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Abstract

We prove a complete hamiltonian decomposition theorem for random bipartite reg-
ular graphs, thereby verifying a conjecture of Robinson and Wormald. The main step
is to prove contiguity (a kind of asymptotic equivalence) of two probabilistic models
of 4-regular bipartite graphs; namely, the uniform model, and the model obtained by
taking the union of two independent, uniformly chosen bipartite Hamilton cycles, con-
ditioned on forming no multiple edges. The proof uses the small subgraph conditioning
method to establish contiguity, while the differential equation method is used to analyse
a critical quantity.

1 Introduction

For positive integers n and d, let Bn,d denote the probability space of random bicoloured
d-regular graphs on 2n labelled vertices, where each graph occurs with equal probability.
These are bipartite graphs with a fixed proper 2-colouring, or bicolouring, of the vertices.
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For definiteness, let vertices {1, . . . , n} have one colour and vertices {n+ 1, . . . , 2n} have the
second colour. By a slight abuse of terminology, we refer to Bn,d as a random bipartite graph.

Now suppose that d is a fixed positive integer with d ≥ 4. In this paper we prove a
conjecture of Robinson and Wormald [10]; namely, that the probability that a random d-
regular bipartite graph on 2n vertices has bd/2c pairwise edge-disjoint Hamilton cycles tends
to 1 as n → ∞. Such a partition of the edges of a graph into disjoint unions of Hamilton
cycles and at most one perfect matching is called a hamiltonian decomposition of the graph.
(The corresponding result for arbitrary d-regular graphs was proven by Frieze et al. [1] and
Kim and Wormald [5]. We extend this proof, but the extension required substantial new
arguments. This contrasts with the proof of hamilitonicity of almost all cubic graphs, which
was distinctly easier in the bipartite case.)

Presumably the Robinson–Wormald conjecture also holds when d = d(n)→∞ as n→∞.
However, the current methods do not extend to this situation in general.

Our main result is best stated in terms of contiguity of models. Let (Gn)n≥1 and (Ĝn)n≥1

be two sequences of probability spaces such that Gn and Ĝn have the same underlying set Ωn

and differ only in the probabilities, for n ≥ 1. We say that these sequences are contiguous if,
for any sequence of events (An)n≥1 where An ⊆ Ωn for n ≥ 1, we have

lim
n→∞

PGn(An) = 1 if and only if lim
n→∞

PĜn(An) = 1.

In other words, an event An is a.a.s. true in Gn if and only if it is a.a.s. true in Ĝn. (Here
a.a.s. means “asymptotically almost surely”, i.e. with probability tending to 1 as n→∞.) If

(Gn) and (Ĝn) are contiguous then we write

Gn ≈ Ĝn.

Further, if Gn and Ĝn are both probability spaces of random graphs or pseudographs on the
same vertex set, define their sum Gn + Ĝn to be the space whose elements are defined by the
random pseudographs G∪Ĝ, where G ∈ G and Ĝ ∈ Ĝ are generated independently. Similarly,
define their graph-restricted sum Gn ⊕ Ĝn to be the space which is the restriction of Gn+ Ĝn to
simple graphs (i.e. those with no loops or multiple edges). For a survey of known contiguity
results for sums of graph models, see [12] or [4, Chapter 9].

Write kGn for Gn ⊕ · · · ⊕ Gn where there are k terms in the right hand side summation
(k ≥ 2). Let Hn denote the uniform probability space of bicoloured Hamilton cycles on 2n
vertices, with the fixed bipartition. The main result of this paper shows the following.

Theorem 1.1

Bn,4 ≈ 2Hn.

This result was the final fact required to prove the conjecture of Robinson and Wormald,
as follows.
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Corollary 1.1 For d ≥ 3 we have

Bn,d ≈
{
d
2
Hn if d is even,

d−1
2
Hn ⊕ Bn,1 if d is odd.

Proof. First note (as is well known) that

Bn,d ≈ dBn,1 (1)

for d ≥ 3. This follows since

Bn,d ≈ Bn,3 ⊕ (d− 3)Bn,1 ≈ 3Bn,1 ⊕ (d− 3)Bn,1 = dBn,1.

Here the first contiguity result follows from the proof of [10, Theorem 3] and the second
result can be found in [7, Theorem 4]. That the results can be combined follows from basic
properties of contiguity, see [12, Section 4.3]. Similarly,

Bn,d ≈ Hn ⊕ Bn,d−2 (2)

for d ≥ 5. This follows from the chain of results

Bn,d ≈ Bn,3 ⊕ (d− 3)Bn,1
≈ Bn,1 ⊕Hn ⊕ (d− 3)Bn,1
= Hn ⊕ (d− 2)Bn,1
≈ Hn ⊕ Bn,d−2.

The first line follows from the proof of [10, Theorem 3], the second line from the proof of [8,
Theorem 2.3] and the last line follows by applying (1) in reverse.

If d is even then the theorem follows by repeatedly applying (2) if d ≥ 6, and using
Theorem 1.1 to conclude that

Bn,d ≈
d− 4

2
Hn ⊕ Bn,4 ≈

d

2
Hn.

If d = 3 then the result can be found in [8], as above. If d is odd and d ≥ 5 then

Bn,d ≈ dBn,1
= Bn,1 ⊕ (d− 1)Bn,1
≈ Bn,1 ⊕ Bn,d−1

≈ Bn,1 ⊕
d− 1

2
Hn.

Here the first two contiguity results follow from (1) and the final line follows from the argument
for d even, given above.

We will use the small subgraph conditioning method of Robinson and Wormald [9, 10]
(see [12]) to prove Theorem 1.1. This method requires the computation of two constants,
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one relating directly to variance and the other related to a conditional distribution depending
on short cycles. The (apparently miraculous) equality of these constants implies the desired
result. Before stating the theorem we introduce some notation. Let G be a probability space
with underlying set Ω. Given any nonnegative random variable Y on G, denote by G(Y ) the
probability space with underlying set Ω and probabilities given by

PG(Y )(X) =
Y (X)PG(X)

Z

for all X ∈ Ω, where Z =
∑

X∈Ω Y (X) is the normalising constant. The notation [X]k denotes
the falling factorial, [X]k = X(X − 1) · · · (X − k + 1). (Later we use [x] with no subscript to
denote extraction of coefficients.)

The following statement of the small subgraph conditioning method is taken from [12]. A
similar theorem is given in [4, Theorem 9.12].

Theorem 1.2 ([12], Theorem 4.1) Let λi > 0 and δi ≥ −1 be real numbers for i = 1, 2, . . .
and suppose that for each n there are random variables Xi = Xi(n), i = 1, 2, . . . and Y =
Y (n), all defined on the same probability space G = Gn such that Xi is nonnegative integer
valued, Y is nonnegative and EY > 0 (for n sufficiently large). Suppose furthermore that

(i) For each k ≥ 1, the variables X1, . . . , Xk are asymptotically independent Poisson ran-
dom variables with EXi → λi,

(ii)

E(Y [X1]j1 · · · [Xk]jk)

EY
→

k∏

i=1

(λi(1 + δi))
ji

for every finite sequence j1, . . . , jk of nonnegative integers,

(iii)
∑

i λi δi
2 <∞,

(iv) EY 2/(EY )2 ≤ exp(
∑

i λi δi
2) + o(1) as n→∞.

Then

Ḡ(Y ) ≈ Ḡ

where Ḡ is the probability space obtained from G by conditioning on the event ∧δi=−1(Xi = 0).

As in many contiguity proofs for random graphs, it is convenient to perform calculations
in the pairing model. Let Pn,d denote the pairing model corresponding to Bn,d. Here there are
n buckets of each colour, and each bucket contains d points. A perfect bicoloured matching is
chosen uniformly at random, and the edges of the matching are called the pairs of the pairing.
Thus, |Pn,d| = (dn)!. In particular,

|Pn,4| = (4n)! ∼
√

8πn 44n
(n
e

)4n

.
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(Usually Pn,d denotes the normal pairing model on n buckets of d points each, with no colours.
However, we only refer to bicoloured models in this paper, so this notation should not cause
confusion.)

An H-decomposition of P ∈ Pn,4 is an ordered partition of the pairs of P into two sets,
each of which corresponds to a bicoloured Hamilton cycle. One such set of pairs is called an
H-cycle. For P ∈ Pn,4, let Y (P ) be the number of H-decompositions of P . Let Ĥn denote

the pairings version of Hn. That is, Ĥn is the uniform probability space of pairings on 2n
bicoloured buckets, each containing 2 points, with n buckets of each colour. We show that Y
satisfies the conditions of Theorem 1.2, with δi > −1 for all i ≥ 1, and with Xi equal to the
number of bicoloured cycles of length 2i. Let a H-decomposition of G ∈ Bn,4 be an ordered
partition of the edges of G into two Hamilton cycles. Conditioning on no multiple edges, we
obtain

B(Y )
n,4 ≈ Bn,4,

where here Y (G) is the number of H-decompositions of G ∈ Bn,4. But it is easy to see that

B(Y )
n,4 = Hn ⊕Hn.

To apply the method we need to calculate the expectation and variance of Y , as well as
the interaction between the number of short cycles and Y . The calculations are presented in
Sections 2 and 3 below, and combined in Section 4. As is usual in the application of the small
subgraph conditioning method, the calculation of the variance is by far the most difficult
part. In this paper we employ the differential equation method described in [13] to calculate
a critical quantity which contributes to the variance of Y .

It is well known that the probability that a random bipartite regular graph has given
girth tends towards a non-zero constant. Thus, a simple corollary of Theorem 1.1 is that
there exist 4-regular bipartite graphs which decompose into two Hamilton cycles and have
arbitrarily large girth. An application of this has been found in topological group theory,
where McCammond and Wise [6] use this to deduce the existence of graphs which provide
examples of complexes with incoherent fundamental group.

2 Expectation and variance

Let h(n) denote the number of bicoloured Hamilton cycles on 2n vertices. It is not difficult
to see that

h(n) =
n!2

2n
. (3)

To form an H-decomposition, first select the adjacencies of the vertices in the two Hamilton
cycles, then for each vertex choose one of the 4! ways to assign the four points to the four
pairs involved. Hence

EY =
h(n)2 4!2n

(4n)!
∼ π3/2

√
8n

(
3

2

)2n

. (4)
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We must also calculate the expected value of Y (P )2. The argument begins with the same
steps used by Kim and Wormald [5], but requires new arguments on random matchings.

We compute Y (P )2 by viewing it as the number of ordered pairs of H-decompositions of
a pairing P . Given P ∈ Pn,4, let ((H1, H2), (H3, H4)) be an ordered pair of H-decompositions
of P . That is, each Hi is an H-cycle and P = H1 ∪ H2 = H3 ∪ H4. A pair in P is of type
(i, j) if it belongs to Hi and H2+j, for 1 ≤ i, j ≤ 2. As in [5], a vertex is said to be of

• type A if it is incident with a pair of each type,

• type B if it is incident with two pairs of type (1, 1) and two pairs of type (2, 2),

• type C if it is incident with two pairs of type (1, 2) and two pairs of (2, 1).

(Note that these are the only possibilities.) Pairs of a given type (i, j) must form either closed
cycles, or disjoint paths which start and end in type A vertices. The type (1, 1) pairs (or type
(2, 2) pairs) can only form a closed cycle if they form a Hamilton cycle. This occurs if and
only if (H1, H2) = (H3, H4). The contribution to E(Y (P )2) from such pairs shall be seen to
be neglible. Similarly, if the type (1, 2) pairs (or type (2, 1) pairs) form a closed cycle then
(H1, H2) = (H4, H3). We ignore these cases. Therefore, pairs of a given type form disjoint
paths which start and end in type A vertices. Moreover, each type A vertex is the endpoint
of such a path. Therefore the number of type A vertices must be even. Each type B vertex
must lie on a path of type (1, 1) pairs, and a path of type (2, 2) pairs. Similarly, each type C
vertex must lie on a path of type (1, 2) pairs, and a path of type (2, 1) pairs.

By ignoring the type B and type C vertices, the (paths of) pairs of type (i, j) form a
matching on the type A vertices. Relabel these four perfect matchings as M1, M2, M3, M4

where M1 = H1 ∩ H3, M2 = H1 ∩ H4, M3 = H2 ∩ H4 and M4 = H2 ∩ H3. So each type B
vertex must lie on an edge of M1 and of M3, while each type C vertex must lie on an edge of
M2 and M4. Let the colours used in the bicolouring be γ, δ. Suppose that there are 2k type
A vertices, of which aγ are coloured γ and aδ are coloured δ. Suppose that there are bγ type
B vertices (cγ type C vertices, respectively) coloured γ, and bδ type B vertices (respectively,
cδ type C vertices) coloured δ. For brevity, a vertex coloured γ is called a γ-vertex (and
similarly for vertices coloured δ), and an edge with endpoints coloured γ, δ is called an edge
of end-type {γ, δ} (and similarly for other endpoint colours).

Let xi be the number of bichromatic edges in Mi, for 1 ≤ i ≤ 4. Then there are

wi =
aγ − xi

2

edges in Mi joining two γ-vertices, and

yi =
aδ − xi

2

edges in Mi joining two δ-vertices, for 1 ≤ i ≤ 4. In particular, aδ − xi must be even (which
implies that aγ − xi = 2k − aδ − xi is also even). We now show that all the parameters can
be written in terms of seven:

k, aδ, bδ, x1, x2, x3, x4.
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Since aγ = 2k − aδ, we can write wi and yi in terms of k, aδ and xi, for 1 ≤ i ≤ 4. It is also
clear that cδ = n− aδ − bδ. Moreover, we have

bδ − bγ = w1 − y1 = w3 − y3

and

cδ − cγ = w2 − y2 = w4 − y4.

Solving these gives bγ = aδ + bδ − k and cδ = n − bδ − k. For readability, we will not make
these substitutions until later.

For fixed k and aδ, let pH(all | k, aδ, x1, x2, x3, x4) denote the probability that M1 ∪M2,
M2 ∪M3, M3 ∪M4 and M1 ∪M4 are all hamiltonian, when each Mi is a randomly chosen
matching on 2k vertices, of which aδ are δ-vertices and the rest are γ-vertices, conditional on
fixed values of (x1, x2, x3, x4) satisfying the parity conditions mentioned above. The quantity
pH(all | k, aδ, x1, x2, x3, x4) is analysed in Section 5 for certain values of the parameters (see
Theorem 5.1). The number of ways to select M1, . . . ,M4, such that Mi∪Mi+1 is hamiltonian
and Mi has xi bicoloured edges, for 1 ≤ i ≤ 4, is then

pH(all | k, aδ, x1, x2, x3, x4)
4∏

i=1

(
aγ
2wi

)
(2wi)!

2wi wi!

(
aδ
2yi

)
(2yi)!

2yi yi!
xi!

=
pH(all | k, aδ, x1, x2, x3, x4) 2x1+x2+x3+x4 aγ!

4 aδ!
4

24k
∏4

i=1 xi !yi!wi!
. (5)

There are
(
n

aγ

)(
n

aδ

)
(6)

ways to choose the labels of the type A vertices. Now we count the number of ways to add the
type B vertices onto matchings M1 and M3. To make sure the resulting graph is bicoloured,
each edge of end-type {γ, γ} requires an extra δ-vertex of type B, and each edge of end-type
{δ, δ} requires an extra γ-vertex of type B. The number of configurations is

(
bδ − w1 + k − 1

k − 1

)(
bδ − w3 + k − 1

k − 1

)
. (7)

Similarly, there are

(
cδ − w2 + k − 1

k − 1

)(
cδ − w4 + k − 1

k − 1

)
(8)

ways to add the type C vertices onto matchings M2 and M4. Then there are

bγ!bδ!cγ!cδ! (9)
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ways to identify the two copies of each of the type B and type C vertices, respecting colours.
There are

(n− aγ)!(n− aδ)! (10)

ways to order the type B and type C vertices. Finally there are

4!2n (11)

ways to decide, for each edge, which particular points in the buckets corresponding to the
endpoints are the ones joined by a pair corresponding to that edge. This determines the
pairing in full.

Multiplying (5) – (11) and summing over all allowable values of (k, aδ, bδ, x1, x2, x3, x4),
(i.e. within the allowed range and satisfying the parity conditions) we obtain

EY 2 =
1

|Pn,4|
∑

(k,aδ ,bδ ,x1,x2,x3,x4)

pH(all | k, aδ, x1, x2, x3, x4) k4 4!2n 2x1+x2+x3+x4

24k (bδ − w1 + k)(bδ − w3 + k)(cδ − w2 + k)(cδ − w4 + k)

×n!2 bγ! bδ! cγ! cδ! aγ!
3 aδ!

3 (bδ − w1 + k)!(bδ − w3 + k)!(cδ − w2 + k)!(cδ − w4 + k)!

k!4
(∏4

i=1 xi! yi!wi!
)

(bδ − w1)! (bδ − w3)! (cδ − w2)! (cδ − w4)
.

Assuming that all arguments of the factorial function tend to infinity (justified below), we
obtain by Stirling’s formula

EY 2 ∼
∑

(k,aδ ,bδ ,x1,x2,x3,x4)

pH(all | k, aδ, x1, x2, x3, x4)n k2
√
bγbδcγcδ aγ

3/2 aδ
3/2

8
√

2π2
(∏4

i=1

√
xiyiwi

)√
(bδ − w1)(bδ − w3)(cδ − w2)(cδ − w4)

× f(κ, α, β, χ1, χ2, χ3, χ4)n√
(bδ − w1 + k)(bδ − w3 + k)(cδ − w2 + k)(cδ − w4 + k)

(12)

where

f(κ, α, β, χ1, χ2, χ3, χ4)

=
9

4
× 2χ1+χ2+χ3+χ4 (2κ− α)3(2κ−α) α3α (β + α− κ)(β+α−κ) ββ(1− α− β)1−α−β

24κ κ4κ
(∏4

i=1 χi
χi (α−χi

2
)
(α−χi)/2 (κ− α+χi

2
)
κ−(α+χi)/2

)

×(1− κ− β)1−κ−β (β + α+χ1

2
)(β+(α+χ1)/2) (β + α+χ3

2
)β+(α+χ3)/2

(β − κ+ α+χ1

2
)β−κ+(α+χ1)/2 (β − κ+ α+χ3

2
)β−κ+(α+χ3)/2

× (1− β − α−χ2

2
)(1−β−(α−χ2)/2 (1− β − α−χ4

2
)1−β−(α−χ4)/2

(1− β − κ− α−χ2

2
)1−β−κ−(α−χ2)/2 (1− β − κ− α−χ4

2
)1−β−κ−(α−χ4)/2

. (13)

Here κ = k/n, α = aδ/n, β = bδ/n, χi = xi/n for 1 ≤ i ≤ 4, and all other variables have been
substituted out. We look at f over the domain D ⊆ [0, 1]7 defined by

D =
{

(κ, α, β, χ1, χ2, χ3, χ4) ∈ [0, 1]7 | every factor of the form tt in

f(κ, α, β, χ1, χ2, χ3, χ4) has t ≥ 0 } (14)
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(with the convention that 00 = 1).
We now justify our assumption that the arguments of factorials tend to infinity as n→∞.

In Section 6 we will show that the unique global maximum of f over the closed domain D is
attained when

(κ, α, β, χ1, χ2, χ3, χ4) = (2
3
, 2

3
, 1

6
, 1

2
, 1

2
, 1

2
, 1

2
), (15)

which is an interior point of D. Any term of the summation in (12) in which the argument of a
factorial is bounded corresponds, after scaling, to a point arbitrarily close to the boundary of
D. In this case the asymptotic relation in (12) is not valid, but the error is at most a constant
factor. Since f is raised to the power n, the contribution of all such terms is negligible.

Now set χi = 1
2

+ zi for 1 ≤ i ≤ 4, κ = 2
3

+ z5, α = 2
3

+ z6 and β = 1
6

+ z7. Expanding log f
around (z1, . . . , z7) = (0, . . . , 0) we obtain

f(z1, . . . , z7) =
81

16
exp

([
4∑

i=1

−16

3
zi

2 + 12ziz5 + (−1)i
8

3
ziz6 + (−1)i

16

3
ziz7

]

−36z5
2 + 9z5z6 −

41

6
z6

2 − 28

3
z6z7 −

28

3
z7

2 + T

)

=
81

16
exp

([
4∑

i=1

− 1

48
(16zi − 18z5 − (−1)i4z6 − (−1)i8z7)2

]

−9

2
z5

2 − 9

2
(z5 − z6)2 − (z6 − 2z7)2 + T

)

where T = T (z1, . . . , z7) is a sum of terms O(zizjzk). Consider the cube

C =
{

(z1, . . . , z7) | −n−2/5 ≤ zi ≤ n−2/5 for 1 ≤ i ≤ 7
}

centred at the origin. Since exp(O(n(n−2/5)3)) = 1 + o(1), the contribution to f(z1, . . . , z7)n

from T is negligible for all points (z1, . . . , z7) ∈ C. Using standard arguments, since the unique
maximum of f on the closed domain D is attained at (15), points outside C make negligible
contribution to f(z1, . . . , z7)n and

∑

(k,aδ ,bδ ,x1,x2,x3,x4)

f(κ, α, β, χ1, χ2, χ3, χ4)n

∼
(

81

16

)n
n7

16

∫ n−2/5

−n−2/5

· · ·
∫ n−2/5

−n−2/5

exp

([
4∑

i=1

− n

48
(16zi − 18z5 − (−1)i4z6 − (−1)i8z7)2

]

−9n

2
z5

2 − 9n

2
(z5 − z6)2 − n(z6 − 2z7)2

)
dz1 · · · dz7

∼
(

81

16

)n
n7

16

∫ ∞

−∞
· · ·
∫ ∞

−∞
exp

([
4∑

i=1

− n

48
(16zi − 18z5 − (−1)i4z6 − (−1)i8z7)2

]

−9n

2
z5

2 − 9n

2
(z5 − z6)2 − n(z6 − 2z7)2

)
dz1 · · · dz7

=
(πn)7/2

4096

(
81

16

)n
.
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(We divide by 16 because the parity of xi is determined by k and aδ, for 1 ≤ i ≤ 4.)
When k = 2n

3
+ O(n−2/5), aδ = 2n

3
+ O(n−2/5), and xi = n

2
+ O(n−2/5) for 1 ≤ i ≤ 4, we

conclude by Theorem 5.1 that

pH(all | k, aδ, x1, x2, x3, x4) ∼ 81π2

1024n2
.

The trivial upper bound pH(all | k, aδ, x1, x2, x3, x4) ≤ 1 holds for all other values of the
parameters. As mentioned above, only values corresponding to points in the cube C make
a nonnegligible contribution to (12). Hence we can substitute k = 2n

3
, aδ = 2n

3
, and so on

(see (15)), into the non-exponential part of (12) and conclude that

EY 2 ∼ 3
√

2π3

32n

(
81

16

)n
.

Dividing this by (EY )2 using (4) gives

EY 2

(EY )2
∼ 3
√

2

4
. (16)

3 Interaction with short cycles

We must calculate

E(Y Ck)

EY

where Ck is the number of 2k-cycles in Pn,4. To do this we calculate

|Pn,4|E(Y Ck) =
∑

C

∑

P∈Pn,4
C⊆P

Y (P ),

where the first sum is over all possible labelled bicoloured 2k-cycles C. Let C be such a cycle
which has been endowed with a direction. There are

[n]k
2

k
∼ n2k

k

choices for C (compare with (3)). Edges of the cycle will correspond to pairs in a pairing
P ∈ Pn,4, with an H-decomposition (H1, H2). We calculate the number of ways to complete
C∩H1 and C∩H2 to give bicoloured Hamilton cycles on n+n vertices. Then there are (4!)2n

ways to assign endpoints in the vertices (buckets) to the edges so determined.
Now C ∩ H1 is the union of i disjoint paths, for some i ≥ 1. Then C ∩ H2 is also the

union of i disjoint paths. As we shall see, the value of i will affect the number of ways the the
Hamilton cycles can be chosen. We wish to count the 2k-cycles in which each edge is specified
to be in H1 or H2, such that edges in Hj form i disjoint paths of length at least 1, for j = 1, 2.
To count these, start at an arbitrary vertex v at the start of a path induced by H1 and proceed
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around the cycle in the chosen direction. There are 2k ways to choose the vertex to begin at,
and the number of ways to determine the lengths of paths P1, Q1, P2, Q2, . . . , Pi, Qi is

[x2k]

(
x

1− x

)2i

.

Here square brackets denote the extraction of coefficients, and the formula comes from consid-
ering the concatenation of 2i paths of length at least 1 each, so that the generating function
for each individual path is x

(1−x)
. This expression must be multiplied by

k

i

since there are 2k ways of choosing the starting vertex v, and then every configuration has
been counted 2i times, since there are i paths Pl and two orientations of the cycle.

After C and its partition into paths is decided, let F denote the graph with vertex set
V (C) whose edge set consists of the edges in both C and H1. Then F is a set of paths and
isolated vertices. Let s (for “same”) denote the number of paths in F with γ-vertices at both
ends, plus the number of isolated γ-vertices in F . Then the number of paths with δ-vertices
at each end, plus the number of isolated δ-vertices, is also equal to s. Let d (for “different”)
denote the number of paths with endpoints coloured differently. Then the rest of the edges
in H1 can be chosen in asymptotically

1

2
(n− k + s)!(n− k + s− 1)!(2n)d2i−d ∼ (n!)2nd−2k+2s−12i−1

ways. This comes from a cyclic biparitite ordering of the (2n − 2k + 2s)-set whose elements
are the vertices not in C and the {γ, γ} and {δ, δ} paths in C, into which the d {γ, δ} paths
have been inserted. There are (2n− 2k+ 2s)d ∼ (2n)d ways to insert all the {γ, δ} paths, and
the factor of 2i − d accounts for the two choices of the end vertex of a {γ, γ} or {δ, δ} path.

Similarly, the rest of the edges in H2 can be chosen in asymptotically

(n!)2nd
′−2k+2s′−12i−1

ways, where s′ and d′ are defined like s and d. It is easily seen that the total number of edges
(2k) in the cycle C is 2k− d− 2s+ 2k− d′− 2s′, and so the product of the two factors above,
regardless of d, d′, s and s′, is asymptotic to

(n!)4n−2k−24i−1.

Putting all this together, we obtain that

E(Y Ck) ∼
n2k

k
[x2k]

∑

i≥1

(
2x

1− x

)2

· k
i
· n!4

4n2k+2
· 4!2n.

Dividing by EY gives

E(Y Ck)

EY
∼
∑

i≥1

[x2k]

(
4x

(1− x)2

)i
1

i
=

32k − 1

2k
= ρk (17)

11



           

for k ≥ 1. A direct generalisation of this argument, applied to an ordered set of i1 cycles of
length 2, i2 bicoloured cycles of length 4, and so on, shows that

E
(
Y [C1]i1 · · · [Cj]ij

)

EY
∼

j∏

k=1

ρk
ik .

4 Synthesis

We now combine the results of Sections 2 and 3. One further piece of information is required,
namely the short cycle distribution in Pn,4. Let Ck be the number of bicoloured cycles of
length 2k in P ∈ Pn,4. As is well known (see for example [10]), the Ck are asymptotically
independent Poisson random variables with expectations

ECk ∼ λk =
32k

2k
.

Recall ρk defined in (17), and define δk by

δk =
ρk
λk
− 1 = − 1

32k
.

Note that δk > −1 for k ≥ 1. Then

exp

( ∞∑

k=1

λk δk
2

)
∼ exp

(
1

2

∞∑

k=1

1

k 32k

)

= exp

(
−1

2
log

8

9

)

=
3
√

2

4

∼ EY 2

(EY )2
,

using (16). Thus by Theorem 1.2, we conclude that

Pn,4 ≈ P (Y )
n,4 .

By conditioning on no multiple edges, we obtain Theorem 1.1, as explained in Section 1.

5 Random matchings

Assume that, as in Section 2, there are 2k type A vertices, of which aδ are coloured δ and the
remaining aγ are coloured γ. Recall that pH(all | k, aδ, x1, x2, x3, x4) is the probability that
M1 ∪M2, M2 ∪M3, M3 ∪M4 and M4 ∪M1 all form Hamilton cycles, where Mi is a perfect
matching of the 2k type A vertices which contains xi bichromatic edges, chosen uniformly at
random and independently, for 1 ≤ i ≤ 4.

The aim of this section is to prove the following result, used in Section 2.

12



          

Theorem 5.1 If k = 2n
3

+O(n−2/5), aδ = 2n
3

+O(n−2/5), and xi = n
2

+O(n−2/5) for 1 ≤ i ≤ 4,
then

pH(all | k, aδ, x1, x2, x3, x4) ∼ 81π2

1024n2
.

Throughout this section we assume that k, aδ and the xi satisfy the requirements of Theo-
rem 5.1. (These values are the only significant ones in the variance calculations of Section 2,
and the value of all other parameters can be determined from these values.)

Suppose that M is a perfect matching on the given 2k vertices with x bichromatic edges.
We refer to M simply as a matching with parameter x. We can generate a random M with
given parameter x, uniformly at random using the following simple stochastic process with
three phases. Start with M = ∅ and add an edge {u, v} to M at each time step, chosen as
follows. For steps 1, . . . , (aγ − x)/2, let u and v be distinct unmatched γ-vertices, chosen
uniformly at random (A vertex is unmatched if it does not belong to any edge currently in
M .) This constitutes phase 1. For the next x steps, let u be an unmatched γ-vertex chosen
uniformly at random, and let v be an unmatched δ-vertex chosen uniformly at random. After
these steps, all γ-vertices are matched in M . This is phase 2. For the last (aδ−x)/2 steps, let
u and v be distinct unmatched δ-vertices, chosen uniformly at random. This is phase 3, and
is similar to the process used in [5]. Clearly the resulting perfect matching M has parameter
x, and is distributed uniformly at random over all such perfect matchings.

When B and R are matchings, we will refer to their edges as being blue and red, respec-
tively. The number of cycles (and 2-cycles) of the graph BR = B ∪R will be of interest.

Lemma 5.1 Fix x such that 0 ≤ x ≤ k. Let B be a fixed perfect matching on the given 2k
vertices, and let R be such a matching chosen unformly at random from those with parameter
x. Let PR denote probability with respect to this choice of R, and let κ(BR) be the number of
cycles in BR. Then

PR(κ(BR) > 5 log n) = O(n−3).

Proof. Edges of R are generated one by one, using the procedure described above. Assume
that during phase 1, the vertex u is chosen first (uniformly at random from all unmatched
γ-vertices) and then the vertex v is chosen uniformly, such that v is unmatched and distinct
from u. At the ith step, for any choice of u, there are aγ − 2i + 1 choices for v of which at
most one causes the ith red edge to create a cycle with blue and previous red edges. So the
probability of creating a cycle at the ith step of phase 1 is at most 1/(aγ − 2i+ 1). It is easy
to see that the event is independent of the previous choices and hence, letting X denote the
number of cycles created in phase 1, we have that

X ≤
(aγ−x)/2∑

i=1

ϕi,

for appropriate independent random variables ϕi with

P(ϕi = 1) = 1−P(ϕi = 0) =
1

aγ − 2i+ 1
.
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Similarly, the number Y of cycles created in phases 2 and 3 satisfies

Y ≤
x∑

i=1

τi +

(aδ−x)/2∑

i=1

σi

for appropriate independent random variables τi, σi with

P(τi = 1) = 1−P(τi = 0) =
1

aδ − i+ 1

and

P(σi = 1) = 1−P(σi = 0) =
1

aδ − x− 2i+ 1
.

Thus for

Z =

(aγ−x)/2∑

i=1

ϕi +
x∑

i=1

τi +

(aδ−x)/2∑

i=1

σi,

we have that
P(X + Y ≥ 5 log k) ≤ P(Z ≥ 5 log k).

Since aγ, aδ, k ∼ 2n/3 and Z is a sum of k independent random variables with E(Z) =
(1 + o(1)) log k , a standard argument shows that

P(Z ≥ 5 log n) = O(n−3).

For example, apply the argument of [5, Lemma 1].

Let HAM denote the event “is a Hamilton cycle”. For fixed perfect matchings B and R
on the 2k vertices with parameters x1, x3, respectively, let

P(x)(BS,RS ∈ HAM)

denote the probability that both BS and RS form Hamilton cycles, where S is a uniformly
chosen perfect matching of the same set of vertices with parameter x. Note that P(x)(BS ∈
HAM) depends only on k, aδ, x1, x3 and x. We call S the silver matching.

Lemma 5.2 Let x ∈ {x2, x4}. Suppose that

P(x)(BS,RS ∈ HAM) ∼ 9π

32n
, (18)

for perfect matchings B and R with parameters x1, x3 respectively, such that κ(BR) ≤ 5 log n,
with asymptotics uniform over all B, R and x such that x1, x3 and x are all n/2 +O(n−2/5).
Then Theorem 5.1 holds.
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Proof. Choose M1 uniformly with parameter x1. Then consider M1 fixed and choose M3

uniformly with parameter x3. We will apply Lemma 5.1 with B = M1, R = M3, letting
EB, ER denote expectation with respect to choices of B and R, respectively. For brevity, let
P2(B,R) = P(x2)(BS,RS ∈ HAM) and P4(B,R) = P(x4)(BS,RS ∈ HAM). In the first of
these, S stands for M2 and in the second, M4. Then

pH(all | k, aδ, x1, x2, x3, x4)

= EB ER

(
P2(B,R)P4(B,R)

)

= EB

(
PR(κ(BR) ≤ 5 log n)ER

(
P2(B,R)P4(B,R) | κ(BR) ≤ 5 log n

)

+ PR(κ(BR) > 5 log n)ER

(
P2(B,R)P4(B,R) | κ(BR) > 5 log n

))

= EB

((
1−O(n−3)

) 81π2

1024n2
+O(n−3)

)

∼ 81π2

1024n2
,

using (18).

It remains to prove that (18) holds for fixed matchings B, R with parameters x1, x3

respectively, such that κ(BR) ≤ 5 log n and x1, x3 = n/2 +O(n−2/5). We must choose a silver
matching S uniformly at random from those with parameter x, where x = n/2+O(n−2/5) also.
This is achieved using the stochastic process with three phases, slightly modified from the one
described above, so as to keep track of cycles produced in BS and RS. (This modification is
similar to one used in [5] for a simpler process.)

After t edges of S have been determined, we define a matching B(t) such that two vertices
are adjacent in B(t) if they are endpoints of the same path in BS. Define R(t) similarly using
paths in RS. Set BR(t) = B(t) ∪ R(t). At time t ≥ 1, randomly select two vertices ut and
vt from BR(t − 1), with the colours of ut and vt determined by the phase of the process, as
described above. (For example, in phase 1, ut and vt are distinct γ-vertices, chosen uniformly
at random.) Then {ut, vt} becomes an edge in S. When t = k, the set S is a perfect matching.

It may help to consider the following alternative definition of BR(t). For brevity, a blue
edge in BR(t) is called a B-edge, and similarly for R. At time t, a vertex u has a unique
B-neighbour and a unique R-neighbour, which is other endpoint of the B-edge (respectively
R-edge) of BR(t) containing u. The graph BR(t) is formed from BR(t − 1), ut and vt,
as follows. If {ut, vt} is a B-edge in BR(t − 1) then we delete this edge from BR(t − 1).
Otherwise, we delete ut and vt, and join the B-neighbour of ut to the B-neighbour of vt with
a new B-edge. This is called “contracting” the edge {ut, vt}. Perform this operation with
respect to R as well. The resulting graph BR(t) is the union of two perfect matchings on
2k − 2t points. A cycle is formed in BS (respectively RS) at step t if and only if {ut, vt} is
an existing B-edge (respectively, R-edge) of BR(t−1). Thus, BS and RS are both Hamilton
cycles if and only if {ut, vt} is not equal to any edge of BR(t− 1), for all t < k.

Denote by Ti the number of steps in phase i, for 1 ≤ i ≤ 3. That is,

T1 = (aγ − x)/2, T2 = x, T3 = (aδ − x)/2.
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Note that S has exactly x = T2 edges of end-type {γ, δ}. (Hence it will have exactly T1

edges of end-type {γ, γ} and exactly T3 edges of end-type {δ, δ}.) We need to calculate the
asymptotic value that no cycle is produced in BS or RS in all but the last step of this process.
To analyse phases 1 and 2, we model the number of edges of certain end-types by a continuous
function, using the differential equation method given in [13, Theorem 5.1], stated below. In
phase 3, there are only vertices of one colour left, so we can use arguments similar to those
of [5].

The theorem stated below is a slightly simplified version of that given in [13, Theorem
5.1]. (In particular, readers who consult [13, Theorem 5.1] can check that we take a = 1,
β = C0 ≥ 1 and γ = 0.) Consider any discrete-time random process, which forms a probability
space which may be denoted by (Q0, Q1, . . . ), where each Qi is a (random) element of some
set S. Let Ht = (Q0, . . . , Qt) be the history of the process up to time t.

Now consider a sequence of random processes indexed by n for n = 1, 2, . . . . Thus Qt =
Q

(n)
t and S = S(n), but the dependence on n is often dropped from the notation. Asymptotics

are for n → ∞ but are uniform over all other variables. Let S(n)+ denote the set of all
Ht = (Q0, . . . , Qt) where Qi ∈ S(n), for t = 0, 1, 2, . . . .

We say that a function f(u1, . . . , uj) satisfies a Lipschitz condition on D ⊆ Rj if there
exists a constant L > 0 such that

|f(u1, . . . , uj)− f(v1, . . . , vj)| ≤ L max
1≤i≤j

|ui − vi|

for all (u1, . . . , uj), (v1, . . . , vj) ∈ D. Note that max1≤i≤j |ui − vi| is the distance between
(u1, . . . , uj) and (v1, . . . , vj) in the `∞ metric.

For a variable Y defined on components of the process, and for D ⊆ R2, define the stopping
time TD(Y ) to be the minimum t such that (t/n, Y (t)/n) 6∈ D.

Theorem 5.2 ( [13], Theorem 5.1) Let Y : S(n)+ → R and f : R2 → R be functions such
that for some constant C0 ≥ 1, we have |Y (Ht)| < C0n for all Ht ∈ S(n)+ and for all n. For
simplicity, denote Y (Ht) by Y (t). Assume the following three conditions hold, where in (ii)
and (iii) D is some bounded connected open set containing the closure of

{(0, z) : P(Y (0) = zn) 6= 0 for some n} .

(i) For all t we have

|Y (t+ 1)− Y (t)| ≤ C0.

(ii) For some function λ1 = λ1(n) = o(1), we have

|E(Y (t+ 1)− Y (t) | Ht)− f(t/n, Y (t)/n)| ≤ λ1

for t < TD(Y ).

(iii) The function f is continuous and satisfies a Lipschitz condition on

D ∩ {(t, z) : t ≥ 0} .
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Then the following are true.

(a) For (0, ẑ) ∈ D, the differential equation

dz

dx
= f(x, z)

has a unique solution in D for z : R→ R passing through

z(0) = ẑ

which extends to points arbitrarily close to the boundary of D;

(b) Let λ > λ1 with λ = o(1). For a sufficiently large constant C, with probability 1 −
O(λ−1 exp(−nλ3)), we have

Y (t) = nz(t/n) +O(λn)

uniformly for 0 ≤ t ≤ σn, where z(x) is the solution in (a) with ẑ = Y (0)/n, and
σ = σ(n) is the supremum of those x to which the solution can be extended before
reaching within `∞-distance Cλ of the boundary of D.

5.1 Phase 1

By a slight abuse of notation, let γt be the number of γ-vertices in BR(t) for t ≥ 0. So
γ0 = aγ = 2n/3 + O(n−2/5). At each step of phase 1, two γ-vertices are deleted. Therefore
γt = γ0 − 2t.

Let w
(B)
t be the number of B-edges of end-type {γ, γ} in BR(t), for 0 ≤ t ≤ T1. Now

w
(B)
t+1 = w

(B)
t − 1 unless the B-neighbour of both ut+1 and vt+1 is coloured δ, in which case

w
(B)
t+1 = w

(B)
t . Thus |w(B)

t |/n and |w(B)
t+1 − w

(B)
t | are both bounded above by a constant, as

required for Theorem 5.2. Let Γ0 = γ0/n, and let Ht = (BR(0), BR(1), . . . , BR(t)) be the
history of the process for steps 1 to t. The above discussion shows that

E(w
(B)
t+1 − w(B)

t | Ht) =

(
γ0−2t−2w

(B)
t

2

)
(
γ0−2t

2

) − 1

= f(t/n, w
(B)
t /n) + λ1

where λ1 = O(n−2/5) and

f(s, z) =
(1− 3s− 3z)2

(1− 3s)2
− 1.

Fix small positive constant η and define the open set

D = {(s, z) | −η < s < 1/12− η, −η < z < 1/3 + η} .
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Then f is continuous on the closure of D and hence satisfies the Lipschitz condition required
for Theorem 5.2.

Now Γ0 = 2n/3 +O(n3/5) and T1 = n/12 +O(n3/5) by assumption, so (t/n, w
(B)
t /n) must

meet the boundary of D at t/n = 1/12 − η. Then the requirements of Theorem 5.2 are
satisfied, with λ1 as above and λ = O(n−1/10), say.

Solving z′(s) = f(s, z), with initial condition z(0) = z0, gives the solution

z(s) =
z0(1− 3s)2

1− 9z0s
.

By Theorem 5.2, this solution is unique in D for all z0 such that (0, z0) ∈ D, and extends to

points arbitrarily close to the boundary of D. Setting z0 = w
(B)
0 /n, we conclude that, with

probability 1−O(n−2),

w
(B)
t = n z(t/n) + o(n)

=
(n− 3t)2

3(4n− 3t)
+ o(n) (19)

for 0 ≤ t ≤ n/12− ηn. This uses the fact that w
(B)
0 = n/12 +O(n3/5). (The error probability

given in Theorem 5.2 is O(λ−1exp(−nλ3)), and

O(λ−1exp(−nλ3)) = O(n1/10exp(−n7/10)) = O(n−2)

by choice of λ.) Noting that in ηn steps the change in w
(B)
t is O(η), we can let η → 0 slowly

and deduce (19) uniformly for all t ≤ T1, with probability 1− O(n−2). The same conclusion
can be reached with R in place of B.

For 1 ≤ τ ≤ T1, define the event O(B)
τ that (19) holds for 1 ≤ t ≤ τ , with some fixed error

function in mind. This is an event over the set of all possible τ -step histories of the process,
which says that the variable w

(B)
t remains within distance o(n) of the solution given by the

differential equation, up until time τ , for a function o(n) determined from the error function

implicit in (19). In other words, the variables w
(B)
t are well-behaved, for 1 ≤ t ≤ τ . Similarly

define O(R)
τ , and let

Oτ = O(B)
τ ∧ O(R)

τ .

This is the probability that both w
(B)
t and w

(R)
t are well behaved for 1 ≤ t ≤ τ . We know that

O(B)
T1

and O(R)
T1

both hold with probability 1− O(n−2). Therefore OT1 holds with probability

1−O(n−2) as well. If OT1 holds then so do Oτ , O(B)
τ and O(R)

τ , for 1 ≤ τ ≤ T1.
Now define cycle(B)(t) to be the event that a cycle of BS is formed at step t of phase 1,

and similarly cycle(R)(t). Let cycle(t) = cycle(B) ∨ cycle(R)(t) be the event that a cycle was
formed either BS or RS at step t, and finally let both(t) = cycle(B) ∧ cycle(R)(t) be the event
that a cycle was formed in both BS and RS at step t. This only happens if {ut, vt} is a
2-cycle of BR(t− 1).
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A cycle is formed in BS at step t+1 of phase 1 if and only if one of the existing w
(B)
t edges

of end-type {γ, γ} in BR(t) was chosen as {ut+1, vt+1}. This has probability w
(B)
t /

(
γ0−2t

2

)
=

9(1 + o(1))w
(B)
t /2(n− 3t)2. Therefore

P(cycle(B)(t+ 1) | O(B)
t ) =

3

2(4n− 3t)
+ o(n−1). (20)

Similarly with B replaced by R. Now P(both(t + 1)) depends on the number κ2(BR(t)) of
2-cycles in BR(t).

Lemma 5.3 Assume that κ2(BR) ≤ 5 log n, where B and R are fixed perfect matchings with
parameters x1, x3 respectively. Then for some constant C2,

P(κ2(BR(t)) > C2 log n) = O(n−2),

for 1 ≤ t ≤ T1.

Proof. At each step i ≤ t and any fixed u
i
, there are at most three γ-vertices v

i
which may

create at least one 2-cycle in BR(t + 1). (There are at most two such vertices if u
i

belongs
to a cycle of length at least 8, one if the cycle length is 6, three if it is 4, none if it is 2.
Each such vertex creates one 2-cycle unless the cycle length is 6, in which case two 2-cycles
would be created.) Since there are at least x3 ∼ n/2 γ-vertices remaining, it is easy to define
independent random variables τi with

P(τi = 1) = 1−P(τi = 0) = 3/x3 ∼ 6/n

such that the number of 2-cycles created at step i is at most 2τi. Then Y =
∑t

i=1 τi is
binomially distributed with expected value asymptotic to 6t/n ≤ 6T1/n ∼ 1/2. Hence by
standard bounds

P(κ2(BR(t)) > C2 log n) ≤ P
(

2
t∑

i=1

τi > C2 log n
)

= O(n−2).

Define the event Lt = {κ2(BR(t)) ≤ C2 log n}. Since both(t + 1) requires {ut+1, vt+1} to
be a 2-cycle in BR(t), we have

P(both(t+ 1) | Ot ∧ Lt) = O(log n/n2) = o(n−1)

for 0 ≤ t < T1, by Lemma 5.3. Moreover,

P(cycle(B)(t+ 1) | Ot ∧ Lt) = P(cycle(B)(t+ 1) | Ot)(1−O(n−2)) +O(n−2)

=
3

2(4n− 3t)
+ o(n−1)
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by equation (20) (and similarly with B replaced by R). Therefore

P(cycle(t+ 1) | Ot ∧ Lt)
= P(cycle(B)(t+ 1) | O(B)

t ∧ Lt) + P(cycle(R)(t+ 1) | O(R)
t ∧ Lt)

−P(both(t+ 1) | Ot ∧ Lt)
=

3

4n− 3t
+ o(n−1).

For any event Ft depending only on steps 1, . . . , t and such that Ot ∧ Lt ∧ Ft 6= ∅, the same
argument gives

P
(

cycle(t+ 1)
∣∣∣Ot ∧ Lt ∧ Ft

)
=

3

4n− 3t
+ o(n−1). (21)

Let cycle(phase 1) be the event that a cycle is created at some step of phase 1. For the
events Es = ¬cycle(s),

P(¬cycle(phase 1)) = P
( T1−1∧

t=0

Et+1

)
=

T1−1∏

t=0

P
(
Et+1 |

t∧

s=1

Es
)
.

Let Ft =
∧t
s=1 Es for t ≥ 0. Then

P(Et+1 | Ft) = P(Et+1 | Ot ∧ Lt ∧ Ft))P(Ot ∧ Lt | Ft)
+P(Et+1 | ¬(Ot ∧ Lt) ∧ Ft)P(¬(Ot ∧ Lt) | Ft).

For any fixed ut+1 there are at most three γ-vertices in BR(t) which, together with ut+1 create
a cycle. Since there are at least x ∼ n/2 γ-vertices remaining at any step of phase 1, we have

P(Ft) ≥ (1− 3/x)t > e−1 + o(1),

and so, by the statement at (19),

P(¬(Ot ∧ Lt)|Ft) < eP(¬(Ot ∧ Lt)) = O(n−2).

It follows from all this that

P(Et+1 | Ft) = P(Et+1 | Ot ∧ Lt ∧ Ft)
(
1−O(n−2)

)
+O(n−2)

= P(Et+1 | Ot ∧ Lt)(1−O(n−2)) +O(n−2)

= 1− 3

4n− 3t
+ o(n−1)
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using (21). Therefore

P(¬cycle(phase 1) =

T1−1∏

t=0

P(Et+1 | Ft)

=

T1−1∏

t=0

(
1− 3

4n− 3t
+ o(n−1)

)

∼ exp

(
−

T1−1∑

t=0

3

4n− 3t

)

∼ exp

(
−
∫ T1/n

s=0

3

4− 3s
ds

)

∼ 15

16
, (22)

using the fact that T1 ∼ n/12.

5.2 Phase 2

For 1 ≤ t ≤ T2, write B̂R(t) = BR(T1 + t). This is the same as restarting the clock at the

start of phase 2. Let γ̂t be the number of γ-vertices in B̂R(t), for 0 ≤ t ≤ T2. Similarly, let δt
denote the number of δ-vertices in B̂R(t), for 0 ≤ t ≤ T2. Since we delete one γ-vertex and
one δ-vertex at each step of phase 1, we have γ̂t = γ̂0 − t and δt = δ0 − t for 0 ≤ t ≤ T2.

Note that γ̂0 = γT1 = n/2 +O(n3/5) and δ0 = aδ = 2n/3 +O(n3/5).

Now let x
(B)
t be the number of B-edges of type {γ, δ} in B̂R(t), for 0 ≤ t ≤ T2. Now

x
(B)
0 = γ0 − 2w

(B)
T1

, which depends on the outcome of Phase 1.

Note that x
(B)
t+1 = x

(B)
t − 1, except when the B-neighbour of ut+1 is coloured γ and the

B-neighbour of vt+1 is coloured δ, in which case x
(B)
t+1 = x

(B)
t + 1. Thus |x(B)

t |/n and |x(B)
t+1−xt|

are both bounded above by a constant, as required for Theorem 5.2. Let Γ̂0 = γT1/n and

∆0 = δ0/n, and let Ht = (B̂R(0), B̂R(1), . . . , B̂R(t)) be the history of the first t steps of

phase 2. Since there are γ̂0 − t − x(B)
t γ-vertices incident with B-edges of type {γ, γ}, and

δ0 − t− x(B)
t such δ-vertices, the above discussion shows that

E(x
(B)
t+1 − x(B)

t | Ht) =
2(γ̂0 − t− x(B)

t )(δ0 − t− x(B)
t )

(γ̂0 − t)(δ0 − t)
− 1

= f(t/n, x
(B)
t /n) + λ1

where

f(s, z) =
2(1− 2s− 2z)(2− 3s− 3z)

(1− 2s)(2− 3s)
− 1

and λ1 = O(n−2/5) provided t/n < 1/2− η for some positive constant η. Define the open set
D by

D = {(s, z) | −η < s < 1/2− η, −η < z < 1/2 + η} .
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We may now argue as for phase 1. Solving z′(s) = f(s, z) with initial condition z(0) = z0

gives

z(s) =
(1− 2s)(2− 3s)(2z0 + 2s− 7z0s)

2(2− 6s2 − 12z0s+ 21z0s2)
.

By Theorem 5.2, this solution is unique in D for all z0 such that (0, z0) ∈ D, and extends

to points arbitrarily close to the boundary of D. Now let z0 = x
(B)
0 /n. By Theorem 5.2, we

conclude that, with probability 1−O(n−2),

x
(B)
t = n z(t/n) + o(n)

=
(n− 2t)(2n− 3t)(2x

(B)
0 n+ 2tn− 7x

(B)
0 t)

2(2n3 − 6t2n− 12x
(B)
0 tn+ 21x

(B)
0 t2)

+ o(n). (23)

The argument as in phase 1 shows that this applies for 0 ≤ t ≤ n/2 (after letting η tend to

zero slowly), and that the corresponding result applies also to x
(R)
t , defined analogously.

Now for 1 ≤ τ ≤ T2, define the event O(B)
T1+τ to be the event that O(B)

T1
holds and that

equation (23) holds for 1 ≤ t ≤ τ . This is an event over the set of all possible (T1 + τ)-step

histories of the process, and says that the variables w
(B)
t were all well-behaved in phase 1,

and the variables x
(B)
t are well-behaved for 1 ≤ t ≤ τ . Define O(R)

T1+τ similarly. As in phase 1,
define

OT1+τ = O(B)
T1+τ ∧ O

(R)
T1+τ

for 1 ≤ τ ≤ T2. We know that O(B)
T1+T2

and O(R)
T1+T2

both hold with probability 1 − O(n−2).
Then also OT1+T2 holds with probability 1−O(n−2). Clearly if OT1+T2 holds then so do OT1+τ ,

O(B)
T1+τ and O(R)

T1+τ for 1 ≤ τ ≤ T2.

As in phase 1, define cycle(B)(T1 + t) to be the event that a cycle in BS is formed at
step t of phase 2, and similarly cycle(R)(T1 + t), cycle(T1 + t) and both(T1 + t). A cycle is
created in BS at step T1 + t + 1 if and only if the edge {uT1+t+1, vT1+t+1} chosen is identical
to an existing B-edge in BR(T1 + t) of type {γ, δ}, for 0 ≤ t < T2. The probability of this is

x
(B)
t /(γ̂0 − t)(δ0 − t). If O(B)

T1
holds then, using (19) and the fact that T1 ∼ n/12, we have

x
(B)
0 = γ̂0 − 2w

(B)
T1
∼ n

2
− (n− 3T1)2

3(4n− 3T1)
∼ 2n

5
.

Therefore

P(cycle(B)(T1 + t+ 1) | O(B)
T1+t) =

x
(B)
t

(γ̂0 − t)(δ0 − t)

=
6(n− t)

5n2 − 12nt+ 6t2
+ o(n−1),

by (23) and using the fact that O(B)
T1

holds. (Similarly with B replaced by R.)
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Define LT1+t as for phase 1, but with the constant C2 chosen so that the argument in
Lemma 5.3 gives P(LT1+t) = 1−O(n−2) for 0 ≤ t < T2. We have

P(cycle(B)(T1 + t+ 1) | O(B)
T1+t ∧ LT1+t)

= P(cycle(B)(T1 + t+ 1) | O(B)
T1+t)(1 +O(n−2)) +O(n−2)

=
6(n− t)

5n2 − 12nt+ 6t2
+ o(n−1).

The same statement holds with B replaced by R throughout. Let FT1+t =
∧T1+t
s=1 Es, where

Es = ¬cycle(s), as defined in phase 1. Then, arguing as in phase 1 we obtain

P(ET1+t+1 | FT1+t)

= 1− 2 P
(

cycle(B)(T1 + t+ 1) | O(B)
T1+t ∧ LT1+t

)
+O

(
log n

n2

)

= 1− 12(n− t)
5n2 − 12nt+ 6t2

+ o(n−1)

for 0 ≤ t < T2.
Let cycle(phase 2) be the event that a cycle was created in phase 2. Then, arguing as in

phase 1 we find

P(¬cycle(phase 2)) =

T2−1∏

t=0

P(ET1+t+1 | FT1+t) ∼
1

10
(24)

using T2 ∼ n/2.

5.3 Phase 3 and conclusion

At the end of phase 1, there are

δT1 = δ0 − T1 ∼
n

6

vertices remaining, all coloured δ. We will apply the following result for m ∼ n/12. (This is
implicitly proved in [5], from Lemma 3 and the argument on pages 42 and 43, so a separate
proof is omitted here.)

Lemma 5.4 For given perfect matchings B and R of the same set of 2m vertices such that
κ(BR) ≤ m/40

PS(BS, SR ∈ HAM) =
(

1 +O
(κ2(BR) + 1

m

)) π

4m
.

We first have to show that with high probability, the number of cycles at the end of phase
2 is small enough.

Lemma 5.5 Assume κ(BR) ≤ 5 log n. With probability 1−o(n−1), κ(BR(T1+T2)) < n/1000.
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Proof. We examine the number of cycles of length at most 1000 in BR(t), following the proof
of Lemma 5.3 for cycles of length 2. At each step i in phase 1, there are at least cn possible
vertices vi to choose, and at most 2002 of these can increase the number of cycles of length
at most 1000. (These are the ones in the same cycle as ui and of distance at most 1001 from
it around the cycle.) The same holds in phase 2, if ui is chosen from the γ-vertices and then
vi from the δ-vertices. Hence at each step in phases 1 and 2, the probability of increasing the
number of cycles of length at most 1000 is O(1/n). As in the proof of Lemma 5.3, it follows
that with probability 1−O(n−2), the graph BR(T1 +T2) has O(log n) cycles of length at most
1000. All other cycles have at least 1001 vertices, so this implies that κ(BR(T1+T2)) < n/1000
for sufficiently large n.

For the event LT1+T2 = {κ2(BR(T1 + T2)) ≤ m/40}, Lemma 5.4 gives

P(¬cycle(phase 3) | OT1+T2 ∧ LT1+T2) ∼ P(¬cycle(phase 3) | LT1+T2) ∼ 3π

n

as P(OT1+T2) = 1 − O(n−2) and m ∼ n/12. Since m ∼ n/12 yields P(LT1+T2) = 1 − o(n−1)
by Lemma 5.5, we conclude that

P(¬cycle(phase 3)) ∼ 3π

n
. (25)

Multiplying (22), (24) and (25) together, we find that

P(x)(BS,RS ∈ HAM) ∼ 15

16
· 1

10
· 3π

n
=

9π

32n
,

establishing (18). This holds for all fixed matchings B and R with parameter x1, x3 respec-
tively, such that κ(BR) ≤ 5 log n. This and Lemma 5.2 imply Theorem 5.1.

6 Finding the maximum

The aim of this section is to show that the function f , defined in (13), has a unique maximum
in the domain D defined (14), and this maximum satisfies (15).

The partial derivative of log f with respect to χi is equal to zero if and only if

α(2ακ+ 4βκ− 2αβ − α2) = χi(α
2 + 4βκ)

for i = 1, 3, or

α(α2 − 2α− 2ακ+ 2αβ + 4κ− 4βκ) = χi(α
2 − 4ακ+ 4κ− 4βκ)

for i = 2, 4. Assume for the moment that α2 + 4βκ 6= 0 and α2 − 4ακ+ 4κ− 4βκ 6= 0. Then
we have a unique solution for each χi. After substituting these values, we find that the partial
derivatives of log f with respect to κ, α and β are equal to zero if and only if

16(1− κ− β)((β + α− κ) = (2κ− α)2, (26)

(α + β − 1)(2β + α)2(α− 2κ) = (β + α− κ)(2β − 2 + α)2α, (27)

(α + β − 1)(β + κ− 1)(2β + α)4 = β(β + α− κ)

×(4αβ − 4α + 4− 8β + 4β2 + α2)2, (28)
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respectively. We can rewrite (28) as

(1− α− 2β)(16β4 + 16β4κ− 32β3κ+ 32β3ακ+ 32β3α− 32β2ακ+ 32β2κ

+16β2 + 24β2α2κ+ 16α2β2 − 48β2α + 8α3βκ− 16βκ− 8α2βκ

+16αβκ+ 16αβ − 16α2β − α4 + α4κ) = 0 (29)

Suppose first that 1 − α − 2β = 0, i.e., α = 1 − 2β. Substituting this expression for α into
(27) gives κ = 1− 2β. Finally, substituting all these expressions into (26) gives β = 1

6
. This

yields the solution

κ =
2

3
, α =

2

3
, β =

1

6
, χ1 =

1

2
, χ2 =

1

2
, χ3 =

1

2
, χ4 =

1

2

with f(2
3
, 2

3
, 1

6
, 1

2
, 1

2
, 1

2
, 1

2
) = 81

16
. We will show that this is the global maximum.

First suppose that (29) equals zero but 1− α− 2β 6= 0. Then the long factor must equal
zero. Note that this factor is linear in κ, and its coefficient of κ is equal to

α4 + 16αβ − 8α2β − 16β + 8α3β + 24α2β2 + 32β2 − 32αβ2 + 32αβ3 − 32β3 + 16β4.

If this expression is nonzero then we have a unique solution for κ. Substituting this into (26)
gives α = 2− 2β as the only nonnegative real solution. Substituting this into the expression
for κ gives κ = 1− β. Now α = 2κ, which means that all type α vertices are coloured δ (see
Section 2). Therefore there can be no bichromatic edges in any matching on these vertices,
and so χi = 0 for 1 ≤ i ≤ 4. Using all this, we find that

∂ log f

∂β
= 2 log(1− β)− 2 log(2)− log(−1 + β)− log(β)

which, assuming β 6= 1, is only zero when β = −1. This is outside our range, by definition of
D. If β = 1 then f has the value 9

4
, which is not maximum.

Next suppose that α2 + 4βκ = 0. Then α, β and κ must all equal zero, which forces
χi = 0 for all i. Here the value of f is 9

4
, which is not maximum. Finally, suppose that

α2 − 4βκ − 4ακ + 4κ = 0. If κ 6= 0 then this gives β = 1 − α + α2/(4κ). But cδ =
n(1 − α − β) = −nα2/(4κ), which is only nonnegative when α = 0. This forces β = 1 and
χi = 0 for 1 ≤ i ≤ 4 (since χi ≤ α for 1 ≤ i ≤ 4). Here

∂ log f

∂κ
= log(1− κ) + 2 log(2)− 2 log(κ) + log(−κ)

which is not equal to zero for any κ such that 0 ≤ κ ≤ 1. Hence there is no local maximum
here. However, if α2 − 4βκ − 4ακ + 4κ = 0 and κ = 0 then α = 0, which forces χi = 0 for
1 ≤ i ≤ 4. Here

∂ log f

∂β
= 2 log(β)− 2 log(1− β)

which is only zero when β = 1
2
. But f(0, 0, 1

2
, 0, 0, 0, 0) = 9

16
, which is a local minimum.
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Hence there are no internal points which give a greater value of f than the claimed
maximum. It remains to check that the same is true for all points on the boundary of D.
This is routine, though tedious, and we omit the details. We merely note that the following
idea helps (formalised in [2, Lemma 12]).

Ignoring constants and powers of constants, we can write log f as
∑

i∈I ciUi/ log(Ui). Con-
sider the derivative of log f along a path which approaches a path y on the boundary from
within D. Unless Ui = 0 at y for some i such that ci > 0, this derivative turns out to be −∞,
and thus such boundary points cannot determine a global maximum of f on D.
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