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Abstract

In a previous paper the authors showed that almost all labelled
cubic graphs are hamiltonian. In the present paper, this result is
used to show that almost all r-regular graphs are hamiltonian for any
fixed r ≥ 3, by an analysis of the distribution of 1-factors in random
regular graphs. Moreover, almost all such graphs are r-edge-colourable
if they have an even number of vertices. Similarly, almost all r-regular
bipartite graphs are hamiltonian and r-edge-colourable for fixed r ≥ 3.
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1 Introduction

Turn the set of labelled r-regular graphs on n vertices into a probability space
Ωn,r = Ωn = Ω with the uniform distribution. Throughout this paper, r ≥ 3
is fixed, and asymptotics are for n →∞, unless otherwise specified, where n
is restricted to even integers if r is odd. It was first proved by Bender and
Canfield [2], and independently by the first author [11] that

|Ωn| ∼
(rn)! exp((1− r2)/4)

(rn/2)!(r!)n2rn/2
. (1.1)

By saying that almost all r-regular graphs have a property P , we mean that
lim

n→∞
Pr(P ) = 1.

It has been known for some time that for fixed r sufficiently large, almost
all r-regular graphs are hamiltonian. The best result to date in this direction
is that of Frieze [8] showing it for all constant r ≥ 85, using an algorithmic
approach. The the common belief of workers in this area has been that this
can be reduced to r ≥ 3 (see Fenner and Frieze [6, p.112] for example); this
was conjectured explicitly by Bollobás [4, p.95]. Early evidence for this was
the result of the authors [9] that asymptotically at least 2 − 3e−13/12 of all
cubic (3-regular) graphs are hamiltonian, using the standard second moment
method applied to the number of Hamilton cycles of a triangle-free cubic
graph. Then very recently, we showed [10] that almost all cubic graphs are
hamiltonian. The method involved partitioning the set of cubic graphs into
groups characterised by the numbers of short odd cycles, and working with
the expected group variance. In this paper we prove the full result which has
been sought.

Theorem 1. For fixed r ≥ 3, almost all r-regular graphs are hamiltonian.

We could presumably use the method in [10] to prove Theorem 1 directly.
In this, it would be reasonable to expect that due to greater edge density, the
case r ≥ 4 would be easier than r = 3. However, there is a quantum jump
in difficulty when passing from r = 3 to r ≥ 4 when computing the variance
of the number of Hamilton cycles, due to the fact that the subgraph induced
by the union of two Hamilton cycles in G must have all vertices of degree
2 or 3 in cubic graphs G, but can also have vertices of degree 4 when G is
regular of higher degree. We have been able to verify that for G ∈ Ωn, with
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H denoting the number of Hamilton cycles in G,

ExpH ∼
(

(r − 2)(r−2)/2(r − 1)

r(r−2)/2

)n

e

√
π

2n

and, after extensive analysis,

VarH

(ExpH)2
∼ re−2/(r−1)

r − 2
− 1.

However, this proposed course is a technically difficult one and so we
turn aside from it without proving these results here. Instead we use the
distribution of perfect matchings to achieve our goals. Let M denote the
number of perfect matchings of a graph G ∈ Ω, and , since M = 0 if n is
odd, restrict n to even integers for all asymptotic statements involving M .
From Bollobás and McKay [5, Theorem 3], a calculation much simpler than
that for VarH above yields

ExpM2

(ExpM)2
∼ e−(2r−1)/4(r−1)2

√
r − 1

r − 2
. (1.2)

For G ∈ Ω let Xi(G) denote the number of cycles of length i in G. The
approach of the present paper begins by following that in [10], but with regard
to perfect matchings instead of Hamilton cycles: divide the graphs G in Ω
into groups according to the values of the variables Xi for i = 3, . . . , b, where
b ≥ 3, then refine the second moment method for M using these groups. This
analysis is restricted to graphs with an even number of vertices, and shows
that M is unlikely to be different from its mean by more than a constant
factor. Hence, roughly speaking, the removal of a random perfect matching
from G produces a reasonably random (r − 1)-regular graph. Hamiltonicity
of this graph implies hamiltonicity of G. The graphs with an odd number of
vertices are handled by a similar argument with an extra twist.

The main result we actually obtain concerns the edge decomposition of a
graph G into a set of perfect matchings and the edges of a hamilton cycle. For
our present purposes, we call this a complete decomposition of G. Naturally,
for such a decomposition the number of vertices has to be even.

Theorem 2. For fixed r ≥ 3, almost all r-regular graphs with an even
number of vertices have a complete decomposition.
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Slight modifications of the proof of Theorem 2 to handle an odd number
of vertices will give Theorem 1. Immediately from Theorem 2 we also have
the following.

Corollary. For fixed r ≥ 3, almost all r-regular graphs with an even number
of vertices are r-edge-colourable.

In addition, the same proof works easily to give the analogous results for
bipartite r-regular graphs. The case r = 3 was already proved in [9].

Theorem 3. For fixed r ≥ 3, almost all r-regular bipartite graphs have a
complete decomposition.

Corollary. For fixed r ≥ 3, almost all r-regular bipartite graphs are hamil-
tonian and r-edge-colourable.

All of these results are for r fixed. If r = r(n) goes to infinity sufficiently
slowly, then of course they all still hold. The only explicit result we know
concerning how quickly r(n) can grow is by Frieze [7]. There it is shown that
a random r-regular graph is almost always hamiltonian as long as r(n) →∞
and r(n) = O(n

1
5
−ε) for some ε > 0. The proof shows that a particular

algorithm is almost sure to find a hamilton cycle under those conditions. This
situation is far from satisfying. Intuitively, it seems clear that hamiltonicity
will be probabilistically assured whenever 3 ≤ r(n) < n and nr(n) is even as
n → ∞. On the other hand, it is difficult to see how to go about proving
such a fact.

2 Proof of Theorem 2

The proof is by induction on r. A cubic graph with a Hamilton cycle must
have a complete decomposition, and so the validity of Theorem 2 for r = 3
comes from the main result of [10]. We can thus take r ≥ 4. Our main
objective is to show that for G ∈ Ω2n, M is unlikely to be very small compared
with its expectation. Indeed, once we have shown that there is a sequence
w(y) > 0 such that

lim inf Pr(M ≥ w(y)ExpM) → 1 as y →∞, (2.1)

the following argument, linking the spaces Ω2n,r and Ω2n,r−1, completes the
proof of Theorem 2. Apart from the use of (2.1), the asymptotics are for y
and b fixed as n goes to ∞.
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Let R denote the event {M ≥ w(y)ExpM}. Define a bicoloured graph
B, in which the blue vertices are the elements of Ω2n,r and the red ones are
the elements of Ω2n,r−1, with an edge from a blue vertex v1 to a red vertex
v2 if and only if v2 can be obtained from v1 by deleting the edges of a perfect
matching.

Let Tr be the event that G ∈ Ω2n,r does not have a complete decomposi-
tion, and use Prr for probability in the space Ω2n,r. Choose an edge v1v2 of
B uniformly at random, with v1 ∈ Ω2n,r and v2 ∈ Ω2n,r−1. For this selection
of v1 and v2, let P1 be the probability that v1 ∈ R ∩ Tr, and let P2 be the
probability that v2 ∈ Tr−1. From the definition of R we have

P1 ≥ w(y)Prr(R ∩ Tr). (2.2)

On the other hand, by [2, Theorem 1] the maximum and minimum degrees of
the red vertices in B are asymptotically equal (in fact, the asymptotic value
is (2n)!/(n!2ne(r−1)/2)) uniformly as n →∞. Hence

P2 ≤ Prr−1(Tr−1)(1 + o(1)). (2.3)

If v2 has a complete decomposition then so does v1, and so P1 ≤ P2. Hence
(2.2) and (2.3), together with the inductive hypothesis that Prr−1(Tr−1) =
o(1), imply that Prr(R ∩ Tr) = o(1) for y fixed. Thus, by (2.1), since y can
be chosen arbitrarily large, the theorem follows.

We only have to establish (2.1) for an appropriate sequence w(y). Define

λi =
(r − 1)i

2i
, µi =

(−1)i

2i
.

From [12, Corollary 4] or Bollabás [3] we have the following.

Lemma 1. For any fixed k the variables Xi, 3 ≤ i ≤ k, are asymptotically
independent Poisson random variables, with ExpXi ∼ λi.

For b ≥ 3 and y > 0, let

S(y, b) = {(c3, . . . , cb)|0 ≤ ci < λi + yλ
2/3
i , ci an integer, for i = 3, . . . , b}.

We will later set y equal to
√

b. By an abuse of notation we also use S(y, b)
to denote the event that the sequence X3, . . . , Xb is in S(y, b).

We will show
Pr(S̄(y, b)) = O(e−y/4) + o(1) (2.4)
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where S̄(y, b) denotes the complement of S(y, b). Here the constant implicit
in O() is uniform over all b and y, whereas the constant function implicit in
o() may depend on both y and b. Let W be arbitrary. We will bound the
probability of M being small by way of the obvious inequality

Pr(M < W ) ≤ Pr({M < W} ∧ S(y, b)) + Pr(S̄(y, b)). (2.5)

Define the group mean

Ec3,...,cb
= Exp(M |X3 = c3, . . . , Xb = cb),

and the group variance

Vc3,...,cb
= Exp(M2|X3 = c3, . . . , Xb = cb)− E2

c3,...,cb
.

One of our main steps in the proof is to establish the following.

Lemma 2. For fixed b ≥ 3,

Ec3,...,cb
∼ ExpM

b∏
i=3

(
1 +

µi

λi

)ci

e−µi .

The proof of Lemma 2 is deferred until later in this section.
Define

W (y, b) = min{Ec3,...,cb
| (c3, . . . , cb) ∈ S(y, b)}.

Lemma 2 will help us to prove the inequality

ExpVX3,...,Xb
≥ (1 + o(1))(ExpM)2Pr({M < W (y, b)/2} ∧ S(y, b))e−O(y)b−1,

(2.6)
for y ≥ 1 where the constant implicit in O() is independent of y and b.

We have

VarM = ExpVX3,...,Xb
+ VarEX3,...,Xb

= ExpVX3,...,Xb
+ ExpE2

X3,...,Xb
− (ExpM)2,

and we will show that

ExpE2
X3,...,Xb

≥ (ExpM)2
√

r − 1(1−O(e−b) + o(1))

e(2r−1)/4(r−1)2
√

r − 2
(2.7)
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where the constant implicit in O() is uniform over all b ≥ 3. Hence (1.2)
implies that

ExpVX3,...,Xb
= (O(e−b) + o(1))(ExpM)2, (2.8)

where the constant implicit in O() is uniform over all b ≥ 3.
From (2.4) – (2.6) it follows that for y ≥ 1 and b ≥ 1,

Pr(M < W (y, b)/2) = O(e−y/4) + eO(y)bExpVX3,...,Xb
/(ExpM)2 + o(1)

where the implied constants in each O() are independent of y and b. Hence
by (2.8),

Pr(M < W (y, b)/2) = O(e−y/4 + beO(y)−b) + o(1),

where each O() is independent of y and b but o(1) is not.
On choosing, say, b = y2, we obtain

lim inf Pr(M ≥ W (y, y2)/2) = 1−O(e−y/4),

where R denotes the event {M ≥ W (y, y2)/2}. Thus, setting w(y) =
sup(W (y, y2)/ExpM), we get (2.1) as required. By Lemma 2, w(y) 6= 0.

To complete the proof, it is required to establish Lemma 2 as well as
(2.4), (2.6) and (2.7).
Proof of Lemma 2. Define the uniform probability space Φ = Φ2n of all
labelled r-regular graphs on 2n vertices with a distinguished perfect match-
ing. Note that the elements of Φ can be identified with the edges of the
bicoloured graph B defined above, and they are |Ω2n|ExpM in number. We
use the subscript Φ on Pr and Exp to distinguish references to this space
from those to Ω, which remain unsubscripted. Extend the definition of Xi in
the obvious way to Φ.

We first show that

ExpΦXm ∼ (λm + µm). (2.9)

For this, we compute ExpΦXm in the form of the ratio Exp(MXm)/ExpM
by counting r-regular graphs G on 2n vertices with a given perfect matching
D once for every m-cycle C that they contain, and dividing by the total
number of r-regular G on 2n vertices with the perfect matching D. This
calculation resembles that giving equation (2.6) in [10], so we give only the
crucial details.
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For m ≥ 3, the number of m-cycles in the complete graph which use
precisely w edges of D can be computed asymptotically by tracing out such
cycles edge by edge. First give the cycle a distinguished vertex and direction,
such that the last edge in the cycle is not in D. This has the effect of
multiplying the number of cycles by 2(m − w). Each edge of the cycle is
either an edge of D, in which case that edge is determined uniquely and
the next edge is not in D, or is not an edge of D and has asymptotically
2n choices. In a generating function we can represent these two options by
the two terms x and yx2 respectively, where x marks all the edges of the
cycle chosen and y marks the edges of the cycle chosen in D. From this the
number of m-cycles without distinguished vertex or direction is seen to be
asymptotic to

(2n)m−w[xmyw]

(
1

2(m− w)
(x + yx2)m−w

)
= (2n)m−w[xmyw]

(
−(1/2) log(1− (x + yx2))

)
. (2.10)

Here square brackets denote the extraction of coefficients.
Given D and a m-cycle using precisely w edges of D, we can compute

asymptotically the number of ways to determine the rest of an r-regular
graph G, and also the number of ways to determine an r-regular graph which
contains D. By [2, Theorem 1], the asymptotic ratio of these two numbers
can be computed and put into the form(

r − 1

(r − 2)2

)w

(r − 2)m(2n)w−m. (2.11)

Multiplying this by (2.10) and summing over w ≥ 0 gives

Exp(MXm)/ExpM ∼ −[xm]
1

2
log(1− x(r − 2)− (r − 1)x2)

= −1

2
[xm] log(1− (r − 1)x)− 1

2
[xm] log(1 + x).

This gives (2.9).
Similar calculations, following the template of the derivation of [10, equa-

tion (2.9)], yield

PrΦ(X3 = c3, . . . , Xb = cb) ∼
b∏

i=3

(λi + µi)
cie−(λi+µi)/ci!.
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The rest of the proof follows that in [10].

The following is proved in [10].

Lemma 3. Let η1, η2, . . . be given. Suppose that η1 > 0 and that for some
c > 1, ηi+1/ηi > c for all i ≥ 1. Then uniformly over x ≥ 1,

R(x) =
∞∑
i=1

∞∑
t=ηi(1+yi)

ηt
i

t!eηi
= O(e−c0x)

where yi = xη
−1/3
i and c0 = min{η1/3

1 , η
2/3
1 }/4.

Proof of (2.4). This follows immediately from Lemmas 1 and 3 with
ηi = λi+2 and x = y.

Proof of (2.7). For any real x and non-negative integer b we have

ExpE2
X3,...,Xb

= ES + Pr(S̄(x, b))Exp(E2
X3,...,Xb

|S̄(x, b))

≥ ES

where

ES =
∑

(c3,...,cb)∈S(x,b)

E2
c3,...,cb

Pr(X3 = c3, . . . , Xb = cb)

∼ (ExpM)2
b∏

i=3

(1− Zi)e
µ2

i /λi

by Lemmas 1 and 2, with

Zi =
∞∑

t=λi+xλ
2/3
i

(λi + µi)
2t

t!λt
ie

(λi+µi)2/λi
.

Put
ηi = (λi + µi)

2/λi.

It is easily verified that for i ≥ 3 and x ≥ 2,

λi + xλ
2/3
i > ηi + xη

2/3
i /2.

Hence, replacing the value of x in Lemma 3 by x/2 and noting that c0 > 0.41
in all cases, we get

b∑
i=3

Zi = O(e−x/5).
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One also has

b∏
i=3

eµ2
i /λi = e−(2r−1)/4(r−1)2

√
(r − 1)/(r − 2)(1−O((r − 1)−bb−1)).

Thus, taking x ≥ 5b, we obtain (2.7).

Proof of (2.6). Let IndS denote the indicator function for an event S. Let
S denote S(y, b), and note that for G ∈ S,

b∏
i=3

(
1 +

µi

λi

)Xi

e−µi ≥
b∏

i=3

e(−1)i+1/2i(1− (r − 1)−i)λi+yλ
2/3
i

≥ e−O(y)−O(1)/
√

b

by routine calculations using log(1 + µi/λi) ≥ −(r− 1)−i − (r− 1)−2i. Since
y ≥ 1 the O(1) term can be dropped.

Define the event
T = {M < EX3,...,Xb

/2}.

The expected group variance can be written as

ExpVX3,...,Xb

= Exp
(
Exp

(
(M − EX3,...,Xb

)2 |X3, . . . , Xb

))
≥ Exp

(
Exp

(
(M − EX3,...,Xb

)2IndT∧S |X3, . . . , Xb

))
≥ Exp

(
1

4
Exp

(
E2

X3,...,Xb
IndT∧S |X3, . . . , Xb

))

∼ 1

4
(ExpM)2Exp

(
Exp

(
IndT∧S

b∏
i=3

(
1 +

µi

λi

)2Xi

e−2µi |X3, . . . , Xb

))

≥ 1

4
(ExpM)2Exp

(
Exp

(
IndT∧S e−O(y)b−1 |X3, . . . , Xb

))
≥ (ExpM)2Pr(T ∧ S)e−O(y)b−1,

where the third-last step uses Lemma 2, and the second-last uses the bound
derived above. This yields (2.6).
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3 Proof of Theorem 1

The basic idea here is to slightly modify any graph with 2n + 1 vertices to
one with 2n vertices, obtain a Hamilton cycle in the modified graph using
Theorem 2, and lift this up to one in the original graph.

Fix j ≥ 1. Let Λn,r = Λn = Λ denote the uniform probability space
whose points are the r-regular graphs on n vertices with an ordered set of j
distinguished edges, so that |Λ2n| = rn(rn− 1) · · · (rn− j + 1)|Ω2n|. Use the
subscript Λ on Pr and Exp to distinguish references to this space from those
to Ω. We require a minor modification of Theorem 2 so as to apply to Λ.

Theorem 2′. The probability that G ∈ Λ2n has a complete decomposition
in which the Hamilton cycle contains the first distinguished edge but no other
distinguished edge tends to 1 as n →∞.

Proof. The first step is to modify the Theorem of [10]. So for the moment,
take r = 3, so that all graphs are cubic. Let Ĥ(G) denote the number of
Hamilton cycles using the first distinguished edge of G ∈ Λ2n,3, but no others.
Clearly

ExpΛĤ ∼ 2

3j
ExpH.

Select a graph uniformly at random from the labelled cubic graphs with
2n vertices and with an ordered pair of distinct Hamilton cycles distin-
guished, and let 2n − k be the number of edges in the intersection of the
two distinguished Hamilton cycles. From [9, proofs of Theorems 2.3 and
2.4], k = 2n/3 + o(n) almost surely as n →∞. More loosely expressed, this
says that the two distinguished Hamilton cycles almost surely have roughly
4n/3 edges in common. Hence

ExpΛ(Ĥ(Ĥ − 1)) ∼ 4

9j
Exp(H(H − 1)).

Thus from [10, equation (1.2)],

VarΛĤ ∼
(

3

e
− 1

)
(ExpΛĤ)2. (3.1)

Thus [10, equation (1.2)] for Ω translates directly over to Λ without alter-
ation. The rest of the proof of the Theorem of [10] now carries over to Λ
without change other than the obvious ones required to make the definitions
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fit: for example, the space Φn defined in the proof of Lemma 2 will now be the
space of labelled cubic graphs on 2n vertices and j distinguished edges and
a distinguished Hamilton cycle containing the first distinguished edge but
none of the others. Thus we obtain Theorem 2′ for r = 3, which launches
the induction.

Now take r ≥ 4. Let M̂ denote the number of perfect matchings of a
graph G ∈ Λ which do not contain any of the j distinguished edges of G.
Follow the lines of the above modification of the Theorem of [10]. Firstly,

ExpΛM̂ ∼ (r − 1)j

rj
ExpM.

Secondly, from [5, proof of Theorem 3], for a random labelled r-regular graph
with 2n vertices and two distinguished perfect matchings, the number of
edges in the intersection of the matchings is almost surely asymptotic to
n/r. It follows that (1.2) holds with Exp replaced by ExpΛ and M replaced
by M̂ .

Now rework the proof of Theorem 2, with Ω replaced by Λ and M replaced
by M̂ . The space Φ2n defined in the proof of Lemma 2 will now be the space
of labelled r-regular graphs on 2n vertices and j distinguished edges and a
distinguished perfect matching not containing any distinguished edge. In this
way, we obtain

lim inf PrΛ(M̂ ≥ W (y)ExpΛM̂) = 1−O(e−y/4)

and so the analogue of (2.1) is established.
This time, define B, so that the blue vertices are the elements of Λ2n,r

and the red ones are the elements of Λ2n,r−1, with an edge from a blue vertex
v1 to a red vertex v2 if and only if v2 can be obtained from v1 by deleting the
edges of a perfect matching which does not contain any distinguished edge.

Let Tr be the event that G ∈ Λ2n,r does not have a complete decomposi-
tion of the type required in the theorem, and use Prr for probability in the
space Λ2n,r. Then the remainder of the proof of Theorem 2 applies, and the
theorem follows.

To complete the proof of Theorem 1, recall that by Theorem 2 we only
need to consider Ω2n+1,r, and hence can assume that r is even. Consider
linking the spaces Ω2n+1,r and Λ2n,r by the following operation. Delete the
vertex labelled 2n+1 from G ∈ Ω2n+1,r, and randomly add r/2 distinguished
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edges amongst the resulting vertices of degree r − 1 so as to obtain an r-
regular graph G′. This lies in the space Λ2n,r almost surely. (The only
problem occurs when a multiple edge is created in G′, but the probability of
this happening is O(1/n) as can be seen by applying Lemma 1 to find the
expected number of 3-cycles.) Conversely, G′ ∈ Λ2n,r can almost surely be
created in a unique way by this operation. For G′ will be uniquely created
if its distinguished edges are pairwise non-incident, and not creatable at
all if some two distinguished edges are incident. It is easy to see that the
expectation of the latter is O(1/n). If G′ has a complete decomposition of the
type described in Theorem 2′ then G has a Hamilton cycle. Hence Theorem
1 follows for n odd from Theorem 2′ applied with j = r/2. (A more rigorous
description of this argument would require definition of another bipartite
graph like B.)

4 Proof of Theorem 3

This only requires a very small number of straightforward modifications of
the proof of Theorem 2. Redefine Ω2n to be the probability space of r-
regular bipartite graphs on 2n vertices with the uniform distribution, and
then redefine M , Xi and all subsequent notation accordingly. We only need
to prove Theorem 2 in the present context. For this proof define

λi =
(r − 1)i

i
, µi =

(−1)i

i
.

Then for fixed even i > 3, it is easy to verify the analogue of Lemma 1 with
ExpXi ∼ λi. (The basic calculations required for this appeared in [11], and
are simpler than the corresponding ones for graphs.) In place of (1.2) we
now have from [5, Theorem 6]

ExpM2

(ExpM)2
∼ e−1/2(r−1)2 r − 1√

r(r − 2)
. (4.1)

Consider the proof of Lemma 2. In place of (2.10) we now have

nm−w[xmyw](− log(1− (x + yx2))).
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Also, from the main theorem of [1] the expression to replace (2.11) is(
r − 1

(r − 2)2

)w

(r − 2)mnw−m.

Thus (2.9) and Lemma 2 hold with the new definitions, except that in Lemma
2, b and the subscripts on the cj become even, and in the product i is re-
stricted to ranging over even integers. A similar restriction applies in the
proof of (2.7), and we note that

b∏
i=4

eµ2
i /λi = e−1/2(r−1)2 r − 1√

r(r − 2)
(1−O((r − 1)−bb−1)).

Thus the rest of the proof of Theorem 2 applies, with the appropriate modi-
fication to (2.7). The result is Theorem 3.

5 Conjectures

Conjecture 1. Let r ≥ 4. The probability that a random r-regular graph
on 2n vertices has br/2c pairwise edge-disjoint Hamilton cycles tends to 1 as
n →∞.

Conjecture 2. Let r ≥ 4. The probability that a random r-regular bipartite
graph on 2n vertices has br/2c pairwise edge-disjoint Hamilton cycles tends
to 1 as n →∞.

The methods of the present paper are probably sufficient to prove these
conjectures for r odd, but this would require showing that H does not usually
vary too much for G ∈ Ω, including the establishment of the relations claimed
for ExpH and VarH in the Introduction. For r even the inductive step could
also be done in this way. Something new would be required however to launch
the induction at r = 4.
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