3]) show that w(x) satisfies

log(1/s− x)w(x)

(1− sx)
→ − 1

d− 1

as x tends to 1/s from below. This completes the proof of Lemma 4.

4 Asymptotic equivalence of the simple and relaxed

processes

Informally, two (sequences of) probability spaces are said to be asymptotically equivalent
if the probability of any event in one space differs by at most o(1) from the probability
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of that event in the other space. (By ‘event’ we really mean a sequence of events indexed
by n.) In this section we prove that the two processes G and GM are asymptotically
equivalent. (In particular, this implies that G and GM are contiguous ; see, e.g., [1].)

First we show that a.a.s. the relaxed process does not create multiple hyperedges.
The calculations are similar to those in the proof of Lemma 1. Note that Lemma 6 does
not hold for s = 2, that is, for graph d-processes.

Lemma 6 For s ≥ 3 and d ≥ 2, the relaxed s-graph d-process a.a.s. creates no multiple
hyperedges.

Proof. By Corollary 1 we know that at time bdn/sc − τ(n), for some τ(n) → ∞, the
unsaturated vertices all have degree d − 1 and form an independent set. So, from that
point onward there is no danger of creating multiple hyperedges. To complete the proof,
it remains to show that a.a.s. no repeated hyperedges are formed in the first bdn/sc−τ(n)
steps. As soon as a hyperedge is formed in the process, call that hyperedge forbidden for
the remainder of the process. The maximum number of forbidden hyperedges at time t
is (d − 1)Ut/s. Note also that Ut ≥ rts/d, where rt = nd/s − t is the remaining time.
Therefore, the probability that a forbidden hyperedge is selected at time t is at most

(d− 1)Ut

s
(
Ut
s

) = O(Ut
−(s−1)) = O(r

−(s−1)
t ).

Thus, setting r = rt, the probability that a multiple hyperedge is created in the first
dn/s− τ(n) steps is at most

O




∞∑

r=τ(n)

r−(s−1)


 = O

(∫ ∞

r=τ(n)

r−2dr

)
= O(τ(n)−1) = o(1).

By Lemma 6, together with Lemma 1 and Theorem 1, the contiguity of G and GM
follows easily. We will now establish the asymptotic equivalence of the two processes,
which is a much stronger statement.

Theorem 3 For s ≥ 3 and d ≥ 2, the processes G and GM are asymptotically equivalent
in the sense that for every event E ⊆ Ω we have

PG(E)−PGM (E) = o(1).

Proof. Define an auxilliary probability space G∗ acting on the (infinite) set Ω∗ of se-
quences of s-tuples which result from the following random experiment. Start with an
empty sequence and an empty s-graph on n vertices. At each time step, choose an
s-tuple of unsaturated vertices as in the relaxed process, i.e. with no concern about
repetitions. Add this s-tuple to the sequence, but only add it to the s-graph if it is not
already present. Continue in this manner so long as the evolving s-graph has an s-tuple
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of unsaturated vertices which is not a hyperedge (this may be true forever). If no such
s-tuple is present, then stop provided that there are fewer than s unsaturated vertices,
otherwise move to the second phase. In the second phase continue to randomly choose
available s-tuples, but now add them to both the sequence and the s-graph, despite
the fact that they are certainly already present as hyperedges in the s-graph. Stop the
second phase when fewer than s unsaturated vertices are present in the s-graph.

Let us emphasize that the set Ω∗ consists of sequences of all chosen s-tuples, but we
associate each one with an s-graph obtained by crossing out all repeated s-tuples except
those chosen in the final phase. The s-graph determines when the experiment stops.
Note that the same s-graph can be obtained from (infinitely) many sequences in Ω∗.

The sequences in Ω∗ split into two disjoint sets: Ω∗ =M∗ ∪S∗<s, whereM∗ consists
of those with multiple s-tuples, and S∗<s is a copy of S<s. For each π ∈ S<s we have

PG∗(π) = PGM (π). (10)

Therefore, by Lemma 6,

PG∗(M∗) = 1−PG∗(S∗<s) = 1−PGM (S<s) = PGM (M) = o(1).

If π′ ∈ Ω∗, let ρ(π′) be the sequence obtained from π′ by crossing out all but the first
occurrence of any s-tuple in π′. By definition of G∗, we have PG(π) = PG∗(ρ−1(π)) for
all π ∈ S<s. (Note that the sets ρ−1(π) are infinite.) Now, let E ⊆ Ω be an arbitrary
event. Without loss of generality we may assume that E ⊆ S<s (since the events S≥s
and M a.a.s. do not hold in either G or GM). Define an auxilliary event E∗ ⊆ Ω∗ by

E∗ = {π′ ∈ Ω∗ | ρ(π′) ∈ E} =
⋃

π∈E
ρ−1(π),

where the union is disjoint. Notice that sequences in E∗ never entered the final phase of
the experiment. Now

PG(E) =
∑

π∈E
PG(π) =

∑

π∈E
PG∗(ρ

−1(π)) = PG∗(E∗)

by the definition of E∗. Moreover, using (10), PG∗(E∗ ∩ S∗<s) = PGM (E). Hence,

PG(E) = PG∗(E∗) = PG∗(E∗ ∩ S∗<s) + PG∗(E∗ ∩M∗) = PGM (E) + o(1).
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