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Abstract

Suppose that a random graph begins with n isolated vertices and evolves by
edges being added at random, conditional upon all vertex degrees being at most
2. The final graph is usually 2-regular, but is not uniformly distributed. Some
properties of this final graph are already known, but the asymptotic probability of
being a Hamilton cycle was not known. We answer this question along with some
related questions about cycles arising in the process.
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1 Introduction

Suppose we begin with n ≥ 2 isolated vertices, and add edges randomly one by one
such that no multiple edges are created and that the maximum degree of the graph thus
induced is always at most d, where d ≥ 1 is a given integer. These random processes were
studied in [5], where it was shown that when no more edges can be added, the number
of edges is almost surely equal to the maximum possible number, bdn/2c, as n→∞. In
the case d = 2, the final graph must be a collection of disjoint cycles, together perhaps
with one isolated edge. This was studied in [6] in more detail and information about the
distribution of cycles of bounded length in this graph was obtained. It was also shown
that the expected number of cycles in total is at most 3 + log n. In the present paper we
study the long cycles in the final graph and answer several of the questions raised about
2-processes by Erdős (see [6]). In particular we compute asymptotically the probability
that the final graph is just an n-cycle. This tells us the probability that the final graph is
connected. For d-processes with d ≥ 3, it was shown [7] that the final graph is connected
with probability tending to 1 as n→∞.

We assume that a graph g may have no multiple edges or loops, and denote its edge
set by E(g). We say that g is 2-maximal if every vertex has degree at most 2, but no new
edge can be added without violating this condition. The reason for this can be that every
vertex, except perhaps one, already has degree 2, or that there are only two vertices of
degree less than 2, which are already adjacent. Formally, we define a 2-process to be a
sequence of graphs (g0, g1, . . . , gn) on vertex set [n] = {1, 2, . . . , n} such that the following
(i)-(iv) hold for some w ≤ n:

(i) |E(gt)| = t, t = 0, 1, . . . , w;

(ii) gw = gn;

(iii) ∅ = E(g0) ⊆ E(g1) ⊆ · · · ⊆ E(gn); and

(iv) gn is 2-maximal.

From (iv) it follows that the graph becomes 2-maximal at time w = w(g1, . . . , gn), which
stands for the number of edges in the graph when no more can be added. The process
remains static until time n, which is the maximum time a 2-process can possibly run.
Clearly w = n− 1 or n. Property (ii) is included merely for the convenience of having all
sequences of equal length.

A random 2-process is a probabilistic space whose elements are 2-processes with prob-
abilities assigned as follows. Define ut to be the number of vertices of degree less than 2
(unsaturated vertices) in gt, and zt the number of edges whose ends both have degree 1
(isolated edges). We assign the probability

w−1∏
t=0

1(
ut

2

)
− zt
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to the 2-process (g0, g1, . . . , gn). It is convenient to think of gt as being formed at time t by
adding an edge et to gt−1, where et is chosen uniformly at random from current available
sites. Here an available site is a pair of unsaturated, non-adjacent vertices of gt−1. The
edges e1, . . . , en of gn are in the order in which they appear in the process, where en is
left undefined if w = n− 1.

We use upper case letters to denote random variables corresponding to the lowercase
deterministic parameters. Thus, a random 2-process is denoted by (G0, G1, . . . , Gn), and
Ut and Zt are the numbers of unsaturated vertices and isolated edges at time t respectively.
From [5, Theorem 1.1] it follows that in a random 2-process w = n occurs almost surely. In
this case the final graph Gn is 2-regular, and thus is a collection of disjoint cycles. If there
is only one cycle, then Gn is hamiltonian. The main result in this paper, namely Theorem
1 below, gives asymptotically the probability of the hamiltonicity of Gn. Throughout
the paper the asymptotics is made as n → ∞. In particular, a random 2-process has a
property Q asymptotically almost surely (a.a.s.) if limn→∞P(Q) = 1. Denote

τ =
∫ ∞

0

log(1 + x)

xex
dx

so that

τ =
γ2

2
+
π2

4
−

∞∑
k=1

2k−1 + ψ(k)

k · k!
≈ 0.7452

by [3, p. 530, eq. 6.], where γ = limk→∞(1 + 1
2

+ · · · + 1
k
− log k) is Euler’s constant and

ψ is the digamma function.

Theorem 1
P(Gn is hamiltonian) ∼ c1√

n

where c1 =
√

πeτ

2
≈ 1.819.

For random 2-regular graphs with uniform probability distribution, the probability of
a hamilton cycle is easily computed from the results of Bender and Canfield [1] to be
1
2
e3/4

√
πn−1/2 ≈ 1.876n−1/2, which is slightly different from the 2-process result above.

Theorem 1 is proved by obtaining a fairly precise estimate for the probability that the
t-th edge Et completes a cycle. The graph Gn is hamiltonian if and only if the first time
this happens is with En. We obtain this estimate by determining some parameters of the
process fairly accurately, namely the numbers of isolated vertices (also called isolates) and
of isolated edges. This is done by showing that a.a.s. these numbers are approximated by
the solutions of some differential equations, as in [6] and [9]. The interesting new feature
of the present analysis is that we can demonstrate this approximation until very near
the end of the process (see Theorem 4, stated in Section 2 and proved in Section 3), due
to the attractive nature of the solution of the differential equation. This is a necessary
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requirement in the present application, since the probability of forming a cycle at a given
step increases throughout the process, to a constant value at the end, and therefore the
end of the process plays an important role for hamiltonicity.

Our method has similarities with mean field theory used in statistical physics, where
a complex interacting stochastic system is described by differential equations arising un-
der the assumption that all the variables take their expected values. In this paper, we
use conditional expectations and martingale arguments to make the heuristic mean field
approach rigorous. In particular, this approximation works to near the very end of the
process.

A simpler consequence of the analysis required for Theorem 1 leads to the following
strengthening of [6, Theorem 3]. We use Xn to denote the number of cycles in Gn.

Theorem 2

E(Xn) =
1

2
(log n+ log 2 + γ − τ) +O((log n)−1/11)

where τ and γ are as above.

Another point of interest in the evolution of a 2-process is the time when the first cycle
appears. We denote this time by Tn. Again using little more than part of the proof of
Theorem 1, we obtain the following result, where c2 is a constant whose precise formula
will be given in the proof.

Theorem 3
E(Tn) ∼ c2n

where c2 is constant, c2 ≈ 0.829.

The analysis required for Theorem 1 also gives rise to approximations of the probability
thatGt contains no cycles, for given t. See Figure 1 and the discussion at the end of Section
2.

The three theorems above answer Questions 6, 5 and 1 asked at the end of [6]. Probably
the most interesting open problem remaining in this area is whether the final graph of this
process is contiguous to a random 2-regular graph (see [8]). Unfortunately, the methods
of the present paper are not strong enough to answer this.

2 Proofs

It was the analysis of the number of isolated vertices that led to the main results in [5, 6].
Here we shall need more: sharp concentration not only of the number of isolated vertices
but also of the number of isolated edges. Also we need knowledge of their behaviour for
longer than in [5, 6]: we need good upper and lower bounds almost until the very end
of the process. The proof of the concentration results will be deferred to Section 3. In
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Figure 1: Approximate probability of no cycles after xn steps

the present section, we motivate these concentration results and use them to prove the
theorems.

Let Ct denote the event that Et+1 creates a cycle when it is added to Gt, and Ct its
complement. Then we have

P(Gn is Hamiltonian) = P

(
n−2∧
t=0

Ct

)
(2.1)

(assuming n ≥ 2). We use Yt to denote the (random) number of isolated vertices at time
t. By counting vertex degrees, we know that the number of vertices of degree 1 in Gt is
2(n− t− Yt) and hence

Yt + Ut = 2(n− t). (2.2)

Since the connected components of Gt are necessarily paths, cycles and isolated vertices,
the number of paths of length at least 2 is n− t− Yt − Zt. Hence we have

Yt + Zt ≤ n− t ≤ Ut. (2.3)

Note that n− t− Yt − Zt is the number of edges which cause a cycle when added to Gt.
Thus, given Gt, the probability of Ct is

P(Ct|Gt) =
n− t− Yt − Zt(

Ut

2

)
− Zt

(2.4)

=
Ut − Yt − 2Zt

U2
t

(
1 +O

(
1

Ut

))
(2.5)
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where the O(1/Ut) term is obtained by using Zt ≤ Ut from (2.3).
The expected changes in Yt and Zt are given by

E(Yt+1 − Yt|Gt) = − 2Yt

2n− 2t− Yt

+O
(

1

n− t

)

E(Zt+1 − Zt|Gt) =
Y 2

t − 4(2n− 2t− Yt)Zt

(2n− 2t− Yt)2
+O

(
1

n− t

)
.

See Lemma 2 in the next section for details. Thus, we will approximate E(Yt+1 − Yt|Gt)
by f(t/n, Yt/n), and approximate E(Zt+1 − Zt|Gt) by g(t/n, Yt/n, Zt/n), where

f(x, y) = − 2y

2− 2x− y
(2.6)

g(x, y, z) =
y2 − 4(2− 2x− y)z

(2− 2x− y)2
. (2.7)

The proof will be based on the following fact, which is suggested by putting x = t/n,
y = Y/n and z = Z/n in the results above. For any time t, as long as the “remaining time”,
n − t, tends to ∞ as n → ∞, the random variables Yt and Zt can be well approximated
by ny(t/n) and nz(t/n) (see Theorem 4), where y = y(x) and z = z(x) (0 ≤ x < 1) are
the solutions of the following differential equations:

dy

dx
= f(x, y), y(0) = 1, (2.8)

dz

dx
= g(x, y, z), z(0) = 0. (2.9)

Thus, by (2.2), Ut will be approximated by nu(t/n), where we define

u(x) = 2− 2x− y(x). (2.10)

Equation (2.8) and its analogue for a d-process in general was used heavily in [5]
and [6], where some consequential properties of y were noted. We give these here, as well
as similar properties of z.

Solving (2.8), by noting that dx/dy is linear in x for example, yields

y(2− log y) = 2(1− x) (2.11)

and thus
u = y(1− log y). (2.12)

From this and (2.8) and (2.9) we have

dz

dy
= − 1

2(1− log y)
+

2z

y
.
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Using the initial condition z(0) = 0, we then obtain

z(x) =
y(x)2

2

∫ 1

y(x)

dη

η2(1− log η)
. (2.13)

For our later use we need the following approximations. Note that (2.11) (or (2.8)) implies

0 ≤ y(x) ≤ 1− x. (2.14)

Thus, f(x, y) ≤ 0 and so y(x) is decreasing with x. From (2.14) and using the logarithmic
inequality (log(1− α) ≤ −α for α < 1) twice we get

z(x) ≤ y(x)2

2

∫ 1

y(x)

dη

η2(2− η)

≤ y(x)(1− y(x))

2
(2.15)

≤ 1− x

2
. (2.16)

Moreover, from (2.11) one can see that

y(x) ∼ −2(1− x)/ log(1− x) as x→ 1 (2.17)

(see also [6, (2.10)]).
The object of this section is to show that the approximations of the random variables

Y and Z by the corresponding functions y and z are sufficiently accurate. The proof of
Theorem 1 is the most delicate, and for this the process is divided into two phases. For
proving the other theorems, the treatment of the second phase could be made much sim-
pler, though we obtain a smaller error in the result of Theorem 2 by careful consideration
of Phase 2.

The two phases are [0, t1] and (t1, n− 2], where we set

t1 = n− d(log n)Ne (2.18)

for a large constant N which we specify below. We will be able to estimate P(Ct|Gt) to
sufficient accuracy by the non-random value r̄(x)/n, where

r̄(x) =


r(x), x ∈ [0, t1/n]

1
2− 2x− n−1 , x ∈ (t1/n, 1]

with

r(x) =
u(x)− y(x)− 2z(x)

u(x)2
. (2.19)
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Note that for t > t1, we arrive at this approximation by setting Yt and Zt equal to 0
in (2.4), using (2.2). Since u(x) ≥ 1 − x by (2.10) and (2.14), and since y(x) ≥ 0 and
z(x) ≥ 0 (see (2.14) and (2.13) respectively), for any x ∈ [0, 1) we have

r(x) ≤ 1

u(x)
≤ 1

1− x
. (2.20)

The following result will play a key role in our proof of Theorems 1, 2 and 3. It
is of interest for its own sake since it might be useful in proving some other results
concerning the random 2-process. It is in more generality than what is needed in this
paper: we will use its special case where σ(n) = t1 in the proof of Theorems 1-3. Note
that it is an improvement of [6, Theorem 2]: the approximation is more accurate and
lasts longer, reaching any point such that the remaining time tends to infinity as n→∞.
Unfortunately, the accuracy of this theorem by itself is not good enough for our purposes
in Phase 2, but it is sufficient for Phase 1.

Theorem 4 For any 0 < ε < 1/4 and any function σ(n) > 0 with n − σ(n) tending
to ∞ as n → ∞, there exists C0 = C0(ε), which is independent of σ(n), such that with

probability 1−O(e−(n−σ(n))1/2−2ε
) we have

|Yt − ny(t/n)| < C0(n− t)1−ε (2.21)

|Zt − nz(t/n)| < C0(n− t)1−ε (2.22)

for all 0 ≤ t ≤ σ(n), where y(x) and z(x) are determined by (2.11) and (2.13), respec-
tively.

By (2.2), (2.10) and (2.21), under the same conditions as in Theorem 4, we have

|Ut − nu(t/n)| < C0(n− t)1−ε (2.23)

with probability 1−O(e−(n−σ(n))1/2−2ε
).

We now specify the values of a set of parameters beginning with any fixed ρ andK with
0 < ρ < 1 and K > 4, as follows. Set ε = 3ρ/16 and ζ = 1/2− 2ε = 1/2− 3ρ/8, so that
ζ > 1/8. For the definition (2.18) of t1, select N such that max{16/3, K/4ζ} < N < 2K
so that in particular (n− t1)

ζ > (log n)K/4.
In order to introduce the next theorem we note that for large n (using (2.15), (2.11)

and (2.14)), C0/(n− t1)ε ≤ C0/(log n)Nε < 1/4(log n)16ε/3 = 1/4(log n)ρ, and n(y(t1/n)+
z(t1/n))/(n − t1) < 2ny(t1/n)/(n − t1) = 4/(2 − log y(t1/n)) ≤ 4/(2 − log(1 − t1/n)) <
8/ log n < 1/2(log n)ρ. Hence with σ = t1 in Theorem 4,

P

(
Yt1 + Zt1 <

n− t1
(log n)ρ

)
= 1−O(e−(log n)K/4

) = 1− o(n−2). (2.24)

To cover the major part of phase 2 we first need to restrict to t ≤ t2 where

t2 = n− dlog ne.

For any graph G, denote by Y (G) and Z(G) the numbers of isolated vertices and isolated
edges of G, respectively.
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Theorem 5 Let 0 < ρ < 1 and G1 be any set of graphs such that for all G ∈ G1,
P(G = Gt1) 6= 0 and Y (G) + Z(G) < (n− t1)/(log n)ρ. Then for all K > 0

P

(
Yt + Zt ≤

2(n− t)

(log n)ρ
for all t with t1 < t ≤ t2 | Gt1 ∈ G1

)
= 1−O((log n)−K). (2.25)

For the part of phase 2 from t2 onwards, we only need some quite simple observations.
Lemma 3.1 of [5] was applied to the final stages of the process to show that the random
2-process a.a.s. has a final graph with Yn + Zn = 0. We need to sharpen this conclusion
slightly here. For this purpose we choose δ, δ′ such that

0 < δ′ < δ < 1, 2(1− ρ+ δ′) < δ <
1

2
− δ′ < ρ− 1

2
. (2.26)

(For example, choosing ρ = 999/1000, δ = 2/5 and δ′ = 99/1000 satisfies all conditions
above.) Let

t3 = n− b(log n)δc, t4 = n− b(log n)δ′c.

Theorem 6 Let 0 < ρ < 1 and let G2 be any set of graphs such that for all G ∈ G2,
P(G = Gt2) 6= 0 and Y (G) + Z(G) = O((log n)1−ρ). Then in the event that Gt2 ∈ G2, we
have

Yt + Zt = O((log n)1−ρ) for t2 ≤ t ≤ n. (2.27)

Furthermore,
P (Yt3 = 0 | Gt2 ∈ G2) = 1−O((log n)δ−ρ) (2.28)

and
P (Zt4 = 0 | Yt3 = 0 ∧Gt2 ∈ G2) = 1−O((log n)δ′−δ+1−ρ). (2.29)

The following result will be useful in computing both the probability of hamiltonicity
and the expected number of cycles in the random 2-process.

Lemma 1 For any t0 = t0(n) > 0 such that n− t0 = O(
√
n) and n− t0 →∞ as n→∞,

we have

t0∑
t=0

1

n
r
(
t

n

)
= −1

2
log(2(n− t0)/n)− τ

2
+O

(
(n− t0)

−1 + (log n)−1
)
.

Proof Let r1(x) = (u(x) − y(x))/u(x)2 and r2(x) = −2z(x)/u(x)2, so that r(x) =

r1(x) + r2(x). Set J1(t) =
∫ t/n
0 r1(x)dx and J2(t) =

∫ t/n
0 r2(x)dx. Using (2.12) we see that

dr1/dy < 0. Since dy/dx = f(x, y) < 0, it follows that dr1/dx > 0. Hence

t0∑
t=0

r1(t/n)/n = J1(t0) +O(r1(t0/n)/n) = J1(t0) +O((n− t0)
−1). (2.30)

(Here we used r1(x) = − log y(x)/y(x)(1 − log y(x))2 ∼ 1/y(x)(1 − log y(x)) = 1/(2(1 −
x) − y(x)) ∼ 1/2(1 − x) as x → 1, which follows from (2.12), (2.11) and the fact that
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y(x) → 0 when x → 1.) From (2.11), we have log(1 − x) = log y + log(1 − (log y)/2).
Using this and (2.8), and noting y(0) = 1, we have

J1(t) =
1

2

∫ y(t/n)

1

log y

y(1− log y)
dy

= −1

2
log y(t/n)− 1

2
log(1− log y(t/n))

= −1

2
log y(t/n)− 1

2
log(1− (log y(t/n))/2)− 1

2
log

(
1− log y(t/n)

1− (log y(t/n))/2

)

= −1

2
log(1− t/n)− 1

2
log

(
1− log y(t/n)

1− (log y(t/n))/2

)
. (2.31)

Since t0/n → 1, from (2.17) we have y(t0/n) → 0 as n → ∞. Hence, using (2.11) and
(2.17), we have

J1(t0) = −1

2
log(2(n− t0)/n)− 1

2
log

(
1− log y(t0/n)

2− log y(t0/n)

)

= −1

2
log(2(n− t0)/n) +O

(
1

2− log y(t0/n)

)

= −1

2
log(2(n− t0)/n) +O

(
y(t0/n)

2(1− t0/n)

)

= −1

2
log(2(n− t0)/n) +O(−1/ log(1− t0/n))

= −1

2
log(2(n− t0)/n) +O((log n)−1). (2.32)

Using (2.8) and (2.13), we get

J2(t) =
∫ y(t/n)

1

z/y

y(1− log y)
dy (2.33)

=
1

2

∫ y(t/n)

1

1

1− log y

∫ 1

y

1

η2(1− log η)
dη dy.

This double integral can be evaluated as follows, first substituting ξ = 1 − log η, then
w = 1− log y, a = w − ξ and then reversing the order of integration.

J2(t) =
1

2

∫ 1

1−log y(t/n)

∫ w

1

eξ−w

ξw
dξ dw

=
1

2

∫ 1

1−log y(t/n)

∫ w−1

0

e−a

w(w − a)
da dw

=
1

2

∫ 0

− log y(t/n)
e−a

∫ 1−log y(t/n)

1+a

1

w(w − a)
dw da

=
1

2

∫ 0

− log y(t/n)

1

aea
log

(
(1− a− log y(t/n))(1 + a)

1− log y(t/n)

)
da. (2.34)

10



Since y(t0/n) → 0 as n→∞, we have

J2(t0) = −τ
2
− 1

2

∫ − log y(t0/n)

0

1

aea
log

(
1− a

1− log y(t0/n))

)
da

+
1

2

∫ ∞

− log y(t0/n)

log(1 + a)

aea
da

= −τ
2

+O(−1/ log(1− t0/n)) +O

(∫ ∞

− log y(t0/n)
e−ada

)

= −τ
2

+O(−1/ log(1− t0/n)) +O (y(t0/n))

= −τ
2

+O((log n)−1). (2.35)

Here the approximation of the first integral is obtained by using (2.11), (2.17) and the
logarithmic inequality. The approximation of the second integral is obtained by using
log(1 + a) ≤ a and then (2.17).

Note that r2(0) = 0 and |r2(t0/n)| ≤ 2n/(n−t0) since z(0) = 0, z(t0/n) ≤ (1−t0/n)/2
and u(t0/n) ≥ 1 − t0/n. Thus, using the Trapezoidal Rule and its error bound from
numerical integration, we have

t0∑
t=0

r2(t/n)/n = J2(t0) + (r2(0) + r2(t0/n))/2n+O(n−2)

= J2(t0) +O((n− t0)
−1). (2.36)

Therefore, combining (2.30) and (2.36), and using (2.32) and (2.35), we obtain

t0∑
t=0

r(t/n)/n =
t0∑

t=0

r1(t/n)/n+
t0∑

t=0

r2(t/n)/n

= −1

2
log(2(n− t0)/n)− τ

2
+O((n− t0)

−1 + (log n)−1)

and the proof is complete.

Proof of Theorem 1 Define Ht to be the event that Gt contains no cycles, which
is just

(∧t−1
i=0 Ci

)
. Set t5 = n − 1. For t ≤ t1 define Et to be the event that Yt and

Zt satisfy the inequalities (2.21) and (2.22). For t1 < t ≤ t2 let Et be the event that
Yt + Zt ≤ 2(n − t)/(log n)ρ. Let Et3 be the event that Yt3 = 0 and Zt3 < (log n)1−ρ, and
Et4 the event that Yt4 = Zt4 = 0. We define Fti to be an event that ensures that no cycles
have been created, and that Yt and Zt satisfy appropriate inequalities, for all t ≤ ti. To
be precise, we let Fti = Hti ∧ Et1 ∧ · · · ∧ Eti for 1 ≤ i ≤ 4, and Ft5 = Ft4 ∧ Ht5 . Then
Fti = Fti−1

∧Hti ∧ Eti for i = 2, 3, 4, and

Ht5 = (Ht5 ∧ F t4) ∨ (Ht5 ∧ Ft4) = (Ht5 ∧ F t4) ∨ Ft5 .

Noting that Ht5 ∧Ht4 = ∅, we have

Ht5 ∧ F t4 =
4∨

i=1

(
Ht5 ∧ E ti

)
⊆ E t1 ∨

(
3∨

i=1

(
Hti ∧ E ti+1

))
⊆ E t1 ∨

(
3∨

i=1

(
Fti ∧ E ti+1

))

11



and so

Ft5 ⊆ Ht5 ⊆ E t1 ∨
(

3∨
i=1

(
Fti ∧ E ti+1

))
∨ Ft5 .

Hence by (2.1)

P(Gn is hamiltonian) = P(Ft5) +O

(
P(E t1) +

3∑
i=1

P
(
Fti ∧ E ti+1

))
. (2.37)

Since the Fti are nested, the main term P(Ft5) in this equation can be computed using

P(Ft5) = P (Ft1)
4∏

i=1

P
(
Fti+1

| Fti

)
. (2.38)

In the following we will estimate the factors in this expression one by one.
Since Ft1 = Ht1 ∧ Et1 , the first factor in (2.38) is

P(Ft1) = P(Ht1)−P(Ht1 ∧ E t1)

= P(Ht1) +O(P(E t1)). (2.39)

Similar to (2.1), since P(H0) = 1,

P (Ht) = P

(
t−1∧
i=0

Ci

)
=

t−1∏
i=0

P
(
Ci | Hi

)
. (2.40)

From (2.2) and (2.4), P(Ci|Gi) is maximised for given i when Yi = Zi = 0, that is

P(Ci|Gi) ≤
1

2n− 2i− 1
.

We therefore have the initial bound

P (Ht) ≥
t−1∏
i=0

(
1− 1

2n− 2i− 1

)
=

n−1∏
j=n−t

2j

2j + 1
.

We note for here and later that

s−2∏
j=1

2j

2j + 1
=

22s−3(s− 2)!(s− 1)!

(2s− 2)!
∼ 1

2

(
π

s

)1/2

(2.41)

where the last estimate is by Stirling’s formula. Thus, for all t ≤ n− 1,

P (Ht) = Ω

((
n− t

n

)1/2
)
. (2.42)

12



For t < t1, since Et implies (2.21) and (2.22), we have

P (Ct | Ht ∧ Et) =
Ut − Yt − 2Zt

U2
t

(
1 +O

(
1

Ut

))

=
u(t/n)− y(t/n)− 2z(t/n) +O((n− t)1−ε/n)

n(u(t/n)−O((n− t)1−ε/n))2

(
1 +O

(
1

Ut

))

=

(
r̄(t/n)

n
+O

(
(n− t)1−ε

n2(u(t/n))2

))(
1 +O

(
(n− t)1−ε

nu(t/n)

))(
1 +O

(
1

Ut

))

=

(
r̄(t/n)

n
+O

(
(n− t)1−ε

n2(u(t/n))2

))(
1 +O

(
1

Ut

))

=

(
r̄(t/n)

n
+O((n− t)−1−ε)

)(
1 +O

(
1

Ut

))

=
r̄(t/n)

n
+O((n− t)−1−ε). (2.43)

Here in the third last step we used r̄(t/n) ≤ 1/u(t/n), which follows from the left part of
(2.20). In the second last step we used the right part of (2.20), and in the last step we
used r̄(t/n)/n ≤ 1/(n− t) from (2.20) and Ut ≥ n− t from (2.3). By (2.42) and Theorem
4 with σ(n) = t1, and noting that N > K/4ζ, similar to the argument leading to (2.24)

we get P(E t)/P(Ht) = O(e−(log n)K/4√
n/
√
n− t) = O(n−2

√
n/
√
n− t). Combining this

and (2.43), we have for t < t1,

P (Ct | Ht) ≤ P (Ct | Ht ∧ Et) + P
(
Ct ∧ E t | Ht

)
≤ P (Ct | Ht ∧ Et) + P(E t)/P(Ht)

=
r̄(t/n)

n
+O

(
(n− t)−1−ε

)
+O(n−3/2) (2.44)

=
r̄(t/n)

n
+O

(
(n− t)−1−ε

)
. (2.45)

Here the last step follows from the fact that ε = 3ρ/16 < 1/4. From (2.40) and (2.45),
we have, for any t ≤ t1,

P (Ht) =
t−1∏
i=0

(
1− 1

n
r
(
i

n

)
+O

(
(n− i)−1−ε

))
∼ exp

(
−

t−1∑
i=0

1

n
r
(
i

n

))
. (2.46)

Applying this to time t = t1 and noting that P(E t1) = o(n−2) by Theorem 4, from (2.39)
we have

P(Ft1) ∼ exp

(
−

t1−1∑
t=0

1

n
r
(
t

n

))
∼
(

2(n− t1)e
τ

n

)1/2

(2.47)

where the last estimate is from Lemma 1.
We may treat the factor due to i in (2.38) using a similar argument, from (2.40)

onwards, conditioning on Fti . This argument is entirely restricted to the time period
from ti to ti+1. In fact, similar to (2.39) and (2.42), for i = 1, 2, 3 we have

P(Fti+1
| Fti) = P(Hti+1

| Fti) +O(P(E ti+1
| Fti)) (2.48)
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and

P (Ht | Fti) = Ω

((
n− t

n− ti

)1/2
)

(2.49)

for ti < t ≤ n − 1. For i = 1 and t1 < t ≤ t2, we have r̄(t/n)/n = 1/(2(n − t) − 1),
Ut ≥ n− t ≥ n− t2 ≥ log n > (log n)ρ and Et implies Yt + Zt ≤ 2(n− t)/(log n)ρ. Thus,
similar to (2.43), we have

P (Ct | Ht ∧ Et ∧ Ft1) =
r̄ (t/n)

n

(
1− Yt + 2Zt

2(n− t)− Yt

)
2(n− t)− 1

2(n− t)− Yt

(
1 +O

(
1

Ut

))

=
r̄ (t/n)

n

(
1−O

(
Yt + Zt

n− t

))(
1 +O

(
Yt

n− t

))(
1 +O

(
1

Ut

))
=

r̄ (t/n)

n

(
1 +O((log n)−ρ)

) (
1 +O

(
1

Ut

))
=

r̄(t/n)

n

(
1 +O((log n)−ρ)

)
=

r̄(t/n)

n
+O

(
(log n)−1−ρ

)
. (2.50)

Since Ft1 implies Et1 , we have Yt1 +Zt1 < (n− t1)/(log n)ρ. Thus, by an argument similar
to that leading to (2.24), we get P(E t | Ft1) = O((log n)−K) for all t with t1 < t ≤ t2 by
Theorem 5. From (2.49) we then have

P(E t | Ft1)/P(Ht | Ft1) = O((log n)−K((n− t1)/(n− t2))
1/2) = O((log n)−K+(N−1)/2).

From this and (2.50), using an argument similar to that leading to (2.45), we obtain

P (Ct | Ht ∧ Ft1) = P (Ct | Ht ∧ Et ∧ Ft1) +O(P(E t | Ft1)/P(Ht | Ft1))

=
r̄(t/n)

n
+O

(
(log n)−1−ρ

)
+O

(
(log n)−K+(N−1)/2

)
.

It follows that the first term of (2.48) when i = 1 is

P (Ht2 | Ft1) =
t2−1∏
t=t1

P
(
Ct | Ht ∧ Ft1

)
∼

t2−1∏
t=t1

(
1− r̄(t/n)

n

)

which is
∏t2−1

t=t1
(2(n − t) − 2)/(2(n − t) − 1) = Ω((log n)−(N−1)/2) by (2.41). By Theo-

rem 5, the second term O(P(E t2 | Ft1)) of (2.48) when i = 1 is O((log n)−K), which is
o((log n)−(N−1)/2) since N < 2K + 1. From (2.48) we then obtain

P(Ft2 | Ft1) ∼
t2−1∏
t=t1

(
1− r̄(t/n)

n

)
. (2.51)

For the factor due to i = 2 in (2.38), we condition on Ft2 and consider the time period
from t2 to t3. Note that Ft2 implies Yt2 +Zt2 ≤ 2(n− t2)/(log n)ρ = 2(log n)1−ρ and hence
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Yt + Zt = O((log n)1−ρ) for t2 ≤ t < t3, since Yt + Zt is non-increasing with t (see (3.3)).
Note also that Ut ≥ n − t ≥ n − t3 > (log n)−1+ρ+δ for t2 ≤ t < t3 since ρ < 1 and
n− t3 = b(log n)δc. Thus, similar to (2.50), we have

P (Ct | Ht ∧ Ft2) =
r̄(t/n)

n

(
1 +O((log n)−ρ−δ+1)

)
=

r̄(t/n)

n
+O((log n)−ρ−2δ+1) (2.52)

for t2 ≤ t < t3. Consequently,

P (Ht3 | Ft2) =
t3−1∏
t=t2

P
(
Ct | Ht ∧ Ft2

)
∼

t3−1∏
t=t2

(
1− r̄(t/n)

n

)

which is
∏t3−1

t=t2
(2(n− t)− 2)/(2(n− t)− 1) = Ω((log n)−(1−δ)/2) by (2.41). By Theorem 6

the second term of (2.48) when i = 2 is O((log n)δ−ρ), and hence is o((log n)−(1−δ)/2) since
δ < 2ρ− 1 by (2.26). Hence

P(Ft3 | Ft2) ∼
t3−1∏
t=t2

(
1− r̄(t/n)

n

)
. (2.53)

For the factor due to i = 3 in (2.38), similar to (2.52), we have

P (Ct | Ht ∧ Ft3) =
r̄(t/n)

n
+O((log n)−ρ−2δ′+1) (2.54)

for t3 ≤ t < t4. Thus,

P (Ht4 | Ft3) =
t4−1∏
t=t3

P
(
Ct | Ht ∧ Ft3

)
∼

t4−1∏
t=t3

(
1− r̄(t/n)

n

)

which is
∏t4−1

t=t3
(2(n − t) − 2)/(2(n − t) − 1) = Ω((log n)−(δ−δ′)/2) by (2.41). By The-

orem 6, when i = 3 the second term of (2.48) is O((log n)−ρ−(δ−δ′)+1), and hence is
o((log n)−(δ−δ′)/2) as (δ − δ′)/2 + ρ > 1. Therefore,

P(Ft4 | Ft3) ∼
t4−1∏
t=t3

(
1− r̄(t/n)

n

)
. (2.55)

The factor due to i = 4 in (2.38) can be computed directly. Conditioning on Ft4 , we
have Yt4 = Zt4 = 0 and hence Yt = Zt = 0 for t ≥ t4 since Yt +Zt is non-increasing with t
(see (3.3)). Thus, as Ft5 = Ft4 ∧Ht5 , from (2.4) we have

P(Ft5 | Ft4) = P(Ht5 | Ft4)

=
t5−1∏
t=t4

P(Ct | Ht ∧ Ft4)

=
n−2∏
t=t4

(
1− 1

2(n− t)− 1

)

=
n−2∏
t=t4

(
1− r̄(t/n)

n

)
. (2.56)

15



Plugging (2.47), (2.51), (2.53), (2.55) and (2.56) into (2.38) and using (2.41) we obtain

P(Ft5) ∼
(

2(n− t1)e
τ

n

)1/2 n−2∏
t=t1

(
1− r̄(t/n)

n

)

=

(
2(n− t1)e

τ

n

)1/2 n−2∏
t=t1

2(n− t)− 2

2(n− t)− 1

∼
(

2(n− t1)e
τ

n

)1/2
1

2

(
π

n− t1

)1/2

=

√
πeτ

2

/√
n.

Thus, to complete the proof of Theorem 1, it remains to show that the second term in
(2.37) is negligible, that is, it is o(1/

√
n). In fact, we have P(E t1) = O(e−(n−t1)ζ

) =

O(e−(log n)K/4
) = o(n−2) by Theorem 4. By Theorem 5 and (2.47), and since N < 2K by

our assumption, we have

P(Ft1 ∧ E t2) = P(E t2|Ft1)P(Ft1)

= O

(
(log n)−K

(
n− t1
n

)1/2
)

= O
(
(log n)−K+N/2/

√
n
)

= o(1/
√
n).

Similarly, by Theorem 6, (2.47) and (2.51), and noting that δ < ρ− 1/2 by (2.26),

P(Ft2 ∧ E t3) = P(E t3|Ft2)P(Ft2|Ft1)P(Ft1)

= O
(
(log n)δ−ρ+(1−N)/2+N/2/

√
n
)

= o(1/
√
n).

Again, by Theorem 6, (2.47), (2.51) and (2.53), and using δ/2 − δ′ + ρ > 1 from (2.26),
we have

P(Ft3 ∧ E t4) = P(E t4|Ft3)P(Ft3|Ft2)P(Ft2 |Ft1)P(Ft1)

= O
(
(log n)(δ′−δ+1−ρ)+(δ−1)/2+(1−N)/2+N/2/

√
n
)

= o(1/
√
n).

The proof of Theorem 1 is complete.

The approximation results and the analysis in the proof of Theorem 1 contain essen-
tially what we need in order to prove Theorem 2.

Proof of Theorem 2 Denote Qt = (n−t−Yt−Zt)/
((

Ut

2

)
− Zt

)
. ThenQt = O((n−t)−1)

for all t and by (2.4) the probability of creating a cycle at time t is equal to Qt. Let Et be
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as in the proof of Theorem 1. For t up to t2 we will use the following to estimate E(Qt):

E(Qt) = E(Qt|Et)P(Et) + E(Qt|E t)P(E t)

= E(Qt|Et)P(Et) +O((n− t)−1P(E t)). (2.57)

Taking σ(n) = t1 in Theorem 4, we have P(Et) = 1 − o(n−2) for t ≤ t1. By using
arguments similar to that leading to (2.43), one can show that

E(Qt|Et) =
r(t/n)

n
+O((n− t)−1−ε)

for t ≤ t1. Thus, by (2.57) and noting that r(t/n)/n = O((n− t)−1), for t ≤ t1 we have

E(Qt) =

(
r(t/n)

n
+O((n− t)−1−ε)

)
(1− o(n−2)) +O((n− t)−1n−2)

=
r(t/n)

n
+O((n− t)−1−ε). (2.58)

Note that (2.21) and (2.22) imply (2.24), and in particular Yt1 +Zt1 < (n−t1)/(log n)ρ

with probability 1−o(n−2). Hence, for t1 < t ≤ t2, P(Et) = 1−O((log n)−K) by Theorem
5. Using an argument similar to that leading to (2.50), we get

E(Qt|Et) =
r̄(t/n)

n

(
1 +O((log n)−ρ)

)
and hence (2.57) gives

E(Qt) =
r̄(t/n)

n

(
1 +O((log n)−ρ)

) (
1−O((log n)−K)

)
+O((n− t)−1(log n)−K)

=
r̄(t/n)

n

(
1 +O((log n)−ρ)

)
(2.59)

for t1 < t ≤ t2.
For t2 < t ≤ t4 we condition on the event At that Yt + Zt ≤ C∗(log n)1−ρ for a

sufficiently large C∗. Since P(Et2) = P(Yt2 +Zt2 ≤ 2(log n)1−ρ) = 1−O((log n)−K), from
Theorem 6 it follows that P(At) = 1 − O((log n)−K). Similar to the proof of (2.52), for
t2 < t ≤ t3 we have

E(Qt|At) =
r̄(t/n)

n

(
1 +O((log n)−ρ−δ+1)

)
.

Based on this and using an expression similar to (2.57) we have

E(Qt) = E(Qt|At)P(At) +O((n− t)−1P(At))

=
r̄(t/n)

n

(
1 +O((log n)−ρ−δ+1)

) (
1−O((log n)−K)

)
+O((n− t)−1(log n)−K)

=
r̄(t/n)

n

(
1 +O((log n)−ρ−δ+1)

)
. (2.60)
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In a similar fashion, for t3 < t ≤ t4, we obtain

E(Qt) =
r̄(t/n)

n

(
1 +O((log n)−ρ−δ′+1)

)
. (2.61)

For t4 ≤ t < n, we condition on the event At that Yt = Zt = 0, which holds with
probability 1−O((log n)δ′−δ+1−ρ) by (2.28) and (2.29). Thus, since E(Qt|At) = r̄(t/n)/n,
analogous to (2.60) we have

E(Qt) =
r̄(t/n)

n

(
1 +O((log n)δ′−δ+1−ρ)

)
. (2.62)

Using (2.58)-(2.62) and noting (2.26), we have

E(Xn) =
n−1∑
t=0

P(a cycle is formed at time t)

=
n−1∑
t=0

E(Qt)

=
t1∑

t=0

r(t/n)

n
+
(
1 +O((log n)−ρ−δ′+1)

) n−1∑
t=t1+1

r̄(t/n)

n
+O

(
t1∑

t=0

(n− t)−1−ε

)

=
t1∑

t=0

r(t/n)

n
+
(
1 +O((log n)−ρ−δ′+1)

) n−1∑
t=t1+1

r̄(t/n)

n
+O((log n)−Nε). (2.63)

From Lemma 1,

t1∑
t=0

r(t/n)

n
= −1

2
log(2(n− t1)/n)− τ

2
+O((log n)−1).

Also, noting that the harmonic number H(k) =
∑k

j=1 1/k = log k + γ +O(1/k), we have

n−1∑
t=t1+1

r̄(t/n)

n
=

n−t1−1∑
t=1

1

2t− 1

= H(2(n− t1 − 1))− 1

2
H(n− t1 − 1)

= log(2(n− t1)) + γ − 1

2
(log(n− t1) + γ) +O

(
1

n− t1

)
=

1

2
log(2(n− t1)) +

1

2
(γ + log 2) +O

(
1

(log n)N

)
.

Plugging the two sums above into (2.63) and noting that Nε = Nρ/4 > ρ > ρ+ δ′−1, we
obtain E(Xn) = 1

2
(log n + log 2 + γ − τ) + O((log n)−ρ−δ′+1 log log n), where the log log n

factor is due to log(n − t1) by noting (2.18). For the specific choice of ρ, δ and δ′ after
(2.26), we have ρ+ δ′ > 12/11 and hence the error term is O((log n)−1/11), as required in
Theorem 2.
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Proof of Theorem 3 We will use the notation in the proof of Theorem 1. Recall that
Ht =

∧t−1
i=0 Ci is the event that Gt contains no cycles. We have

E(Tn) =
n∑

t=1

P(Tn ≥ t)

=
n−1∑
t=0

P(Ht)

=
t1∑

t=0

P(Ht) +
n−1∑

t=t1+1

P(Ht). (2.64)

By the definition of t1 and the fact that Ht ⊆ Ht−1 for any t, using (2.46) (for t = t1) and
then Lemma 1 (as in (2.47)) we have

n−1∑
t=t1+1

P(Ht) ≤ (log n)NP(Ht1)

∼ (log n)N exp

(
−

t1−1∑
t=0

1

n
r
(
t

n

))

∼ (log n)N

(
2(n− t1)e

τ

n

)1/2

∼
(

2(log n)3Neτ

n

)1/2

which converges to 0 as n→∞. Thus, the second term of (2.64) is negligible.
Now let us deal with the first term of (2.64). Using (2.46) and the computation of

J1(t) and J2(t) (the second line of (2.31) and (2.34)) in the proof of Lemma 1, we have

t1∑
t=0

P(Ht) ∼
t1∑

t=0

exp

(
−

t−1∑
i=0

1

n
r
(
i

n

))

∼
t1∑

t=0

exp(−J1(t)− J2(t))

∼
t1∑

t=0

{y(t/n)(1− log y(t/n))}1/2 exp(−J2(t))

∼
t1∑

t=0

{y(t/n)(1− log y(t/n))}1/2 exp

1

2

∫ − log y(t/n)

0

log
(

(1−a−log y(t/n))(1+a)
1−log y(t/n)

)
aea

da


∼

∫ t1/n

0
{y(x)(1− log y(x))}1/2 exp

1

2

∫ − log y(x)

0

log
(

(1−a−log y(x))(1+a)
1−log y(x)

)
aea

da

 dx
Now (2.6), (2.8) and (2.11) together imply

dy

dx
= − 2

1− log y(x)
.
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Using this and taking y = y(x) as a new variable in the integral above, we get

t1∑
t=0

P(Ht) ∼ −1

2

∫ y(t1/n)

1
y1/2(1− log y)3/2 exp

1

2

∫ − log y

0

log
(

(1−a−log y)(1+a)
1−log y

)
aea

da

 dy
=

1

2

∫ − log y(t1/n)

0
(1 + η)3/2 exp

−3η

2
+

1

2

∫ η

0

log
(

(1−a+η)(1+a)
1+η

)
aea

da

 dη
∼ 1

2

∫ ∞

0
(1 + η)3/2 exp

−3η

2
+

1

2

∫ η

0

log
(

(1−a+η)(1+a)
1+η

)
aea

da

 dη
≈ 0.829.

Here in the third last step we set η = − log y, and in the last step we used numerical
integration. From this and (2.64) Theorem 3 follows immediately.

In the proof above we actually computed the asymptotic probability P(Ht) that Gt

contains no cycle, for t ≤ t1. In fact, for 0 ≤ x ≤ t1/n, we have

P(Ht) ∼ exp
{
I(x)− η

2

}√
1 + η

where η = − log y(x) and

I(x) =
1

2

∫ η

0

log
(

(1−a+η)(1+a)
1+η

)
aea

da.

The graph of this function (as function of x) is shown in Figure 1 in Section 1. It is
interesting that this graph is almost a circular shape.

3 Approximation of Y and Z

The variables Y and Z are obviously crucial, so we examine them closely, for t up until
very nearly the end of the process.

Lemma 2 For 0 ≤ t ≤ n− 40, we have∣∣∣∣E(Yt+1 − Yt|Gt)− f
(
t

n
,
Yt

n

)∣∣∣∣ ≤ 5

n− t
(3.1)

∣∣∣∣E(Zt+1 − Zt|Gt)− g
(
t

n
,
Yt

n
,
Zt

n

)∣∣∣∣ ≤ 20

n− t
(3.2)

where f and g are the functions defined in (2.6) and (2.7), respectively. Moreover, for
any t ≥ 0,

Yt + Zt − 2 ≤ Yt+1 + Zt+1 ≤ Yt + Zt. (3.3)
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Proof We have

(Yt+1 − Yt, Zt+1 − Zt) ∈ {(0, 0), (0,−1), (0,−2), (−1, 0), (−1,−1), (−2, 1)}

and the number of sites contributing to these changes are 4
(

n−t−Yt−Zt

2

)
+(n− t−Yt−Zt),

4Zt(n−t−Yt−Zt), 4
(

Zt

2

)
, 2Yt(n−t−Yt−Zt), 2YtZt and

(
Yt

2

)
, respectively. In particular,

Yt + Zt is non-increasing with t, and differs by at most 2 from Yt+1 + Zt+1. Hence (3.3)
is true. Also, Yt is non-increasing with t and differs by at most 2 from Yt+1. From the
above it can be checked that the expected change of the number of isolates at time t is
−(2Yt/Ut) −

(
2YtZt/Ut

((
Ut

2

)
− Zt

))
. From (2.3) we have

(
Ut

2

)
− Zt = U2

t /2 − (n − t −
Yt/2)− Zt ≥ U2

t /2− (n− t− Yt/2)− (n− t− Yt) ≥ Ut(Ut − 2)/2 ≥ (n− t)(n− t− 2)/2.
Using this and (2.3) one can show that the second term is bounded above in absolute
value by 5/(n− t) (assuming n− t ≥ 10), whilst the first term is f(t/n, Yt/n) by (2.2). So
(3.1) is proved. In each step of the process, Zt can remain unchanged, increase by 1, or

decrease by 1 or 2, and the expected change of Zt is
((

Yt

2

)
− 2Zt(Ut − 2)

)
/
((

Ut

2

)
− Zt

)
.

From this and by a similar estimation we get (3.2) for n− t ≥ 40.

3.1 Phase 1: t ≤ t1 = n− d(log n)Ne
The approach taken is to use large deviation inequalities as in [9] to show that the variables
approximately satisfy differential equations. The solutions of these differential equations
possess a stability which is used to show that the variables continue to concentrate near
these solutions far past the point reached by the argument for this random process in
[5, 6].

We begin with some preliminary observations. Recall from (2.6) and (2.7) the functions
f(x, y) = −2y/(2 − 2x − y) and g(x, y, z) = (y2 − 4(2 − 2x − y)z)/(2 − 2x − y)2 in the
differential equations (2.8) and (2.9). As before y(x) and z(x) denote the solutions of
these equations. Then it is easy to see that

|f(x, y)| ≤ 2, |g(x, y, z)| ≤ 5 (3.4)

provided y, z ∈ [0, 1−x]. Setting p(x) = f(x, y(x)) and q(x) = g(x, y(x), z(x)), then from
(2.14) and (2.16) and estimating dy/dx and dz/dx using (3.4), we have

|p(x)| ≤ 2, |q(x)| ≤ 5. (3.5)

Moreover, it is easily checked that |dp/dx| ≤ 4/(1 − x) and |dq/dx| ≤ 56/(1 − x) for
0 ≤ x < 1. Hence by the Mean Value Theorem we have

|p(x1)− p(x2)| ≤ 4

1− x2

|x1 − x2| (3.6)

|q(x1)− q(x2)| ≤ 56

1− x2

|x1 − x2| (3.7)

provided that 0 ≤ x1 ≤ x2 < 1.
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Proof of Theorem 4 The proof uses the main idea in the proof of [9, Theorem 5.1].
But we need more accurate estimations and judicious choices of the step lengths when
bounding large deviations, and the error in the approximation needs to decrease during
the process.

We prove (2.21) first. Let 0 = k0 < k1 < · · · < k` = k`(n) be an integer time sequence
such that n− k` →∞ when n→∞. For i = 0, 1, . . . , `− 1, denote wi = ki+1− ki and let
αi > 0 be real numbers. At the moment we assume that {ki} and {αi} are any sequences
such that αi ≤ wi ≤ (n − ki)/4 and wi < n − ki+1 for each i. Later we will choose ki’s
and αi’s in a particular way so that these conditions are satisfied. Denote

h(n, i) =
(n− ki)wi

(n− ki+1 − wi)2
.

Since wi < n− ki+1 by our assumption, we have wi < 3(n− ki+1) and using this one can
check that

1

n− ki+1

≤ wi

n− ki+1

< h(n, i). (3.8)

For each t with 0 ≤ t < wi, by the Mean Value Theorem there exist θ between ki/n
and (ki + t)/n and ψ between Yki+t/n and Yki

/n such that∣∣∣∣∣f
(
ki + t

n
,
Yki+t

n

)
− f

(
ki

n
,
Yki

n

)∣∣∣∣∣ =
4

(2(1− θ)− ψ)2

{
ψ · t

n
+ (1− θ) · |Yki+t − Yki

|
n

}

≤ 4

(2(1− ki+t
n

)− Yki

n
)2

{
Yki

n
· t
n

+

(
1− ki

n

)
· 2t

n

}

≤ 4

(2(1− ki+1

n
)− n−ki

n
)2

{
n− ki

n
· wi

n
+
n− ki

n
· 2wi

n

}
= 12h(n, i). (3.9)

Here we use the facts that |Yki+t − Yki
| ≤ 2t and Yki

≤ n− ki. From (3.1), (3.9) and (3.8)
we then have

E(Yki+t+1 − Yki+t|Gki+t) ≤ f

(
ki + t

n
,
Yki+t

n

)
+

5

n− ki − t

≤ f

(
ki

n
,
Yki

n

)
+ 12h(n, i) +

5

n− ki+1

≤ f

(
ki

n
,
Yki

n

)
+ 17h(n, i). (3.10)

For t = 0, 1, . . . , wi, set

Xt = Yki+t − Yki
− t f(ki/n, Yki

/n)− 17t h(n, i).

Then (3.10) implies that X0, X1, . . . , Xwi
is a supermartingale (with respect to the se-

quence of σ-algebras generated by {(G0, G1, . . . , Gt)}t≥0) with X0 = 0. As Yki
≤ n − ki,
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from (3.4) we have |f(ki/n, Yki
/n)| ≤ 2 and thus

|Xt+1 −Xt| ≤ 4 + 17h(n, i).

Therefore, from [9, Lemma 4.2] and since αi ≤ wi, it follows that, conditioned upon Gki
,∣∣∣∣∣Yki+1

− Yki
− wif

(
ki

n
,
Yki

n

)∣∣∣∣∣ < 17wih(n, i) + (4 + 17h(n, i))
√

2wiαi

< 51wih(n, i) + 4
√

2wiαi (3.11)

holds with probability at least 1− 2e−αi .
In the following we will show by induction that (2.21) holds at our chosen times ki

with the desired probability. Set

A1 = Yki
− ny

(
ki

n

)

A2 = Yki+1
− Yki

− wif

(
ki

n
,
Yki

n

)

A3 = wip

(
ki

n

)
+ ny

(
ki

n

)
− ny

(
ki+1

n

)

A4 = wif

(
ki

n
,
Yki

n

)
− wip

(
ki

n

)

so that Yki+1
− ny(ki+1/n) = A1 +A2 +A3 +A4. By the Mean Value Theorem and (3.6),

(3.8), for some θ with ki < θ < ki+1, we have

|A3| = wi

∣∣∣∣∣p
(
ki

n

)
− p

(
θ

n

)∣∣∣∣∣
≤ 4wi

1− θ
n

∣∣∣∣∣ θn − ki

n

∣∣∣∣∣
≤ 4w2

i

n− ki+1

≤ 4wih(n, i). (3.12)

Also by the Mean Value Theorem, there exists some ψ between Yki
/n and y(ki/n) (hence

0 ≤ ψ < 1− ki/n by (2.3) and (2.14)) such that

A4 = wi ·
A1

n
· ∂f
∂y

(
ki

n
, ψ

)

= −
4wi(1− ki

n
)

n(2(1− ki

n
)− ψ)2

A1.
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Since we assume wi ≤ (n− ki)/4, it is clear that the coefficient of A1 here is between −1
and 0, and hence

|A1 + A4| =

(
1−

4wi(1− ki

n
)

n(2(1− ki

n
)− ψ)2

)
|A1|

≤ n− ki+1

n− ki

|A1|. (3.13)

Putting (3.11), (3.12) and (3.13) together, with probability at least 1 − 2e−αi , we have
conditional upon any graph Gki

,

|Yki+1
− ny(ki+1/n)| ≤ n− ki+1

n− ki

|A1|+ 55wih(n, i) + 4
√

2wiαi. (3.14)

Note that this is true for each i = 0, 1, . . . , `− 1.
For each i up to `, define

Bi =
i∑

j=1

n− ki

n− kj

bj−1 (3.15)

with
bj = 55wjh(n, j) + 4

√
2wjαj,

and note that Y0 − ny(0) = 0. Consider conditioning for successive i on the event

|Yki
− ny(ki/n)| ≤ Bi, (3.16)

with no conditioning in the case i = 0. Then, for each i, we obtain (3.14) with conditional
probability 1−2e−αi . Thus, by induction and noting that ((n−ki)/(n−ki−1))Bi−1+bi−1 =
Bi, for 0 ≤ i ≤ ` we have

P(|Yki
− ny(ki/n)| ≤ Bi) ≥

i−1∏
j=0

(1− 2e−αj) ≥ 1− 2
i−1∑
j=0

e−αj . (3.17)

Now we choose ki’s in the following way. Let β be a real number with 0 < β ≤ 1/2,
and denote F (t) = t−d(n− t)βe for 0 ≤ t < n. Set k0 = 0. Inductively suppose k0, . . . , ki

have been chosen for some i ≥ 0. If F (σ(n)) < ki (that is, σ(n) − ki < d(n − σ(n))βe),
then stop (this determines `); otherwise, since F is strictly increasing with t, there exists
a smallest integer ki+1 such that F (ki+1) ≥ ki. In this way we define a sequence 0 =
k0, k1, . . . , k` (≤ σ(n)), which is increasing since F (ki) < ki implies ki < ki+1. Also, by
definition we have wi = ki+1 − ki ≥ d(n − ki+1)

βe ≥ (n − ki+1)
β and F (ki+1 − 1) < ki,

which implies wi < 1 + d(n − ki+1 + 1)βe < 2(n − ki+1)
β as we assume n − σ(n) → ∞.

Hence, for 0 ≤ i ≤ `− 1, we have

(n− ki+1)
β ≤ wi < 2(n− ki+1)

β (3.18)
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which implies in particular that the requirements for the ki’s set at the beginning of the
proof are satisfied. Moreover, for large n we have

wih(n, i) ≤
6w2

i

n− ki+1

< 24(n− ki+1)
2β−1. (3.19)

Now for any ε with 0 < ε < 1/4, choose β such that 0 < 2ε < β ≤ 1/2. With this
choice of β, define ki’s as above, and define

αi = (n− ki+1)
β−2ε (3.20)

for each 0 ≤ i ≤ ` − 1, so that αi ≤ wi is satisfied. Then (3.18) and (3.19) imply that
wih(n, i) < 24

√
wiαi, and hence bi < C

√
wiαi/2 ≤ C(n − ki+1)

β−ε, 0 ≤ i ≤ ` − 1, where
C is an absolute constant (e.g. C = 1340). Thus, by (3.18) we have for 0 ≤ i ≤ `,

Bi ≤ C(n− ki)
i∑

j=1

(n− kj)
β

(n− kj)1+ε

≤ C(n− ki)
i∑

j=1

wj−1

(n− kj)1+ε

= Cn1−ε

(
1− ki

n

)
i∑

j=1

kj

n
− kj−1

n

(1− kj

n
)1+ε

.

The summation in this expression can be viewed as an upper Riemann sum of the increas-
ing and convex function 1/(1− x)1+ε on the interval [0, ki/n]. So it can be approximated

by the integral
∫ ki/n
0 dx/(1 − x)1+ε. The error for this approximation is at most as large

as this integral itself. To see this it suffices to show that

1

(1− kj

n
)1+ε

− 1

(1− kj−1

n
)1+ε

≤ 1

(1− kj−1

n
)1+ε

that is, (
n− kj−1

n− kj

)1+ε

≤ 2.

But this is guaranteed for large n since (3.18) implies

n− kj−1

n− kj

< 1 +
2

(n− kj)1−β
≤ 1 +

2

(n− σ(n))1−β

and since n− σ(n) →∞. Therefore, for 0 ≤ i ≤ `, we have

Bi ≤ 2Cn1−ε

(
1− ki

n

)∫ ki/n

0

dx

(1− x)1+ε
<

2C

ε
(n− ki)

1−ε. (3.21)

Now we estimate the bound in (3.17). By (3.18) we have n−ki ≥ (n−ki+1)
β+n−ki+1 >

n− ki+1 + 1 for n sufficiently large, since ki ≤ σ(n) implies n− ki →∞. Thus, αi−1 > αi
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for 0 ≤ i ≤ `− 1. Therefore, noting that α`−1 = (n− k`)
β−2ε ≥ (n− σ(n))β−2ε, the right

hand side of (3.17) is 1−O(e−α`−1) = 1−O(e−(n−σ(n))ζ
) for ζ = β − 2ε > 0 by (3.20).

We have now proved that Yki
= ny(ki/n) + 2C(n − ki)

1−ε/ε holds with probability
at least 1 − O(e−(n−σ(n))ζ

), for each i = 0, 1, . . . , `. This can easily be extended to Yt for
0 ≤ t ≤ σ(n). In fact, for 0 ≤ t < k` there exists a unique i with 0 ≤ i ≤ ` − 1 such
that ki ≤ t < ki+1. We have |Yt − Yki

| ≤ 2(t − ki) and |y(t/n) − y(ki/n)| ≤ 2(t − ki)/n
(by the first inequality in (3.5) and the Mean Value Theorem) deterministically. So with
probability at least 1−O(e−(n−σ(n))ζ

) we have

|Yt − ny(t/n)| ≤ |Yt − Yki
|+ |Yki

− ny(ki/n)|+ n|y(t/n)− y(ki/n)|
≤ Bi + 4(t− ki)

≤ Bi + 4wi

≤ Bi + 8(n− ki+1)
β

≤ 2C(n− ki)
1−ε/ε+ 8(n− ki+1)

1−ε

< (6C/ε+ 8)(n− ki+1)
1−ε

< (6C/ε+ 8)(n− t)1−ε.

Here we used (3.18) and its consequence n−ki ≤ 3(n−ki+1), as well as the fact β ≤ 1−ε
which follows from 0 < 2ε < β ≤ 1/2. For k` ≤ t ≤ σ(n), by a similar argument we have

|Yt − ny(t/n)| ≤ B` + 4(t− k`)

≤ B` + 4(σ(n)− k`)

< 2C(n− k`)
1−ε/ε+ 8(n− σ(n))β

< (4C/ε+ 8)(n− σ(n))1−ε

≤ (4C/ε+ 8)(n− t)1−ε

with probability at least 1−O(e−(n−σ(n))ζ
). Here we used the fact σ(n)−k` < d(n−σ(n))βe

(which follows from the definition of k`) and its consequence n− k` < 2(n− σ(n)). This
completes the proof of (2.21), in which we may choose C0 to be any number no less than
6C/ε+ 8.

The proof of (2.22) can be done in a similar manner. For Zt we will be conditioning
on the analogue of (3.16) for Zki

, but also on the concentration given in (2.21) already
established for Yki

with high probability. This is because the function g involves y (note
that g(x, y, z) = (f(x, y))2/4 − 4z/(2 − 2x − y)). Let ki’s and αi’s be as above. For
0 ≤ t < wi, using (3.9) and by an argument similar to the one used in its proof, one can
check that ∣∣∣∣∣g

(
ki + t

n
,
Yki+t

n
,
Zki+t

n

)
− g

(
ki

n
,
Yki

n
,
Zki

n

)∣∣∣∣∣ ≤ 44h(n, i).

This together with (3.2) and (3.8) then gives

E(Zki+t+1 − Zki+t|Gki+t) ≤ g

(
ki

n
,
Yki

n
,
Zki

n

)
+ 64h(n, i). (3.22)
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Define A1, A2, A3, and A4 in a way similar to the previous (replacing f(ki/n, Yki
/n),

y(ki/n) and p(ki/n) by g(ki/n, Yki
/n, Zki

/n), z(ki/n) and q(ki/n) respectively). By using
a supermartingale and (3.22) we have |A2| < 192wih(n, i) + 7

√
2wiαi with probability at

least 1−2e−αi , and by using (3.7) we get |A3| ≤ 56wih(n, i). By the Mean Value Theorem
(and using (2.16)) and (3.21) one can check that

|A1 + A4| ≤ n− ki+1

n− ki

|A1|+
6wi

n− ki

|Yki
− ny(ki/n)|

≤ n− ki+1

n− ki

|A1|+
12C

ε
wi(n− ki)

−ε (3.23)

where C is the absolute constant defined right after (3.20).
Here we are assuming that (2.21) holds for t = ki, which we may do by imposing

this extra restriction on the graph Gki
which is being conditioned upon in the inductive

argument for Zt. With the particular choices of wi and αi as before, we have wi(n −
ki)

−ε < 2(n − ki+1)
β(n − ki)

−ε < 2(n − ki+1)
β−ε ≤ 2

√
wiαi, and hence the extra term

12Cwi(n− ki)
−ε/ε in (3.23) does not cause any extra cost in our proof. So, conditioning

on (2.21) holding for t = ki, we have

|Zki+1
− nz(ki+1/n)| ≤ n− ki+1

n− ki

|Zki
− nz(ki/n)|+ C1

√
wiαi/2

with probability at least 1− 2e−αi , where C1 = 48C/ε+ 6000 for example.
Now define Bi as in (3.15) but with bj = C1

√
wjαj/2 (≤ C1(n− kj+1)

β−ε). Condition
for successive i on the event that |Zki

− nz(ki/n)| ≤ Bi and that (2.21) holds for t = ki.
The latter condition excludes a set of probability O(e−(n−σ(n))ζ

), using the result for Y .
Then in place of (3.17) we have

P(|Zki
− nz(ki/n)| ≤ Bi) ≥

i−1∏
j=0

(1− 2e−αj −O(e−(n−σ(n))ζ

))

=
i−1∏
j=0

(1− 2e−αj)(1−O(e−(n−σ(n))ζ

))

≥ (1−O(e−(n−σ(n))ζ

))
i−1∏
j=0

(1− 2e−αj)

≥ (1−O(e−(n−σ(n))ζ

))

1− 2
i−1∑
j=0

e−αj

 .
Based on this, the rest of the proof of (2.22) is essentially the same as for (2.21) and
hence is omitted. The constant C0 in (2.22) can be any number no less than 6C1/ε+ 14,

and hence is applicable to (2.21) as well. The desired probability 1 − O(e−(n−σ(n))1/2−2ε
)

in Theorem 4 is obtained by setting β = 1/2, specifically in ζ = β − 2ε.
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3.2 Phase 2: t1 < t ≤ n− 2

Proof of Theorem 5 We can bound the value of Y for t1 < t ≤ t2 by considering the
following events, where t1 ≤ s < i ≤ t2 and n− i ≥ b(n− s)/2c:

Li =

{
Yi + Zi

n− i
>

2

(log n)ρ

}

Js,i =

{
Yi + Zi

n− i
≥ Ys + Zs

n− s
(1 + β(n)) and

Yj + Zj

n− j
≥ Ys + Zs

n− s
≥ 1

(log n)ρ
for s ≤ j < i

}

where β(n) = 1/(log log n)2. Suppose that

Yt1 + Zt1 <
n− t1
(log n)ρ

but that Lu holds for some u ≤ t2. Choose u to be minimum with this property. Then
there is a minimum v0 with t1 ≤ v0 ≤ u such that (Yi + Zi)/(n − i) ≥ 1/(log n)ρ for
v0 ≤ i ≤ u. It follows that (Yv0−1 + Zv0−1)/(n − v0 + 1) < 1/(log n)ρ and hence (Yv0 +
Zv0)/(n− v0) ∼ 1/(log n)ρ since Yv0 +Zv0 ≤ Yv0−1 +Zv0−1 by the monotonicity of Y +Z.
Defining inductively n − vk = b(n − vk−1)/2c, we have n − vk < n − u for k ≥ k′, where
k′ = dlog2((n − t1)/(n − u))e = O(log log n). Thus the first inequality in Js,i must hold
for some s and i with v0 ≤ s < i ≤ u and n− i ≥ b(n− s)/2c, since otherwise

Yu + Zu

n− u
≤

Yvk′−1
+ Zvk′−1

n− vk′−1

(1 + β(n))

...

<
Yv0 + Zv0

n− v0

(1 + β(n))k′

= (log n)−ρ(1 + β(n))O(log log n)

= (log n)−ρ(1 + o(1)),

contradicting Lu. Then we may assume that the inequalities (Yj + Zj)/(n − j) ≥ (Ys +
Zs)/(n − s), s ≤ j < i, in the definition of Js,i are satisfied since otherwise s can be
increased, holding j fixed, until this is the case. Note that (Ys + Zs)/(n− s) ≥ (log n)−ρ

by the choice of v0. So all the inequalities in Js,i hold for such s and i. In addition, by
the minimality of u, Ls does not hold. Hence for u ≤ t2 as above

Lu ∧
{
Yt1 + Zt1 <

n− t1
(log n)ρ

}
⊆

∨
t1≤s<i≤t2

n−i≥b(n−s)/2c

(Js,i ∧ Ls). (3.24)

We next show that for all s and i in the range given, P(Js,i ∧ Ls) = O((log n)−K) for
all fixed K > 0. This requires a tail bound for a random sequence such as Yt +Zt, which,
with probability close to 1, does not change in any given step. This is not easily accessible
in the literature (though McDiarmid [2] has quite similar results for martingales) so we
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give the following lemma. Here we use a supermartingale which with high probability,
at least 1 − O(λ), has a small difference, O(λ) (where λ → 0). The proof uses standard
methods. In some sense it extends the argument in [4] which concerned the case that the
sequence differences are independent and identically distributed.

Lemma 3 Let X0, . . . , Xr be a supermartingale with respect to the process G0, . . . , Gr,
with X0 = 0. Let C be a positive integer. Suppose that Wt := Xt −Xt−1 takes on at most
C different values, uj (j = 0, . . .), and that |uj| < C for all j. Suppose furthermore that
for some 0 < λ < 1,

(i) E(W 2
t | G0, . . . , Gt−1) < λ for all t ≤ r and all G0, . . . , Gt−1,

(ii) |u0| < λ,

(iii) P(Wt 6= u0 | G0, . . . , Gt−1) < λ for all t ≤ r and all G0, . . . , Gt−1.

Then for any α with 0 < α < λr/C,

P (Xr ≥ α) < exp(−α2/2λr + C3α3/λ2r2).

Proof At first, fix t and G0, . . . , Gt−1. Letting pj = P(Wt = uj | G0, . . . , Gt−1), we have
|huj| < 1 for 0 < h < 1/C (to be chosen shortly) and so

E(ehWt | G0, . . . , Gt−1) =
∑
j

pje
huj = 1 + h

∑
j

pjuj +
1

2
h2
∑
j

pju
2
j + φh3

∑
j

pju
3
j ,

where |φ| < 1/2, by Taylor’s formula. The first summation is E(Wt | G0, . . . , Gt−1) ≤ 0
since 〈Xi〉 is a supermartingale. The second summation is E(W 2

t | G0, . . . , Gt−1) < λ by
assumption (i). The third summation is at most 2C3λ by (ii) and (iii) and the assumptions
about the uj. So we have

log E(ehWt | G0, . . . , Gt−1) < log
(
1 +

1

2
h2λ+ h3C3λ

)
<

1

2
h2λ+ h3C3λ. (3.25)

Now consider 0 < α < λr/C. Using Markov’s inequality for the second step,

P (Xr ≥ α) = P
(
ehXr ≥ ehα

)
≤ e−hαE

(
ehXr

)
= e−hαE

(
ehXr−1ehWr

)
= e−hαE

(
ehXr−1E(ehWr | G0, . . . , Gr−1)

)
< exp

(
−hα+

1

2
h2λr + h3C3λr

)
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from (3.25) and by proceeding inductively. (Note: the second last step uses the fact that
E(AB) = E(AE(B | C)) for any random variables A, B and C with A a function of C.)
Selecting h = α/λr to minimise the quadratic part, this becomes the bound in the lemma.

We will apply Lemma 3 to the event Js,i, conditioning on Ls, where b(n − s)/2c ≤
n − i ≤ (log n)N , for sufficiently large n. For all Gt, from the argument leading to (3.1)
and (3.2), and noting (2.2) and (2.3), we have

E(Yt+1 + Zt+1 − Yt − Zt|Gt) = −Ut(Yt + 2Zt)− Yt(Yt + 1)/2− 4Zt(
Ut

2

)
− Zt

≤ −Yt + Zt

n− t
. (3.26)

Similarly,

P(Yt+1 + Zt+1 − Yt − Zt 6= 0 | Gt) =
Ut(Yt + 2Zt)− Yt(Yt + 1)/2− 2Zt(Yt + Zt + 1)(

Ut

2

)
− Zt

≤ Ut(Yt + 2Zt)(
Ut

2

)
− Zt

≤ 2(Yt + 2Zt)

Ut − 2

≤ 4(Yt + Zt)

n− t
. (3.27)

Here we used
(

Ut

2

)
− Zt ≥ Ut(Ut − 2)/2, which can be proved by using (2.3).

Let

µ =
Ys + Zs

n− s
.

Let D0(µ), D1(µ), . . . be independent copies of the random variable D(µ) with P(D(µ) =
µ) = 1 − µ and P(D(µ) = µ − 1) = µ. At this point, take Gs fixed and consider the
rest of the process, up to Gi. Note that for this process, we only need to condition on
Gs+t rather than Gs, . . . , Gs+t, since they both determine the same induced probability
for (Gs+t, Gs+t+1, . . .). We are only concerned with s+ t ≤ i, so for the lemma, r = i− s.
Define for t ≥ 0

Wt+1 =

 (Ys+t+1 + Zs+t+1)− (Ys+t + Zs+t) + µ, if Ys+t + Zs+t ≥ (n− s− t)µ

Dt(µ), otherwise

and
X0 = 0, Xt+1 = Xt +Wt+1.

If Ys+t + Zs+t ≥ (n− s− t)µ, then using (3.26) we have

E(Wt+1 | Gs+t) = E(Ys+t+1 + Zs+t+1 − Ys+t − Zs+t | Gs+t) + µ ≤ 0;
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whilst if Ys+t < (n − s − t)µ then E(Wt+1 | Gs+t) = ED(µ) = 0. Thus 〈Xt〉 is a
supermartingale with respect to 〈Gs+t〉. In addition, if Js,i holds, then Ys+t + Zs+t ≥
(n− s− t)µ for all t with 0 ≤ t ≤ i− s, and hence we get

Xt = Ys+t + Zs+t − Ys − Zs + tµ (3.28)

by solving the difference equation Xt+1 − Xt = (Ys+t+1 + Zs+t+1) − (Ys+t + Zs+t) + µ,
X0 = 0.

Note that Wt+1 = µ, µ− 1 or µ− 2 since (Ys+t+1 +Zs+t+1)− (Ys+t +Zs+t) = 0, −1 or
−2 as mentioned in the paragraph following (2.4). So with u0 = µ and λ = 34µ, we may
let C = 3 in Lemma 3 (for n sufficiently large), and only the conditions (i) and (iii) still
need to be checked (noting that λ < 1 by Ls). By (3.27) we have

P(Wt+1 6= u0 | Gs+t) ≤
4(Ys+t + Zs+t)

n− s− t
≤ 8(Ys + Zs)

n− s
= 8µ < λ,

for n sufficiently large, using n− s− t ≥ n− i+ 1 > (n− s)/2 and Ys+t +Zs+t ≤ Ys +Zs.
This gives (iii), and also implies

E(W 2
t+1 | Gs+t) < µ2 + P(Wt+1 6= u0 | Gs+t) maxW 2

t+1 < µ2 + 32µ < λ

for n sufficiently large, since then µ < 1 because s ≤ t2 and Ls holds. Thus part (i) of the
lemma also holds.

We may now apply the lemma with r = i − s, under the condition Js,i ∧ Ls. Note
that the first condition in the definition of Js,i implies by monotonicity of Y + Z that
n− s ≥ (1 + β(n))(n− i) and hence

r = i− s ≥ β(n)(n− i) = (n− i)/(log log n)2.

Also note that r < n − s − 1 ≤ 2(n − i), and λ = 34µ ≥ 34/(log n)ρ, whilst Ls implies
that λ ≤ 68/(log n)ρ. Thus, with both these assumptions,

136(n− i)

(log n)ρ
≥ λr ≥ 34(n− i)

(log n)ρ(log log n)2
.

Since n− i ≥ n− t2 ≥ log n, applying Lemma 3 with α = (n− i)/(log n)(1+2ρ)/3 gives

P
(
Xr ≥ α|Js,i ∧ Ls

)
< exp

{
−Θ

(
n− i

(log n)(2+ρ)/3

)}
< exp

{
−Θ((log n)(1−ρ)/3)

}
.

This implies
P
(
{Xr ≥ α} ∧ Js,i|Ls

)
< exp

{
−Θ((log n)(1−ρ)/3)

}
(3.29)

as P(A ∧B|C) ≤ P(A|B ∧ C) for any events A,B,C.
On the other hand, assuming Js,i and Ls, by (3.28) we have

Xr = Yi + Zi − Ys − Zs + rµ ≥ (1 + β(n))(n− i)µ− (n− i)µ ≥ β(n)(n− i)

(log n)ρ
≥ α
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for n sufficiently large. Thus, Js,i ⊆ {Xr ≥ α} ∧ Js,i conditioning on Ls, and from (3.29)
we have

P
(
Js,i ∧ Ls

)
≤ P

(
Js,i|Ls

)
< exp

{
−Θ((log n)(1−ρ)/3)

}
.

Note that there are O((log n)2N) such events Js,i ∧ Ls. Note also that Gt1 ∈ G1 implies
Yt1 + Zt1 < (n − t1)/(log n)ρ. Thus, by (3.24) the probability that Lu holds for some u
with t1 ≤ u ≤ t2, given Gt1 ∈ G1, is O((log n)−K) for all K > 0. In view of (2.25), this
proves Theorem 5.

To prove Theorem 6 we first note the following consequence of [5, Lemma 3.1].

Lemma 4 Let 0 ≤ t < n, and suppose that G is a graph such that P(Gt = G) 6= 0. Let
v be a vertex of degree less than 2 in G. The probability that in a random 2-process, v is
not incident with any of Et+1, . . . , Et′, conditional upon Gt = G, is O((n− t′+1)/(n− t))
as n→∞ uniformly over all t′ > t.

Proof of Theorem 6 Since Y + Z is non-decreasing, (2.27) follows immediately from
G ∈ G2. Applying Lemma 4 to t = t2 and a graph G ∈ G2, the expected number of
isolated vertices which remain isolated in Gt3 is O((n− t3)/(n− t2)Y (G)) = O((log n)δ−ρ).
Hence (2.28) follows by the first moment principle. Since Zt3 < (log n)1−ρ by (2.27), the
same argument gives (2.29).

Acknowledgment We would like to thank the referees for many suggestions to improve
the presentation.
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