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Abstract

Select four perfect matchings of 2n vertices, independently at random. We find the
asymptotic probability that each of the first and second matchings forms a Hamilton
cycle with each of the third and fourth. This is generalised to embrace any fixed
number of perfect matchings, where a prescribed set of pairs of matchings must
each produce Hamilton cycles (with suitable restrictions on the prescribed set of
pairs). We also show how the result with four matchings implies that a random
d-regular graph for fixed even d ≥ 4 asymptotically almost surely decomposes into
d/2 Hamilton cycles. This completes a general result on the edge-decomposition of a
random regular graph into regular spanning subgraphs of given degrees together with
Hamilton cycles, and verifies conjectures of Janson and of Robinson and Wormald.

1 Introduction

Our main concern in this paper is to address two questions. The first is whether a
random d-regular graph for even d asymptotically almost surely (a.a.s.) has an edge-
decomposition into Hamilton cycles. Here and in all our asymptotic statements,
we take n → ∞, with n restricted to even integers in statements about d-regular
graphs if d is odd. Related to this, we also consider algorithms for finding these
edge-decompositions in random regular graphs. The second question can be phrased
in general as follows: given a set of randomly generated perfect matchings of an even
number of vertices, what is the probability that each of a prescribed set of pairs
of those matchings induces a connected graph (that is, a Hamilton cycle) on those
vertices? This question was actually motivated by the first, although the relationship
between the two questions will only appear in the proof of Theorem 1 below.
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Microsoft Research.
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1.1 Hamiltonian decompositions and contiguity

By a complete hamiltonian decomposition of a d-regular graph G we mean a set of
bd/2c edge-disjoint Hamilton cycles of G. If d is odd, the left-over edges must form
a perfect matching. Let Gn,d denote the uniform probability space whose elements
are the d-regular graphs on the vertex set [n] = {1, . . . , n}. Conjecture 1 in [9] was
essentially that if d ≥ 4 then G ∈ Gn,d a.a.s. has a complete hamiltonian decompo-
sition. (Here we say “essentially” because of the unimportant restriction to even n
in [9].) It is already known (see [11, Section 4]) that this conjecture follows from the
case d = 4, which is given explicitly as Corollary 1 below.

We prove Corollary 1 using the small subgraph conditioning method, which origi-
nated in the papers of Robinson and Wormald [8, 9], from which the general method
was set forth by Molloy et al. [6] and by Janson [4]; see [11] for a full development.
This method is of use in certain cases when most of the variance of the random vari-
able of interest is caused by the influence of a set of other random variables. In all
cases where this method has been applied, the variable of interest has been a count of
large subgraphs (such as Hamilton cycles) and the other variables have been counts
of small subgraphs (such as cycles of given fixed lengths).

The results we obtain are best described in terms of contiguity. Let Fn and F̂n be
two discrete probability spaces which have the same underlying set for each n ≥ 1.
We say that the two sequences of spaces (Fn) and (F̂n) are contiguous if any sequence
of events An (n ≥ 1) is true a.a.s. in (Fn) if and only if it is true a.a.s. in (F̂n). In
this case we write Fn ≈ F̂n and by a slight abuse of notation say that Fn and F̂n
are contiguous. As in [11], if F and F̂ are probability spaces of random d-regular
graphs or multigraphs on the same vertex set, we define their sum F + F̂ to be the
space whose elements are defined by the random multigraph G ∪ Ĝ where G ∈ F
and Ĝ ∈ F̂ are generated independently. Similarly, define the graph-restricted sum
of F and F̂ , denoted by F ⊕ F̂ , to be the space which is the restriction of F + F̂ to
simple graphs (i.e. with no multiple edges). In order to maintain identical underlying
sets for spaces which are to be related, the sum space F + F̂ is extended to include
all d-regular multigraphs on the same vertex set, with all multigraphs not already
appearing being given probability 0. Similarly, F ⊕ F̂ is extended to include the
underlying set of Gn,d. Defining Hn to be a random Hamilton cycle on the same
vertex set as Gn,d, we can now state the following.

Theorem 1 Hn ⊕Hn ≈ Gn,4.

Since the event of having two edge-disjoint Hamilton cycles occurs with probability
1 in Hn ⊕Hn, this theorem immediately implies the following.

Corollary 1 G ∈ Gn,4 a.a.s. has two edge-disjoint Hamilton cycles.

Whenever it works, the small subgraph conditioning method gives the asymptotic
distribution of the numbers of graph decompositions concerned. Thus, the number of
pairs of edge-disjoint Hamilton cycles in G ∈ Gn,4 is asymptotically the exponential
of a linear combination of infinitely many independent Poisson variables (see [4,
Theorem 1] or [11, Theorem 4.3]).

We approach random d-regular graphs by using the standard pairing model (see
Bollobás [1]). Consider dn points, with d points in each of n buckets, and take a
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random pairing of all the points. We call this uniform probability space Pn,d. Letting
the buckets be vertices and each pair represent an edge (which joins the buckets
containing its two vertices), we obtain a random regular pseudograph (possibly having
loops and multiple edges). Denote this probability space by G∗n,d. Graphs with no
loops or multiple edges occur with equal probabilities, so the restiction of G∗n,d to
(simple) graphs gives the probability space Gn,d.

As was widely expected, our proof of Corollary 1 simultaneously gives a proof the
following result, which answers affirmatively a conjecture of Janson [4, Conjecture
2]. For this we need to define the probability space G′n,4 to be the restriction of G∗n,4
to loopless multigraphs.

Theorem 2
Hn +Hn ≈ G′n,4.

Contiguity is clearly an equivalence relation. So by Theorem 2 we may deduce
contiguity between Hn + Hn and the uniform space of d-regular multigraphs. The
intermediate contiguity is given by [4, Theorem 12].

We next show how the desired decomposition of random d-regular graphs follows
easily from Theorem 1 and previously known results. (The corresponding multigraph
version also follows in the same way, by the analogous results for multigraphs.)

Corollary 2 If d ≥ 4 is even then G ∈ Gn,d a.a.s. has a complete hamiltonian
decomposition.

Proof. Let kF denote the graph-restricted sum of k copies of a random graph
space F . First consider the case that d is even. It was proved by Frieze et al. [2] that

Gn,d−2 ⊕Hn ≈ Gn,d.

Repeated use of this fact together with simple properties of contiguity (see [11,
Lemma 4.14]) and Theorem 1 gives

Gn,d ≈ Gn,d−2 ⊕Hn ≈ Gn,d−4 ⊕ 2Hn ≈ · · · ≈ d
2
Hn.

The corollary now follows, since a random element of the last space trivially has a
complete hamiltonian decomposition with probability 1. For odd d, the conjecture
was already known to be true by a similar argument using only the previously known
results that dGn,1 ≈ Gn,d for d ≥ 3, and that Gn,3 ≈ Gn,1 ⊕Hn. (See [11, Section 4.3]
for details.)

In [11, Corollary 4.17] it was shown that combining Theorem 1 with previously
known contiguity results produces a general fact about graph-restricted sums of ran-
dom regular graphs: provided 2j +

∑d−1
i=1 iki = d ≥ 3 for non-negative ki,

Gn,d ≈ jHn ⊕ k1Gn,1 ⊕ · · · ⊕ kd−1Gn,d−1.

This implies the existence a.a.s. of a decomposition of G ∈ Gn,d into given numbers
of Hamilton cycles and regular factors of prescribed degrees. (This is not true for
d = 2.)
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1.2 Finding complete hamiltonian decompositions

In Section 3 we prove the following.

Theorem 3 For fixed d ≥ 4, there is a randomised algorithm which runs in polyno-
mial time and which for G ∈ Gn,d a.a.s. finds a complete hamiltonian decomposition
of G.

Note that the a.a.s. here refers to the randomisation over G and not the randomised
algorithm. The existence of the algorithm is proved by induction on d.

In [2] it was also shown that there is a polynomial time near uniform generator for
the set of Hamilton cycles of G ∈ Gn,d a.a.s. (see Section 3) and also an FPRAS (fully
polynomial randomised approximation scheme — see [2] for the definition). We con-
jecture that the same statements are true for complete hamiltonian decompositions
rather than just Hamilton cycles.

1.3 Random perfect matchings

The main difficulty in using the small subgraph conditioning method is invariably
the computation of the variance of the number of decompositions. For the case
of decompositions into Hamilton cycles, we will eventually be interested in sets of
matchings on the same vertex set. Here and in Section 4, we consider matchings on
the set of vertices [2n] = {1, 2, , . . . , 2n}. Given two such matchings A and B, we
denote by AB the multigraph on that vertex set which has edge set A∪B. We denote
the number of components of a graph by κ, and note that AB is a union of κ(AB)
disjoint cycles. (Throughout this paper, if A and B have an edge in common, we
regard that as a cycle of length 2 in the multigraph AB.) Let HAM denote the set
of 2-regular connected graphs, i.e. those graphs whose edge set induces a Hamilton
cycle on the vertex set. We say that A and B are H-compatible if AB ∈ HAM.

Let h(n) denote the number of Hamilton cycles on n vertices and m(n) the number
of perfect matchings of n vertices. Then

h(2n) =
(2n− 1)!

2
, m(2n) =

(2n)!

n!2n
. (1)

We are interested in the probability that a set of random (independent, uniformly
distributed) perfect matchings on [2n] are such that prescribed pairs of the match-
ings are H-compatible. It is easily computed from (1) that for two such random
matchings, or equivalently for one fixed and one random, the probability that they
are H-compatible is

pH(2n) ∼
√
π/4n. (2)

When we consider one uniformly distributed random perfect matching S we denote
probability in this space by PS . Our main result in Section 4 is the following.

Theorem 4 For given perfect matchings B and R of the same set of vertices such
that κ(BR) ≤ n/40,

PS(BS, SR ∈ HAM) = (1 +O((l + 1)/n) +O((κ(BR) + log n)/n2))pH(2n)2

where l = |B ∩R|.
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We do not attempt to optimise the upper bound on κ(BR) in the hypothesis. This is
already far stronger than we need. For we will show that Theorem 4 has the following
easy consequence. The special case of this to be used in Section 2 is when the graph
G is just a 4-cycle. Let E(G) denote the edge set of G.

Corollary 3 Let G = G(n) be a graph on r vertices where r = r(n) = o
(√

n/ log n
)

,

and assume that for all n, G has no subgraph of minimum degree greater than 2. Let
M1, . . . ,Mr be independent and uniformly distributed random perfect matchings of
[2n]. Then

P(MiMj ∈ HAM ∀ij ∈ E(G)) = (1 +O(r2 log n/n))pH(2n)m

where m = |E(G)|. Moreover, if r is fixed and G is an r-cycle, then

P(MiMi+1 ∈ HAM ∀i) = (1 +O(r log n/n))pH(2n)r.

2 Proof of Theorems 1.1 and 1.2

The small subgraph conditioning method calls for computation of expectation and
variance of the number of decompositions under examination, as well as computation
of joint moments of the numbers of decompositions and other variables which affect
its distribution. For most applications so far, including the present one, these other
variables are the numbers of short cycles.

It is often easiest to work directly with the random pairings in the space Pn,d
defined in Section 1.1. It will be seen near the end of this section that calculations
in Pn,d will imply what we need in Theorem 2 about G′n,4. Then Theorem 1 will
be deduced at the end. So in this section we let G be a random pairing in Pn,4.
Define an H-cycle of G to be a set of pairs of G which induce a Hamilton cycle in the
corresponding multigraph, and define an H-decomposition of G to be an ordered pair
of disjoint H-cycles of G. Let H2(G) be the number of H-decompositions of G. (Al-
though the H-cycles in the decomposition are disjoint, the multigraph corresponding
to the pairing may have two parallel edges, one from each H-cycle.) Also for k ≥ 2
define Ck(G) to be the number of k-cycles of G (i.e. k-cycles of the corresponding
multigraph). We will compute asymptotic values for EH2 and E(H2

2 ) as well as
the joint moments E(H2[C2]i2 · · · [Cj ]ij ) for fixed j and i2, . . . , ij . Here [x]j denotes
x(x− 1) · · · (x− j + 1). As a starting point, note that the total number of pairings is

|Pn,4| =
(4n)!

(2n)!22n
∼
√

2

(
n

e

)2n

16n. (3)

(i) EH2

Select an H-decomposition of a pairing G as follows. First choose the adjacencies
of the vertices in each of the two H-cycles (this determines all the edges of the
corresponding multigraph), and then for each vertex choose one of the 4! ways to

5



         

assign the four points to the four pairs involved. The whole pairing has now been
determined. This shows that the number of H-decompositions of pairings is

h(n)2(4!)n ∼ π

2n

(
n

e

)2n

24n (4)

by (1), and thus using (3)

EH2 ∼
π√
8n

(
3

2

)n
. (5)

(ii) E(H2
2 )

This is computed by counting pairings G for which there has been distinguished an
ordered pair of H-decompositions. Each edge of G can be said to be type (i, j) if it
is in the i’th H-cycle in the first H-decomposition and the j’th H-cycle in the second.
So edges are of four types: (1, 1), (1, 2), (2, 1), (2, 2).

Vertices are now of three types: A if all four types of edge are incident, B two (1, 1)
and two (2, 2) edges are incident, and C if two (1, 2) and two (2, 1) edges are incident.
Let a, b and c denote the numbers of vertices of types A, B and C respectively.

Note that the edges of any particular type induce exactly a/2 paths which ter-
minate only at the vertices of type A. In particular, a must be even. Some of these
paths are just an edge between two A-type vertices, and some have other internal
vertices of type B or C. However, the type of internal vertices does not change along
the path, since paths of (1, 1) edges and those of (2, 2) edges use only the B-type
internal vertices, and those of (1, 2) edges and those of (2, 1) edges each use only
C-type internal vertices. Moreover, because of the existence of the four H-cycles,
each B-type vertex must occur in a path of (1, 1) edges and also in a path of (2, 2)
edges, each C-type vertex is similarly in a path of (1, 2) edges and in a path of (2, 1)
edges, and the paths must induce four Hamilton cycles on the A-type vertices. In
particular, the paths of (i, 1) and (i, 2) edges combine to give a Hamilton cycle on
the A-type vertices (for i = 1 and 2), as do the paths of (1, i) and (2, i) edges. So we
proceed by counting the connection schemes of the paths to the A-type vertices, and
then multiplying by the number of ways of choosing which are the A-type vertices
and also the number of ways to run through all the B and C type vertices (which is
determined by b and c).

Let S(a) denote the number of connection schemes of the paths to the A-type
vertices, and take a = 2k. Then S(a) is the number of quadruples (M1,M2,M3,M4)
of perfect matchings of the type A vertices (for paths of edges of types (1, 1), (1, 2),
(2, 2) and (2, 1) respectively), such that M1 ∪M2, M2 ∪M3, M3 ∪M4 and M4 ∪M1

are all Hamilton cycles. By Corollary 3 and (2),

S(2k) ∼ (pH(2k)m(2k))4 ∼ 1

16
(2k(k − 1)!)4 (6)

as k → ∞. (This behaviour of k can be assumed, as can be seen from the following
analysis applied to the case of bounded k. Note that if k = 0 the connection scheme
is empty, and it is easy to see from the following argument that the contribution from
this case is negligible.)
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After deciding on one such connection scheme, there are

(
n

2k

)

ways to choose the labels of the vertices of type A,

(
b+ k − 1

k − 1

)2

ways to assign the numbers of B type vertices to the paths of edges of type (1, 1) and
similarly to those of type (2, 2), and

(
c+ k − 1

k − 1

)2

ways to assign the numbers of C type vertices to the paths of edges of type (1, 2) and
(2, 1). At this point the scheme can be regarded as a set of paths between vertices
of type A, with unlabelled beads on the paths marking how many vertices of type B
and C is on each. But each vertex of type B appears once on each of the two types
of paths (1, 1) and (2, 2); there are

b!

ways to make the identifications of the two beads for each vertex, and similarly

c!

for the type C vertices. Finally, there are

(n− 2k)!

ways to label all the type B and C vertices (noting that each labelling produces a
different H-decomposition of a pairing) and

(4!)n

ways to decide the assignments of points in the vertices, as above. The total number
of ordered pairs of H-decompositions of pairings with n vertices is the product of the
expressions above, summed over k and b. Noting c = n− 2k − b, this is

∑

k

∑

b

n!(4!)n16k(k + b)!2(n− k − b)!2
16(k + b)2(n− k − b)2(2k)!b!(n− 2k − b)!

∼
∑

k

∑

b

√
2π(4!)n

16(k + b)(n− k − b)

√
n

kb(n− 2k − b)

(
n

e

)2n

f(β, κ)n (7)

where

f(κ, β) =
16κ(β + κ)2(β+κ)(1− κ− β)2(1−κ−β)

(2κ)2κββ(1− 2κ− β)1−2κ−β , κ = k/n, β = b/n.
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Here we are assuming b→∞ and n−2k−b→∞, which gives negligible error by the
following analysis of this expression. The region of summation has these constraints
as well as k →∞.

To find the main contribution to the summation in (7), set the partial derivatives
of log f with respect to κ and β equal to 0. The resulting equations are

(β + κ)2(1− β − 2κ) = β(1− β − κ)2,

2(β + κ)(1− 2κ− β) = κ(1− κ− β)

which can immediately be combined, after squaring the second, to give

4(1− 2κ− β)β = κ2.

Eliminating β(1− β) between this and the earlier equation gives

5κ2 − 2κ(1− β) = 0,

with solutions κ = 0 (which is on the boundary of the region of interest) or κ =
2
5(1−β). From an earlier equation this yields the only solution not on the boundary:
(κ, β) = (1

3 ,
1
6). Since f(1

3 ,
1
6) = 3

2 and, as a routine check shows, all boundary points
have strictly lower value than this, the only significant parts of the summation in (7)
are for k ∼ n/3 and b ∼ n/6 respectively. Putting κ = 1

3 + x and β = 1
6 + y and

expanding ln f about x = y = 0 yields

f(κ, β) =
3

2
exp(−11x2 − 4xy − 2y2 +O(x2y + xy2))

for x and y sufficiently small. From here, a standard argument shows that

n/2∑

k=0

n−2k∑

b=0

f(β, κ)n ∼
(

3

2

)n ∫ ∞

−∞

∫ ∞

−∞
e−9x2n−2(x+y)2n dx dy

=
πn

3
√

2

(
3

2

)n
.

By the concentration of the summation, the terms k + b and n− k − b in (7) can be
taken as 1

2n each, and so (7) is asymptotic to

√
3π2

2n2

(
n

e

)2n

36n.

On dividing by the number of pairings given by (3), we obtain

E(H2
2 ) ∼

√
3π2

√
8n2

(
9

4

)n
. (8)

(ii) E(H2Ck)/EH2

To estimate this, we first count the H-decompositions of pairings G which have a
given k-cycle, summed over all k-cycles, and divide by |Pn,4|. As before, the counting
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can be done first for the possibilities for the corresponding multigraph, and then for
the assignment of points to the pairs by multiplying by (4!)n.

Only fixed k ≥ 2 needs to consider because cycles of length 1 cannot occur in
any multigraphs with H-decompositions. To make calculations apply uniformly to
all k ≥ 2 including k = 2, consider a labelled directed k-cycle on n vertices, which
can be selected in

[n]k
k
∼ nk

k
ways. The edges of the k-cycle (actually, pairs in the cycle) must be split between
the two H-cycles of the H-decomposition. Thus for some i ≥ 1, the edges of the
first H-cycle induce i paths P1, . . . , Pi in the k-cycle, and those of the second H-cycle
induce i paths Q1, . . . , Qi. As we shall see, the value of i will affect the number of
ways the H-cycle can be chosen, but first we count k-cycles with a given value of i.
This can be done by starting at an arbitrary vertex v at the start of a path induced
by the first H-cycle and proceeding around the cycle in the chosen direction. The
number of ways to determine the lengths of paths P1, Q1, P2, Q2, . . . , Pi, Qi is

[xk]

(
x

1− x

)2i

.

Here square brackets denote the extraction of coefficients, and the formula comes
from considering the concatenation of 2i paths of length at least 1 each, so that
the generating function for each individual path is x

(1−x) . This expression must be
multiplied by

k

2i
since there are k ways of choosing the starting vertex v, and then every configuration
has been counted 2i times, since there are i paths Pl and two orientations of the
cycle.

After the k-cycle of the multigraph and its partition into paths is decided, if the
number of edges of the first H-cycle which are in the k-cycle is j, the rest of the
edges in this H-cycle can be chosen in 1

2(n− j− 1)!2i ways. This comes from a cyclic
ordering of the (n − j)-set whose elements are those i paths and the vertices not in
the paths. Similarly, the rest of the edges in the second H-cycle can be chosen in
1
2(n− k + j − 1)!2i ways. The product of these, regardless of j, is asymptotic to

h(n)222i

nk
.

The product of the last four displayed expressions must be multiplied by 4!n to
account for the assignment of points to the pairs, summed over i ≥ 1. If we then
divide by (4) the result is

E(H2Ck)

EH2
∼ 1

2
[xk]

∑

i≥1

1

i

(
4x2

(1− x)2

)i

= −1

2
[xk] ln

(
1−

(
4x2

(1− x)2

))

=
−2 + (−1)k + 3k

2k
.
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(iii) E(H2[C1]i1 [C2]i2 · · · [Cj ]ij )/EH2

A direct generalisation of the argument above, applied to an ordered set of i1 cycles
of length 1, i2 2-cycles, and so on, gives

E(H2[C1]i1 · · · [Ck]ik)

EH2
∼

k∏

j=1

ρ
ij
j (9)

where

ρj =
−2 + (−1)j + 3j

2j
.

Note that in the case j = 1 the expected number will be exactly 0, and so r1 is
correctly set to 0.

(iv) Synthesis

One more crucial piece of information is needed: as is well known for this pairing
model of random 4-regular multigraphs (see [1] for example), the variables Ck, k ≥ 1,
are asymptotically independent Poisson random variables with expectations

ECk ∼ λk =
3k

2k
.

We write

ρj = λj(1 + δj) where δj =
−2 + (−1)j

3j

and note that from (5) and (8)

EH2
2

(EH2)2
∼
√

24 = exp
∞∑

k=1

λkδ
2
k. (10)

Hence the hypotheses of [11, Theorem 4.1] are satisfied with H2 standing for Y in
that theorem, and Ck standing for Xk. To state the conclusion of that theorem in
this case, we define F (Y ) to denote the probability space obtained from a space F by
making the probability of each G ∈ F proportional to Y (G). Noting that δk = −1
only for k = 1, we obtain

Pn,4 ≈ P(H2)
n,4 (11)

where Pn,4 is the space Pn,4 restricted to C1 = 0, i.e. the uniform probability space
of loopless pairings. Since G′n,4 is the random multigraph space corresponding to the

space Pn,4, and Hn +Hn is similarly the random multigraph space corresponding to

P(H2)
n,4 , Theorem 2 follows from (11).

One can alternatively use [6, Corollary 1] or [4, Theorem 1] in place of [11, The-
orem 4.1], but then extra argument is required to make the restriction to C1 = 0.

Theorem 1 follows from Theorem 2 by restricting both spaces to simple graphs
(which we write as the event C2 = 0 in the graph spaces as well as the pairing
spaces). This observation uses only the definition of contiguity and the fact that

P(C2 = 0) tends to a non-zero constant in Pn,4 as well as in P(H2)
n,4 (the latter of

which comes from noting that (9) implies that the variables Ck are asymptotically
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independent Poisson in P(H2)
n,4 with expectations ρk). For if An is a.a.s. true in Gn,4

then An∧ (C2 = 0) is a.a.s. true in G′n,4, so by Theorem 2 it is a.a.s. true in Hn+Hn,
whence An is a.a.s. true in Hn⊕Hn. The reverse is also true, and hence Theorem 1.

3 Proof of Theorem 1.3

Assuming a set S of subgraphs of G is nonempty, a near uniform generator for S is
a randomised algorithm which on input ε > 0 outputs a member s of S such that for
any fixed s1 ∈ S ∣∣∣∣Pr(s = s1)− 1

|S|

∣∣∣∣ ≤
ε

|S| . (12)

The probabilities here are with respect to the algorithm’s random choices. The algo-
rithm is called polynomial time if it runs in time polynomial in n and 1/ε. From [2]
we have the following result, where HAM(G) denote the set of Hamilton cycles of G.

Theorem 5 Let d ≥ 3 be fixed. There is a polynomial time procedure which a.a.s.
for G ∈ Gn,d is a near uniform generator for HAM(G).

As with the proof of Corollary 2, we focus on d even, since for odd d the result
follows by the same argument using results which were already known. So begin an
induction on d with d = 4 and let G ∈ Gn,4. From the theorem featuring in [9], G
is a.a.s. hamiltonian. So, letting A denote event that G ∈ Gn,4 has a Hamilton cycle
and for which the procedure referred to in Theorem 5 is a near uniform generator,
we have P(A)→ 1.

Take a random G ∈ Gn,4 and then use the procedure in Theorem 5 to get a random
H1 ∈ HAM(G), with near uniform distribution. Let G1 = G \ E(H1). Then G1 is a
2-factor of G. Consider the resulting distribution of the pair (G1, H1). For G ∈ A,
the probability that (G1, H1) arises can be computed a posteriori as

1± ε
|HAM(H1 ∪G1)||Gn,4|

.

Hence, the probability that any given 2-factor G1 arises satisfies

P(G1) ≥
∑

H:H∪G1∈A

1− ε− o(1)

|HAM(H ∪G1)||Gn,4|
.

Now take G0 ∈ HAM. We know that the number of Hamilton cycles in G ∈ Gn,4
is a.a.s. close to its expected value fn, to be precise, at most fn log n; this comes from
the results of [2] together with [4] (or see [11, Theorem 4.3], whose conditions are
verified in [2]). From Theorem 1, for H randomly chosen, the random graph H ∪G0

restricted to 4-regular graphs is contiguous to Gn,4, and so it also has a.a.s. at most
fn log n Hamilton cycles. Thus, summing over H, we have

P(G1 = G0) ≥ |{H : H ∪G0 ∈ A}| ·
1− ε− o(1)

fn|Gn,4| log n
. (13)
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Let HAM(n) denote the set of Hamilton cycles on n vertices. It is easy to find
c > 0 such that if we take a random H ∈ HAM(n) then with probability at least c,
E(H) ∩ E(G0) = ∅. (See [11, Proof of Lemma 4.14] for example.) Since P(A) → 1,
it follows that the first factor on the right in (13) is at least (c − o(1))|HAM(n)| ∼
c1√
n

(ne )n (where we use ci for positive constants). Moreover, fn is given in [8] and

proved in [2] to be asymptotic to c2√
n

(3
2)n, and |Gn,4| ∼ c3(2n2

3e2
)n is well known. Thus

from (13),

P(G1 = G0) ≥ c4e
n

nn log n

and so

P(G1 ∈ HAM) ≥ |HAM(n)| · c4e
n

nn log n
≥ c5√

n log n
. (14)

So with this probability, the pair (G1, H1) chosen above gives the desired complete
hamiltonian decomposition of G. By repeating the generation of this pair n times,
we find such a decomposition a.a.s. and in polynomial time.

Now consider an even d ≥ 4. Choose a randomG ∈ Gn,d and then using Theorem 5
to find a Hamilton cycle H1 in G a.a.s. with almost uniform distribution. Again set
G1 = G \ E(H1) and repeat the arguement above. This time, we use the contiguity
Hn ⊕ Gn,d−2 ≈ Gn,d, and obtain for any d− 2-regular graph G0 that

P(G1 = G0) ≥ c6

|Gn,d−2| log n
.

So by induction, we can find a complete hamiltonian decomposition of G1 in poly-
nomial time with probability at least (c6 − o(1))/ log n. Repeating log2 n times gives
success a.a.s. Including H1 makes the required complete hamiltonian decomposition
of G a.a.s.

Finally, it is interesting to consider one potential near-uniform generator for the
set of complete hamiltonian decompositions of a regular graph G: take a random
Hamilton cycle in G and then by induction use a near-uniform generator to find a
decomposition of G − E(H). This is clearly not near-uniform, but one could try to
equalise probabilities by counting the decompositions of G − E(H). Even if these
could be counted accurately, if the near-uniform generator is to work for G, it must
generate all decompositions of G with nearly equal probabilities. The main difficulty
is that the number of decompositions of G−E(H) is not bounded above by a polyno-
mial times the expected number, so a significant number of decompositions may not
be found (often enough) by an algorithm running in polynomial time. Constructing
an FPRAS runs into a similar difficulty.

4 Random matchings

In this section, we prove Theorem 4 and Corollary 3. Consider two independent
random perfect matchings B (for blue) and R (for red) on [2n]. Then the graph BR
formed from all edges in B and R is a disjoint union of even length cycles (with edges
in B ∩ R regarded as cycles of length 2). Though it is well-known, for the sake of
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completeness and as a gentle introduction to our main arguments, we first prove a
bound on the probability that the number κ(BR) of cycles in BR is large.

It is clear that we can generate a matching uniformly at random by selecting
the edges one at a time, in each case choosing an unmatched vertex u (by any rule
whatsoever) and selecting its partner v uniformly at random from the remaining
unmatched vertices. We call this exposing the edge uv.

We can clearly take the matching B as fixed, and therefore work with PR. We
then expose red edges one by one. Take any vertex x and expose the red edge
containing x (by choosing its neighbor uniformly at random among all 2n− 1 other
vertices). If the red edge is identical to a blue edge, set X1 = 1 and delete the
two vertices. Otherwise, set X1 = 0 and contract the blue-red-blue path into one
blue edge consisting of the path’s end-vertices. Each case produces a blue matching,
but on 2n − 2 vertices. We call this contracting the blue matching with respect
to the red edge. Now repeat the operation, exposing one more red edge for this
slightly smaller blue matching, contracting to define X2, and so on. Continue this
procedure until no vertex remains. (The last red edge is necessarily identical to the
last blue, and so Xn = 1.) It is clear that this generates a random red matching and
κ(BR) = X1 +X2 + · · ·+Xn. Moreover, the indicator variables {Xi} are independent
with pi := P(Xi = 1) = 1/(2n− 2i+ 1).

Lemma 1 For a positive integer s ≥ 5,

PR(κ(BR) ≥ s log n) = O(1/ns).

Proof. Using

E
(
exp(α

n∑

i=1

Xi)
)

=
n∏

i=1

(
1 + pi(e

α − 1)
)
≤ exp

(
(eα − 1)

n∑

i=1

pi
)
,

and
n∑

i=1

pi ≤ 1 +
log(2n)

2
, the Chernoff bound with α = log 10 gives

P(k(BR) ≥ s log n) ≤ exp
(
− αs log n+ (eα − 1)

(
1 +

log(2n)

2

))
= O(1/ns) .

To prove Theorem 4, we consider a procedure which is similar to, but more
complicated than, that above. Here there are fixed blue and red perfect matchings B
and R, and a random perfect matching S of, say, silver edges. Take a vertex x(1) in a
shortest cycle of BR(0) := BR and expose the random silver edge incident with x(1).
To avoid ambiguity, we assume that a fixed ordering of vertices is given and x(1) is
the smallest vertex in a shortest cycle. Let y(1) be the other end of the silver edge. By
contracting each of B and R independently with respect to the silver edge, we obtain
blue and red matchings on 2n − 2 vertices which form a graph BR(1). Repeating
this, we obtain x(2), y(2), . . . , x(n − 1), y(n − 1) and graphs BR(2), . . . , BR(n − 1).
Clearly, the final graphs BS and RS are both Hamilton cycles if and only if this
procedure creates no silver edge identical to an edge in a BR(t).

13



          

The key observation is that the process {BR(t)} tends to reduce the number of
cycles unless there is only one cycle, and hence BR(t) is frequently a Hamilton cycle
(on 2n − 2t vertices): if BR(t − 1) has more than one cycle, then the silver edge
added to it is more likely to connect two (different) cycles, in which case the two
cycles become one new cycle after contraction. If the other end y(t) is in the cycle
containing x(t) and the cycle has length greater than 2, then there are two cases,
depending on the distance d(x(t), y(t)), i.e. the length of a shortest path connecting
x(1) and y(1). If the distance is odd but not 1, then the number of cycles increases
by 1. It remains the same otherwise. (In the case that x(t) and y(t) are adjacent in
the cycle, say by a red edge, it may appear at first sight that the number of cycles
increases. However, the contraction operation throws away those two vertices and
contracts the blue matching, so only one cycle is retained.) To be more precise, let
Y (t) = κ(BR(t− 1))− κ(BR(t)). We call both y(t) and the silver edge good, neutral
or bad (with respect to BR(t − 1) and x(t)) if Y (t) = 1, 0 or −1, respectively. The
probabilities of y(t) being good, neutral and bad depend upon the length 2σ(t − 1)
of a shortest cycle in BR(t − 1) (recalling that the lengths of all cycles are even).
Namely, if σ(t − 1) ≥ 2, then since all vertices not in the cycle containing x(t) are
good,

P(Y (t) = 1) =
2n− 2t+ 2− 2σ(t− 1)

2n− 2t+ 1
.

Similarly,

P(Y (t) = 0) =
σ(t− 1) + 1

2n− 2t+ 1

and

P(Y (t) = −1) =
σ(t− 1)− 2

2n− 2t+ 1
.

If the shortest cycle length is 2, i.e. a blue and a red edge coincide, then σ(t− 1) = 1
and all vertices are good, or equivalently Y (t) = 1. Thus whenever κ(BR(t−1)) > 1,
Y (t) is stochastically greater than Z(t), where P(Z(t) = 1) = 1

2 and P(Z(t) = 0) =
P(Z(t) = −1) = 1

4 . Therefore, there are i.i.d. random variables Z(1), . . . , Z(n − 1)
such that Y (t) ≥ Z(t) for all t with κ(BR(t − 1)) > 1. Though we do not directly
use this fact, the idea will be used in the proof of Lemma 3.

For the next lemma, we denote by U(t) the event that the silver edge created at
step t is not identical to any edge in BR(t− 1). Then

P(BS,RS ∈ HAM) = P
( n−1⋂

t=1

U(t)
)
.

Lemma 2 Let l be the number of 2-cycles in BR. Then for l ≤ k ≤ n− 1,

P
( k⋂

t=1

U(t)
)

= O

(
n− k + 1√
n(n− l + 1)

)
.

In particular, if l ≤ 1
2n then

P(BS,RS ∈ HAM) = O

(
1

n

)
.
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Proof. For any event W , define

Pt(W ) := P(W |U(1), . . . , U(t− 1)),

and notice that

P
( k⋂

t=1

U(t)
)

=
k∏

t=1

Pt(U(t)). (15)

For t ≤ l, x(t) is taken from a 2-cycle and the event U(t) occurs unless y(t) is the
other vertex of the 2-cycle. Thus, for such t,

Pt(U(t)) = 1− 1

2n− 2t+ 1
.

Furthermore, since all vertices are good and since the number of 2-cycles decreases
by 1 for each step as long as t ≤ l, BR(l) contains no 2-cycles. After this, at most
two 2-cycles are created at a time and they, if any, immediately disappear within the
next step or two. So, in particular, the number of 2-cycles in BR(t), t > l, is always
at most 2. Thus, conditioned on the event W (t) that no 2-cycle is created in steps
t− 2 or t− 1, which implies that x(t) belongs to a cycle of length greater than 2,

Pt(U(t)|W (t)) = 1− 2

2n− 2t+ 1
.

For U(t) occurs if and only if d(x(t), y(t)) > 1. On the other hand,

Pt(U(t)|W (t)) ≤ 1− 1

2n− 2t+ 1
.

Therefore, for t > l

Pt(U(t)) ≤ Pt(W (t))
(
1− 2

2n− 2t+ 1

)
+ Pt(W (t))

(
1− 1

2n− 2t+ 1

)

=
(
1− 2

2n− 2t+ 1

)
+

Pt(W (t))

2n− 2t+ 1
.

Clearly,

Pt(W (t)) ≤ 2

2n− 2(t− 1)− 1
+

2

2n− 2(t− 2)− 1
≤ 4

2n− 2t+ 1
(16)

since d(x(t), y(t)) must be 3 to create a 2-cycle, and the case d(x(t), y(t)) = 1 was
already excluded. Thus, using (15),

P
( k⋂

t=1

U(t)
)
≤

l∏

t=1

(
1− 1

2n− 2t+ 1

)
·

k∏

t=l+1

(
1− 2

2n− 2t+ 1
+

4

(2n− 2t+ 1)2

)

= O

(
n− k + 1√
n(n− l + 1)

)
.

We are now ready to prove the lemma which is the heart of our arguments in this
section.
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Lemma 3 Let R1 and R2 be two perfect matchings on [2n] with κ(BR1), κ(BR2) ≤
n/40. Put k = max{κ(BR1), κ(BR2), 10 log n}. Then for a random (silver) matching
S,

PS(BS, SR1 ∈ HAM) = PS(BS, SR2 ∈ HAM) +O
( |l1 − l2|

n2

)
+O

( k
n3

)
,

where li denotes the number of 2-cycles of BRi (i = 1 and 2).

Proof. Later in this proof, we will define a distribution on the set of ordered pairs
(S1, S2) of silver matchings with the marginal distributions of S1 and S2 exactly equal
that of S. It follows that for the corresponding probability P(S1,S2) we have

PS(BS, SR1 ∈ HAM) = P(S1,S2)(BS1, S1R1 ∈ HAM),

PS(BS, SR2 ∈ HAM) = P(S1,S2)(BS2, S2R2 ∈ HAM).

Let A1,A2 be the events {BS1, S1R1 ∈ HAM} and {BS2, S2R2 ∈ HAM} respectively.
Then

PS(BS, SR1 ∈ HAM)−PS(BS, SR2 ∈ HAM) = P(S1,S2)

(
A1\A2

)
−P(S1,S2)

(
A2\A1

)
.

In the rest of the proof, P denotes P(S1,S2). Without loss of generality we may assume
l2 ≤ l1. From above,s it is enough to show that

P
(
A1 \ A2

)
= O

( l1 − l2
n2

)
+O

( k
n3

)
and P

(
A2 \ A1

)
= O

( k
n3

)
. (17)

For i = 1 and 2, let xi(1) be the smallest vertex in a shortest cycle of BRi, and
denote that cycle by Ci(0). Call a vertex of BRi good, neutral or bad if it is such
with respect to BRi and xi(1). Also define BRi(0) = BRi.

If the length |C1(0)| of C1(0) is at least |C2(0)|, then take a bijection on [2n] with
the following properties:

(i) the vertices (or vertex) adjacent to x2(1) in BR2(0) are (or is) mapped to vertices
adjacent to x1(1) in BR1(0);

(ii) all bad vertices of BR2(0) are mapped to bad vertices of BR1(0);

(iii) and all neutral vertices which are not distance 1 from x2(1) are mapped, if
possible, to bad vertices of BR1(0) and otherwise to neutral vertices of BR1(0);

(iv) good vertices of BR2(0) are mapped to the remaining vertices of BR1(0)
(whether they are good or not);

(v) If BR1(0) and BR2(0) are isomorphic graphs then the mapping is an isomor-
phism.

This choice of bijection is possible since |C1(0)| ≥ |C2(0)|. Choose y1(1) uniformly
at random from [2n] \ {x1(1)}. We couple y1(1) and y2(1) by selecting y2(1) so that
it corresponds to y1(1) under the bijection. If |C1(0)| < |C2(0)|, reverse the roles of
BR1 and BR2 in the above discussion.

The first (silver) edge in Si is xi(1)yi(1), thus determining BRi(1) for i = 1 and
2. Repeating this procedure, we obtain a random process {xi(t), yi(t)}t=1,...,n−1 for

16



         

i = 1 and 2. Define Si to contain the set of edges {xi(t), yi(t)} together with the
remaining pair of vertices (for i = 1 and 2). This induces the distribution on ordered
pairs (S1, S2) mentioned at the start of this proof.

For any t ≥ 1 and i = 1 and 2, from the above process to time t define the
events Ui(t) and Wi(t) determined by BRi(t − 1) and xi(t)yi(t) as U(t) and W (t)
were determined by BR(t− 1) and x(t)y(t). Also let

κ(t) = max{κ(BR1(t)), κ(BR2(t))} (t ≥ 0),

Y (t) = κ(t− 1)− κ(t) (t ≥ 1).

It is clear that the symmetric difference of U1(t) and U2(t) can only contain those
processes where |C1(t−1)| = 2 or |C2(t−1)| = 2 (but not both). If a process is in one
but not the other and say |C1(t− 1)| ≥ |C2(t− 1)|, then it must be in U2(t) \ U1(t),
and we have |C2(t− 1)| = 2 and |C1(t− 1)| > 2. Hence

U2(t) \ U1(t) ⊆ {|C2(t− 1)| = 2} ∩ {|C1(t− 1)| > 2}, (18)

and similarly

U1(t) \ U2(t) ⊆ {|C1(t− 1)| = 2} ∩ {|C2(t− 1)| > 2}. (19)

For any t ≥ 1, condition on some trajectory of the process up to time t−1, i.e. on
the sequence {xi(j), yi(j)}j=0,...,t−1, for which |C1(t − 1)| ≥ |C2(t − 1)|. Suppose on
the one hand that κ(BR1(t− 1)) > 1. If y1(t) is good, which occurs with probability
p ≥ 1

2 , then so is y2(t), and hence κ(t) = κ(t − 1) − 1 and Y (t) = 1. Similarly, if
y1(t) is neutral, which occurs with probability at least (1−p)/2, then y2(t) is neutral
or good and Y (t) ≥ 0. As before, Y (t) is stochastically greater than Z(t) where
P(Z(t) = 1) = 1

2 ,P(Z(t) = 0) = P(Z(t) = −1) = 1
4 .

On the other hand, suppose that κ(BR1(t − 1)) = 1, and κ(BR2(t − 1)) ≥ 2.
Then all bad and neutral vertices of BR2(t− 1), except those adjacent to x2(t− 1),
are mapped to bad vertices of BR1(t − 1). Hence if y1(t − 1) is neutral and not
adjacent to x1(t − 1), which occurs with probability p = n−t

2n−2t+1 , then y2(t − 1) is
good and Y (t) = 1. Alternatively, conditioning on y1(t − 1) being bad, y2(t − 1) is
bad with probability at most n−t−3

2n−2t−2 , so that Y (t) = −1 with probability at most

(1−p) n−t−3
2n−2t−2 <

1
4 . Thus we have a conclusion similar to that in the above case: Y (t)

is stochastically greater than Zε(t) where P(Zε(t) = 1) = 1
2−ε, P(Zε(t) = 0) = 1

4 +ε,
and P(Zε(t) = −1) = 1

4 , provided ε > 1
4n−4t+2 .

The same is also true by symmetry in the case |C1(t − 1)| < |C2(t − 1)|. Ap-
proximating Z(t) from below by a coupled copy of Zε(t), we can obtain i.i.d. random
variables {Zε(t)}t=1,...,n−1 with Y (t)− Zε(t) ≥ 0 whenever κ(t− 1) ≥ 2.

Define the stopping time T to be the smallest t such that κ(t) = 1. Since
κ(BR1(n− 1)) = κ(BR2(n− 1)) = 1, T is well-defined. The event A1 \ A2 implies
that U1(t) occurs for all t and U2(t) does not occur at some t, say T2. If t > T , then
the events U1(t) and U2(t) occur at the same time. Thus provided A1 \ A2 occurs
and T ≤ 20k, we have T2 ≤ 20k ≤ 1

2n and the two events
⋂20k
t=1 U1(t) \ ⋂20k

t=1 U2(t),
and

⋂n−1
t=20k+1 U1(t), must occur. It follows that

P(A1 \ A2) ≤ P(T ≥ 20k) + P({T ≤ 20k} ∩ (A1 \ A2))

≤ P(T ≥ 20k) + P
(
B ∩

( 20k⋂

t=1

U1(t) \
20k⋂

t=1

U2(t)
))

(20)
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where B =
⋂n−1
t=20k+1 U1(t). If T ≥ 20k, then Y (t) ≥ Zε(t) for all t ≤ 20k − 1, and

2 ≤ κ(20k− 1) = κ(0)− (Y (1) + · · ·+ Y (20k− 1)) ≤ k− (Zε(1) + · · ·+Zε(20k− 1)).

Therefore,

P(T ≥ 20k) ≤ P(Zε(1) + · · ·+ Zε(20k − 1) ≤ k) = O(1/n4), (21)

where in the equality we use the Chernoff bound for i.i.d. random variables Zε(t),
choosing ε > 0 sufficiently small but the same for each t.

For the second term in (20), since

20k⋂

t=1

U1(t) \
20k⋂

t=1

U2(t) ⊆
20k⋃

t=1

(U1(t) \ U2(t)),

we have

P
(
B ∩

( 20k⋂

t=1

U1(t) \
20k⋂

t=1

U2(t)
))

≤ P
(
B ∩

( 20k⋃

t=1

U1(t) \ U2(t)
))

≤
20k∑

t=1

P
(
(U1(t) \ U2(t)) ∩ B

)
. (22)

For t′ ≤ 20k, U1(t′)\U2(t′) is completely determined by {x1(t), y1(t), x2(t), y2(t)}t=1,...,20k,
and so we have by [3, Section 3.7] for example

P
(
(U1(t′) \ U2(t′)) ∩ B

)
= E

(
I(U1(t′) \ U2(t′))I(B)

)

= E
(
I
(
U1(t′) \ U2(t′)

)
E
(
I(B)

∣∣∣{x1(t), y1(t), x2(t), y2(t)}t=1,...,20k

))
. (23)

As l1 ≤ k, it follows that BR1(20k) has at most two 2-cycles as argued in the proof
of Lemma 2. That lemma applied to the process which begins from t = 20k now
yields

E
(
I(B)

∣∣∣{x1(t), y1(t), x2(t), y2(t)}t=1,...,20k

)
= O

( 1

n− 20k

)
= O(1/n). (24)

By (19), we know that U1(t) \ U2(t) = ∅ unless t > l2. If l2 < t ≤ l1, then

E
(
I(U1(t) \ U2(t))

)
≤ 1

2n− 2t+ 1
≤ 1

n

since l1 ≤ k ≤ n/40. If l1 < t ≤ 20k then (19) implies that U1(t)\U2(t) ⊆W1(t)\U2(t)
and hence

E
(
I(U1(t) \ U2(t))

)
≤ E

(
I
(
W1(t) \ U2(t)

))
= P(W1(t))P

(
U2(t)|W1(t)

)

≤ 4

2n− 2t+ 1
· 2

2n− 2t+ 1
= O(1/n2)

using (16). Therefore by (21), (22), (23) and (24),

P(A1 \ A2) = O
( l1 − l2

n2

)
+O

( k
n3

)
.
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The same argument yields

P(A2 \ A1) = O
( k
n3

)
,

as required for (17).

We are now in a position to prove Theorem 4. For fixed matchings B, R1 and R2

and a random matching S,

PS(BS, SR1 ∈ HAM) = PS(BS, SR2 ∈ HAM) +O
( |l1 − l2|

n2

)
+O

( k
n3

)
.

Now for a random matching R2, we have κ(BR2) < 5 log n with probability 1 −
O(1/n5) by Lemma 1. Also it is easily seen that ER2 l2 is bounded. So by taking the
expectation of both sides of the equation with respect to R2, we obtain

PS(BS, SR1 ∈ HAM) = ER2PS(BS, SR2 ∈ HAM)+O
( l1 + 1

n2

)
+O

(κ(SR1) + log n

n3

)
.

Theorem 4 follows since

ER2PS(BS, SR2 ∈ HAM) = ER2ES(I(BS ∈ HAM)I(SR2 ∈ HAM))

= ESER2(I(BS ∈ HAM)I(SR2 ∈ HAM))

= (PS(BS ∈ HAM))2

= pH(2n)2,

which is of order 1/n.
Corollary 3 also easily follows using Lemma 1. We can clearly assume r ≥ 3.

Take an ordering v1, . . . , vr of the vertices of G so that the number d(j) of i > j with
vivj ∈ E(G) is at most 2. Let r∗ denote the number of j with d(j) = 2. For each
such j, if vi1 and vi2 are the two neighbours of vj with i1, i2 > j then by Lemma 1,
with probability at least 1−O(1/nr+2), we have κ(MviMvj ) ≤ (r + 2) log n.

We can now estimate the probability that MviMvj ∈ HAM for all i and j such
that vivj ∈ E(G). The strategy is to treat the matchings in the orderMvr ,Mvr−1 , . . . ,Mv1

and check H-compatibility of each with those of the others which are required and
have already appeared, conditioning progressively on each step being successful. For
those r∗ where two others are involved, we use Theorem 4. (Note that κ is an upper
bound for the number l of 2-cycles.) Otherwise, there is only one other matching
involved, and the probability that the new matching is H-compatible with it is just
pH(2n). So the required final probability is

r∏

j=1

(1 +O(rI(d(j) = 2) log n/n))(pH(2n))d(j) +O

(
r

nr+2

)

= (1 +O(rr∗ log n/n))(pH(2n))m.

Trivially, r∗ ≤ r. For a cycle of length r, the natural ordering yields r∗ = 1.

19



     

References

[1] B. Bollobás, Random graphs, Academic Press, London, 1985.

[2] A. Frieze, M. Jerrum, M. Molloy, R.W. Robinson and N.C. Wormald, Generating
and counting Hamilton cycles in random regular graphs, Journal of Algorithms
21 (1996), 176–198.

[3] G.R. Grimmett and D.R. Stirzaker, Probability and Random Processes, 2nd edn,
Clarendon (1992).

[4] S. Janson, Random regular graphs: Asymptotic distributions and contiguity,
Combinatorics, Probability and Computing 4 (1995), 1–37.

[5] C. McDiarmid, On the method of bounded differences, Surveys in Combina-
torics, 1989, J. Siemons ed. (1989), 148-188.

[6] M. Molloy, H. Robalewska, R.W. Robinson and N.C. Wormald, 1-factorisations
of random regular graphs, Random Structures and Algorithms 10 (1997), 305–
321.

[7] H. Robalewska, 2-factors in random regular graphs, Journal of Graph Theory
23 (1996), 215–224.

[8] R.W. Robinson and N.C. Wormald, Almost all cubic graphs are hamiltonian,
Random Structures Algorithms 3 (1992), 117–125.

[9] R. W. Robinson and N. C. Wormald, Almost all regular graphs are hamiltonian,
Random Structures and Algorithms 5 (1994), 363–374.

[10] A. Steger and N.C. Wormald, Generating random regular graphs quickly, Com-
binatorics, Probability and Computing 8 (1999), 377–396.

[11] N.C. Wormald, Models of random regular graphs, Surveys in Combinatorics,
1999, London Mathematical Society Lecture Note Series 267 (J.D. Lamb and
D.A. Preece, eds) Cambridge University Press, Cambridge, pp. 239–298, 1999.

20


