

Birth Control for Giants

Joel Spencer
Courant Institute

New York, NY, USA

spencer@cims.nyu.edu

Nicholas Wormald∗

Department of Combinatorics and Optimization

University of Waterloo

Waterloo ON, Canada

nwormald@uwaterloo.ca

Abstract

The standard Erdős-Renyi model of random graphs begins with n isolated vertices, and at each
round a random edge is added. Parametrizing n

2 rounds as one time unit, a phase transition occurs at
time t = 1 when a giant component (one of size constant times n) first appears. Under the influence
of statistical mechanics, the investigation of related phase transitions has become an important topic
in random graph theory.

We define a broad class of graph evolutions in which at each round one chooses one of two
random edges {v1, v2}, {v3, v4} to add to the graph. The selection is made by examining the sizes
of the components of the four vertices. We consider the susceptibility S(t) at time t, being the
expected component size of a uniformly chosen vertex. The expected change in S(t) is found which
produces in the limit a differential equation for S(t). There is a critical time tc so that S(t) → ∞
as t approaches tc from below. We show that the discrete random process asymptotically follows
the differential equation for all subcritical t < tc. Employing classic results of Crámer on branching
processes we show that the component sizes of the graph in the subcritical regime have an exponential
tail. In particular, the largest component is only logarithmic in size. In the supercritical regime
t > tc we show the existence of a giant component, so that t = tc may be fairly considered a phase
transition.

Computer aided solutions to the possible differential equations for susceptibility allow us to
establish lower and upper bounds on the extent to which we can either delay or accelerate the birth
of the giant component.

1 The Achlioptas Problem and Process

1.1 Introduction

We consider a problem of Dimitris Achlioptas that has received considerable attention. Paul is given
n vertices and a graph G on those vertices that will change with time. Initially G has no edges. Each
round two edges of Kn, call them e1 = {v1, v2} and e2 = {v3, v4} are generated independently and
uniformly at random. Paul must select one of those edges and add it to G. Paul’s object is to avoid
creating a giant component, a component of size Ω(n), for as long as possible. For us, size always
denotes number of vertices.

It shall be convenient to parametrize the number of rounds m by m = tn2 . We shall think of
t as the “time” of the process. For any t < 1 Paul can succeed by simply always taking the first
edge – the graph then selected is the usual Erdős-Rényi random graph which has component sizes

∗Research supported by the Australian Research Council, the Canada Research Chairs Program and NSERC. Research
partly carried out while the author was at the Department of Mathematics and Statistics, University of Melbourne.

1

O(lnn). (Our statements about Paul’s achievements are all with probability tending to 1 as n→∞.)
Here we shall give an algorithm such that at t = 1.6587 (and probably at t = 1.7811, if some less
rigorous computations can be trusted) the component sizes will be O(lnn). On the other side, by [3,
Theorem 1(d)], for t = 1.9645 Paul cannot succeed (with probability tending to 1).

While the Achlioptas problem was our original motivation we have become intrigued by what we
shall call an Achlioptas process. Fix any algorithm that determines which edge Paul shall select. Let
Gm denote the graph after m rounds. Then G0, G1, . . . forms a random graph process, that evolves
from the empty graph to a graph with a giant component and, of course, beyond. For a class of
algorithms we shall be able to analyze this process. There are interesting analogies to the well-studied
Erdős-Rényi evolution – some of which we can prove and others of which remain conjectures.

For convenience of exposition we imagine in each round that the vertices v1, v2, v3 and v4 are all
chosen uniformly and independently from the vertex set. Thus we allow the possibility that v1 = v2 or
v3 = v4 as well as the possibility that one or both edges is already in the graph. So Paul may create
a loop or multiple edge. However, we also show that these effects are asymptotically negligible and
that our results hold if the choice of (v1, v2, v3, v4) is restricted in a given round so as to avoid these
possibilities (and is otherwise uniform).

Our method also permits us to analyze algorithms which attempt the opposite of the original
question: how much can Paul accelerate the birth of the giant by judiciously selecting edges? We show
for instance that if Paul wants the giant to be born before t = 0.6671, he can succeed. Flaxman et
al. [5] have shown that this is true when t = 0.985 (see Bohman and Kravitz [4] for a stronger result)
and that it cannot be true when t = 0.5015. To approach both versions of the question, we analyze
what we shall call Bounded Size Algorithms. Let K be a fixed positive integer. We consider algorithms
in which Paul’s choice of edge depends only on the sizes of the components containing v1, v2, v3, v4 and
where, furthermore, all components of size greater than K are treated the same. Before describing
these algorithms formally we give several definitions.

1.2 Notations and Definitions

We set
Ω = {1, . . . ,K, ω} (1)

where ω is a special symbol that will be used to represent (informally) “bigger than K.” Let G be a
graph on n vertices. We let C1, . . . , Cu denote the components of G. For v ∈ G we let C(v) denote the
component of G containing v. Then |C(v)|, as usual, is the size of that component. We define c(v) ∈ Ω
by setting

c(v) =

{
|C(v)| if |C(v)| ≤ K,
ω if |C(v)| > K.

(2)

For notational convenience we set

~v = (v1, v2, v3, v4) and c(~v) = (c(v1), c(v2), c(v3), c(v4)).

For i ∈ Ω we define

xi(G) =
1

n
|{v : c(v) = i}|, (3)

the proportion of vertices of G in components of “size” i. We define the susceptibility S(G) by

S(G) =
1

n

∑

v

|C(v)| = 1

n

u∑

i=1

|Ci|2. (4)

2

We define the essential susceptibility, denoted Sω(G), by

Sω(G) =
1

n

∑

c(v)=ω

|C(v)| = 1

n

∑

|Ci|>K
|Ci|2. (5)

The contribution to S(G) from components of size at most K is determined by the xi(G). This gives
the relation:

Sω(G) = S(G)−
K∑

i=1

ixi(G). (6)

We define

∇(G) =
1

n2

u∑

i=1

|Ci|4. (7)

We say that a graph G on n vertices has a K, c component tail if

1

n
|{v : |C(v)| ≥ s}| ≤ Ke−cs

for all positive integers s. Let c′ satisfy cc′ > 1. We note that the K, c component tail condition implies,
for n sufficiently large, that

max
v
|C(v)| < c′ lnn. (8)

We shall further say that a nonnegative integer valued random variable X has a K, c tail if for all
nonnegative integers s

Pr[X ≥ s] ≤ Ke−cs.
Now we describe the bounded set algorithms formally. For

F ⊆ Ω4 (9)

we define the F -algorithm as follows. (Here F stands for “first”, denoting conditions under which the
first edge is the one chosen by Paul.) Suppose in a given round the current value of the graph is G and
vertices ~v are given. Then the new value of the graph, call it G+, is given by

G+ =

{
G ∪ {v1, v2} if c(~v) ∈ F,
G ∪ {v3, v4} if c(~v) 6∈ F.

We call a round redundant if the added edge has both vertices lying in the same component of G. This
includes the cases when the two vertices are identical and when they are already adjacent in G.

A Basic Example: Let K = 1 so that Ω = {1, ω} and set F = {(1, 1, α, β) : α, β ∈ Ω}. We can describe
this process in words: If v1, v2 are both isolated vertices then we add the edge {v1, v2}, otherwise we
select the edge {v3, v4}. We shall continue this example throughout this work. We note that this
algorithm (actually, a modification of it) was studied [2] by T. Bohman and A. Frieze. They showed
that their algorithm did avoid a giant component through n

2 (1 + ε) rounds for an absolute positive
constant (that they did not try to optimize) ε.

The Erdos-Rényi Evolution: We may regard the standard Erdős-Rényi evolution as the special case
K = 0, Ω = {ω} and F = {(ω, ω, ω, ω)}, so that the first edge is always taken.

Asymptotic Notation: All asymptotics are as n, the number of vertices, approaches infinity. We say
an event occurs a.a.s. if the probability of it occuring approaches one as n approaches infinity. A
statement such as “S(Gnt/2) = S(t) + o(1) a.a.s.” should be interpreted as meaning that for any ε > 0
the event |S(Gnt/2)− S(t)| < ε occurs a.a.s.

3

1.3 The Main Result

In our statement the functions xi(t), S(t), which depend on k and F , will be the solution to the
differential equation (34,35) developed in Section 2.

Theorem 1.1 There exists tc > 0 and functions xi(t), i ∈ Ω, S(t) such that

1. (Points in Small Components) (i ∈ Ω) xi(t) is defined for all t ≥ 0. With probability 1 − o(1),
for all such t we have xi(Gtn/2) = xi(t) + o(1).

2. (Critical Point) S(t) is defined for t ∈ [0, tc), and limt→t−c S(t) =∞.

3. For any fixed ε > 0, with probability 1− o(1), for all t < tc − ε we have S(Gtn/2) = S(t) + o(1).

4. (Subcritical Behavior) For all t < tc with there exist positive K, c so that with probability 1− o(1)
Gtn/2 has a K, c component tail In particular, with cc′ > 1, Gtn/2 has all component sizes less
than c′ lnn.

5. (Supercritical Behavior) For all t > tc there exists positive α so that with probability 1 − o(1)
Gtn/2 has a component of size at least αn.

Note that, in this theorem and similar places, Gtn/2 denotes Gbtn/2c when tn/2 is not an integer.
We note here the effect of rounds in which at least one of the two edges v1v2 and v3v4 forms a loop

or multiple edge with one of the edges already in the graph. Call such a round improper and the others
proper, and let us call the process in which improper rounds are forbidden (and, conditional upon this,
choices of v1, v2, v3, v4 are uniformly at random) proper and the unrestricted process improper. It is
easy to show that for fixed t, the probability that a given round is improper, conditional upon a given
graph G, is O(1/n). Hence, the probability that all tn rounds are proper is bounded below by a positive
constant. Moreover, the probability of a given trajectory G0, G1, . . . occurring in the proper process
is at least the probability that it occurs in the improper process. It follows from these observations
that any property a.a.s. true for the improper process must also hold a.a.s. for the proper process. In
particular, this applies to all the statements in Theorem 1.1.

Bohman and Kravitz [4] have given an analysis of a family of algorithms which includes some of
the Bounded Size Algorithms, essentially, ones in which the decision is made based on looking at v1v2

only. Their analysis, which is quite different from ours, gives for those algorithms the critical value
t = tc defined above. In the subcritical region t < tc their bounds on component sizes are of the form
nα for a positive constant α.

1.4 Analogies to Classical Percolation

The susceptibility S(G) can be regarded as the expected size of the component containing a randomly
selected vertex v. As all vertices “look the same” in this random process we may think of S(Gm) as
the expected size of the component containing a particular vertex v. In classical percolation on Zd the
susceptibility is denoted by χ (we avoid this notation for graphs for obvious reasons!) and χ(p) denotes
the expected value of |C(~0)|, the size of the cluster containing the origin (or any particular vertex).
There is a critical value pc such that χ(p)→∞ as p approaches pc from below. Two deep percolation
results examine behavior on both sides of pc.
• Subcritical Behavior: Fix p < pc. Then the distribution of |C(~0)| decays exponentially. That is, there
exist positive K, c so that for all s ≥ 1

Pr[|C(~0)| ≥ s] ≤ Ke−cs.

4

• Supercritical Behavior: Fix p > pc. Then with probability one there is an infinite component.
The subcritical behavior of the finite process Gi mirrors that of classical (infinite) percolation.

Theorem 1.1 states that |C(v)|, with v chosen uniformly, has a distribution which decays exponentially.
As initially all vertices are identical this implies that for any particular vertex v the distribution of
|C(v)| decays exponentially. In subcritical classical percolation the components, while finite, can be
arbitrarily large. We feel that “finite” in classical percolation corresponds to O(lnn) in finite random
structures.

The subcritical behavior of the finite process Gi also mirrors that of classical (infinite) percolation.
Of course, the finite process cannot contain an infinite component. We feel that “infinite” in classical
percolation corresponds to Ω(n) (i.e., a positive proportion of the vertices) in finite random structures.

2 Expected Change in One Round

Fix the current value G of the graph. Let G+ be the value after one more round. Here G+ has a
distribution. Our probability space will be the uniform generation of ~v. Note that the bounded size
algorithms are Markovian so that G+ is determined by G and ~v. We examine the expected change in
the graph functions xi, i ∈ Ω, and S. For notational convenience we shall set, in this section,

xi := xi(G); S := S(G); Sω := Sω(G) (10)

and
x+
i := xi(G

+); S+ := S(G+). (11)

Note that the x+
i , S

+ are now random variables. We shall see that the expected changes E[x+
i − xi]

and E[S+ − S] can almost be described as a function of the xi, i ∈ Ω, S and Sω, independent of n.
A difficulty will arise with redundant rounds. In those cases x+

i = xi and S+ = S as the component
structure does not change. A key to the analysis will be to separate out the effect of redundant rounds,
which we shall think of as an “error” term, and to eventually show that it does not have an asymptotic
effect in the subcritical phase. On an intuitive level this is not surprising: when there is no giant
component the probability that the edge added joins two vertices already in the same component is
o(1). That said, the arguments will not be easy.

For further notational convenience we shall set, in this section,

~j = (j1, j2, j3, j4). (12)

Sums over ~j shall be over all ~j ∈ Ω4. We shall naturally split the random choice of ~v into choice of ~v
with c(~v) = ~j and then sum over all ~j. As the vi are chosen independently and uniformly

Pr[c(~v) = ~j] = xj1xj2xj3xj4 . (13)

2.1 Points in Small Components

Consider i ∈ Ω and ~j ∈ Ω4. We define ∆(~j; i) to be one half (a factor that will be convenient later) the
change in the number of vertices in components of size i from G to G+ when ~v has c(~v) = ~j and the
round is not redundant, i.e. the new edge does not join two vertices already in the same component.
Using symmetry based on ~j ∈ F versus ~j /∈ F there are four basic cases.

Case I: ~j ∈ F , j1, j2 6= ω. Then components of size j1, j2 disappear. We have ∆(~j, j1) = −1
2j1 and

∆(~j, j2) = −1
2j2, except that if j1 = j2 we have ∆(~j, j1) = −j1. A component of size j1 + j2 is created.

When j1 + j2 > K we have ∆(~j, ω) = 1
2(j1 + j2), otherwise ∆(~j, j1 + j2) = 1

2(j1 + j2).

5

Case II: ~j ∈ F , j1 6= ω, j2 = ω. Then a large component absorbs a component of size j1 so that
∆(~j, j1) = −1

2j1 and ∆(~j, ω) = +1
2j1.

Case III: ~j ∈ F , j1 = ω, j2 6= ω. Then a large component absorbs a component of size j2 so that
∆(~j, j2) = −1

2j2 and ∆(~j, ω) = +1
2j2.

Case IV: ~j ∈ F , j1, j2 = ω. Two large components merge to form an even larger component but this
is not reflected in these functions and all ∆(~j, i) = 0.

Cases V-VIII: ~j 6∈ F . The cases in which ~j 6∈ F are identical with (j1, j2) and (j3, j4) exchanging
roles.

All other values of ∆(~j, i) shall be zero, including all i in the case of redundant rounds. Note that
in all cases 2∆ is an integer and

|∆| ≤ K, (14)

the extreme case being the merger of two components of size K.
We now define random variables

x∗i = xi +
2

n
∆i (15)

ei = x+
i − x∗i (16)

where ∆i = ∆(~j, i) with ~j random. Here ei represents the “error” in the calculation which occurs when
the round is redundant and ∆i 6= 0. From (15,13)

E[x∗i − xi]
2/n

= E[∆i] =
∑

~j

∆(~j; i)xj1xj2xj3xj4 .

Here we have deliberately divided by the change in “time” 2/n so as to give the discrete analogue
of a derivative.

Now we bound ei. If ei 6= 0 then the round must be redundant or the added edge has two vertices
in the same component. Further, the component containing the selected edge must have size at most
K. (Recall Case IV: when an edge is placed between two vertices both already in large components
all of the ∆i are 0.) This occurs with probability at most 2Kn−1. Further, in this case x+

i = xi so
ei = − 2

n∆i and so, from (14), |ei| ≤ 2K
n . Thus

E[ei]

2/n
≤ 2K2n−1. (17)

In summary, from (16–17)

E[x+
i − xi]
2/n

=
∑

~j

∆(~j; i)xj1xj2xj3xj4 +O(K2n−1). (18)

We also shall use the maximal change |xi(G+)− xi(G)|. When the edge selected joins two vertices
already in the same component this is zero, otherwise (from (14)) it is at most 2Kn−1 so that

|xi(G+)− xi(G)| ≤ 2Kn−1 (19)

always.

Countinuing the Basic Example: Here we have ∆(1, 1, α, β; 1) = −1 as two vertices are no longer
isolated. With (α, β) 6= (1, 1) we have ∆(α, β, γ, δ; 1) is −1

2 times the number of γ, δ which equal one.
Combining terms

E[x∗1 − x1]

2/n
= −x2

1(G)− (1− x2
1(G))x1(G). (20)

6

We can see this by noting that with probability x2
1(G) we select the first edge and ∆1 = −1 while

with probability 1 − x2
1(G) we select the second edge which has two uniformly chosen vertices and so

the expected number of isolated vertices deleted is 2x1(G).

2.2 Change in Susceptibility

Now we examine the change in the susceptibility, S+ − S. We define

S∗(~v) =

{
S(G) + 1

n2|C(v1)| · |C(v2)| if c(~v) ∈ F,
S(G) + 1

n2|C(v3)| · |C(v4)| if c(~v) 6∈ F (21)

eS = S+ − S∗. (22)

When {v1, v2} is selected in a nonredundant round, components of size |C(v1)|, |C(v2)| merge to
form a component of size |C(v1)|+ |C(v2)| in G+ so that S+ = S+ 1

n2|C(v1)| · |C(v2)| = S∗ and eS = 0.
When {v3, v4} is selected the situation is identical.

We first bound E[eS]. For each component Ci there is probability at most 2|Ci|2n−2 that either
both v1, v2 ∈ Ci or both v3, v4 ∈ Ci. When this occurs 0 ≥ eS ≥ − 1

n2|Ci|2. Thus

0 ≥ E[eS] ≥ − 4

n3

u∑

i=1

|Ci|4 = − 2

n
(4∇(G)) (23)

(see (7)). We comment that this error shall prove more troublesome than that for the change in xi.
We turn now to the expected change E[S∗ − S]. We divide by 2/n (to give the discrete derivative)

and split according to values ~j = c(~v).

E[S∗ − S]

2/n
=
∑

~j

I(~j). (24)

Here we set I(~j) equal to n−4 times n
2 times the sum of the values S∗ − S over all choices of ~v with

c(~v) = ~j.
Case I: ~j ∈ F, j1, j2 6= ω. Here S∗ − S = 2

nj1j2. There are xj1xj2xj3xj4n
4 such terms and so

I(~j) = j1j2xj1xj2xj3xj4 . (25)

Case II: ~j ∈ F, j1 6= ω, j2 = ω. Here S∗ − S = 2
nj1|C(v2)|. There are xj1xj3xj4n

3 choices for
v1, v3, v4. For each the sum over v2 with c(v2) = ω of |C(v2)| is the sum of the squares of the sizes of
the components of size greater than K. This is precisely nSω and so

I(~j) = j1xj1xj3xj4Sω. (26)

Case III: ~j ∈ F, j1 = ω, j2 6= ω. Reversing the roles of j1, j2

I(~j) = j2xj2xj3xj4Sω. (27)

Case IV: ~j ∈ F, j1 = j2 = ω. This is the case that drives the process to a “percolation point”,
as the large components get still larger. Here S∗ − S = 2

n |C(v1)||̇C(v2)|. There are xj3xj4n
2 choices

for v3, v4. For each consider the sum over all v1, v2 with c(v1) = c(v2) = ω of C(v1) · C(v2). This is
precisely the square of the sum over all v1 with c(v1) = ω of C(v1). This sum over v1 is precisely, as
done in Case II, nSω. Hence the sum over v1, v2 is n2S2

ω(G). Hence

I(~j) = xj3xj4S
2
ω. (28)

7

Cases V-VIII The cases in which ~j 6∈ F are identical with (j1, j2) and (j3, j4) exchanging roles.
In summary, from (22–24),

E[S+ − S]

2/n
=
∑

~j

I(~j) +O(∇(G)). (29)

The Erdos-Rényi Evolution: Here xω(G) = 1 tautologically and Case IV gives that

E[S∗ − S(G)]

2/n
= S2

ω.

Suppose we (audaciously) assume that the term eS is negligible and that S(Gi) evolves according to
its expectation. Set g(t) = S(Gtn/2), further replacing a random variable by a single value. Moving
from Gi to Gi+1 is increasing the “time” t by 2/n. Thus we would have

g(t+ 2
n)− g(t)

2/n
= g2(t). (30)

The left hand side is like a derivative which suggests the differential equation g′(t) = g2(t). With
the initial condition g(0) = 1 (as this is the value of S on the empty graph) we have the solution
g′(t) = (1− t)−1. This function approaches infinity as t→ 1−. This matches the known results about
the Erdős-Rényi Evolution: when t < 1 the random graph on tn2 edges has S ∼ (1− t)−1 and at t = 1
there is the famous “double jump”, or percolation point, and a “giant component” quickly appears.

Continuing the Basic Example: In our basic example

E[S∗ − S]

2/n
= x2

1(G)(1) + (1− x2
1(G))S2(G). (31)

With probability x2
1(G) an edge is added between two isolated vertices, raising S by (22− 12− 12)/n =

2/n. Otherwise, with probability 1− x2
1(G) a random edge is added and this raises S by an expected

value 2
nS

2.

2.3 The System of Differential Equations

We define a system of differential equations on functions xi(t), i ∈ Ω and S(t). The proof of the
connection with Bounded Size Algorithms will be established in Section 4. The function xω(t) shall be
technically redundant as we shall have

∑
i∈Ω xi(t) = 1. For convenience we define Sω(t) (following (6))

by

Sω(t) = S(t)−
K∑

i=1

ixi(G). (32)

This function is also technically redundant but shall allow us a cleaner statement of the equations.
The initial values of the system are at t = 0 with

x1(0) = 1; xi(0) = 0 for all i 6= 1; S(0) = 1. (33)

For i ∈ Ω we have the equation (motivated by (18))

x′i(t) =
∑

~j∈Ω

∆(~j; i)xj1(t)xj2(t)xj3(t)xj4(t). (34)

8

Finally, and critically, we have (motivated by (29))

S′(t) =
∑

~j

I(~j, t) (35)

where the values of I are given by (25,26,27,28) and the similar cases V-VIII, in which one replaces
the xj with xj(t) and the Sω with Sω(t).

Continuing the Basic Example: In our basic example from (20) we have the equation

x′1(t) = −x2
1(t)− (1− x2

1(t))x1(t).

With initial condition x1(0) = 1 this has a unique solution, a function x(t) defined over the nonnegative
reals. One can show that x(t) is a strictly decreasing function with limt→∞ x(t) = 0. From (31) we
have the equation

S′(t) = x2
1(t) + (1− x2

1(t))S2(t).

As 0 ≤ x1(t) ≤ 1 the function S(t) will be strictly increasing. As 1− x1(t) will be uniformly bounded
away from zero for, say, t ≥ 0.1 we can show that the S2(t) term forces the function S(t) to “explode”
in finite time (c.f. Theorem 2.2). That is, there exists tc such that S is defined for 0 ≤ t < tc and
S(t) approaches infinity as t approaches tc from below. Our general results show that this tc is the
percolation point for this process. For any t < tc all components have size O(lnn) while for any t > tc
there will be a giant component of size Ω(n).

2.4 The Differential Equations: Technical Analysis

Theorem 2.1 Let xi(t), i ∈ Ω be the solution to the system (34) with initial conditions (33). Then

1. xi(t) is defined for all t ≥ 0.

2.
∑
i xi(t) = 1 for all t ≥ 0.

3. xi(t) > 0 for all t > 0.

4. x′ω(t) > 0 for all t > 0.

Proof: We note that these results are not surprising as they reflect the properties of analogous functions
for the discrete process Gi. As (34) is of the form ~x ′ = f(~x) with f a C∞ (in fact, polynomial) function
of ~x the system has a solution in some neighborhood of t = 0 (see [6, Chapter 2, Theorem 11] for
example).

For all ~j we have
∑
i∈Ω ∆(~j, i) = 0. Summing (34) over i ∈ Ω gives

∑
i∈Ω x

′
i = 0 so

∑
i∈Ω xi(t) = 1

for all t for which it is defined.
For i ∈ Ω, s ≥ 0, set x

(s)
i equal the value of the s-th derivative of xi at t = 0. By the 0-th derivative

we mean the function itself. So x
(0)
1 = 1 and x

(0)
i = 0 for i 6= 1. Differentiating the equation ~x ′ = f(~x)

repeatedly we can find x
(s)
i as polynomials in x

(r)
j with r < s and hence they are determined. We claim

that for each i ∈ Ω not all x
(s)
i are zero and that the first nonzero value is positive.

For i = 1 we have simply x
(0)
1 = 1. For i 6= 1 the polynomial for x′i may have both positive and

negative coefficients but the negative coefficients (reflecting a component of size i being absorbed in a
larger component – these do not appear for i = ω) are for quartics of the form xixjxkxl. In expanding

out the s-th derivative of this term each addend will have some x
(r)
i with r < s. Thus these terms

cannot contribute to the first nonzero value. For each i 6= 1 the polynomial for x′i will have an addend

9

ixi−1x1xi−1x1 with K positive (we interpret ω−1 as K here) reflecting the fact that if the four vertices
are in components of sizes i−1, 1, i−1, 1 respectively then any algorithm will create a component of size

i. By induction on i there is some s′ with x
(s)
i−1 6= 0. Then x

(2s′+1)
i will have an addend ix1x

(s′)
i−1x1x

(s′)
i−1

which will be nonzero. Now consider the first s for which the expansion of x
(s)
i has a nonzero addend.

That addend will be a positive constant times the product of four terms of the form x
(r)
j . Furthermore

for all four such terms we must have x
(r−r′)
j = 0 for r′ > 0 as, if not, there would be a positive addend

in the evaluation of x
(s−r′)
i . By induction on s we have that when x

(s′)
i has its first nonzero addend at

s′ = s that all such addends will be positive. This completes the claim.
As its first nonzero derivative is positive we deduce that xi(t) > 0 in some interval (0, ε). Now we

show that xi(t) is always positive for all i. If not there would be a minimal t for which some xi(t) = 0.
Fix t′ ∈ (0, t) (say, t′ = t

2) so that xi(t
′) > 0. In the interval [t′, t) all xj are positive and hence all

xj ∈ [0, 1]. The negative addends for x′i are all of the form −Kxixjxkxl which is at least −Kxi. Adding
these over the finite number of addends we find x′i > −K ′xi. Thus the function xi in [t′, t] is bounded
from below by an exponential function and this contradicts xi(t) = 0.

As all of the xi(t) are nonnegative and they sum to one, all xi(t) ∈ [0, 1] when defined. Note that
f is continuous and the equation ~x ′ = f(~x) takes place in a compact space so ~x(t) is defined for all
t ≥ 0.

Finally, the polynomial for x′ω(t) has only positive coefficients times xixjxkxl. (It has at least one
such term, (K+ 1)xKx1xKx1.) At any t > 0 we have xixjxkxl > 0 and the sum of positive terms must
be positive. This completes the verification of the four parts of the theorem.

Theorem 2.2 Let xi(t), S(t) be the solution to the system (34,35) with initial conditions (33). Then
there is a tc > 0 such that S(t) is defined for all t ∈ [0, tc) and

lim
t→t−c

S(t) = +∞. (36)

Furthermore S(t) is a strictly increasing function on [0, tc)

Proof: All of the terms in the expansion (35) of S′(t) are nonnegative. Taking, say, ~j = (1, 1, 1, 1)
there is an addend x4

1(t) from (25). As x1(t) is strictly positive S′(t) is therefore strictly positive and
so S(t) is a strictly increasing function.

To show (36) we actually examine Sω, defined in (32). Equation (35) becomes

S′ω(t) =
∑

~j

Iω(~j, t). (37)

Define S∗ω analogously to S∗, to refer only to components bigger than K only: if c(~v) ∈ F then

S∗ω(~v) =

S(G) + 1
n2|C(v1)| · |C(v2)| if |C(v1)| > K and |C(v1)| > K,

S(G) + 1
n(|C(v1)|2 + 2|C(v1)| · |C(v2)|) if |C(v1)| ≤ K and |C(v1)| > K,

S(G) + 1
n(|C(v1)|+ |C(v2)|)2 if |C(v1)| ≤ K and |C(v1)| ≤ K,

and analgously for the fourth case, and symmetrically if c(~v) /∈ F . Computing Iω as I was done in
Section 2.2, we find there are only a few changes, as follows.

Case I requires the extra condition j1 + j2 > K (otherwise Iω = 0) and gives Iω = 1
2(j1 +

j2)2xj1xj2xj3xj4 ,
Case II becomes I = (1

2j
2
1xω + j1Sω)xj1xj3xj4 ,

Case III is symmetric to II,

10

Case IV is unaltered.
As all of the xi(t) are nonnegative, all of the addends in (37) are nonnegative. We look at the

particular ~j = (ω, ω, ω, ω). (This corresponds to all four vertices being in large components so that
one must join two vertices in large components and greatly increase S.) Regardless of whether or not
~j ∈ F we have, from (28) I(~j) = x2

ωS
2
ω. This gives the lower bound

S′ω(t) ≥ x2
ω(t)S2

ω. (38)

Suppose Sω is defined at some t′ > 0 and set a = Sω(t′). Set c = x2
ω(t′). As xω is an increasing function

we have S′ω(t) ≥ cS2
ω(t) for all t ≥ t′. Thus Sω(t) ≥ f(t) for t ≥ t′ where a = f(t′) and f ′(t) = cf2(t).

But this equation has the explicit solution f(t) = (a−1 − c(t − t′))−1 so f(t) → ∞ as t → t′ + (ac)−1.
We don’t have an explicit solution for Sω but this implies there will be some tc ∈ [t′, t′+(ac)−1] so that
Sω is defined on [0, tc) and approaches infinity as t approaches tc from below. As Sω ≤ S ≤ Sω + K
(36) holds with the same tc.

3 Evolution from an Initial Graph

3.1 Statement of Results

Consider the following evolution. Begin with a graph G on n vertices which is suitably sparse. Add to
it a random graph H with edge probability p = t

n on the same vertex set. When G is empty we have, of
course, the standard Erdős-Rényi evolution with the phase transition (referred to in the original papers
as the “double jump”) at t = 1. We show in this section that, with a suitable side condition, there will
be a critical value tc before which all components are of size O(lnn) and after which a giant component
of size Ω(n) has emerged. We will apply these results to our analysis of Achlioptas processes in later
sections. Since, however, these results are of natural interest we note that the arguments given here
are independent of the remainder of this work.

Theorem 3.1 Let L,K, c be positive real numbers. Let G be a graph on n vertices with a K, c com-
ponent tail. Let H be a random graph with edge probability p = t

n on the same vertex set, where t is
fixed. Set G+ = G ∪H.

1. (subcritical) Assume S(G) ≤ L for all n. Let tL < 1. Then there exist K+, c+ (dependent on
K, c, L, t but not on n nor G) such that a.a.s. G+ has a K+, c+ component tail. In particular, all
components have size O(lnn).

2. (supercritical) Assume S(G) > L. Let tL > 1. Then a.a.s. G+ has a giant component. More
precisely, there exists γ > 0 (dependent on K, c, L, t but not on n nor G) such that G+ has a
component of size at least γn.

3.2 Three Branching Process Results

Here we give three results on branching processes. The first two shall be used to show the subcritical
case, and the third the supercritical case, of Theorem 3.1. Theorem 3.2 below was essentially shown by
Crámer in 1920. The proofs in all three cases are complicated by the requirement of getting “explicit”
constants.

Theorem 3.2 Let K, c be positive reals. Let Z be a nonnegative integer valued random variable with
a K, c tail and with E[Z] = µ < 1. Let T be the size of the Galton-Watson branching process in which
each node, independently, has Z children. Then there exist positive K+, c+, dependent only on µ,K, c,
such that T has a K+, c+ tail.

11

Proof: Fix any positive λ < c, say λ = c
2 for definiteness. The Laplace Transform E[etZ] is then

defined for all 0 ≤ t ≤ λ. For such t we also have E[(Z − 1)2etZ] ≤ E[(Z − 1)2eλZ] which is bounded
by a convergent sum. Let M be an explicit upper bound on E[(Z − 1)2etZ]. Now, using the standard
association of branching processes with random walks, we have

Pr[T ≥ s+ 1] ≤ Pr[Z1 + . . .+ Zs ≥ s] (39)

where the Zi (number of children of the i-th node) are independent, each with distribution Z. For any
0 ≤ t ≤ λ we have the Chernoff bound

Pr[Z1 + . . .+ Zs ≥ s] ≤ E[et(Z1+...+Zs)]e−ts = E[etZe−t]s. (40)

Let us set
φ(t) := e−tE[etZ] = E[et(Z−1)]. (41)

We have φ(0) = 1 and
φ′(0) = E[Z − 1] = µ− 1 (42)

which, critically, is negative. Also,

φ′′(t) = E[(Z − 1)2et(Z−1)] ≤M (43)

for all t ∈ [0, λ]. Hence

φ(t) ≤ 1 + (µ− 1)t+ (1 +M)
t2

2
(44)

for all t ∈ [0, λ]. We set t = 1−µ
1+M if this value is less than λ, otherwise we set t = λ. Either way we get

an explicit U < 1 and the bound φ(t) ≤ U . This gives Theorem 3.2 with K+ = U−1 and c+ = − lnU .

Theorem 3.3 Let K1, c1,K2, c2 be positive reals. Let X,Y be nonnegative integer values random
variables with X having a K1, c1 tail and Y having a K2, c2 tail. Consider the two generation branching
process in which the root node has X children and then each child independently has Y children. Let
Z be the number of grandchildren. Then there exist K, c, dependent only on K1, c1,K2, c2, such that Z
has a K, c tail.

Proof: Let FX(x) =
∑

Pr[X = i]xi, FY (x) =
∑

Pr[Y = i]xi, FZ(x) =
∑

Pr[Z = i]xi be the standard
generating functions for X,Y, Z. These are related by FZ(x) = FX(FY (x)). Fix λ1 < c1, say 1

2c1 for

definiteness. Then FX(eλ1) has an explicit bound L :=
∑
sK1e

(λ1−c1)s. By monotonicity FX(t) ≤ L
for all 1 ≤ x ≤ eλ1 . Fix λ2 < c2, say 1

2c2 for definiteness. Then for 1 ≤ x ≤ eλ2

F ′Y (x) =
∑

ixi−1 Pr[Y = i] ≤
∑

ixi−1K2e
−c2i ≤ K2

∑

i

ie(λ2−c2)i.

Let M denote this bound on F ′Y (x). Then

FY (x) ≤ 1 +M(x− 1) (45)

for 1 ≤ x ≤ eλ2 . Set

t = min[
1

M
(eλ1 − 1), eλ1].

Then
FZ(t) ≤ FX(1 +M(t− 1)) ≤ FX(eλ1) ≤ L. (46)

For any s we have
L ≥ FZ(t) ≥ Pr[Z ≥ s]ts (47)

which gives Theorem 3.3 with K = L and c = ln t.

12

Theorem 3.4 Let Z be a distribution on the nonnegative integers with E[Z] = µ > 1 and V ar[Z] = σ2.
Let Z1, Z2, . . . be independent, each with distribution Z. Then

Pr[
s∑

i=1

Zi ≤ s− 1] ≤ βs. (48)

Also, consider the Galton-Watson tree in which each node independently has Z children. That tree is
finite with probability at most y. Here β < 1, y < 1 and both β, y depend only on µ, σ.

Proof: Set φ(t) = E[e−t(Z−1)]. Then φ(0) = 1, φ′(0) = E[Z − 1] = µ− 1 and, for 0 ≤ t ≤ 1,

φ′′(t) = E[(Z − 1)2e−t(Z−1)] ≤ Pr[Z = 0]et + E[Z2] ≤ e+ µ2 + σ2

so that φ(t) ≤ 1 + (µ − 1)t + K t2

2 with K = e + µ2 + σ2. We select t to minimize this quadradic, or
t = 1 if the minimum is not in [0, 1], to give an explicit φ(t) < 1.

Pr[
s∑

i=1

Zi ≤ s− 1] ≤ Pr[
s∑

i=1

(Zi − 1) ≤ 0] ≤ E[e−t
∑

(Zi−1)] = φ(t)s

giving (48). Let w be the probability the Galton-Watson tree is finite. Then w is the minimal non-
negative solution to the equation w = FZ(w) where FZ(w) =

∑
s Pr[Z = s]ws. Then FZ(1) = 1,

F ′Z(1) = E[Z] = µ and for t ∈ [0, 1] F ′′Z(t) ≤ F ′′Z(1) = E[Z(Z − 1)] < K with K = σ2 + µ2. Thus, for

t ∈ [0, 1], FZ(1− t) < 1− tµ+K t2

2 . At t = 2(µ− 1)/K, FZ(1− t) < 1− t. Hence w ≤ 1− 2(µ− 1)/K.

3.3 The Subcritical Case

Notation: C(v) shall refer to the component containing v in the graph G. C+(v) shall refer to the
component containing v in the graph G+ = G ∪H as given by Theorem 3.1. We call w a child of v if
there exists z so that {v, z} ∈ H and w ∈ C(z). (We include the case w = z.) We call w a descendant
of v if there is a sequence v = v0, . . . , vr = w with vi+1 a child of vi for 0 ≤ i < r. (This includes
w = v with the trivial sequence v = v0.) We let C−(v) denote the set of descendants of v. Note that
C−(v) ⊆ C+(v), the exact relation being given by (50).

Theorem 3.5 In the notation of Theorem 3.1 let Z(v) denote the number of children of v, where v is
an arbitrary vertex. Then Z(v) has a K1, c1 tail, where K1, c1 depend only on the L,K, c, t of Theorem
3.1. Further E[Z(v)] ≤ tS(G).

Proof: Define Z+ as follows. Take a random subset S of the vertices where Pr[z ∈ S] = p = t
n and

set Z+ =
∑
z∈S |C(z)|, with the sum interpreted as zero when S = ∅. For any fixed v the (random)

neighborhood, call it S(v), of v in H has the distribution of S except that v cannot be a neighbor of
itself. Further,

Z(v) = | ∪z∈S(v) C(z)| ≤
∑

z∈S(v)

|C(v)| (49)

so that Z(v) is dominated by Z+. It suffices, therefore, to show that Z+ has a K1, c1 tail.
Z+ almost fits the assumptions of Theorem 3.3. In the notation of that theorem we set X = |S|

which has Binomial Distribution B[n, p]. Conditioning on X = a the elements v1, . . . , va form a random
a-element set. Let Y have the distribution of |C(w)| with w a uniformly chosen vertex. The problem
is that the |C(vi)| are not quite independent as we must have vi 6= vj . We take care of this by first
setting α = ln(1 − p). As p = t

n = o(1), α ∼ p. Consider a two generation tree where X has Poisson

13

distribution with mean nα. For each of the X children we uniformly and independently select a vertex
v from the graph (allowing repetition) and give that child Y = |C(v)| children. Let Z∗ denote the
number of grandchildren in this tree. We apply Theorem 3.3 so that Z∗ =

∑X
i=1 |C(vi)| has a K1, c1 tail.

For each v the number of times that v appears amongst the X children is a Poisson distribution with
mean α and so the probability that v appears is p. Thus if we take the sum for Z∗ but only add |C(v)|
one time when v appears more than once we have the distribution for Z+. So Z∗ dominates Z+ which
dominates Z(v) and hence Z(v) has a K1, c1 tail. Furthermore E[Z(v)] ≤ E[Z∗] = E[X]E[Y] = tS(G).

We consider the probability space consisting of the generation of the random graph H and the
uniform generation of v.

Theorem 3.6 Fix L,K, c, t in Theorem 3.1. Then |C−(v)| has a K2, c2 tail.

Let Z∗ be the distribution defined in the proof of Theorem 3.5. Let T ∗ denote the total size of a
Galton-Watson process in which each node independently has Z∗ children. From Theorem 3.5 Z∗ has
a K1, c1 tail and E[Z∗] < 1 hence from Theorem 3.2 T ∗ has a K2, c2 tail.

We now generate the vertices of C−(v) by, say, breadth first search. When probing for the children
of v′, however, we look only for w not already in the tree, then adding C(w) whenever {v′, w} ∈ H.
When this occurs call all w′ ∈ C(w) “new children” of v′. This gives C−(v) a tree structure with no
vertex appearing more than once. When probing for new children of v′ we are checking H for edges
{v′, w} and these have not been probed before. Hence the conditional distribution of the number of
new children of v′, conditioning on previous history, is dominated by Z∗. Hence the distribution of the
size of the tree, |C−(v)|, is dominated by T ∗ and it therefore has a K2, c2 tail.

Theorem 3.7 There exist K ′, c′ so that the random variable |C+(v)| has a K ′, c′ tail.

We first note that
C+(v) = ∪w∈C(v)C

−(v). (50)

Say C(v) = {v1, . . . , vX}. Analogously to the proof of Theorem 3.6 we generate the descendents
of vi sequentially. We find C−(vi)

∗, the set of vertices of Cj(vi) not already in ∪j<iC−(vj). Set
R = ∪j<iC−(vj). When vi ∈ R we simply set C−(vj) = ∅. Otherwise we find C−(vj)

∗ as in Theorem
3.6 except that we do not probe for any w ∈ R. As before, conditioning on the previous history does
not change the adjacency probabilities of H as these pairs have not been probed before. Hence the
distribution of C−(vj)

∗ is dominated by T ∗ which has a K2, c2 tail. Then |C+(v)| is dominated by a
two generation process with distributions X,T ∗ respectively. By Theorem 3.3 it has a K ′, c′ tail.

We now prove the subcritical case of Theorem 3.1 for any K+, c+ with K+ > K ′ and c+ < c′. Our
probability space is now the choice of the random H. For each vertex v let Av be the event |C+(v)| ≥ s
and Iv the indicator random variable of Av. Set Ys =

∑
v Iv, the number of vertices in components

of size at least s. From Theorem 3.7 and linearity of expectation E[Ys] ≤ nK ′e−c
′s. From Markov’s

Inequality

Pr[Ys ≥ nK+e−c
+s] ≤ nK+e−c

+s

nK ′e−c′s
= O(e(c′−c+)s). (51)

For s “small” (for example s = O(1)) this inequality is not good enough and instead we bound the
variance

V ar[Ys] =
∑

v,w

E[IvIw]− E[Iv]E[Iw]. (52)

We claim that for any v, w

Pr[Av ∧Aw] ≤ Pr[Av] Pr[Aw] + Pr[C+(v) = C+(w)]. (53)

14

We use here a theorem of Reimer [7]. In general form, let R ⊂ Ω be a random subset of a universe Ω
with the events r ∈ R mutually independent over all r ∈ Ω. Let A1, A2 be monotonic events in the
sense that if they hold when R = S1 then they hold when R = S2 for any S1 ⊆ S2. Let A1 ∗A2 be the
event that the set R contains two disjoint sets S1, S2 such that A1 holds when R = S1 and A2 holds
when R = S2. Reimer’s Theorem then says that Pr[A1 ∗A2] ≤ Pr[A1] Pr[A2]. In our case Ω is the set of
pairs {v, w} of vertices and R = G ∪H. That is, Pr[{v, w} ∈ R] = p if {v, w} 6∈ G, Pr[{v, w} ∈ R] = 1
if {v, w} ∈ G. A1, A2 are Av, Aw respectively. If Av and Aw and C+(v) 6= C+(w) then we let S1 be
the set of edges of C+(v) and S2 be the set of edges of C+(w). Thus

Pr[Av ∧Aw ∧ C+(v) 6= C+(w)] ≤ Pr[Av ∗Aw] ≤ Pr[Av] Pr[Aw]

from whice (53) follows.
Now summing (52) over all v, w and applying (53) we have

V ar[Ys] ≤
∑

v,w

Pr[C+(v) = C+(w)].

For each fixed v this sum over w is simply E[|C+(v)|] and hence

V ar[Ys] ≤
∑

v

E[|C+(v)|].

But the right hand side is precisely nE[|C+(v)|] with v chosen uniformly. From Theorem 3.7 this
variable has a K ′, c′ tail and therefore has a bounded expectation. That is

V ar[Ys] = O(n)

where the implicit constant does not depend on s.
From Chebyschev’s Inequality

Pr[Ys ≥ nK+e−c
+s] ≤ V ar[Ys](n(K+e−c

+s −K ′e−c′s))−2 = O(n−1e2c′s). (54)

We use Markov’s Inequality (51) when, say, s ≥ ln lnn and Chebyschev’s Inequality (54) when s <
ln lnn so that ∞∑

s=0

Pr[Ys ≥ nK+e−c
+s] = o(1)

and thus the subcritical case of Theorem 3.1 holds.

3.4 The Supercritical Case

Here we show the supercritical case of Theorem 3.1. We first reduce to the case when the component
sizes of G are bounded. Given L,K, c, t satisfying the conditions of Theorem 3.1 let δ > 0 with
(L− δ)t > 1 and (to avoid trivialities) δ < 1. Pick M sufficiently large so that

∑
s>M Ke−css < δ. Let

W be the set of vertices in components of size at most M and let G−, H− be the restrictions of G,H to
W . Then G− has m vertices with 1− m

n <
∑
s>M Ke−cs < δ and S(G−) ≥ n

m(S(G)−∑s>M Ke−css) >
n
m(L− δ). On W the random H− has probability p = t′

m with t′ = m
n t. Then t′S(G−) > 1. If Theorem

3.1 holds for G− then G− ∪H− has a component of size Ω(m). But m ≥ n(1− δ) so this would be a
component of size Ω(n) inside of G ∪H.

Hence we may, and shall, assume that G has all components of size at most M . Set xi = xi(G),
for 1 ≤ i ≤ M . Fix t with tL > 1 where S(G) = L + o(1). Select a small positive γ so that

15

t(L − 2γM2) > 1. We shall actually show that some |C−(v)| ≥ γn. (Recall C−(v) from the start of
the previous subsection.)

We apply the following well known procedure. Take a random vertex v1 and generate C−(v1). If
|C−(v1)| ≥ γn we call the procedure a success and terminate. Set ω(n) = ln lnn, though any sufficiently
slow growing function of n would suffice. If ω(n) ≤ |C−(v1)| < γn we call the procedure a failure and
terminate. Otherwise, we remove the vertices of C−(v1), select a random v2 from the remaining
vertices and generate C−(v2) in that subgraph. We iterate this procedure. If at some stage more than
γn vertices have been removed (and the procedure has not yet been terminated) we terminate the
procedure as a failure. We show that this procedure terminates as a success with probability 1− o(1).

Consider any iteration of this procedure. Let R be the set of remaining vertices. We select v ∈ R
uniformly and generate C−(v) by breadth first search, terminating if and when the size reaches γn.
When searching for the children of some w, at most 2γn of the original vertices cannot be used. Set
yi = max{xi − 2γ, 0}. Then

∑
iyi ≥

∑
ixi −

M∑

i=1

2γi ≥ L− 2γM2

where we have not attempted to optimize. There are at least yin vertices in components of size i,
1 ≤ i ≤ M , that are available. Let Z be the distribution obtained by taking b1

i yinc components of
size i, selecting each vertex independently with probability t/n, and counting the number of vertices
in components of vertices selected. The actual distribution of the number of children of w dominates
this Z. Here E[Z] ∼ t

∑
iyi ≥ t(L − 2γM2) > 1. Also V ar[Z] ∼ E[Z] as the selecting of a point in

a component is independent over the different components. Now we employ the natural connection
between tree size and random walk. If C−(v) has size s then the s vertices generated precisely s − 1
new children. The probability that they generate at most s − 1 new children is bounded above by
the probability that Z1 + . . .+ Zs ≤ s− 1 where the Zi independently have distribution Z and this is
bounded, using Theorem 3.4, by βs for a β bounded below one. Thus the probability that the iteration
of the procedure we are considering terminates in failure is O(βω(n)) = o(1). The probability that the
iteration terminates in success is bounded from below by the probability that the Galton-Watson tree
with distribution Z has size at least γn. This is bounded from below by the probability that the tree
is infinite. From Theorem 3.4 the probability the iteration terminates in success is at least y, a postive
constant. Let A be an arbitrary constant. Consider the process through the first A iterations or until
it terminates, whichever comes first. The probability of it terminating in failure is at most A times
o(1) which is o(1). If at a stage there has been neither success nor failure then at most Aω(n) < γn
vertices have been used so the next iteration is performed. The probability that none of the A stages
end in success is then at most (1 − y)A. As A was arbitrary the probability of success is of the form
1− o(1).

4 The Subcritical Phase

In this section we fix t < tc − ε where tc is given by (36). We shall show that the functions xi(Gtn/2),
i ∈ Ω and S(Gtn/2) are concentrated around the values xi(t) and S(t) respectively. The functions
xi will not be so difficult. The proof for S is more subtle and, in proving it, we shall actually show
further properties of Gtn/2 that are interesting in their own right and that shall be useful in studying
the supercritical phase.

16

4.1 Points in Small Components

From Theorem 2.1 the functions xi(t) are defined for all t ≥ 0. We claim that for any fixed positive t
the functions xj(Gtn/2) are concentrated around the values xj(t). This follows using far more general
results as developed by the second author. The differential equations (34) are of the form

~x′(t) = F (~x)

where F : RK+1 → RK+1 is a C∞ function. Indeed, each coordinate function is a polynomial of
degree 4 with real coefficients over the variables x1, . . . , xK , xω. We define a discrete vector valued
sequence of random variables ~Xi = (x1(Gi), . . . , xK(Gi), xω(Gi)). What (18) tells us is that

∣∣∣∣∣
E[~Xi+1 − ~Xi|G0, . . . , Gi]

2/n
− F (~Xi)

∣∣∣∣∣
∞

= O(K2n−1). (55)

Indeed, the difference in the coordinate corresponding to xj(G) is precisely the “error” ej as bounded
by (17).

Theorem 4.1 Fix τ > 0. With probability 1−O(exp(−n1/5)),

∣∣∣ ~Xi − ~x(2i/n)
∣∣∣
∞

= O(n−1/4)

uniformly for 0 ≤ i ≤ τn/2.

Proof: To establish the concentration of xi(Gtn/2), we will apply [8, Theorem 5.1]. (The reader may
wish to consult [9, Theorem 3], which is rather simpler to apply, but will not suffice for the second
application, in the next section.) That theorem is expressed in terms of the natural unscaled variables,
which appear in the present context as Yj = nxj , j = 1, . . . ,K. There are three hypotheses that
need to be verified. The boundedness hypothesis is implied by (19). (Referring to [8, Theorem 5.1],
β is a constant and γ = 0.) The trend hypothesis is implied by (55). To be specific, for any fixed
positive τ we choose the compact domain D = [0, τ] × [0, 1]K+1, and let D be a bounded open set
containing D. The stopping time TD is defined in the general situation to be the minimum i such that
(2i/n, ~Xi) /∈ D; in this case necessarily TD = bτn/2c+ 1. Note that (55) holds for i < TD. (Referring
to [8, Theorem 5.1], λ1 = O(K2n−1). There is also a factor of 2 difference in the scaling of time: here
we have t = 2i/n whilst in the theorem being applied t = i/n, but this merely needs to be remembered
when interpreting the conclusion. The Lipschitz hypothesis requires appropriate behaviour of F (~Xi),
regarded as a function of (2i/n, ~Xi), on D. It suffices to note that the derivative of F is continuous on
the closure of D.

The conclusion of [9, Theorem 3] has two parts. The first implies that the system of differential
equations given by (34) with initial conditions (33) has a unique solution (t, x1, . . . , xK , xω) in D which
extends outside of D beyond some point at which t = σ0 say, on the boundary of D. By Theorem 2.1,
σ0 = τ . The second part of the conclusion gives the desired concentration which we may state as given
in the theorem (for convenience, taking λ = n−1/4 in the terminology of [8, Theorem 5.1], and not
forgetting the factor of 2 discrepancy in the definition of t).

The Erdos-Renyi Evolution: Consider, say, the proportion x1(t) of isolated vertices in the random
graph with tn2 edges or, essentially equivalently, the random graph G(n, tn). It is well known that
x1(t) concentrates around e−t. Note that this function has no special behavior near the value t = 1
or, indeed, any other value. That is, there is no percolation with respect to the number of isolated
vertices.

17

4.2 Concentration of Susceptibility

We fix t0 < tc, in the subcritical phase. From Theorem 2.2 the function S(t) is defined and increasing
on [0, t]. With foresight we fix a positive integer Q with

2S(t0)
t0
Q
< 1

and set

ε =
t0
Q

so S(t0)ε <
1

2
. (56)

We split the interval [0, t0] into Q equal intervals of length ε. For 0 ≤ i ≤ Q we define

Gi = Gniε/2 ,

the graph at time iε. Here we assume that niε/2 is an integer; the effect of replacing it with the closest
integer will clearly be negligible in the following argument.

Theorem 4.2 For 0 ≤ i ≤ Q with probability approaching one
• Gi has a K, c component tail. Here K, c depend on i.
• S(Gi) = S(iε) + o(1).

With i = Q, as t0 < tc was arbitrary, Theorem 4.2 will complete the subcritical behavior sections of
our main result, Theorem 1.1. (Recall that the bound on the largest component of Gtn/2 in the fourth
part of Theorem 1.1 follows immediately from (8).)

Proof: We use induction on i, i = 0 being immediate as G0 is empty. Assume, by induction, that the
hypotheses hold for a fixed i < Q. Let H be the graph consisting of both edges {v1, v2} and {v3, v4}
for all rounds j, niε/2 < j ≤ n(i + 1)ε/2. Then Gi+1 is a subgraph of G ∪H. Here, H can be taken
as a random set of nε − O(log n) distinct non-loop edges. The O(log n) term accounts for loops and
repeated edges, which may be ignored (it is easy to show that the number of these is bounded in
probability). By standard methods we can treat H like a random graph with edge probability 2ε

n . To
see this, let H ′ be a random graph with edge probability 2ε

n . The inductive assumption gives that
S(Gi) = S(iε) + o(1) < S(t0) and our choice (56) of ε was made sufficiently small that the conditions
for the subcritical case of Theorem 3.1 apply. Thus Gi ∪H ′ a.a.s. has a K+, c+ component tail. For
fixed Gi, the property of H ′, that Gi ∪H ′ has a K+, c+ component tail, is monotone decreasing and
hence convex. Thus, by [10, Fact 1] for example, Gi ∪ H a.a.s. has a K+, c+ component tail. Hence
Gi+1, being a subgraph of Gi ∪H ′, also has a K+, c+ component tail.

Now we want to extend the results of Section 4.1 to include the function S. The system (34,35)
with initial conditions (33) has a unique solution ~x(t) = (x1(t) . . . , xK(t), xω(t), S(t)) which is defined
for t ∈ [0, t0]. The differential equations are of the form

~x′(t) = F (~x) (57)

where F : Rn+2 → Rn+2 is a C∞ function. The first n + 1 coordinates (the x′i) have been described
before and the final coordinate (the S′) is a polynomial function of the xi involving S and S2. We
define a discrete vector valued sequence of random variables ~Xj = (x1(Gj), . . . , xK(Gj), xω(Gj), S(Gj)),
where we restrict attention to the range iεn/2 ≤ j ≤ (i + 1)εn/2. By Theorem 4.1 the initial values
~Xiεn/2 and ~x(iε) are only o(1) apart.

There is now a special difficulty in that we do not have a uniform bound on the change |S(Gj+1)−
S(Gj)| that we did for the xi with (19). When the addition of a single edge merges components of

18

sizes α, β the value of S increases by 2
nαβ. Fortunately, we have already proven the first part of the

induction hypothesis for i + 1. We know that with probability 1 − o(1) the graph Gi+1 has a K, c
component tail and so has all components of size O(lnn).

To take care of the o(1) probability that Gi+1 has a large component we employ what is sometimes
called the coward’s sequence. We modify the sequence ~Xj to ~X∗j as follows. At the initial value
j = iεn/2 they are equal. If the sequence Gj (stopping at j = (i + 1)εn/2) never has a component

of size bigger than c′ lnn then the two sequences ~Xj , ~X
∗
j are equal. Otherwise, let j be the first value

where Gj has a component of size bigger than c′ lnn. Then for j ≤ j′ < (i+ 1)εn/2 we simply define

~X∗j′+1 = ~X∗j′ +
2

n
F (~X∗j′) (58)

where F is given by the differential equation system (57).
The idea behind the coward’s sequence can be described in quite general terms. We have a sequence

~Xj which follows the diffential equation system in expectation. Usually throughout the sequence there

is never a j and a Gj so that ~Xj+1 can be substantially different from ~Xj . The coward’s sequence is,
in Mathematics of Finance jargon, risk averse. In a situation in which there might be a large change it
“shuts down” and just follows the differential equation. The entire coward’s sequence ~X∗j shall usually

equal the entire sequence ~Xj as this risk rarely occurs. The coward’s sequence never has large changes
and from that we shall deduce that it will rarely stray far from the differential equation. As the
sequences are usually completely equal we deduce that the original sequence will rarely stray far from
the differential equation.

We need to prove that with probability 1 − o(1) the final value ~X(i+1)nε/2 is within o(1) of the

value of the differential equation ~x((i+ 1)ε). With probability 1− o(1) the final values ~X(i+1)nε/2 and
~X∗(i+1)nε/2 are the same, as this occurs when Gi+1 does not have a component of size bigger than c′ lnn.

So it suffices to prove that with probability 1−o(1) the final value ~X∗(i+1)nε/2 is within o(1) of the value

of the differential equation ~x((i+ 1)ε).
We claim ∣∣∣∣∣

E[~X∗j+1 − ~X∗j |Gj]
2/n

− F (~X∗j)

∣∣∣∣∣
∞

= O(n−1 ln3 n). (59)

When Gj has a component of size bigger than c′ lnn the left hand side is zero, from our definition (58)

of ~X∗j+1. Otherwise (the main case) ~X∗ = ~X. In (55) we have shown that the left hand side vector has
all coordinates at most 2K2n−1 except for the S coordinate which we now examine. Let’s employ the
notation of Section 2.2 with S = S(Gj), S

+ = S(Gj+1), S∗ being what S+ “would be” ignoring the
“error” eS . Combining (21,22,35) we have that

E[S+ − S]

2/n
− F (~X) =

E[eS]

2/n
(60)

and from (23) ∣∣∣∣
E[eS]

2/n

∣∣∣∣ ≤ ∇(Gj). (61)

Indeed, we have chosen the notation ∇(G) in (7) to correspond to differential inequalities in the
mathematical study of percolation. Here we are in the situation where the largest component of Gj
has size O(lnn). When all |Ci| ≤ u a simple convexity argument gives

∑ |Ci|4 ≤ nu3. Thus

|∇(Gj)| = O(n−1 ln3 n)

19

which yields (59).
We further claim that

| ~X∗j+1 − ~X∗j |∞ = O(n−1 ln2 n) (62)

provided that S is bounded above by some constant. When Gj has a component of size bigger than

c′ lnn the left hand side is precisely 2
nF (~X∗j)∞ which is O(n−1) as all the coordinates of ~X∗j lie in a

bounded region. Otherwise (the main case) ~X∗ = ~X. From (55) we know that the left hand side vector
has all coordinates O(n−1) except, perhaps, the S coordinate. As Gj has all components of size O(lnn)
a single edge can only change S by n−1 ln2 n, which yields (62).

We may now apply [8, Theorem 5.1] as in Section 4.1. To achieve a suitable upper bound 1/ε on
S we use the domain D = [0, t0] × [0, 1]K+1 × [0, 1/ε], and as before let D be a bounded open set
containing D. This time, from (59) we have λ1 = O(ln3 n) and, from (62), β = O(ln2 n). It follows
from the theorem that the system of differential equations given by (34,35) with initial conditions (33)
has a unique solution (t, x1, . . . , xK , xω, S) in D which extends outside of D beyond some point at
which t = σ0 say, on the boundary of D. This we already deduced in Section 2.4, but the point now is
that, from (56), S(t0) = ε/2 and so, in view of Theorem 2.2, the boundary reached cannot be S = ε.
Thus σ0 = t0. We now obtain the desired concentration by taking λ = n−1/4 in the terminology of [8,
Theorem 5.1].

5 The Supercritical Phase

In this section we fix ε > 0. Our object is to show that G(tc+ε)n/2 will have a “giant component”.

First select some t∗ ∈ (0, tc), we can select t∗ = 1
2 tc for definiteness. Set β = xω(t∗). Now, with

foresight, select t− ∈ (t∗, tc) such that

(S(t−)−K)εβ4 > 1.

Let G− denote Gnt−/2. From our analysis of the subcritical case we know that a.a.s. S(G−) = S(t−) +
o(1) and that xω(G−) > β. Let W denote the set of vertices v with |C(v)| > K and let G denote the
restriction of G− to W . Let m = |W | so that m > βn. Furthermore

S(G) =
n

m
Sω(G−) ≥ Sω(G−) ≥ S(G−)−K.

Consider the εn2 rounds j with tc
n
2 < j ≤ (tc + ε)n2 . Call a round good if all four selected vertices

v1, v2, v3, v4 ∈W . (Clarification: The set W is set at time t−, we do not enlarge it when the components
of other vertices become large.) Each round is good with independent probability (m/n)4 > β4. There
will be more than εβ4 n

2 > εβ4m
2 good rounds. Conditioning on a round being good the v1, v2, v3, v4 are

independent and uniform over W . Suppose (ω, ω, ω, ω) ∈ F , the other case being identical. Let H be
the graph on W consisting of all edges {v1, v2} from all good rounds j in this region. Then

Gn(tc+ε)|W ⊇ G ∪H

where H is a random graph on W with more than εβ4m
2 edges. As in the corresponding part of our

analysis of the subcritical phase, we can assume using [10, Fact 1] that H is a random graph with edge
probability εβ4/m. This time, we use the fact that for a fixed graph G, the property of H, that G∪H
contains a component of size γm, is convex.

We now apply the supercritical section of Theorem 3.1. G ∪ H, and hence Gn(tc+ε)|W and hence
Gn(tc+ε) contains a component of size γm. This size is at least γβn and hence is the desired giant
component of Theorem 1.1.

20

6 Numerical results

To obtain information on tc for a given K and F , we solve the equations (34) and (37) numerically.
These equations are rewritten below for the purpose of rigorously bounding errors. Various sets (or
“rules”) F were tried.

Method of computation
Let F̂ denote the mulitset obtained from combining the sets of vectors (j1, j2, j3, j4) ∈ F and

(j3, j4, j1, j2) /∈ F without discarding duplicates. The differential equations (34) can be written as

x′i = fi =
∑

~j∈F̂

i

2

(
δi=j1+j2 − δi=j1 − δi=j2

)
xj1xj2xj3xj4 (63)

(i 6= ω),

x′ω = fω =
∑

~j∈F̂

1

2

(
δ{j1+j2>K, j1 6=ω, j2 6=ω}(j1 + j2) + δ{j1 6=ω, j2=ω}j1 + δ{j1=ω, j2 6=ω}j2

)
xj1xj2xj3xj4 (64)

where, for a set of statements H, δH = 1 if the statements in H are all true and δH = 0 otherwise.
Similarly, considering the discussion of Iω after (37),

S′ω = fα =
∑

~j∈F̂

(
δ{j1+j2>K, j1 6=ω, j2 6=ω}

1

2
(j1 + j2)2xj1xj2 + δj1 6=ω, j2=ω(

1

2
j2
1xj1xω + j1xj1Sω)

+δj1=ω, j2 6=ω(
1

2
j2
2xj2xω + j2xj2Sω) + δj1=j2=ωS

2
ω

)
xj3xj4 .

Use ~x = (x1, . . . , xK , xω, xα) where for convenience xα is defined to equal Sω. Then an arbitrary
variable is xi where i ∈ Ω+ = Ω ∪ {α}. To solve the equations by Euler’s method, set x∗i (0) = xi(0)
(0 ≤ i ≤ k) and then, given ~x∗(t) = (x∗0, . . . , x

∗
k), compute

x∗i (t+ h) = x∗i (t) + hfi(~x
∗(t)), i ∈ Ω+. (65)

This is iterated for t = 0, h, 2h, Euler’s method is analyzed below for rigorous results.
To speed up computations, we may precompute for each pair (j1, j2), the sum of xj3xj4 over all

(j3, j4) such that ~j ∈ F and over all (j3, j4) such that (j3, j4, j1, j2) ∈ F . By running once through all
pairs (j1, j2), this enables the whole set of derivatives to be computed in time O(K2).

Approximate results
We solved the differential equations (34) and (37) numerically with initial values given by (33)

and Sω(0) = 0. For large k we used a second order Runge-Kutta method without error analysis but
with excellent convergence apparent from running with various step sizes, for various bounded size
algorithms. The results are shown in Table 1. This shows the approximate value of t (rounded) at
which Sω reaches 104; very shortly after, it will go to infinity by (38). Here “minp” is an algorithm
which chooses the pair of vertices such that the product of their component sizes is minimised, that is,
it is an F -algorithm in which

F (j1, j2, j3, j4) =

{
1 if j1j2 < j3j4
0 if j1j2 > j3j4.

In the case of a tie (j1j2 = j3j4) the value can clearly be toyed around with but does not seem to make
much difference to the results. For the results below, we used 1 iff j1 + j2 ≥ j3 + j4. Here and in the
next case, if ji = ω it is treated as infinite.

21

The algorithm “minh” minimises the harmonic mean of the component sizes, i.e. maximises the
sum of the reciprocals (with the reciprocal of ω treated as 0), and in the case of a tie, minimises the sum
of the component sizes. The algorithm “minl”, the best performing one we found for getting rigorous
bounds for small K, minimises the sum of the third iteration of 1 + log x applied to the component
sizes, that is,

F (j1, j2, j3, j4) =

1 if ln(1 + ln(1 + ln j1))) + ln(1 + ln(1 + ln j2)))
≤ ln(1 + ln(1 + ln j3))) + ln(1 + ln(1 + ln j4)))

0 otherwise

(but here for use with large K, any value ω was defined to be K + 1: this gives “better” results, so it
seems that taking ω as infinity gives too much weight to the large components when K is large).

These are the bounded size algorithms we found which delay the birth of the giant the most; minh
and minl seem to do this best, and almost equally well. However it is extremely unlikely that there is
no better bounded size algorithm for this.

K minp minh minl

50 1.7425 1.7573 1.7576

100 1.7556 1.7679 1.7681

200 1.7639 1.7741 1.7742

400 1.7691 1.7778 1.7777

800 1.7723 1.7799 1.7798

1600 1.7743 1.7811 1.7809

Table 1. Approximate values of tc (rounded) for various bounded size algorithms.

In the next table we consider algorithms which aim at accelerating the birth of the giant. This
time, the best we tried for small K was maxp, which maximises the product of the component sizes.

K maxp maxh maxl

50 0.6546 0.6571 0.6568

100 0.6544 0.6571 0.6566

200 0.6542 0.6571 0.6565

400 0.6540 0.6571 0.6565

Table 2. Approximate values of tc for algorithms accelerating the birth of the giant.

Rigorous results with error bounds
When computed by machine, we actually have in place of (65)

x∗i (t+ h) = x∗i (t) + hfi(~x
∗(t)) + ρi(t) (66)

where ρi is the rounding error due to floating point approximation in machine computation.
We first examine the truncation error of the method, i.e. τi(t) = xi(t + h) − xi(t) − hfi(~x(t)). By

Taylor’s theorem,

τi(t) =
h2

2
ẍi(ξi) (67)

for some t ≤ ξi ≤ t+ h, and we have

ẍi(ξi) =
d

dt
fi(~x(t)) |t=ξi =

∑

r∈Ω+

∂fi
∂xr

fr |~x=~x(ξi) . (68)

22

(Here we used the fact that the differential equations are autonomous: fi is independent of t.)
It would be possible to compute fairly accurate bounds on these functions during execution of an

algorithm, but the number of terms to be considered would excessively slow down the computation
when K is large unless considerable programming effort was employed. Instead, to obtain approximate
results, it is enough to use bounds on the absolute value of the fi and their partial derivatives, and
then to replace each summation over F̂ by twice the sum of ~j ∈ Ω. Along the way, we know that all
xi are nonnegative since the only negative terms in fi have factor xi. We also know that

∑
i∈Ω xi = 1

since the derivative of this sum is 0 and its initial value is 1.
Doing this to the expression in (63) for 1 ≤ r ≤ K, the contribution from the case r = j1 is

∑

j2,j3,j4∈Ω

(
δi=r+j2i+ δi=ri+ δi=j2j2

)
xj2xj3xj4 = δi>rixi−r + δi=ri+ ixi.

The same bound applies for the case r = j2. For r = j3 it is

∑

j1,j2,j4∈Ω

(
δi=j1+j2(j1 + j2)− δi=j1j1 − δi=j2j2

)
xj1xj2xj4 = i

∑

j<i

xjxi−j + 2ixi,

and this bound also applies for the contribution from r = x4. Summing these and writing

T (i) = T (i, ~x) =
∑

j<i

xjxi−j

gives ∣∣∣∣
∂fi
∂xr

∣∣∣∣ ≤ δi>r2ixi−r + δi=r2i+ 6ixi + 2iT (i).

This applies for all i, r ∈ Ω \ {ω}. Similar calculations give
∣∣∣∣
∂fi
∂xω

∣∣∣∣ ≤ 4ixi + 2iT (i) (1 ≤ i ≤ K).

For the next cases we will also use

P
(r)
i =

K∑

j=r

jixj

for i = 0, 1 and 2, and

Pi = P
(1)
i , Qi =

∑

j1,j2∈Ω

δ{j1+j2>K, j1 6=ω, j2 6=ω}(j1 + j2)ixj1xj2

for i = 1 and 2. Then
∣∣∣∣
∂fω
∂xr

∣∣∣∣ ≤ 2P
(K−r+1)
1 + 2rP

(K−r+1)
0 + 2rxω + 2Q1 + 4P1xω (1 ≤ j ≤ K),

∣∣∣∣
∂fω
∂xω

∣∣∣∣ ≤ 2P1(1 + 2xω) + 2Q1

∣∣∣∣
∂fα
∂xr

∣∣∣∣ ≤ 2P
(K−r+1)
2 + 4rP

(K−r+1)
1 + 2r2P

(K−r+1)
0 + 2r2xω

+4rSω + 2Q2 + 2P2xω + 4P1Sω + 4S2
ω (1 ≤ r ≤ K),∣∣∣∣

∂fα
∂xω

∣∣∣∣ ≤ 2P2 + 2Q2 + 4P2xω + 8P1Sω + 4S2
ω,

∣∣∣∣
∂fα
∂Sω

∣∣∣∣ ≤ 4P1 + 4Sω.

23

In a similar way we obtain

|fr| ≤ rT (r) + 2rxr (1 ≤ r ≤ K),

|fω| ≤ Q1 + 2P1xω,

|fα| ≤ Q2 + 2P2xα + 4P1Sω + 2S2
ω. (69)

To use (68), we need to use the above bounds at ~x(ξi) when what is known is only the value of ~x∗.
It follows from (69) that

|fr| ≤ 3r (1 ≤ r ≤ K) (70)

and
|fα| ≤ 4K2 + 4KSω + 2S2

ω = 2K2 + 2(K + Sω)2. (71)

Now write ei(t) = x∗i (t)− xi(t) and suppose that we have already computed bounds bi(t) ≥ |ei(t)| for
all i ∈ Ω+. Assuming all x∗i are nonnegative (which can be checked dynamically), we now have

xr(ξi) ≤ x∗r + br(t) + 3rh (1 ≤ r ≤ K),

and from (69)
xω(ξi) ≤ x∗ω + bω(t) + 2Kh.

One the other hand, from (71), xα is bounded above by y where y′ = 2K2 + 2(K + y)2 with initial
condition y(t) = x∗α(t) + bα(t). Hence

xα(ξi) ≤ K tan(2Kh+ C))−K (72)

where C = arctan(1 + (x∗α(t) + bα(t))/K). Naturally, this requires the argument of tan to be less than
π/2; if not, the error becomes unbounded.

With these bounds on xr, the values of P1 and P2 can be bounded above and used in the bounds
on derivatives and partial derivatives above, and this produces a bound via (68) and (67) on the error
|τi(t)|.

Furthermore, by (66),

x∗i (t+ h) = xi(t) + ei(t) + hfi(~x
∗(t)) + ρi(t)

= xi(t) + hfi(~x(t)) + h∆i(t) + ρi(t) + ei(t)

= xi(t+ h)− τi(t) + h∆i(t) + ρi(t) + ei(t)

where ∆i(t) = fi(~x
∗(t))− fi(~x(t)). Hence

|ei+1(t+ h)| ≤ |τi(t)|+ h|∆i(t)|+ |ρi(t)|+ |ei(t)|.

It is a straightforward, but tedious, matter to compute upper bounds on ∆i(t), given ~x∗(t) and
upper bounds bi(t) on |ei(t)| for each i ∈ Ω+. Including numerically computed upper bounds on ρi(t)
based on the machine accuracy permits recursive computation of bi(t) along with the computation of
x∗i (t) for t = 0, h, 2h, A lower bound on tc is given by the first t examined such that, in (72),
2Kh + C ≥ π/2. On the other hand, the analysis following (38) shows that an upper bound is
t+ (Sω(t)− bα(t))−1(xω(t)− bω(t))−2 for each t.

The approximate size of the errors apart from ρi tends to be of the form c1e
c2kh for constants c1 and

c2. The best value of h is determined by a tug-of-war between such a function and the accumulation
of the floating point errors of the machine which appear as ρi.

24

The rigorous results obtained by the method described above are shown in Table 3, with lower
bounds rounded down and upper bounds rounded up. The assumptions involved in this are that the
machine used correctly computes double precision floating point operations to the accuracy that it
should, and that there is no error in our programming. Note that for small values of K, some of the
algorithms will behave identically. For algorithms which aim to accelerate the birth of the giant, the
best upper bounds found were obtained using maxp and maxh with K = 5.

K algorithm lower bound upper bound

1 minp, minh, minl 1.3933 1.3936

2 minp 1.5110 1.5115
minh, minl 1.5171 1.5176

4 minp 1.5978 1.6036
minh 1.6125 1.6183
minl 1.6140 1.6191

8 minp 1.6318 1.7755
minh 1.6563 1.7674
minl 1.6587 1.7624

1 maxp,maxh,maxl 0.6887 0.6902

5 maxh 0.6614 0.6685
maxp 0.6597 0.6671

Table 3. Rigorous bounds on tc for various algorithms.

7 Conjectures, Speculations and Comments

Let L1(G) denote the size of the largest component of G. In their classic work Erdős and Rényi showed
that a.a.s. L1(G(n, tn) = n(F (t) + o(1)). The function F (t) was described completely. For t < 1 (the
subcritical case) F (t) was zero. The phase transition, in modern language, was not first order. That
is, limt→1+ F (t) = 0. We conjecture similar behavior for any bounded size algorithm. That is, we
conjecture the existence of a function F such that a.a.s. L1(Gnt/2) = n(F (t) + o(1)). From our main
result, Theorem 1.1, we would necessarily have F (t) = 0 in the subcritical case t < tc and F (t) > 0
in the supercritical case t > tc. We conjecture furthermore that the phase transition is not first order,
that limt→t+c F (t) = 0. We may rephase this conjecture so that it does not presuppose the existence of
a limiting function F :

Conjecture: For all α > 0 there exists t > tc so that a.a.s L1(Gnt/2) ≤ nα.

Let L2(G) denote the size of the second largest component of G. Erdős and Rényi showed that
in the supercritical case t > 1, L2(G(n, tn)) = O(lnn) a.a.s. We conjecture, analogously but perhaps
rashly, that the same holds for any bounded size algorithm:

Conjecture: For all t > tc there exists K so that a.a.s. L2(Gnt/2) ≤ K lnn.

We understand that the critical window for the Erdős-Rényi evolution is given by the parametriza-
tion p = n−1 + λn−4/3. In the precritical region, λ → −∞, the contribution to the susceptibility
from any single component is negligible. In the postcritical region, λ → +∞, the contribution to the
susceptibility is dominated by the largest, often call dominant, component. Inside the critical window
the largest components are all of size Θ(n2/3) and they all contribute substantially to the susceptibility.
We may naturally ask look for similar results for bounded size algorithms. In particular, will there be
a similar scaling tcn

−1 + λn−4/3 to describe their behavior.

25

The restriction to bounded size algorithms may not be fully necessary. We can naturally define
a size algorithm as any algorithm where the choice of edge selected depends only on the sizes of the
components of the four vertices. One natural algorithm is the “product rule” suggested by Dimitris
Achlioptas. With this rule one selects that edge which minimizes the product of the component sizes
of its components. This has the nice property that, at least locally, it minimizes the susceptibility.

Is a size algorithm in some sense the limit of bounded size algorithms? More explicitly, given a size
algorithm A let AK be any bounded size algorithm in which we follow the size algorithm when all four
vertices are in components of size at most K. Let tK be the critical point of the algorithm AK . We
conjecture that for any choices of the AK the tK approach a limit tc and that tc is the critical point
for the algorithm A. Our numerical results suggest approximate values of such limits but do not seem
to show anything concrete about them.

One may also ask about the critical window for size algorithms. We strongly suspect that the
behavior will not (at least, not in all cases) be similar to that of the Erdős-Rényi evolution. For
example, we suspect that in the product rule evolution will lead to a much narrower critical window
in which there will be two components of size substantially bigger than n2/3. Achlioptas has suggested
that the percolation may not be first order: There may be a positive constant α so that for at time
t = tc + ε, with ε an arbitrarily small constant, there already exists a giant component of size αn.
Computer simulation lends credence to this possibility, which remains most speculative.

Finally, we consider the difficulty in extending our argument to cover arbitrary algorithms, not
bounded size nor even size algorithms. Differential equations cannot be applied to the subcritical
phase unless the algorithm behaves smoothly enough. For the supercritical phase, one might ask if
the supercritical part of Theorem 3.1 still applies. The answer is no. To make this clear, we give the
following precise result.

Lemma 7.1 For any fixed L > 0 and 1/2 > ε > 0 there is a G0 with S(G0) > L, and an algorithm,
for which the component size in the Achlioptas process after εn steps is a.a.s. O(log n).

Proof (sketch): Take G0 such that all components have size 1 or M , and the average squared
component size is L, where to understand the situation we may imagine 1 ¿ L ¿ M , but of course
L and M are constants whilst the number n of vertices of G0 tends to ∞. Then the number of
M -components is approximately LM−2n.

Consider the following algorithm: when a pair of edges is presented, give preference to the edge
which, if added to G0 would create a smaller component. Thus, in choosing beteen the two, ignore all
edges apart from those in G0. Break ties randomly.

Now consider the graph of chosen edges after εn steps. Noting that the number of vertices in M -
components is approximately LM−1n which is a very small fraction of n, we can say that the number
of edges between isolates of G0 is approximately εn, the number between isolates and M -components
is approximately ε(2L/M)2n, and the number with both ends in M -components is approximately
ε(L/M)4n. Furthermore, conditioning on the number of edges within any one of these classes, the
edges occur uniformly at random.

Thus, we can model the graph at time εn by taking each component of G0 as a vertex of a graph F ,
edges occurring with probability p0 ≈ 2ε/n between isolates ofG, probability p1 ≈ ε(2L/M)2n/(LM−2n2) =
4εL/n from an isolate to a vertex of F standing for anM -component, and p2 ≈ ε(L/M)4n/2(LM−2n)2 =
εL2/2n between two vertices of F standing for M -components.

Now the expected degree of an isolate of G0 in F is d1 +d2 where d1 ≈ np0 ≈ 2ε is for edges to other
isolates and d2 ≈ (L/M2)np1 ≈ 4εL2/M2 is for edges to M -components. As ε < 1/2 (and by taking
large M) this is less than some constant less than 1. The expected number of edges in F from a given
M -component of G0 to other M -components is d3 ≈ p2LM

−2n ≈ εL3/2M2. By taking M sufficiently

26

large, this can be made much smaller than any desired positive constant. Thus the expected degree of
the isolate is bounded above by a constant less than 1.

The only problem is the expected number d4 of edges from a given M -component to isolated vertices
of G0; d4 ≈ np2 ≈ εL2/2. However, since d2d4 ≈ 2ε2L4/M2 we can choose M large enough for this
to be arbitrarily small. Then we may consider the component of F containing a given M -component
by taking breadth-first search and moving to any M -components reachable by a path consisting of
1-components in one step. The number of children in each step has expected value less than 1 and has
a K, c component tail. By Theorem 3.2 the components of F will also have such a tail, and the result
follows on expanding each vertex of F to a component of G0 (remembering M is fixed).

Acknowledgements: Svante Janson made a very significant input at the start of our researches by
suggesting to focus on the sum of squares of component sizes and noting the differential equation for
susceptibility in the Erdős-Rényi case. Yuval Peres noted the analogies to classical percolation given
in Section 1.4 and it was these analogies that led us to the fruitful examination of graphs with a K, c
component tail.

References

[1] N. Alon and J. Spencer, The Probabilistic Method, 2nd ed., John Wiley, 2000.

[2] T. Bohman, A. Frieze, Avoiding a giant component, Random Structures & Algorithms 19 (2001),
75-85

[3] T. Bohman, A. Frieze and N.C. Wormald, Avoidance of a giant component in half the edge set of
a random graph, manuscript.

[4] T. Bohman and D. Kravitz, Creating a giant component, manuscript.

[5] A. Flaxman, D. Garmanik and G.B. Sorkin, Embracing the giant component, pp. 69–79 in Latin
2004: Theoretical Informatics, M. Farach-Coltin (ed). Lecture Notes in Computer Science 2976,
Springer, 2004.

[6] W. Hurewicz, Lectures on Ordinary Differential Equations, M.I.T. Press, Cambridge Mas-
sachusetts (1958).

[7] D. Reimer, Proof of the van der Berg-Kesten conjecture, Combinatorics Probability & Computing
9 (2000), 27-32.

[8] N.C. Wormald, The differential equation method for random graph processes and greedy algo-
rithms. In Lectures on Approximation and Randomized Algorithms, M. Karoński and H.J. Prömel
(eds), pp. 73–155. PWN, Warsaw, 1999.

[9] N.C. Wormald, Analysis of greedy algorithms on graphs with bounded degrees, Discrete Mathe-
matics, 273 (2003), 235–260.

[10] N.C. Wormald, Random graphs and asymptotics. Section 8.2 in Handbook of Graph Theory,
J.L. Gross and J. Yellen (eds), pp. 817–836. CRC, Boca Raton, 2004.

27

