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Abstract —
We find a large number of “geometric separator

theorems” such as: I: Given N disjoint iso-oriented
squares in the plane, there exists a rectangle with
≤ 2N/3 squares inside, ≤ 2N/3 squares outside, and
≤ (4 + o(1))

√
N partly in & out. II: There exists a

rectangle that is crossed by the minimal spanning
tree of N sites in the plane at ≤ (4 · 31/4 + o(1))

√
N

points, having ≤ 2N/3 sites inside and outside. These
theorems yield a large number of applications, such
as subexponential algorithms for traveling salesman
tour and rectilinear Steiner minimal tree, new point
location algorithms, and new upper and lower bound
proofs for “planar separator theorems.” We also sur-
vey graph separator theorems and study the problem
of covering convex bodies with smaller copies.
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1 Introduction

THIS PAPER is remarkable because it contains
around 103 or 104 theorems. This is possible be-

cause of the “chinese menu effect:” if you combine theo-
rem components from columns A, B, C, and D, the result
is a very large number of possible theorems.

“Columns A,B,C,D” are respectively:

A. Theorems about covering d dimensional objects by
smaller versions of themselves. The simplest exam-
ple: a d-box may be divided into two smaller d-
boxes.

B. Separator theorems about geometrical objects. One
of our simplest examples (and it is related to the
example in ‘A’ above) is: Given N interior-disjoint
squares in the plane, there exists a rectangle (both
the squares and the rectangle have sides oriented
parallel to the coordinate axes) such that ≤ 2N/3
squares’s interiors are entirely inside it, ≤ 2N/3 are
entirely outside, and ≤ (4 + o(1))

√
N are partly in-

side and partly outside. In this theorem “2/3” is
best possible.

C. Separator theorems about geometrical graphs. A
simple example: given N sites in the plane, there
exists a rectangle R (with sides at angle 45◦ to
the coordinate axes) such that the E-edge rectilin-
ear Steiner minimal tree (RSMT) of the sites, has
≤ 2E/3 of its edges entirely inside R, ≤ 2E/3 of its
edges entirely outside, and ≤ (4 + o(1))

√
E edges

cross the boundary of R. This result follows from
the example in ‘B’ above once you know the “dia-
mond property” of RSMT edges e: the squares with
diagonal e, are interior disjoint.

D. Applications of separator theorems. The example
in ‘C’ above leads to a fairly simple algorithm for
finding the RSMT of N sites in the plane, in subex-

ponential worst case time NO(
√
N).

Actually not all the four menu choices are always
completely independent; the examples above, in fact,
each depend on the previous one. Nevertheless, there
is enough freedom of choice at each stage to still get a
very large number of results.

We now discuss each of these four menu columns in
more detail.

A. Covering bodies with smaller versions of themselves
(§3). There are a lot of choices because we may con-
sider different kinds of “bodies,” e.g. iso-oriented (or

2 . 1. 0. 0
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not) boxes, cubes, simplices, spheres, Lp balls, general
convex bodies. Additional freedom comes from the fact
that there are three interesting versions of “versions:”
scaled translates, scaled copies with both rotations and
translations allowed, and volume reducing affine trans-
formations.

B. Separator theorems about geometrical objects (§6).
The example result with squares (§4.2) is, roughly speak-
ing, proven by a three-step argument:

1. “Sup trick” allows us to bound the number of
squares outside the separating rectangle.

2. “Pigeonhole principle” allows us to bound the num-
ber of squares inside the separating rectangle. (This
step depends on the covering results in “column A.”)

3. Randomizing argument allows us to bound the num-
ber of squares partly inside and partly outside.

Each of the three steps in this argument is highly gen-
eralizable, and consequently we get a large number of
variations (§4.2.1) of the basic theorem, including:

1. The squares could be other things: cubes, simplices,
octahedra, general convex body of CV aspect ratio
(definition 4) bounded by B. In the latter case, “(4+
o(1))

√
N” changes to “(4 + o(1))B

√
N .”

2. The separator could be other things than an iso-
oriented rectangular box: a cube, simplex, octahe-
dron, sphere, or general convex body of bounded
aspect ratio. (The constants may change.)

3. The objects need not be interior-disjoint; it will
suffice if at most a constant number κ of them
cover any point (“κ-thick”). In some variants, even
weaker conditions (“κ-overloaded,” “(λ, κ)-thick;”
see §1.1.4) will suffice. In such cases the bound
“4B
√
N” becomes “4B

√
Nκ.”

4. We need not stay in the plane; it is also possible to
go to higher dimensions d. The O(B

√
Nκ) bound is

replaced1 by O(Bκ1/dN1−1/d) with an implied con-
stant depending on d and the specifics of the theo-
rem. In some versions the 1/3-2/3 split weakens so
that the “1/3” is replaced by a decreasing function
of d.

5. Instead of splitting the objects 1/3-2/3 at worst,
we can instead split some arbitrary measure on the
plane, which need not have anything to do with the
objects.

6. We also have linear time algorithmic versions of our
theorems (some with weaker constants).

1In this paper, all O’s are valid uniformly as all the quantities
inside them vary independently over their full allowed ranges – in
this case, as κ ≥ 1, B ≥ 1, d ≥ 2, and N ≥ 2 vary. In the few
cases in which we want to disallow variation we will indicate so in
the text, or write, e.g., Od(N), meaning that d is to be regarded as
fixed while N varies unboundedly, and the implied constant factor
depends on d.

In contrast, a separator theorem proved by Miller and
Thurston depends on special properties of the “inversive
group” and thus works only for separating spheres with
spheres. Their proof also cannot be made to work for
κ-overloaded and (λ, κ)-thick spheres. The present pa-
per makes it clear that the Miller-Thurston result is a
special case of a much more general phenomenon. But
the Miller & Thurston result makes up for its special-
ness with better performance – that is, better constants
(with better dependence on the dimension d). Unfortu-
nately, these constants were not determined, nor even
crudely estimated, by Miller et al. [132], so we redo their
proof, this time working them out explicitly. After we did
this, we learned much of our analysis duplicated work by
Spielman and Teng [167]. However, we can go beyond
[167] by getting better balance ratios than Miller et al.’s
(d + 1) : 1; e.g. we can get 2 : 1 using ellipsoids whose
principal axes vary by at most a constant factor.

We also have (§4.1) a simple separator theorem for
iso-oriented d-boxes (now not required to have bounded
aspect ratios).

C. Separator theorems about geometrical graphs (§5,
§6). We use our separator theorems about geometrical
objects as tools to obtain these.

Thus in (§5) we get new proofs of the famed “planar
separator theorem” of Lipton and Tarjan. In some cases
we can get new record upper and lower bounds on the
constants, and new kinds of separators – for example, we
get a Jordan curve separator theorem for Torus graphs.

The RSMT example theorem is in §6. Variations in-
clude: d dimensions, other separators than boxes, (e.g.
circles) and other graphs than RSMT, e.g.: Steiner Mini-
mal tree (SMT), optimal traveling salesman tour (TST),
Minimum spanning tree (MST), all-nearest neighbor
graph (ANN), minimum matching (MM), “spanners,”
and “banyans,” and L1-norm versions of all of these.
The Gabriel graph (GG) and Delaunay triangualtion
(DT) are examples of graphs without geometric sepa-
rators (§6.8).

The proof idea is to somehow associate an object (or
objects) with each SMT edge, and prove that these
objects have bounded aspect ratios and are disjoint
(or merely “κ-thick,” “κ-overloaded,” or “(λ, κ)-thick;”
these are weaker versions of the word “disjoint” defined
in §1.1.4). Then by use of our previous separator theo-
rems about objects, one gets a separator theorem about
SMT (or TST, MM; whatever) edges.

D. Finally, applications of our theorems, including new
algorithms and data structures, are discussed in §7.

1. New algorithm to compute optimal traveling sales-
man tour of N sites in d-space. Runs in

2d
O(d)

NdN1−1/d

steps and consumes O(Nd) space.
This simplifies and generalizes a previous 2D algo-
rithm by Smith [162].

2. New algorithm to compute optimal rectilinear
Steiner tree of N sites in d-space. Runs in

2d
O(d)

Nd3N1−1/d

steps and consumes O(Nd) space.
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This simplifies and generalizes a previous 2D algo-
rithm by Smith [164].

3. New algorithm to compute 1 + O(N−p) times op-
timal length Euclidean Steiner tree for N sites in

d-space. Runs in (N1+pdd)O(d5/2N1−1/d) time.

4. New data structure for point location among N
disjoint (or κ-thick) d-objects with aspect ratios
bounded by B. A data structure requiring dO(d)N
storage is constructed in dO(d)N logN preprocess-
ing time, which supports point location queries in
O(κBdO(d)dT + logN) time per query, where it
takes time T to test if a point is in one given ob-
ject.

Also, the data structure may be “dynamized” to al-
low insertion and deletion of objects (but respect-
ing κ-thickness). In this case, the (amortized) time
bound for a query increases by a factor of logN ,
the space requirement is affected by only a con-
stant factor, and the insertion and deletion times
are dO(d) logN .

5. New algorithm for point location among N disjoint
(or κ-thick) iso-oriented d-boxes.

6. New algorithm for obstacle avoiding short paths
among boundedly thick obstacles of bounded aspect
ratio in the plane. E.g. this may be solved in prepro-
cessing time O(N3/2 logN) with storage O(N logN)
and query time O(logN) to report a path 3.01 times
longer than optimal (in the L1 obstacle avoiding
metric) between any two given points.

7. Algorithm to determine all intersection relation-
ships among N κ-thick d-objects with aspect ra-
tios bounded by B. The runtime is (logN +
κBdC)dO(d)N and the memory requirement is
dO(d)N . Here C is the amount of time to test if
a point is inside just one specified object.

8. Separator theorems for intersection graphs of κ-
thick d-objects with aspect ratios bounded by B,
and consequently the ability to c-color such graphs

in (c− 1)O(dκ1/dBN1−1/d) time (or prove impossibil-
ity), solve sparse linear systems with such graph
structure in O([dκ1/dBN1−1/d]ω) time (ω ∈ (2, 3] is
the exponent in the runtime of n×n matrix multipli-
cation; [53] showed ω ≤ 2.376), and find “universal”
sparse graphs containing all such graphs.

Some of these algorithms and data structures look highly
practical.

1.1 Notation and basic definitions

We employ the useful abbreviation WLOG, meaning
“without loss of generality.” Logarithms: lnx = loge x,
lg x = log2 x, and log x intentionally leaves the base of
the logarithm unspecified, although using e will work in
all our uses. For definitions of geometrical graphs, see
§6.1. We sometimes denote the boundary of B by ∂B.

Definition 1 An “iso-oriented d-box” is a cartesian
product of d 1-dimensional real intervals.

1.1.1 Aspect ratio

Roughly speaking, the aspect ratio of an object is the
ratio of its longest dimension to its shortest.

Definition 2 The “diameter” of a compact subset S of
some metric space is the supremum of the distance be-
tween any pair of points in S. If S lies in a euclidean
space, its “width” is the infemal separation between two
parallel hyperplanes it lies between.

Definition 3 The “DW aspect ratio” of a compact set
in Rd is the ratio of its Diameter to its Width.

The following alternative definition, based on Cube
Volume, is better for many purposes of this paper.

Definition 4 The “CV aspect ratio” of a compact set
in Rd is the dth root of the ratio of the d-volume of the
smallest enclosing iso-oriented d-cube, to the set’s own
d-volume.

Thus the CV aspect ratio of an iso-cube is 1, and ev-
erything else has a CV aspect ratio > 1. The DW aspect
ratio of a ball is 1, and everything else has a DW aspect
ratio ≥ 1. (If the dimension d is fixed, then all reason-
able definitions of aspect ratio are equivalent to within
constant factors.)

1.1.2 Volumes of various d-dimensional objects

Definition 5 Let •d = πd/2/(d/2)! be the d-volume of
a d-ball of radius 1 [161]. Also let ◦d = d•d be the
(d− 1)-surface of a d-ball of radius 1.

Remark. If d is odd, the factorial function will be ap-
plied to half-integral argument, which is no problem if
you know that (−1/2)! =

√
π, 0! = 1, and n! = n·(n−1)!.

Definition 6

4d =

√
1 + d

d!
(1 +

1

d
)d/2 (1)

is the d-volume of a d-dimensional regular simplex in-
scribed in a d-ball of radius 1.

1.1.3 Separation notions

Definition 7 To “a-separate” N things, means to par-
tition them into disjoint sets of cardinality ≤ a. To “a-
weight separate” them means that the sets have weight
≤ a, for some notion of a weight function.

1.1.4 Generalizations of the notion of “disjoint” sets

Definition 8 A collection of point sets are “κ-thick” if
no point is common to more than κ sets. (In particular,
1-thickness is equivalent to disjointness.)

Definition 9 For λ > 1 define “(λ, κ)-thick:” no point
is covered by more than κ of the objects whose linear
dimensions vary by a factor at most λ.

4 . 1. 1. 4
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Definition 10 A collection of compact measurable sets
are “κ-overloaded” if for any subcollection of the objects,
the sum of their individual measures is at most a constant
κ times the measure of their union.

Note that (λ, κ)-thick and κ-overloaded sets can be
infinitely thick. See figure 1.

Figure 1: Some collections of objects.

1.2 Plan of the rest of the paper

In §2*2, we survey graph separator theorems.

In §3, we survey (and contribute new results to) the
area of covering convex bodies by smaller versions of
themselves.

In §4, we reach the core of the paper – separator
theorems about geometrical objects. There are 3 main
classes of such theorems: for iso-oriented d-boxes, ob-
jects of bounded aspect ratio (such as d-cubes), and for
spheres (Miller & Thurston’s theorem); we also survey
(and present new) separator results of a topological na-
ture. We also prove lower bounds to show that some of
our theorems (in particular, the 1/3-2/3 split) are best
possible. The results of §3 are important as tools to get
the results in §4, but the methods used in §3 to derive
those tools, do not need to be understood to understand
§4.

In §2.7*, we discuss separator theorems for planar
graphs (also, Torus and Klein bottle graphs) and show
some beautiful connections to geometry. Some of this
was already known [167] [163]. We get some new upper
and lower bounds, as well as new understanding. It’s
probably possible to get separator theorems for graphs
of bounded genus in a similar manner, but we leave this
as an open problem (§8).

In §6, we obtain separator theorems about geometri-
cal graphs such as 2-optimal traveling salesman tours,
Steiner minimal trees, minimum spanning trees, etc. Al-
though we devised ad hoc arguments for each of these
particular graphs, our results (§6.7) about “spanners”
and “banyans” show that a very wide class of approxi-
mately minimal-length graphs have separator theorems.

Finally, §7 shows how to apply the separator theorems
of §4 and §6 to get new algorithms, data structures, and
theorems.

§8 lists some interesting open problems arising from or
highlit by this work.

1.3 Mathematical tools used

A surprising number of mathematical techniques come
into play:

2In this sketch, “*” denotes sections peripheral to the “main
line” of argument, which may be skipped by those uninterested in
them.

• Topological arguments (§4.3) including theorems of
Borsuk about spheres and balls, Brouwer’s fixed
point theorem, and “ham sandwich” and “Rado
point” theorems;

• Arguments based on “VC dimension” (§4.7.4);

• Graph geometrizations via “squared rectangles”
(§5.2.1) and Koebe circles (§5.2.2);

• Minkowski’s “polar map” mapping an oriented half-
space {~x ∈ Rd | ~a · ~x ≤ 1} to the vector ~a. For
example, each point on the surface of a convex d-
body has a (possibly non-unique) oriented support
hyperplane, and applying the “polar map” to these
hyperplanes yields the boundary of the “polar body”
– another3 d-dimensional convex body. If we follow
the application of the polar map by a renormaliza-
tion to unit length, we map each point on the surface
of a convex d-body to a point ~a/|~a| (or a spherically
convex set with more than one point) on the surface
of a d-ball of radius 1.

• New cube tilings (§4.6).

• And of course “divide and conquer,” (which is what
separator theorems are all about).

But perhaps overshadowing all of these is the humble “pi-
geonhole principle” (which, in its simplest form, states
that if N pigeonholes contain P pigeons, then a pigeon-
hole with ≥ dP/Ne pigeons must exist!) whose power,
in this paper, is impressive.

2 Survey of graph separator theorems
(1978-1997)

Definition 11 An “(α, β(V ))-separator theorem” for a
specified class of graphs asserts that for each graph G
in the class having V vertices, there exists a subset C,
|C| ≤ β(V ), called the “separator,” of the vertices whose
removal (along with the incident edges) divides the graph
into parts of weight ≤ α. (For some notion of positive
“weight,” where the weight of the whole graph is 1. The
default notion is just the fractional number of vertices.)

Similarly an edge separator is a small set of edges whose
removal divides the graph into parts of weight less than
α.

Edge separator theorems are better to have than ver-
tex separator theorems because an edge separator in-
stantly implies a vertex separator of the same cardinality.

A short survey covering graph separator theorems be-
fore 1978 may be found in [125].

The present paper is primarily concerned with geomet-
ric (as opposed to graphical) separator theorems, but the
two are related (we’ll see in §2.7 and §7.10 how the latter
can sometimes be derived from the former).

As one example (before we start) of a geometric sepa-
rator theorem, we mention

3The polar body to B may also be defined slickly as {~x ∈ Rd | ~x·
~y ≤ 1 ∀~y ∈ B}.

5 . 2. 0. 0
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Theorem 12 (Atallah & Chen [8]) Given N interior
disjoint iso-oriented rectangles in the plane, there exists
an iso-oriented monotonic “staircase” made of ≤ N line
segments, each vertical or horizontal, such that at most
dN/2e of the rectangles lie on either side of the staircase,
and the staircase avoids all the rectangle interiors. There
is an algorithm to find this staircase in O(N logN) time.

2.1 Trees and polygons

Any V -vertex tree has a single vertex (its “centroid”)
whose removal cuts it into pieces with < V/2 vertices.

Indeed, if any positive real weights are assigned to the
vertices and edges, then each piece WLOG has < 1/2 of
the total weight.

If the tree is binary and has positive weights on its ver-
tices, there is a single edge (the “splitting edge”) whose
removal cuts it into pieces with ≤ 2/3 of the weight.
The splitting edge is always incident on the centroid.
(For trees with all non-leaf valencies ≤ b, b ≥ 2 – or
forests – an edge exists whose removal leaves pieces with
≤ (b− 1)V/b vertices.)

These may be found algorithmically in O(V ) time.
One may see [103] for these facts, although they appar-
ently date at least back to C.Jordan (1838-1921) who
used them in a paper on counting trees [101].

Chazelle [36] observed that a triangulated simple poly-
gon has triangles whose planar dual graph is a binary
tree, hence any such polygon has a “splitting diagonal”
allowing splitting a simple N -gon into two polygons, each
with ≤ 2 + 2N/3 vertices.

Lingas [124] gave some separator theorems valid for
polygons P with k polygonal holes. For example, given a
triangulation of such a beast with N vertices, one may in
O(N) time find k+1 diagonals splitting P into two simple
polygons, each of weight (for any nonnegative weights on
vertices summing to 1, but not counting the weights on
the splitting diagonals as part of the “weight” of the two
smaller polygons) ≤ 2/3.

Guibas et al. [91], in an appendix, showed that the
complete recursive decomposition of a V -vertex binary
tree via the splitting-edge theorem above could be found
in O(V ) time. H.Booth [23] gave a simpler and clearer
algorithm to accomplish a similar task. Neither source
gave an algorithm to find the recursive centroid decom-
position for general trees in O(V ) time, but this appears
to be possible with the aid of the “link cut tree’ data
structure in [169] and the fact that runtime recurrences
of the form T (N) = T (2N/3) + T (N/3) + f(N) have
solution T (N) = O(N) if c > 1 ⇒

∑
t≥0 c

−tf(ct) <∞.

Bhatt & Leighton [14] showed that one could remove
O(k log V ) vertices from a V -vertex tree in which each
vertex has one of k colors, to leave fragments which could
be grouped into two sets, each set having an exactly equal
number of vertices of each color. If instead of exact equal-
ity, we only require approximation to within a factor of
2, then only O(k) vertices need to be removed.

2.2 k-Outerplanar graphs

The subgraph of a planar graph induced by only using
the vertices on faces within distance k − 1 (in the dual
planar graph) of a given face, is “k-outerplanar.”

The fact that a planar graph may be decomposed
into “layers,” each a k-outerplanar graph, was used by
Brenda Baker in a famous paper [11]. It is also true that
k-outerplanar graphs have 2k-vertex separators which
split the graph approximately 50-50 (with arbitrary non-
negative vertex weights).

2.3 Chordal graphs

Chordal graphs are graphs in which every cycle of length
at least 4 has a chord. A chordal graph with V vertices
and E edges can be cut in half by removing a set of
O(
√
E) vertices [83] that may found in O(E + V ) time.

A similar result holds if the vertices have non-negative
weights and we want to bisect the graph by weight.

2.4 Series Parallel graphs

Series parallel graphs are graphs with no K4 minor [175].
(See also 6.10 of [152].) They include 1-outerplanar
graphs. (They arise when, e.g., analyzing the flow of
control in a program.) They have a 1/3-2/3 separator,
consisting of only 2 vertices [95], which may be found in
O(V ) time.

2.5 Algebraic graphs

For fixed integers a, b, Ming Li [120] showed that the V
vertex graph in which vertex i is joined to vertex j if
j = ai+ b mod V has a 1/2-1/2 separator of cardinality
O(V/

√
loga V ). M.Klawe [107] showed a similar result.

The n-dimensional hypercube graph with V = 2n ver-
tices and E = n2n−1 edges has a 1/2-1/2 separator of
size

(
n
bn/2c

)
, i.e. of order V/

√
log V .

These are mainly useful as negative results showing
that these graphs cannot be “expanders.”

2.6 Connection to eigenvalues; cutting manifolds

Cheeger [42] showed that

h(M)2 ≤ 4|λ1(M)| (2)

where λ1(M) is the second greatest eigenvalue (the great-
est eigenvalue is λ0 = 0, achieved by the constant eigen-
function) of the Laplacian operator in a compact Rie-
mannian manifold M with “Neumann” boundary condi-
tions at boundaries (if there are any), and

h(M) = inf
S

area(S)

min[vol(A), vol(B)]
, (3)

where S is a hypersurface dividing M into two parts A
and B. In other words, very “bass” manifolds have good
separating cuts.
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Buser showed that for each compact manifold, there
exists a Riemannian metric for it, which causes (EQ 2)
to become sharp. He [32] also showed a reversed version
of (EQ 2)

|λ1(M)| ≤ 2
√

(d− 1)|C|h(M) + 10h(M)2 (4)

assuming the manifold is d-dimensional and that C ≤ 0
is a lower bound on its Ricci curvature.

Alon [3] found graph theoretic analogues of these in-
equalities. A “(V, k, c)-magnifier” is a V -vertex graph
with maximal valence k such that every subset S, |S| ≤
V/2 of its vertices, has ≥ c|S| neighbors not in S. Let
the “discrete laplacian” of a graph be the V × V ma-
trix L with Lii being the negated valence of vertex i,
and Lij = 1 if vertices i and j are adjacent, otherwise
LIj = 0. L has all eigenvalues real (since it is symmet-
ric) and maximum eigenvalue λ0 = 0. Let λ1 ≤ 0 be
the second largest eigenvalue. (λ1 < 0 iff the graph is
connected.) Then

Fact 13 (Alon [3]) If a V -vertex graph of maximal va-
lence k has |λ1| = z ≥ 0, then it is a (V, k, c)-magnifier
with

2z

k + 2z
≤ c (5)

Conversely, if the graph is a (V, k, c)-magnifier, then

c2

4 + 2c2
≤ z. (6)

In other words, graphs have small separators if and
only if they are “bass.”

2.7 Planar graphs

A deeper discussion of this (including proofs, geometriza-
tions of the problem, and inter-relations among them) is
in §5.

Lipton and Tarjan [125] showed a (2/3,
√

8V )-
separator theorem for planar graphs. This was improved
by Djidjev [60] to (2/3,

√
6V ). These partitions may be

found algorithmically in O(V ) time.
Of course, these (2/3, O(

√
V ))-separator theorems

may be improved to (1/2, O(
√
V )), and all the weighted

versions below may be improved to split any constant
number of different weight measures simulataneously, at
the cost of increasing the size of the separator by a con-
stant factor. (This is easily accomplished by re-using the
separator theorem on the parts.)

Miller [131] showed that if the planar graph were 2-
connected, then C in the Lipton-Tarjan theorem could
WLOG be taken to be a simple cycle, and the two parts
would then be its interior and exterior. More generally,
Miller allowed the assignment of arbitrary non-negative
weights to the vertices, edges, and faces of the graph (but
with no individual face weight > 2/3 of the total weight)
and then found A, B, C as above but such that the total
weight of A (or of B) was ≤ 2/3 of the total weight of
the original graph.

H.Gazit and G.L.Miller [80] gave an algorithm yield-
ing an edge-separator for planar graphs consisting of
≤ 1.58

√∑
i ν

2
i edges whose removal splits the graph into

parts with ≤ 2V/3 vertices, and where νi is the valence
of vertex i. The 1.58 has been brought down to 1, at the
cost of changing 2/3 to 3/4, by Spielman and Teng [167].
(This result cannot be improved by more than a constant
factor, as is shown by the “spoked wheel” graphs.)

Djidjev [61] showed that in O(V ) time one could find a
1/3-2/3 weight separator of weight O(

√∑
vW

2
v ), where

Wv are non-negative vertex weights, and this is optimal
up to the constant factor.

Applications of the Lipton-Tarjan theorem are exhib-
ited in [127], [126], [40], [45], [48], [14], [150], [174].

Improvements of the constants in the planar separator
theorem have been found by a large number of authors
and this will probably continue for some time into the
future.

Unfortunately there is no total ordering one can easily
use to distinguish a weaker theorem from a stronger one.
Spielman and Teng [167] suggested using as a “figure
of merit” (smaller is better) for an (α, β

√
V )-separator

theorem

FNested diss. =
β3

1− α3/2 − (1− α)3/2
(7)

which is proportional to an upper bound on the runtime
for one common separator application – the “nested dis-
section” algorithm4 for solving sparse systems of linear
equations [127]. But different applications lead to dif-
ferent figures of merit5. For example, we may count
k-colorings of a planar V -vertex graph in a time pro-

portional to T (V ) where T (V ) = (k − 1)β
√
V [T (αV ) +

T ((1− α)V )]. Lipton and Tarjan [125] observed that an
(α, βV p)-separator theorem with α > 1/2 and 0 < p <
1 could be converted to a (1/2, β/(1 − αp))-separator
theorem6 by repeatedly separating the largest compo-
nent and then rearranging the pieces. Both of these ar-
gue for the following figure of merit:

F50−50 split =
β

1− αp
. (8)

One of the most recent improvements is by Alon, Sey-
mour, and Thomas [4], who got

Theorem 14 (Alon, Seymour, Thomas) A maximal
planar graph G with V vertices has a simple cycle sepa-
rator with ≤

√
4.5V vertices, such that the total weight

inside (or outside) the cycle, plus 1/2 the weight on the

4Actually, they use this to compare two nonalgorithmic results,
which seems ridiculous to us since the nested dissection application
depends on having an algorithmic separator theorem.

5 Even the nested dissection application would have a different
figure of merit if O(Nω)-time “fast matrix multiplication” were
used in the combining step: in this case we would find that N linear
equations with planar graph sparsity structure could be solved in
O(Nω/2) steps. (ω = 2.376 [53] leads to O(N1.188) runtime.) See
§7.9. The 3’s in (EQ 7) would have to be replaced by ω’s.

6For ways to get 50-50 planar separator theorems with better
constants, see [48] [49].
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cycle, is ≤ 2/3, for any assignment of positive weights,
summing to 1, to the edges and vertices of G.

However, unlike [125], [60], and [131], Alon et al. [4]
do not provide an O(V )-time algorithm to find the sepa-
rator. They merely give an existence proof. Djidjev’s
(2/3,

√
6V ) result still seems to be the best one that

comes with an O(V ) algorithm.

Goodrich [87] showed that the complete recursive bi-
nary tree-like decomposition of a planar graph via a pla-
nar separator theorem, could be computed in O(N) time
by a complicated algorithm involving fairly sophisticated
dynamic data structures.

2.8 Computational complexity of finding optimal and
near optimal cuts and edge separators

A “cut” in a graph is a set of edges whose removal di-
vides the graph into two disconnected subgraphs. Sup-
pose the graph has non-negative real edge costs and ver-
tex weights. The “quotient” of a cut is then the sum of
the costs of the edges in the cut, divided by the minimum
of the two weight sums (for the vertices in the two sub-
graphs). A quotient cut is “optimal” if it has minimal
quotient.

If we had a polynomial time algorithm for approxi-
mating the value of the optimal quotient cut to within a
factor of F (V ) (V is the number of vertices in the graph),
then for any ε, 0 < ε ≤ 1/6, we could also find, in polyno-
mial time, an edge 2/3 separator whose cost was within
a factor

(
1

ε
+ ln

2− 3ε

3ε
)F (V ) (9)

times the cost of the optimal edge (2/3−ε)-fraction sepa-
rator. This arises by repeatedly chopping off pieces using
approximately optimal quotient cuts.

Unfortunately, finding the optimal quotient cut, is, in
general, NP-complete [31] [78], even if the edge costs and
vertex weights are expressed in unary. But Leighton &
Rao [119] showed how, in any V -vertex graph, to find a
cut whose quotient was only O(log V ) times optimal, in
polynomial time, by solving multicommodity flow prob-
lems. Via (EQ 9) this leads to “pseudo-approximation
algorithms” for optimal edge separators.

Park and Philips [143], building on earlier work of Rao,
showed how, in polynomial time, to find an optimal “quo-
tient cut” in a planar graph with positive real edge costs
and positive integer vertex weights, provided the vertex
weights are expressed in unary. This plus some further
ideas led [79] to a polynomial time algorithm for find-
ing edge 2/3-weight separators in these graphs within a
factor of 2 of optimal cost.

On the other hand, [143] showed that with vertex
weights and edge costs expressed as binary integers,
finding minimal quotient cuts is NP-hard even for 2-
outerplanar and series parallel graphs, and finding opti-
mal edge separators is NP-hard even for graphs of “tree
width” 2.

2.9 Graphs of low genus, or with excluded minors

Theorem 15 (Djidjev [59]) For any V -vertex graph
with genus g, there exists a partition of its vertices into
three sets A, B, C with |A| ≤ 2V/3, |B| ≤ 2V/3,
|C| ≤

√
(12g + 6)V , such that there are no edges between

A and B. Furthermore, a partition with |A| ≤ 2V/3,
|B| ≤ 2V/3, |C| ≤

√
(21g + 15)V may be found by an

algorithm running in O(V ) time. This algorithm does
not need to know the value of g nor an embedding of the
graph, and the constant in the “O” does not depend upon
g.

Djidjev even implemented this algorithm.
Gilbert, Hutchinson, and Tarjan [82] showed that V -

vertex genus-g graphs exist, for every g < V , which do
not have o(

√
gV ) separator theorems, i.e. theorem 15

is tight to within a constant factor. (Counterexample
graphs may be constructed by subdividing the triangles
of an embedded complete graph into meshes.)

The fact that Djidjev’s algorithm does not depend on
having an embedding or knowing g makes it far more
impressive and useful than the algorithm of [82], since
the graph genus problem is NP-complete [171] [172].
Indeed [43], it is NP-hard even to embed the graph in a
surface of genus g + O(V 1−ε) where g is the true genus
and ε is any fixed positive real. (Note [59]: There exist
0 < c1 < c2 < c3 such that almost all V -vertex, c1V -edge
graphs have genus g obeying c2V < g < c3V as V →∞.)

Nevertheless, finding an embedding of a graph on a
genus-g surface (or producing a proof of impossibility)
is claimed by Mohar [139] to be doable in cgV time for
some cg growing very rapidly with g.

Aleksandrov and Djidjev [2] showed that indeed a com-
plete decomposition of an embedded V -vertex, E-edge
genus-g graph into pieces of size ≤ εV (arising by remov-
ingO(

√
(g + 1/ε)V ) vertices) could be found inO(V+E)

time. This result is optimal. This generalizes the planar
result of Goodrich [87]. But Goodrich also finds a recur-
sive binary tree structure, which is not provided by [2],
which in a sense only provides something like the leaves
of such a tree.

Conjecture 16 (Alon, Seymour, Thomas) Given a
graph G whose V vertices have positive real weights sum-
ming to 1. Suppose G contains no instance of some “mi-
nor” with h vertices. Then G may be separated into dis-
connected components by the removal of O(h

√
V ) ver-

tices in such a way that each component’s total weight is
≤ 2/3.

(E.g., the planar separator theorem would follow from
this via Kuratowski’s theorem that planar graphs exclude
K5 and K3,3. The genus-g results would also follow via
formulas of Ringel and Youngs [151] showing that the
genus of Kh is of order h2.)

This remains unsolved, but Alon, Seymour, Thomas
[5] showed this with h3/2

√
V while Plotkin, Rao, Smith

[146] showed this with O(h
√
V log V ). Both these papers
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come with polynomial time algorithms too, although not
very fast ones.

One might further conjecture that there should be an
O(V ) time algorithm, or even that Goodrich’s complete
recursive decomposition should be extensible to handle
graphs with excluded minors.

Djidjev [59] remarked that his separator algorithm for
graphs of genus g would, if applied to a graph G of pos-
sibly huge genus (he says genus and edge count of order
V 5/3 are possible) and with the “safety cutoff” in step 1
of his algorithm (preventing anything from happening if
E > 4V ) disabled, still in O(V + E) time find a separa-
tor with ≤

√
15V vertices, provided G excluded K3,3 as

a minor.
All of the results above were proved by graph theo-

retic or combinatorial arguments. However, recently it
has been realized that it is also possible to prove the pla-
nar separator theorem (and indeed to get some of the
best available constants in it) by using geometric argu-
ments. We’ll discuss this in §2.7, where we have some
new results, e.g. involving squares not circles, and al-
lowing Torus and Klein bottle graphs. For geometric
techniques concerning graphs of higher genus, see §8.1.

2.10 Other

Ming Li [121] gave and used a separator theorem for
graphs arising from state transitions in computers.

3 Covering convex bodies with smaller copies

Definition 17 A “convex d-body” is a compact convex
set in Rd, 1 ≤ d < ∞, that has interior points. It is
“strictly convex” if its boundary contains no line seg-
ment; equivalently, if every support hyperplane has ex-
actly one point of contact with the body.

Definition 18 A “smooth point” on the surface of a
convex body is one with a unique tangent hyperplane. A
convex body will be called “smooth” if every point on its
surface is smooth.

3.1 Smaller scaled translated copies

Definition 19 A “homothet” of a set is a scaled and
translated copy of it. For an “s-homothet,” the scaling
factor is s, and if s is left undefined or unspecified, we
will take it to mean “for some s, 0 < s < 1.”

3.1.1 Spheres

At least d+ 1 smaller balls are needed to cover a d-ball,
as we’ll see later.

Theorem 20 The minimum value of r so that it is pos-
sible to cover a d-ball of radius 1 by d+ 1 balls of radius
r, is r =

√
1− d−2.

Proof. One may verify (e.g. via explicit coordinates
[55]) that if the balls are the circumballs of the (d − 1)-
faces of a regular d-simplex inscribed in the d-ball, we
get a covering with this r value.

We will now prove that an r value at least this large is
required, even merely to cover the surface of the unit ball.
In fact, consider covering this surface with d + 1 equal
spherical caps of angular radius θ = arcsin r. Since θ <
π, the centers of the caps cannot all lie in a hemisphere,
hence their convex hull is a simplex enclosing the origin.
Also their “dual convex hull” (that is, the intersection of
the halfspaces corresponding to the hyperplanes tangent
to the sphere at the cap centers) is another simplex S
enclosing the origin. Now it is known ([106] and 2.50-
2.52 on page 506 of [137]) that the ratio ρ of the radius
of the smallest ball enclosing a d-simplex, to the radius
of the largest ball it encloses, is ≥ d. Hence at least
one vertex of S cannot be inside the ball of radius d
concentric with the unit ball. This vertex corresponds to
a “deep hole” in the covering and implies that to have a
covering we must have cos θ ≤ 1/R ≤ 1/d, which implies
r ≥
√

1− d−2.
Indeed, since it is known that ρ = d if and only if the

simplex is regular, the optimal covering is unique. 2

Remark. This theorem was previously known only
when d ≤ 3. Indeed, the minimal scaling factors for
covering a circle by N congruent circles are known [130]
when N ≤ 9. If 90◦ ≤ θ < 180circ the problem of
covering the sphere with caps of angular diameter θ is the
same problem as covering the ball with balls (make the
boundary of a covering cap be the equator of a covering
ball). The minimal-θ coverings of a sphere in 3D by N
caps are known when N ≤ 7 [130].

Alternatively, one may cover a d-ball of radius 1 with
2d balls each of radius

√
(d− 1)/d. These balls are the

circumballs of the faces of a regular d-cube inscribed in
the unit ball. But this scaling factor is not known to be
best possible except when d = 2.

Of course, ellipsoids are affinely equivalent to spheres
and so everything we’ve said about spheres, one can say
about ellipsoid homothets.

3.1.2 d-Simplices

WLOG (by an affine transform) the simplex is regular.
A d-simplex may be covered by d+1 s-homothets, where
the scaling factor is s = d/(d + 1). The homothets are
crammed into the d + 1 corners. (With any scaling fac-
tor below d/(d + 1), the center of the simplex would be
uncovered.) This is easy to see if you consider the d+ 1
hyperplanes corresponding to the un-crammed faces of
the smaller simplices, which are parallel to the far face
and go through the center. You can’t use fewer than d+1
copies without leaving one of the d+1 corners uncovered.

3.1.3 Regular d-octahedra (L1-balls)

May be covered by 2d s-homothets with s = (d− 1)/d.
The copies are crammed into the 2d corners. Note, each
face of the octahedron, which is a regular (d−1)-simplex,
is covered according to the previous discussion, and with
any smaller scaling factor, the face centers would be un-
covered. Since when d ≥ 2 the dihedral angles of the
octahedron are ≥ 90◦ (in fact they are arccos((2−d)/d))
and since the scaling factor is ≥ 1/2, everything inside is
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covered once you see that the outside is. It is impossible
to use < 2d s-homothets for any s < 1 because a corner
would be uncovered (consider L1 distance).

3.1.4 d-Cubes

(Or by an affine transformation, any parallelipiped) may
be covered by 2d s-homothets with s = 1/2. It is im-
possible to use fewer for any scaling factor in [1/2, 1)
because one of the corners would be left uncovered (con-
sider L∞ distance). Scaling factor s = 1/2 is optimal by
considering d-volume.

3.1.5 d objects do not suffice, in general

Fact 21 It is impossible to cover any smooth convex body
with only d s-homothets.

Proof. This is because the surface is then going to be
partitioned into d sets (possibly with overlap). By the
famous “Borsuk antipodes theorem7” [26] from topology
(cf. §4.3) at least one of these d sets must contain 2
“antipodal” (that is, with parallel tangent hyperplanes)
points – preventing covering and leading to a contradic-
tion. 2

3.1.6 Any convex body, d = 2

Lassak [116] used a result of Zindler that a parallelogram
with any two given diagonal directions may be inscribed
in a 2D convex body, to show that any convex 2-body
could be covered by 4 homothets, each scaled by 1/

√
2.

Here “4” is best possible (square) and with 4, “1/
√

2”
is also (disc). Also, 4 are required only if the body is
a parallelogram. Krotoszynski [114] showed that with 5
translated copies, a scaling factor of 1/2 suffices.

3.1.7 Hadwiger hypothesis

H.Hadwiger conjectured in 1957 that the d-cube was the
worst convex body, i.e. that < 2d translated smaller
scaled copies of itself would suffice to cover any convex
d-body – except for bodies affinely equivalent to a d-cube,
which as we’ve seen require exactly 2d.

This frustrating conjecture stands unsolved!
Boltyanskii [18] [19] showed the number of copies

needed was always the same as the number of light
sources needed to illuminate the surface of the body,
where a light source at p is said to “illuminate” a surface
point q if the ray ~pq intersects the body’s interior, but
only after it reaches q.

Another equivalent formulation arises from applying
the “polar map” (§1.3). The number of copies needed is
the same as the number of open halfspaces through the
origin needed to cover the surface of the polar body, and
in such a way that each (closed) face of the polar body is
entirely contained in at least one of the halfspaces. Thus,
the polar equivalent to Hadwiger’s conjecture is: “The

7We’ve also seen attributions of this theorem to Lyusternik and
Shnirel’man. Although we daresay there are reasons for that, it
seems that L & S’s paper was in 1947, whereas Borsuk’s was in
1933, and L & S’s main concern was proving that any Riemannian
metric, homeomorphic to the surface of a 3-ball, must have 3 non-
self-intersecting closed geodesics. See [110].

surface of any convex d-body B containing the origin
may be covered by 2d open halfspaces through the origin
in such a way that every (closed) face of B is entirely
contained in at least one of the halfspaces.”

A related geometric separator conjecture is

Conjecture 22 For any convex d-polytope with F faces,
there exists a hyperplane with at least bcdF c faces entirely
to each side of it. (Further conjecture: cd = 2−O(d) suf-
fices.)

Chakerian and Stein [33] showed that for any convex
d-body K, there exists a parallipiped P so that P/d ⊂
K ⊂ P , where “P/d” denotes a parallipiped concentric
with P with 1/d times the linear dimensions. From this
it instantly follows that dd copies suffice. Lassak [117]
improved this by about 13% to reduce the bound to

(d+ 1)dd−1 − (d− 1)(d− 2)d−1 ∼ (1− e−2)dd. (10)

3.1.8 General “smooth” convex objects

Fact 23 Any smooth convex body may be covered by d+1
homothets.

Proof. Define the 1-1 correspondence8 between points
on the surface of the body and the surface of a ball:
points correspond if they have same oriented tangent
hyperplanes. Now, a (1 − δ)-homothet translated by ε
will cover (in the limit ε→ 0+, where a sufficiently tiny
δ is chosen for each ε) the points on the surface of our
body which correspond to a spherical cap of angular ra-
dius slightly below π/2. Now considering our previous
discussion on “spheres” proves the claim. 2

Also, a more careful argument [19] will show that d+1
homothets suffice even if the body’s surface contains up
to d non-smooth points. (If d = 3, up to 4 non-smooth
points are permissible [13].)

Also, if the body is so smooth that a radius-r ball
inside it can touch every point of its boundary, and the
body has diameter D, then one may see that the scaling
factor 1 − 2rd−2D−1/(1 +

√
1− d−2) suffices. (This is

tight for a d-ball.)

3.1.9 Lp-balls, 1 < p <∞
[Note: this section still under construction]

In fact, for the purpose of getting an explicit bound on
the scaling factor (in the above proof that d+ 1 homoth-
ets suffice for smooth convex bodies) it is not necessary
that we have a nonzero lower bound on r, the radius
of curvature. Bounds on the “modulus of smoothness”
sometimes suffice. These can exist even for cases such as
y ≥ |x|1.1 near x = 0, in which no positive lower bound
on r exists.

The “modulus of convexity” δ(ε) > 0 of a convex d-
body |~x|B ≤ 1 for some norm B is

δB(ε) = sup
|~x|B ,|~y|B≤1, |~x−~y|B≥ε

1− |~x+ ~y

2
|B . (11)

8Actually, many points on the smooth body can correspond to
1 point on the sphere (consider a cylinder capped by two hemi-
spheres), but this does not affect the validity of our argument.
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The “modulus of smoothness” ρ(τ) > 0 is

ρB(τ) = sup
|~x|B≤1, |~y|B≤τ

|~x+ ~y|B + |~x− ~y|B − 2

2
. (12)

As we have given them [50], these definitions only work
for centrally symmetric convex bodies (i.e., those de-
finable via norms). That will suffice for our present
purposes9: Lp balls

d∑
i=1

|xi|p ≤ 1, 1 < p <∞. (13)

Known facts about these functions include the follow-
ing: If we let B∗ denote the polar body of B, then [122]

ρB∗(τ) = sup
ε>0

[
τε

2
−δB(ε)] , δB∗(ε) = sup

0≤τ≤2
[
τε

2
−ρB(τ)].

(14)
A body is smooth if and only if limτ→0+ ρ(τ)/τ = 0. A
body is strictly convex if and only if δ(ε) > 0 for all ε > 0,
which happens if and only if its polar body is smooth.

Exact expressions for δ(ε) for the Lp balls (EQ 13)
have been worked out by Hanner [93]. From these, (EQ
14), and the fact that the polar body to an Lp ball (EQ
13) is an Lq ball with 1/p + 1/q = 1, one may derive
expressions for ρ(τ). For our purposes it will suffice to
know the asymptotic behaviors [123] when ε, τ → 0+,
which are

δ(ε) =

(
(p− 1)ε2/8 + o(ε2) if 1 < p < 2

(ε/2)p/p+ o(εp) if 2 ≤ p

)
(15)

ρ(τ) =

(
τp/p+ o(τp) if 1 < p < 2

(p− 1)τ2/2 + o(τ2) if 2 ≤ p.

)
(16)

3.1.10 Symmetric bodies

Schramm [159] showed that for any strictly convex
d-body invariant under a group of reflections acting
irreducibly10, d+ 1 s-homothets suffice.

Rogers [155] had realized many years before, but only
published in 1997, the fact that for centrally symmetric
convex bodies,

(1 + s−1)d (ln d+ ln ln d+ 5)d (17)

s-homothets suffice. This bound with s = 1 is valid for
s-homothets with s infinitesimally below 1.

3.1.11 Bounds by Rogers and Zong

Rogers and Zong [155] also found that for general convex
bodies,

(
2d
d

)
(ln d+ln ln d+5)d s-homothets suffice. (This

is better than Lassak’s bound EQ 10 when d ≥ 6.) Also,
a convex body K may be covered by 2d(ln d+ln ln d+5)d
translated copies of its negation −K. Both these and
(EQ 17) were consequences of the following theorem

9The whole theory has been recast in a more general setting by
Klee [108].

10That is, in such a way that only the body’s centroid, or the
entire body – but no other subset of the body – is preserved by
every group action.

Theorem 24 (Rogers and Zong’s homothet cover-
ing theorem) To cover a convex d-body K with trans-
lated copies of a convex d-body H, it suffices to use

vol(K −H)

vol(H)
ζd(H) (18)

copies, where ζd(H) is the minimal covering density of
d-space by translates of H, and where “K −H” denotes
the set {~x− ~y | ~x ∈ K, ~y ∈ H}.

The consequences mentioned then follow from Rogers’s
earlier [153] bound ζd(H) ≤ (ln d+ ln ln d+ 5)d, and the
inequalities

2d ≤ vol(K −K)

vol(K)
≤
(

2d

d

)
(19)

which are respectively a special case of the “Brunn-
Minkowski theorem” (EQ 20) and the upper bound from
[154] [34]. These are tight respectively for a centro-
symmetric d-body and a d-simplex.

The Brunn-Minkowski inequality [22] states that if A
and B are convex d-bodies,

vol(A)1/d + vol(B)1/d ≤ vol(A+B)1/d. (20)

A reverse form of this inequality due to V.D.Milman [133]
[144] [145] states that there exists an absolute constant
C such that for each A, B there exists a determinant-1
affine transformation u such that

vol(A+ uB)1/d ≤ [vol(A)1/d + vol(uB)1/d]Cd, Cd ≤ C.
(21)

The minimal values of Cd seem to be totally unknown,
aside from the fact that 1 ≤ Cd ≤ C <∞. However,

Theorem 25 (Bound on Cd) For all d ≥ 1, Cd <√
2πd/e.

Proof. Let EX denote the Löwner-John min-volume
ellipsoid [88] enclosing X.

vol(A+ uB)1/d ≤ vol(EA + uEB)1/d =

= vol(EA)1/d + vol(EB)1/d

≤ Cd[vol(A)1/d + vol(uB)1/d] (22)

if
Cd = (•d/4d)1/d. (23)

The final inequality in (EQ 22) is a consequence of [176],
from which it follows that for any convex d-body K of
unit volume, its Löwner-John min-volume enclosing el-
lipsoid EK has d-volume at most Cdd times larger (and
this is tight if K is a simplex). The equality in (EQ
22) is because by picking the affine u appropriately, we
can make EA and EB both be balls. In view of known
formulas (§1.1.2) for •d and 4d we have C ≤ Cd where

Cd = (
d!

(d/2)!
√

1 + d
)1/d(

πd

d+ 1
)1/2 ≤

√
2dπ/e. (24)

2

Consequently (see also [113])

11 . 3. 1. 11



Smith & Wormald typeset 849 Jul 2, 2020 Separator theorems

Theorem 26 (Ultra general homothet covering
theorem) There exists an absolute constant C so that:
For any convex d-bodies A and B, there exists a
determinant-1 affine transformation u such that A may
be covered by

(ln d+ ln ln d+ 5)dCdd
[vol(A)1/d + vol(B)1/d]d

vol(B)
(25)

translates of uB, where either Cd ≥ 1 is defined by (EQ
24), or Cd = C (either is valid).

3.1.12 Bodies of constant width

Schramm [159] showed that for convex bodies of constant
width, 5(3/2)d/2d3/2(4 + ln d) s-homothets suffice. This
bound is below 2d when d ≥ 16. Weissbach [180] showed
that Schramm’s bound may be strengthened to 6 when
d = 3; Chakerian & Sallee [35] strengthened it to 3 when
d = 2 (indeed showing that any scaling factor s ≥ .9101
suffices).

3.1.13 Zonotopes & Zonoids

“Zonotopes” are Minkowski sums of a finite set of line
segments. (Equivalently, they are the d-polytopes each
of whose faces is a centrally symmetric (d−1)-polytope.)
“Zonoids” are limits of zonotopes. Martini [128] showed
that for non-parallelipiped d-zonotopes, 3 · 2d−2 copies
suffice, and this was extended to all zonoids in [20].

3.1.14 Any symmetric convex body, d = 3

For centrally symmetric convex 3-bodies, Lassak [115]
showed that 8 s-homothets suffice. Another proof of the
same thing was [165]. Bezdek [12] extended this to work
for 3D bodies invariant under any affine symmetry.

3.2 Rotations allowed?

Definition 27 A “rotothet” of a set is a scaled and
possibly rotated and translated, copy of it. For an “s-
rotothet,” the scaling factor is s, and if s is left unde-
fined or unspecified, we will take it to mean “for some s,
0 < s < 1.”

How many s-rotothets of a convex d-body are required
to cover it, if the copies may each be independently ro-
tated and translated?

The answer can be smaller than in the case where rota-
tions are not allowed (although not for a regular simplex
or a ball, in which cases d+ 1 are always required). For
example11, a 45-45-90 right triangle is tiled by only 2
copies of itself, each scaled by 1/

√
2.

In d-space for all sufficiently large d, at least 1.203
√
d

s-rotothets are needed to cover the convex d-bodies con-
structed by Kahn and Kalai [102] [141].

When d = 2, we have

Theorem 28 Any 2D convex body may be covered by 3
smaller rotothets – and 3 are necessary for the disk and
for the equilateral triangle.

11Conjecturally, this example is unique – see §3.2.1.

Proof. Let the body be called Q. We may assume Q is
not a body of constant width, since that case was already
proved by [35] (§3.1.12). In the below we’ll implicitly use
the fact that a convex body’s surface is continuous and
(in 2D) “differentiable to the left” (and right). It is also
differentiable almost everywhere12.

So assume Q has width equal to its diameter (which
is the maximum possible width) only over some fraction
γ, 0 ≤ γ < 1, of the possible rotation angles.

Rotate the object randomly within a set, of measure
µ, 0 < µ < 1 − γ, in which we get East-West widths
bounded above by some bound below the diameter of Q.
Translate 2 copies, shrunk a sufficiently tiny amount, a
sufficiently tiny amount North and South. Now only 2
small bits will be left uncovered on the East and West
(unless, e.g. the westmost point is non-unique, which
won’t happen with probability 1 because of the random
rotation). Now the maximum distance between any pair
of points in these 2 small bits is less than the diameter
of the object. Hence these two small regions may both
be covered by a third rotothet. 2

3.2.1 Simplices divisible into two congruent scaled ver-
sions of themselves

Conjecture 29 The only d-simplex divisible into two
congruent scaled versions of itself, in any dimension
d ≥ 2, is the 45-45-90 right triangle in 2D.

Fact 30 Conjecture 29 is true in 2D.

Proof. In 2D there are only 2 possible ways the trian-
gle could split (see figure 2, top 2 illustrations). In the
lefthand illustration, 45-45-90 is clearly forced. In the
righthand illustration, the strict triangle inequality is vi-
olated, forcing the triangle to be degenerate and hence
of no interest as a 2D example of anything. 2.

For further discussion relevant to conjecture 29, see
[166].

Figure 2: Some simplices in 2D and 3D.

Fact 31 Conjecture 29 is true in 3D, if attention is re-
stricted to tetrahedra which are sliced by a plane of mirror
symmetry.

Proof. The bottom illustration in figure 2 depicts the
top half (after the slicing) of the tetrahedron, where the
4abs defines the slicing plane, and the dihedral angle on
side s (for “slice”) is being bisected, whereas the a and b
edges used to be in the middle of a face and were created
by the cut.

Consider the dihedral angles at the 6 edges. The cut
has introduced 3 new angles at a,b, and snew. But it has
also gotten rid of 3 old angles at sold, c, and d. Hence
these two 3-element sets must be identical.

12 In fact, convex d-bodies are 2-time differentiable almost every-
where, as was proved by A.D.Aleksandrov in 1936. Some results
of this kind are surveyed in [89].
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We now restrict attention to the mirror case where the
slice plane is a plane of mirror symmetry. In that case a
and b have 90◦ dihedrals, and

I. sold 6= 90◦, so c and d are both 90◦. But then we
gain snew during the cut and lose sold, with no way
to regain sold – impossible.

II. sold = 90◦, snew = 45◦.

A. If d and c are both 90◦ then all of the original
dihedrals were 90◦ except possibly at edge h.
We claim such a tetrahedron cannot exist since
two of its faces must lie in parallel planes.

B. So only one of {d, c} is 90◦. So a = b = c =
sold = 90◦, snew = d = 45◦ and h is unspecified.
But this is degenerate: at the dsb vertex, since
45 + 45 + 90 = 180, the spherical triangle at
this vertex has 0 solid angle.

2

Remark. Any tetrahedron that could be split into
two congruent half-volume scaled copies of itself, would
automatically tile 3-space. We have checked13 the known
families [85] of space-tiling tetrahedra, and none of them
are splittable.

Finally, we sketch an argument, based on counting de-
grees of freedom, which makes it plausible that no such
simplex exists in dimensions d > 3.

The slice plane must have exactly 1 vertex above it
and 1 vertex below it (so that the 2 components that
result, are simplices) hence d − 1 vertices lie on it, and
the remaining (extra) dth vertex must be due to the cut
plane slicing an edge (1-flat).

WLOG let some vertex of the original simplex, which
also is on the cut plane, be at the origin.

Consider the d×dmatrix A whose rows are the altitude
vectors of the d-simplex to all vertices except 0. When we
cut the simplex we change 2 rows of this matrix, getting
a new matrix Ã.

We want that Ã is merely a rotation (or anyhow, d×d
orthogonal transformation) of A/s, where s = 21/d. That
is: Q = sÃA−1 is orthogonal, that is QQT = I. This is
equivalent to

s2(ÃT Ã) = (ATA). (26)

where Ã is the same as A except that two rows have
been changed. Note: this must also be true of Â, the
matrix corresponding to the simplex on the other side of
the cut, and the same two rows have to change (although
the changes may be different) with in fact one of these 2
rows for Ã being the same, up to a scaling factor, as the
other of these 2 rows for Â.

The condition that A actually corresponds to a genuine
d-simplex, is that if you define B to be A, except that
its rows have been scaled so that their lengths are the
reciprocals of what they were, then

B must be invertible. (27)

13This should be rechecked using a computer.

(In fact B−1 will give coordinates of the non-~0 vertices,
up to some overall scaling factor.)

Finally, Ã is not just any arbitrary change to 2 rows
of A. In fact, it must correspond to a cut plane through
~0, which has d−1 degrees of freedom, whereas, any arbi-
trary change to 2 rows of A (satisfying the determinant
of (EQ 26)) would have had 2d − 1 degrees of freedom.
So there must be some d additional constraints.

However, forget them. Just (EQ 26) alone, is going to
be enough to make it plausible that no such d-simplices
exist if d > 5.

(EQ 26) constitutes d(d + 1)/2 equations (since the
matrices are symmetric) for Ã plus d(d+ 1)/2 for Â and
we have got (for the 2-row changes, plus assuming A
is upper triangular and with unit determinant WLOG)
3d + d(d + 1)/2 degrees of freedom. If d > 5, then the
number of constraining equations exceeds the number of
degrees of freedom, hence it is plausible that no solution
can exist if d > 5. (And even if we drop the 50-50 volume
split demand.)

If one puts in the ignored additional constraints, it
becomes plausible there is no solution if d > 3.

So probably only the case d = 3 is of interest, and
solutions there are probably going to have to be ruled
out by inequalities (as in the proof above for the mirror
symmetric case) not just degree of freedom arguments
(assuming these could ever be made rigorous).

3.3 Affinities allowed? Answer: 2?

Definition 32 An “affinity” of a set is an affine (i.e.
general linear) transformation of it. For an “s-affinity,”
the volume scaling factor (|determinant|) is sd, and if s
is left undefined or unspecified, we will take it to mean
“for some s, 0 < s < 1.”

How many s-affinities (where the affine transforma-
tions are chosen independently for each copy) are needed
to cover a convex d-body?

We may tile d-boxes and d-simplices with only 2 affine
versions of themselves, each with sd = 1/2, i.e. half
volume. A unit volume d-ball may be covered by two
d-ellipsoids, each of volume

sd = (
d

d+ 1
)(d+1)/2(

d

d− 1
)(d−1)/2 < exp(

−1

2d
), (28)

and this is tight14.
These facts suggest

14 This fact underlies the “ellipsoid algorithm” for convex pro-
gramming, cf. lemma 3.1.34 of [88]. If the principal axes of
the ellipsoid are L1 ≤ L2 ≤ ... ≤ Ld, then we may slice it
with a hyperplane through its center and perpendicular to the
Ld axis, and then cover each of the two resulting hemiellipsoids
with ellipsoids with axes dLi/

√
d2 − 1 for 1 ≤ i ≤ d − 1, and

dLd/(d + 1). Let the DW aspect ratio of the original ellipsoid

be A = Ld/L1. Notice that if A ≥
√

(d+ 1)/(d− 1), then the
two smaller ellipsoids will have DW aspect ratios ≤ A, while if

A ≤
√

(d+ 1)/(d− 1), then the two smaller ellipsoids will have

DW aspect ratios ≤
√

(d+ 1)/(d− 1) also.
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Conjecture 33 (Two affines?) Two s-affinities of a
convex d-body always suffice to cover it15.

In theorem 35 we prove conjecture 33 for smooth con-
vex bodies, and also for general 2D convex bodies.

We will need a preparatory lemma.

Lemma 34 The min-volume affine version of a convex
body B, containing a convex body A, touches A’s bound-
ary at at least d + 1 points. There exist support hyper-
planes of A at these points forming a finite d-simplex (i.e.
as opposed to something infinite) surrounding A. There
exist support hyperplanes of B at these points forming a
finite d-simplex surrounding B.

We only assert this lemma under the assumption that
either: B is smooth, or we are in 2D.

Proof. I. If they only touched at ≤ d points, then we
could shrink the volume of B by contracting in a di-
rection orthogonal to the subspace defined by the ≤ d
points.

II. If all outward unit normals to the support hyper-
planes of B at points of ∂A ∩ ∂B necessarily lay on the
same closed hemisphere of a unit sphere (the lemma as-
serts this is impossible) then

1. Expand B by factor 1+ε in all directions, increasing
its d-volume by (1 + ε)d = 1 + dε+O(ε2).

2. Dilate A, in the 1 “vertical” direction defined by the
hemisphere’s center only, by 1 + δ where δ is much
larger than ε. For example, if B’s boundary were
2-time differentiable, with bounded second deriva-
tive at points at which the normals to the support
hyperplanes lie on the hemisphere’s “equator,” then
at least order

√
ε would be possible. Unfortunately,

our definition 18 of smoothness does not imply 2-
time differentiability everywhere – despite footnote
12. However ([123] and cf. §3.1.9) it turns out that a
convex body is smooth16 if and only if its “modulus
of smoothness” ρ(τ) obeys limτ→0+ ρ(τ)/τ = 0, in
other words, if and only if we may find a suitable δ(ε)
with δ/ε → ∞ as ε → 0+, precisely what we need.
In 2D, where we have not assumed smoothness, we
still know that convex functions are differentiable to
the left and right everywhere. This alone, however,
does not suffice to show that a suitable δ exists17.
But, all we need, even in the footnote’s scenario with
dense corners, is that there be some neighborhood of
the two antipodal equatorial points18, with radius δ,
over which the horizontal displacement h away from
the vertical, obeys 2h < δ for all sufficiently small δ.

15One might further conjecture that the scaling factor on the left
hand side of (EQ 28) is the worst possible, i.e. the ball is the worst
convex object.

16Actually, [123] only claimed this for centrally symmetric con-
vex bodies, which were all they were interested in, but central
symmetry would seem to have nothing to do with anything.

17Consider a “nasty” convex curve with a corner at every rational
arclength p/q, having bending angle proportional to q−4.

18If there are more than two, our job is made easier.

An averaging argument shows that this must exist.
Hence this step is permissible under either of the
assumptions of the lemma.

And this (after performing the right affine to get A
back to normal shape, and assuming we chose ε suffi-
ciently small) also yields a contradiction with minimal-
ity.

III. If the outward unit normals to the support hyper-
planes of A all necessarily lay on the same closed hemi-
sphere of a unit sphere then so would B’s. 2

Theorem 35 Any convex d-body B may be covered by 2
affine versions of itself, each with smaller d-volume.

We only assert this under the assumption that either:
B is smooth, or we are in 2D.

Proof. Choose a direction ~x such that the “equator” E
on B’s surface (points on the surface with support hyper-
planes tangent to ~x) consists entirely of points “smooth
in the direction ~x,” i.e. for each equatorial point, it is im-
possible to rotate its support hyperplane except in ways
which preserve the fact that the hyperplane contains the
direction ~x.

Under the assumptions of the theorem, this obviously
is always possible19.

Cut the body into 2 pieces B1 and B2, the convex hulls
of the stuff above/on and below/on the equator. These
two pieces cover all of B; they can overlap.

Now, apply the lemma to see that the obvious affine
version of B (namely, B itself) surrounding B1 is not
minimal volume. Ditto for B2. Alter each to get minimal
volume, and we are done. 2

Remark. Theorem 35 also holds if the body is permitted
to have 1 non-smooth point.

4 Separator theorems about geometrical
objects

4.1 A separator theorem for d-boxes

We originally proved the following theorem in a form
which was roughly a factor of 2 weaker, and which de-
pended on a randomizing argument. But then we saw
[6] had proved the theorem below at full strength, and
deterministically, except only in the special case κ = 1
of disjoint boxes. It was then an easy matter to get the
best of both worlds by generalizing the proof of [6] to
work for arbitrary κ.

Theorem 36 (Separator hyperplane for κ-thick
iso-oriented d-boxes.) Given N iso-oriented d-boxes
whose interiors are κ-thick: There exists a hyperplane,
orthogonal to a coordinate axis, such that at least

b(N + 1− κ)/(2d)c (29)

of the d-box interiors lie to each side of the hyperplane.

19But we have no characterization of the convex bodies for which
this is possible.
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Proof. When d = 1, the result is easy. So suppose
d ≥ 2.

Find the leftmost hyperplane with at least b(N + 1−
κ)/(2d)c boxes entirely to its left. (Or any hyperplane
between this and its right-facing alter ego.) If there
are b(N + 1 − κ)/(2d)c boxes to its right, we are done.
Otherwise, we have a (d − 1)-dimensional problem in-
side the hyperplane, and by induction on d, by solv-
ing this problem we will get a hyperplane with at least
b(M + 1 − κ)/(2d − 2)c boxes to each side of it, where
M + 1 > N + 1 − 2b(N + 1 − κ)/(2d)c, i.e. M + 1 >
(1− 1/d)(N + 1) + κ/d. Hence, the number of boxes on
each side will be ≥ b(1 − 1/d)(N + 1 − κ)/(2d − 2)c =
b(N + 1− κ)/(2d)c. 2

Remark. Examples in [6] show that (EQ 29) is best
possible for an infinite number of N for each d ≥ 1,
when κ = 1. Also, see the examples in figure 3.

Figure 3: Examples of near tightness in theorem ??. (a)
N = 12, d = 2, κ = 1. If the dotted lines are ignored we
have N = 4, d = 2, κ = 1. If we then project down onto
a line, we have N = 4, d = 1, κ = 2. The picture gen-
eralizes to give an example in d dimensions with κ = 1,
N = 2md in which no iso-oriented hyperplane cuts off
more than m boxes. (b) N = 6, d = 2, κ = 2. The pic-
ture generalizes to give an example in d dimensions with
κ = 2, N = 2 + 2d in which no iso-oriented hyperplane
cuts off more than 1 box.

A related result, which is best possible for all N and
d, is

Fact 37 Given any N disjoint iso-oriented d-boxes
whose interiors are (N − 1)-thick, there always exists
a hyperplane perpendicular to some coordinate axis that
separates 2 of them.

Proof. Let Pi denote the hyperplane perpendicular to
the xi coordinate axis, among the hyperplanes corre-
sponding to the minimal-xi faces of our boxes, with max-
imal xi.

Suppose P1 does not work, i.e. no box interior lies en-
tirely on the lesser-x1 side of it. In that case, P1 could
be pushed infinitesimally in the x1 direction (getting P ′1)
and then all N boxes would have to be split by P1. Then
suppose P2 also does not work. In that case all the box
interiors would intersect P ′2, similarly. This would force
all the boxes in fact to intersect P ′1 ∩ P ′2, by consider-
ation of the (d − 1)-dimensional version of the problem
projected into P ′1. (Note, the (N −1)-thickness property
will be preserved under this particular projection in our
particular case.) Continuing, we conclude that if no Pi
works, the point ∩di=1P

′
i would have to be inside all N

of the boxes, contradicting our assumption of (N − 1)-
thickness. 2

Lemma 38 (Algorithmic version) The hyperplane of
fact 37 or theorem 36 may be found in O(Nd) steps.

Also, if the 2d lists of the lower and upper endpoints
of the intervals defining the boxes’s ith coordinates are
pre-sorted, then the best such hyperplane (according to
a wide variety of optimality measures) may be found in
O(Nd) steps.

Proof. In theorem 36, the algorithm given in the previ-
ous proof [6] works.

In fact 37, if the coordinate direction is xi, then this
hyperplane WLOG is the hyperplane of the minimal-xi
face of a box, in fact the hyperplane (among these) with
maximal xi. Hence if i were known, a suitable xi coor-
dinate of the hyperplane could be found in O(N) steps.
Since i is not known, we try all d possibilities, which
takes O(Nd) steps. Now: which of the d candidate hy-
perplanes actually works? Well, one can check if a can-
didate hyperplane works in O(N) steps (see if some box
lies below and some box above it), so the total runtime
is O(dN).

To find the best hyperplane, one may use the presorted
lists to compute the crossing counts and the above/below
counts for every one of the O(Nd) combinatorially dis-
tinct kinds of hyperplanes. This works with any notion
of “best” depending only on these three counts. 2

Remark. One may also show: Given a κ-thick set of N
convex d-objects, such that among any 2 disjoint such ob-
jects, there exists a separating hyperplane selected from
one of C possible orientations. Then there exists a C-
oriented hyperplane such that at least (N + 1−κ)/O(C)
of the objects lie entirely to each side of it.

4.2 A separator theorem for d-cubes

Theorem 39 (Cube separator theorem) Let there
be a set S of N iso-oriented d-cubes in a euclidean d-
space, whose interiors are κ-thick, or more generally κ-
overloaded (definition 10) or (λ, κ)-thick (definition 9).
Then there exists an iso-oriented d-box (with maximal
sidelength at most 2 times the minimal sidelength) with
at most 2N/3 cube interiors entirely inside it, at most
2N/3 cube interiors entirely outside (where the restric-
tions that “cardinality ≤ 2N/3” may be generalized to be
“weight ≤ 2/3” where “weight” is defined via any of a
wide class of mass-1 measures on d-space, which may or
may not bear any relation to S), and moreover satisfying
the following condition.
(a) If the interiors are κ-thick, the number of cube inte-
riors partly inside and partly outside the box is

≤ cd(ε)κ
1/dN1−1/d +

(
2

ε
+ 2

)d
κ (30)

where

cd(ε) =

(
[1 + 2d(H2d −Hd − 1

2 +O(εd))] (2d)!

d!

)1/d

(31)
provided εd is sufficiently small, and Hm =

∑m
j=1 j

−1.
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(b) If the interiors are κ-overloaded, then for K >
0, the number of cubes which have side less than K
times the maximal sidelength of the box and whose in-
teriors are partly inside and partly outside the box is
O
(
Kdκ1/dN1−1/d) .

(c) If the interiors are (λ, κ)-thick, then given any K >
0, the number of cubes which have side less than K
times the maximal sidelength of the box and whose in-
teriors are partly inside and partly outside the box is

O
(

λ
1−λ−(d−1) (ddKdκ+ 1)N1−1/d

)
.

Remark. Take κ fixed. When N → ∞ with d fixed,

best results in (a) are obtained if ε is of order N−
d−1

(d+1)d ,
in which case (EQ 30) is ≤ cd(0)κ1/dN1−1/d(1 + o(1)).
Note that H2d −Hd < ln 2, with equality in the limit as
d→∞.
Remark. When d = 2 and d = 3 the main term in
the right hand side of (EQ 30) (ignoring ε’s) becomes
respectively 4

√
κN and (232κ)1/3N2/3. When d → ∞,

it is asymptotic to

8

e
dκ1/dN1−1/d (32)

where e ≈ 2.71828.
Proof. Unfortunately, the full proof has become rather
long due to a considerable number of εs and δs and their
ilk. But a quick summary of the proof idea may be found
in remark iii below.

Part (a) is treated first, so assume the cube interi-
ors are κ-thick. Let B be a brick (iso-oriented d-box)
with side length ratios d+ 1:d+ 2:...:2d (not necessarily
in that order) having maximal d-volume subject to the
constraint that every brick congruent to it has at least
N/3 cube interiors (or at least 1/3 of some arbitrary20

measure on d-space) entirely outside.
WLOG (by scaling) B0’s dimensions are in fact exactly

(d + 1) × (d + 2) × . . . × (2d). Picking in advance some
δ, 0 < δ < 1/d, we now define 21 B0 to be a slightly
exapnded copy of B (namely, the dimensions of B are
1 − δ/3 times those of B0) with < N/3 cube interiors
(< 1/3 weight) lying entirely outside it. If δ is sufficiently
small, such a B0 must exist.

Cut B0 in half by bisecting its largest dimension to get
two subbricks Bi and Bii with side lengths d× (d+ 1)×
· · · × (2d − 1). By the pigeonhole principle at least one
of these contains or intersects at least N/3 cubes of S
(≥ 1/3 weight).

WLOG that subbrick is Bi. Also WLOG (by a trans-
lation) Bi’s “lower left” corner (i.e. the one with minimal
coordinates in every direction) lies at the origin.

20The measure defining the notion of “weight” has to be such
that this maximum can exist, or at least the corresponding supre-
mum, in which case B’s size is chosen arbitrarily close to the
supremum.

21We will eventually take the limit as δ → 0 and hence the proof
is really unaffected by the presence of δ. In fact in an earlier version
of this proof we were merely instructing the reader to “infinites-
imally expand” B, but later decided that we had to put in δ in
order to be convincing that its absence did not matter!

Note that if every sidelength of Bi were expanded by
adding 1 − δ, the result would be a brick B′ contained
in a brick congruent to B. So consider in fact the family
F of translates of B′ whose lower left corner coordinates
are (−t,−t,−t, . . . ,−t) for 0 < t < 1− δd.

Every member of F contains Bi and hence contains or
intersects at least N/3 cubes of S. Also, every member
of F , like B0, is contained in a brick congruent to B and
hence (by the definition of B) must have at least N/3
cube interiors entirely outside it. So in order to complete
the proof, we need only to show that some member (in
fact, a random member) of F cuts sufficiently few cubes
of S.

See figure 4 for a picture in 2 dimensions, where for
convenience we take the limiting picture as δ → 0.

Figure 4: Sliding boxes in F .

Let A0 = (2d)!/d! be the total d-volume (i.e. area,
in the case d = 2) of B0. Let the d-volume swept out
by the surfaces of the boxes in F as t goes from 0 to
1−δd be A1+A2, where Ak is the portion swept through
k times by the box surface. (Notice that k = 1 and
k = 2 are possible, but k ≥ 3 is not, due to convexity.)
For instance, in figure 4, A2 is represented by the two
triangular areas.

Write “a ≈ b” to mean “a = (1 + O(δ))b for fixed d
when δ is sufficiently small.” By considering the volume
of the annulus swept out by the brick’s surface,

A1 + 2A2 ≈ 1 · S0 (33)

where S0 = 2A0

∑2d
j=d+1 j

−1 = 2(H2d − Hd)A0 is the
surface (d− 1)-area of B0. Meanwhile

A1 +A2 ≈
S0 +A0

2
(34)

is the volume swept out by the “top” (i.e. with higher
coordinate values) faces of the brick, plus the relevant
volume inside the bottommost brick in F (which is ≈
A0/2 since the “hole” in the middle is half the volume).
Solving, we find A1 ≈ A0 and A2 ≈ (S0 −A0)/2.

Armed with the above d-volume formulae, we’re ready
to proceed. First, choose ε > 0, and obtain S from S
by throwing away all cubes of sidelength greater than
εd which intersect the annulus described above. Put
N = |S|. Note that by the κ-thick property, the num-
ber of cubes thrown away is N −N ≤ (2/ε + 2)dκ (i.e.,
a constant independent of N). Give the space inside
Ak monetary value kd dollars per unit d-volume (k = 1
and 2). Let ti be the probability that a random mem-
ber of F cuts the ith d-cube in S. If this cube has side
length si then ti = ksi, and the space it occupies is worth
kdsdi = tdi dollars, if it is wholly inside Ak. It is easily
checked that cubes which are partly in A1 and partly in
A2 also have value at least tdi dollars. Cubes in S which
are partly outside A1 ∪A2 will also have this property if
we give value 2d per unit volume to all the space outside
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A1 ∪A2 which can be covered by cubes of side length εd
which intersect A1∪A2. Note this space includes part of
the “hole”, but nevertheless its volume is O(εdA0).

If C is the expected number of cubes of S cut by a
random member of F , then

C =
N∑
i=1

ti. (35)

But any point in space can only be covered by at most
κ cubes in S, which gives the total-dollars constraint

N∑
i=1

tdi ≤ (A1 + 2dA2 +O(2dεdA0))κ. (36)

Maximizing C subject to this constraint, convexity im-
plies that the maximum occurs when all ti are equal, and
we finally get

C ≤ N
1−1/d

(A1 + 2dA2 +O(2dεdA0))1/dκ1/d

≈ N
1−1/d

A
1/d
0 κ1/d

× (1 + 2d[H2d −Hd − 1/2 +O(εd)])1/d.

This is equivalent to (EQ 30), when we take δ → 0.
Since some member of F must cut the expected num-
ber (or fewer) cubes of S, we are done. (The asymp-
totic behavior in (EQ 32) comes from Stirling’s formula
x!1/x ∼ x/e.) This proves part (a) of the theorem.

For part (b), assume S is κ-overloaded. Follow the
proof of part (a), but write ti = 2si for an upper bound
on the probability that the ith d-cube is cut, and instead
of giving different parts of space different values, note
only that the total volume which can be covered by cubes
with sidelength at most K times any of the sidelengths
of the d-box is O(Kd)d. By the κ-overloaded property,
the total volume of all these cubes is at most κ ·O(Kd)d.
With this upper bound on

∑
sdi , maximising

∑
2si yields

the required bound.
For part (c), assume S is (λ, κ)-thick. Again, follow

the proof of part (a), but this time define S by throw-
ing away all cubes of sidelength ≥ 2Kd. The expected
number of intersections C, which must be maximised, is
(EQ 35) as before, but the constraint (EQ 36) does not
necessarily hold since there is only a bounded number
of overlaps on cubes which are roughly the same size.
Write the summation (EQ 35) as S1 + S2 where S1 is
the contribution from all ti < N−1/d and S2 is the rest
(in which ti ≤ 2Kd. Immediately, S1 < N1−1/d. To
bound S2, note by the definition of (λ, κ)-thickness that
for all x,

∑
x≤ti≤min{λx,2Kd} t

d
i ≤ Aκ for some constant

A = O(Kd)d related to the volume of the annulus, cf.
(EQ 36).

For j ≥ 0 let bj denote the number of i for which
λj ≤ tiN

1/d ≤ min{λj+1, 2Kd}. By the constraint
above, λdjbj/N ≤ Aκ for each j, i.e.

bj ≤ λ−djAκN. (37)

Hence

S2 <
∑
j≥0

λj+1bjN
−1/d ≤ λ

1− λ−(d−1)
AκN1−1/d (38)

if d ≥ 2. Hence

C = S1 + S2 ≤
λ

1− λ−(d−1)
(Aκ+ 1)N1−1/d, (39)

as required for (c).
2

Remarks:
(i) Theorem 39 and proof also hold inside a “cubical22 d-
torus” (iso-oriented d-box with opposite faces identified
to give “periodic boundary conditions”) by just substi-
tuting this for “d-space” everywhere. B0 (or the mem-
bers of F) may “wrap” around and overlap itself, but
this does not cause any difficulty if we agree to count the
d-volume inside B0 according to multiplicity, but count
cube interiors (or weight) normally. Cubes crossing the
boundary of a box in F are (to be conservative) counted
according to their multiplicity – although we’ll assume
that none of the cubes in S is self-overlapping! The “in-
side” of a box is determined by the local picture near the
box’s corners as usual.

(ii) If, instead of iso-oriented d-cubes, S consists of
any other assortment of objects with the property that
their “CV aspect ratio” (definition 4) is bounded above
by τ , then the theorem still holds, but with κ in (EQ 30)
replaced by κτd.

(iii) It is also possible to demand that the separator
shape be something other than an iso-oriented d-box.
Let us recall the proof technique. We began by finding
a maximal d-volume separator shape B0 with at least a
constant fraction p of the weight outside it. We then
subdivided this shape into 2 smaller sets – more gener-
ally we may cover, rather23 than subdivide, the shape by
m ≥ 2 sets. By the pigeonhole principle, at least one of
these sets, call it Q, must contain ≥ (1 − p)/m of the
weight. (The best value of p to pick is 1/(m + 1); we
are going to prove a (m/[m+ 1], O(N1−1/d)) separation
result.) We then argued that a random separator shape
congruent to B0 and containing Q would, in expectation,
cross no more than cN1−1/dκ1/d objects from S. Here
the value of c will depend upon the separator shape, the
shape and size of the covering objects, and the probabil-
ity distribution you use.

4.2.1 Variations on the cube separator theme

In the previous proof, one may replace the trivial the-
orem that a d-box of bounded CV aspect ratio may be
tiled by two d-boxes of bounded CV aspect ratio, with
theorem 24 showing that any convex d-body Q may be
covered by 2O(d) half-scaled translated copies of itself.
Or other theorems from §3, so long as they involve some
scaling s and some covering cardinality m.

22Or rectangular – provided the torus has bounded ratio of max-
imum to minimum sidelength.

23And this is the point of §3.
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Also one may replace the randomizing argument in-
volving a “diagonally shifted” 1-parameter family F of
boxes, by, e.g., instead, a 1-parameter family of scaled
Q’s with common incenter. A Q with scaling factor x is
chosen with probability proportional to x.

One possible very general separator theorem one may
get in this way, is theorem 40.

In the following theorem, “equivalent” copies (or “ver-
sions”) of a convex body can be defined to be rotothets
or to be homothets.

Theorem 40 (Highly general separator theorem)
Let there be a κ-thick set of N convex objects in d-space,
each with bounded aspect ratio (see definition of Vobj be-
low). Let Q be a convex shape that may be covered by m
smaller copies of itself, each copy having sd times smaller
volume, and let 0 < ε < s/2. Then there exists a con-
vex body T equivalent to Q such that ≤ mN/(m + 1) of
the objects are completely inside T , ≤ mN/(m + 1) are
completely outside, and at most

(1 +O(ε))
2Asep

1− s2
(
κVsepd ln 1

s

Vobj
)1/dN1−1/d +O(1 + 1/ε)dκ

are partly inside and partly outside. Here Vobj is such
that the volume of any object of diameter L in the given
set is at least VobjL

d, and the volume of the separator T
is at most Vsepr

d if its inradius is r. Also, Asep is any
upper bound on the ratio of the maximum to the mini-
mum separation between the incenter of Q and a support
plane supported by a smooth point on Q’s boundary.

Note The theorem is also true for “equivalent copies”
defined to mean any affinities, in the following sense. The
hypothesis about Q is changed to: Let Q be a family of
convex shapes such that each Q ∈ Q may be covered by
m shapes in the family, each such shape having sd times
smaller volume than Q. Here s is a constant universal
for Q and independent of Q. We require also that the
bounds Asep and Vsep are fixed bounds which apply to all
shapes in the family Q. In the conclusion, “T equivalent
to Q” becomes “T equivalent to one of the shapes in Q”.
Proof sketch. We begin by finding a maximal d-volume
version of Q such that any version of Q with this same
volume has at least N/(m + 1) objects wholy outside
it. Then, as in the proof of theorem 39, find a version
Q0 with infinitesimally larger volume, having less than
N/(m+ 1) objects wholy outside it.

Cover Q0 with m versions of Q, each of volume ≤
sd vol(Q0).

One of these m coverers, by the pigeonhole principle,
must contain bits of at least N/(m + 1) of the objects.
Call it Q1. WLOG (by a scaling) Q1 has inradius s.

Now consider a scaled version T of Q1, having the
same incenter (center of largest inscribed ball) as Q1,
but scaled to have inradius t, s < t < 1 − δ. (As in the
proof of theorem 39, δ will go to 0 and thereby have no
effect in the result obtained. Its role is purely to ensure
that the family of scaled copies of Q1 all have volume
less than (1− δ) vol(Q0). So henceforth in this sketch we

argue as if δ = 0.) Choose t at random with probability
density f(t) dt where

f(t) =
2t

1− s2
. (40)

Clearly T will contain bits of at least N/(m+ 1) objects
inside (since Q1 ⊂ S) and at least N/(m+ 1) objects lie
wholy outside it (by the definition of Q0 — this is where
we recall that δ is actually non-zero). We now want to
bound the expected number of objects intersecting ∂T .
For each i, let ti denote the minimal value of t such that
the scaling of Q0 of inradius t intersects object i. Let the
diameter of object i be Li. Define S to contain all the
objects which are very small; in this case, with Li < ε,
and assume WLOG these are the objects are 1, 2, . . . , N .
Again define C to be the expected number of objects in
S cut by T . Then, noting that LiAsep is an upper bound
on the difference |ta − tb| for which a ta-scaled and tb-
scaled version of Q1 have two points of distance at most
Li apart, we obtain

C ≤
N∑
i=1

LiAsepf(ti + Li), (41)

or

C ≤ 2(1 + ε)Asep

1− s2
N∑
i=1

NLiti. (42)

Give weight t−ddV to a volume element dV at dis-
tance t from the incenter of Q1. By adding up weighted
volumes we have

N∑
i=1

VobjL
d
i t
−d
i ≤ κW (43)

where

W =

∫ 1+ε

s−ε
t−d

d(Vsept
d)

dt
dt = d · Vsep ln

1 + ε

s− ε
. (44)

Thus
N∑
i=1

Ldi t
−d
i ≤

κVsepd

Vobj
ln

1 + ε

s− ε
. (45)

Of course we need only concern ourselves with objects
such that ti < 1, i.e. t < 1. The largest possible value of
(EQ 42) such that the (Li/ti) ratios satisfy (EQ 45) is

C ≤ 2(1 + ε)Asep

1− s2

(
κVsepd ln 1+ε

s−ε
Vobj

)1/d

N
1−1/d

. (46)

The theorem follows on noting that the number of objects
with Li ≥ ε is O(1 + 1/ε)dκ. 2

4.3 Topological separation results

Definition 41 A “Rado point” of a unit mass measure
µ in d-space is a point such that any hyperplane through
it will split the the measure so that ≤ d/(d+1) mass will
lie in either open halfspace. A “tight Rado point” is a
Rado point such that there exists a hyperplane through it
for which this inequality is tight.
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R.Rado [148] showed that any measure in d-space has
a Rado point, indeed a tight one24, as a consequence
of Helly’s [97] theorem that if every d + 1 among M
convex sets intersect, then the intersection of all the sets
is nonempty. (See also [66].)

This may also be derived from “Brouwer’s fixed point
theorem” that continuous self mappings of a d-ball have
a fixed point [30] [134].

For general measures, it is impossible to get a “super-
Rado” point in which “d/(d + 1)” may be replaced by
some smaller value [66]. However,

Theorem 42 (1/e split for convex bodies) Given a
convex compact d-body B of unit volume. The smaller-
volume side of any hyperplane cut through B’s centroid
has volume ≥ [d/(d+ 1)]d > e−1 ≈ .367879.

Proof. Given a cutting hyperplane H through B’s cen-
ter of mass, we may WLOG apply “Steiner reflection
symmetrizations” to B about any “mirror hyperplane”
M that also goes through B and is orthogonal to H.
(Steiner reflection symmetrizations are discussed in §9,
pages 76-77, of [22].) Thus WLOG B is a convex body
of revolution and H is orthogonal to its axis and goes
through its center of mass.

Now, given this, it is easy to see that the “worst” B
(minimizing the volume fraction cut off) is uniquely a
cone withH parallel to its base and lying at height h/(d+
1) above it, where h is the height (distance from base to
apex) of the cone. The result follows. 2

Remark. This theorem was probably known before; so
call it a folk theorem, since we can’t find a proof in the
literature. A related interesting theorem may be found
in [28].

Also, the present proof generalizes to show:
Given any probability density Ψ in d-space which is

unimodal on lines (that is, has a unique maximum on any
line; it decreases monotonically [non-strictly] as we move
along the line away from its maximum) the smaller-mass
side of any hyperplane cut through Ψ’s center of mass
has mass ≥ [d/(d+ 1)]d > e−1 ≈ .367879.

Another famous fact is the “ham sandwich theorem,”
(see [168]) which states that given d measures in d-
space, there exists a hyperplane whose removal leaves two
pieces, each with ≤ 50% of each of the measures. (Thus,
in 3D, a single knife cut can bisect the bread, ham, and
cheese!) This is a consequence of Borsuk’s theorem25 [26]
that for any continuous map f from a sphere (the surface
of a (d + 1)-ball) to a flat d-space, there must exist two
antipodes with a common image: f(~x) = f(−~x).

For another application of Borsuk’s theorem, see fact
21.

As a (new) application of the Ham Sandwich theorem,
we mention

24In fact, we can force there to be d different tight hyperplanes
through the Rado point, and in the argument later even d+ 1, but
this does not seem to help.

25Sometimes called the “Borsuk-Ulam theorem,” since it had
been conjectured by Ulam.

Theorem 43 Let there be k measures on the real line.
Then there exist ≤ k points such that if the line is cut at
those points, and the odd numbered pieces are collected
together and called S, evens are T , then S and T each
have ≤ 1/2 of each of the k measures, simultaneously.

Proof. Map the line into k-space according to

x → (x, x2, . . . , xk−1, xk). (47)

Now find a “ham sandwich hyperplane” in k-space. Such
a hyperplane can only cross this curve k times at most
(a polynomial of degree k has at most k roots). 2

The entirety of [84] is thereby compressed to 2 para-
graphs, demonstrating the power of ham sandwich. An-
other easy result of this nature is

Theorem 44 Given 5 measures in the plane, there ex-
ists a conic curve which bisects them all simultaneously.
That is, once the curve is removed, each piece of the plane
that remains (there hereby are two, where the quadratic
form is > 0 and < 0) has ≤ 1/2 of the mass of each
measure.

Proof. Map the plane into 5-space via

(x, y) → (x, y, x2, y2, xy) (48)

then apply the ham sandwich theorem. 2

The most general of this ilk is

Theorem 45 Given
(
k+d
d

)
−1 measures in d-space, there

exists an algebraic surface of degree k which bisects them
all (that is, once the surface is removed, two sets – where
the degree-k polynomial is > 0 and < 0 – remain, and
each set contains ≤ 1/2 of the mass of each measure)
simultaneously.

Rado’s theorem and the ham sandwich theorem were
recently unified by Zivaljevic and Vrecica [182], who
point out that they are both merely special cases (when
k = 0 and k = d− 1, respectively) of their amazing new
“center-traversal theorem:”

Theorem 46 (Zivaljevic & Vrecica)
Let µ0, µ1, . . . , µk be k + 1 measures in Rd. Then there
exists a k-dimensional affine subspace S ⊂ Rd (indeed
even a tight one) such that every hyperplane containing
S simultaneously (d − k)/(d − k + 1)-separates all the
measures.

Incidentally, one may even generalize this slightly fur-
ther by demanding that µi be tightly λi-separated, where
λ0, λ1, . . . , λk are any specified numbers in [(d− k)/(d−
k + 1), 1). There is also a corresponding26 grand gener-
alization of Helly’s theorem, due to Dol’nikov [62] (also
see [64]).

26Another Helly-like result: Katchalski & Lewis [104] showed
that if for any 3 among N convex bodies in the plane, there ex-
ists a line stabbing all 3 of them, then there exists a line stabbing
all N of them – except for possibly 603 exceptions. Conjecturally
the “603” may be reduced to “2;” H.Tverberg has shown that
any counterexample to that conjecture WLOG has N ≤ 49, re-
ducing its confirmation or disproof to a finite (though enormous)
computation.
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4.4 Strengthenings of Miller & Thurston’s separator
theorem for d-spheres

Theorem 47 (Strengthened Miller
Thurston sphere separator theorem I) Given N
balls in d-space, whose interiors are κ-thick, there ex-
ists a sphere S such that ≤ (d+ 1)N/(d+ 2) of the balls
lie entirely inside S, ≤ (d + 1)N/(d + 2) of the balls lie
entirely outside S, and ≤ cdκ

1/dN1−1/d of the balls are
cut by S, where c1 = 1, c2 = 2, c3 < 2.135, c4 < 2.280,
c5 < 2.421, and more generally if d ≥ 2,

cd ≤ 2d1/d(
◦d
◦d+1

)1−1/d = (
2d

π
)1/2 · [1 +O(

1

log d
)]. (49)

(See definition 5.) This also works with any of a wide
class of weight functions where instead of demanding that
≤ N/(d + 2) of the balls lie entirely inside and outside,
we demand that ≤ 1/(d + 2) of the weight lie inside or
outside.

Proof. This theorem was the central achievement in
[132]. However for an inexplicable reason the results
there were stated in weak forms involving “big-O” no-
tation with undetermined constants (which in fact could
depend on d in a totally unspecified way), forcing us to
re-prove it here. Considering the circumstances, though,
we’ll work fast and omit some details; also most of what
we say was done by Spielman and Teng [167].

In the special case d = 1, the claim is trivially seen to
be true, so assume d ≥ 2.

Some key lemmas of [132] are that all “inversive trans-
formations” are conformal and sphere-preserving, and in
particular the “stereographic projection” from a d-space
onto the surface of a sphere in (d + 1)-space is confor-
mal and sphere-preserving. (Hyperplanes are regarded
as spheres of infinite radius.)27 Also, given N points on
a sphere in (d+1)-space (or lying on a flat d-space) there
exists an inversive transformation which will (of course)
leave these points co-spherical, and such that the center
of the sphere will become a Rado point, indeed a tight
one. (This is because one may always apply an infinites-
imal inversive transformation which “shoves” the Rado
point in any desired direction, while leaving the sphere
invariant.)

So place 1 “representative” point somewhere in the
interior of each of our N balls (arbitrarily) and stereo-
graphically map everything onto a sphere Q in (d + 1)-
space in such a way that the sphere center is a Rado
point. Now consider a random hyperplane through the
sphere center (which upon un-transforming, will be the
separating sphere S in d-space). The Rado point prop-
erty forces the claims about “≤ N/(d+ 2),” so the only
thing left to prove is the claim about “≤ cdκ1/dN1−1/d.”

27The “inversive group” of transformations of Rd consists of
translations ~x→ ~x+~a, scalings ~x→ c~x, and inversions ~x→ ~x/|~x|2,
and everything one may generate by composing these. A famous
theorem of J.Liouville states that the elements of this group are
the only conformal maps of Rd ∪∞ when d ≥ 3.

Now it may be shown28 that if the Euclidean radii of
the N spheres on Q are r1, r2, ..., rN , then the expected
number of them cut by a random hyperplane through
the center of Q is

1

Fd+1(1)

N∑
i=1

Fd+1(ri), (50)

Fd(x) =

∫ x

0

(1− x2)(d−3)/2dx. (51)

This is an incomplete beta function. But we will only
use the trivial facts that

• F3(x) = x

• if d > 3 then 0 < Fd+1(x) < x.

• Fd+1(1) = (d+1)•d+1

2d•d

= ◦d+1

2◦d

.

Hence the expected number C of balls cut by S obeys

C ≤ 2 ◦d
◦d+1

N∑
i=1

ri. (52)

Now by considering d-area, we know that

•d
N∑
i=1

rdi ≤ κ ◦d+1. (53)

The combination of (EQ 52) and (EQ 53) with Hölder’s
inequality [94] leads to

C ≤ 2 ◦d
◦d+1

N1−1/dκ1/d(
◦d+1

•d )1/d = 2d1/d(
◦d
◦d+1

)1−1/dN1−1/dκ1/d

(54)
which is the result (EQ 49) claimed (the asymptotic se-
ries arises from “Stirling’s formula”).

Theorem 48 (Additional strengthening of Miller
by constant factors) The bound cdκ

1/dN1−1/d of the
previous theorem may be decreased as follows.

1. If ρ(d, κ) ∈ (0, 1] is the maximal possible average eu-
clidean radius achievable by a κ-thick set of N spher-
ical caps on a unit sphere in (d+1)-space, expressed
as a fraction of the euclidean radius of a spherical
cap of area ◦dκ/N , then we may multiply cd by

ρ(d, κ) (1 + o(1)). (55)

For all sufficiently large d, 0.5 ≤ ρ(d, 1) <
0.660185901 if N is large enough.

2. For the unweighted case only, we may (also) multiply
cd by

1 + (d+ 1)1−1/d

(4 + 2d)1−1/d
(1 + o(1)), (56)

which when d is large is approximately 1/2.

28By realizing that the unit vector orthogonal to the hyperplane
lies in a “great belt” of width 2rk if and only if the hyperplane
cuts a spherical cap of euclidean radius rk.
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Here the “o(1)” terms apply in the limit where
κdN

d−1 →∞ with d fixed.

Remark. When d = 2, we had c2 = 2. Applying item
1 only yields c′2 < 1.90463, while applying both yields
c′′′2 < 1.83973.
Remark. When d = 3, we had c3 ≈ 2.135. Applying
item 1 alone yields (conjecturally) c′3 ≈ 1.48853; apply-
ing item 2 alone yields c′′3 ≈ 1.61876; and applying both
yields (conjecturally) c′′′3 ≈ 1.48634. See remark (i) be-
low.
Proof. To prove (EQ 56) in the unweighted case, we
make the center of the sphere a tight Rado point (i.e.,
an intentionally bad one!) so that, ignoring o(N) terms,
N/(d+2) cap-representatives lie on some hemisphere and
(d+1)N/(d+2) on the other. This allows us to multiply

cd by a factor 1+(d+1)1−1/d

(4+2d)1−1/d , which is approximately 1/2

when d is large.
Also, our previous argument for bounding cd had ar-

gued that the sum of some disc areas could not exceed κ
times the area of the region they were packed into. But,
going further, we realize that there is always going to be
some “inefficiency” in our packing, since spheres, unlike
cubes, cannot tile. The situation is complicated by the
facts that

1. It might be best (in order to maximize the average
radius) to use discs whose sizes are slightly unequal,
and

2. We are not asking for a packing (except when κ =
1), we are asking for a κ-thick configuration.

Anyhow, if 0 < ρ(d, κ,N) < 1 is the maximum possible
average euclidean radius of κ-thick spherical caps on the
surface d-area of a sphere in (d+ 1)-space, as a fraction
of the euclidean radius of a spherical cap of area ◦dκ/N ,
then we are allowed to improve our bound by multiplying
cd by ρ(d, κ,N) < 1. And in fact, since in the theorem
statement we are neglecting o(N) terms, we are even
allowed to use ρ(d, κ) ≡ lim supN→∞ ρ(d, κ,N).

The fact that .5 < ρ(d, 1) < 0.660185901 arises
from the randomizing argument lower bound 2−(1+o(1))d

and the Kabatiansky & Levenshtein [52] upper bound
0.660185900765(1+o(1))d on the density of packings of
spherical caps of equal angular diameters θ, 0 < θ < π/2.
To explain how an upper bound on packing density for
equal balls can lead to an upper bound on the average
radius for disjoint unequal balls: To define a convenient
length scale, suppose the radius of N equal spherical
caps, under the false assumption that they could tile
a sphere’s surface perfectly without wasting any area,
would be 1. Kabatiansky & Levenshtein then says that
in fact, the radius of equal spherical caps would have
to be ≤ K, K = 0.660185900765..., in high dimensions.
With unequal caps, the cardinality fraction with radius
≥ (1 + ε)K cannot be more than (1 + ε)−d. This will
cause the average radius to be

≤ K +K

∫∞
0
x(1 + x)−d−1dx∫∞

0
(1 + x)−d−1dx

(57)

nonumber (58)

= K +
K

d− 1
=

Kd

d− 1
. (59)

If d is sufficiently large, Kd/(d− 1) < 0.660185901 (note
the upward rounding) as claimed. 2

Remarks.
(i) The ρ idea is useless when κ→∞, because (as one

may easily show by using a random placement of equal
spherical caps, with “excess removed”) then ρ → 1−.
But for any fixed finite κ, improvement is possible.

Table 1 gives the known values of the maximal area
density achievable by κ-thick unit discs in the plane,
whose centers are constrained to lie on a lattice. (When
κ = 1, this density is optimal even without the lattice
constraint [52]. The latest result – κ = 9 – is due to
Temesvari [170]; earlier cases were by Heppes [98] and
Blundon [17], among others.) In the cases with κ ≤ 4,
the number is simply the same as just κ copies of the
penny packing, but when κ > 5, higher density is possi-
ble. One might then conjecture (with less and less con-
fidence for higher values of κ) that ρ(2, κ,N)d is upper
bounded by κ−1 times the entry in the κth row of this
table. In fact, for κ = 1, this conjecture was proved by
Spielman and Teng [167] but, more simply, follows im-
mediately from our argument involving lemma ?? and
Fejes Toth’s [67] [68] bound

r2 ≤ 3− cot(
πN

6N − 12
)2 =

8π√
3N

+O(N−2) (60)

on the euclidean radius r of N ≥ 3 disjoint equal circles
packed on a sphere.

κ density

1 π/
√

12 ≈ 0.9069

2 π/
√

3 ≈ 1.8138

3
√

3π/2 ≈ 2.7207

4 2π/
√

3 ≈ 3.6276

5 4π/
√

7 ≈ 4.7496

6 35π/
√

384 ≈ 5.6112

7 8π/
√

15 ≈ 6.4892
8 3969π

4
√

220−2
√
193
√

449+32
√
193
≈ 7.5217

9 29π/
√

84 ≈ 8.5694

Table 1: Maximum lattice densities for κ-thick unit balls
in 2D.

Similarly table 2 gives the known values of the maxi-
mal density achievable by κ-thick unit balls in 3-space,
whose centers are constrained to lie on a lattice [69]. W-
Y. Hsiang claims [100] to have finally established “Ke-
pler’s conjecture” that when κ = 1, this density is opti-
mal even without the lattice constraint, but the following
experts on sphere packing {K.Bezdek, J.Conway, G.Fejes
Toth, T.Hales, D.Muder, N.Sloane} reject that claim29.
The best upper bound on density for 3D nonlattice pack-
ings of equal balls currently available to those disputing
Hsiang’s proof is Muder’s [140] 0.773055 . . ..

29But everybody nevertheless believes the conjecture is true.
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κ density

1 π/
√

18 ≈ 0.74048

2 4
√

12π/27 ≈ 1.61226

Table 2: Maximum lattice densities for κ-thick unit balls
in 3D.

With κ = 1, this is due to C.F.Gauss in 1831 [52]; the
result with κ = 2 is from [70].

It is known [25] that the maximum achievable volu-
metric density of 120 equal spherical caps on the surface
of a 4-ball is

12− 60

π
sin

π

5
≈ 0.77413, (61)

(achieved by the 120 in-balls of the dodecahedral faces
of the “120-cell” regular 4D polytope, projected onto a
sphere; In this packing, each ball touches 12 neighbors
and the points of contact are the 12 vertices of a regular
icosahedron) and it seems extremely likely [56] [68] that

ρ(3, 1)3 ≤ max
N

ρ(3, 1, N)3 = ρ(3, 1, 120)3 < 0.77413

(62)
This is the conjecture we’ve used to get c′3 ≈ 1.48853 in
the remark. The stronger conjectural bound ρ(3, 1)3 ≤
π/
√

18 ≈ 0.74048 is also plausible and would have led to
c′3 ≈ 1.42383.

(ii) The theorem is also valid if we are interested in
having weight ≤ 1/(d + 2) on either side of the separat-
ing sphere, for any of a wide class of unit-mass weight
measures. However, it is not valid to use the improve-
ment (EQ 56) resulting from the “tight Rado point trick”
in this case. The improvements arising from bounds on
packing efficiency (i.e. ρ < 1) are still legitimate, when
you can get them.

(iii) We had hopes that even better constants could
be obtained, both here and in the planar separator theo-
rem (§2.7), by use of the “second moment method” from
probabilistic combinatorics.

However, this hope is squashed by the following: Con-
sider the usual “penny packing” (where the centers of
the pennies lie at the vertices of the equilateral trian-
gle lattice). Consider a random line; how many pennies
does it hit? The answer is that the infinite strip of width
1 centered on the line contains within it an asymptotic
density of penny centers which does not depend on the
line (if we exclude special “rational” lines occuring with
probability 0); and by use of this fact it is fairly easy to
construct sets of N pennies (equal spherical caps) on the
sphere with asymptotically maximal density, and such
that random great circles intersect a number of pennies
with a maximal deviation from the mean, which is neg-
ligible in comparison to that mean itself.

Theorem 49 (Additional strengthening of Miller
for equal balls) If we have N equal radius d-balls which
are κ-thick, then there exists a hyperplane separator with
≤ dN/(d + 1) of the balls entirely on one side (or the

other side), and such that at most O(N1−1/dκ1/d) balls
intersect the hyperplane.

Proof. Choose representative points in each ball. Find
a Radon point P of the representatives. Consider a ran-
dom hyperplane through P . Thanks to the Radon point
property, the ≤ dN/(d + 1) split bound follows. But
now we may project the balls radially onto a unit sphere
centered at P and then apply the same analysis (on this
sphere) as in the previous proofs. The sum of the radii

of the spherical caps is ≤ κd
∑O(N/κ)1/d

m=1 (1/m)m(d − 1)
roughly (the maximum possible value is achieved when
the N balls are crammed into as small a ball, centered at
P , as possible; the radius of this ball is the upper limit
on the sum), which is O(κ1/dN1−1/d). Hence the result
follows by (EQ 52). 2

Remark. The assumption of equal balls has improved
things in every way: The separation constants are bet-
ter, we get a slightly better split, and we get to use a
hyperplane, not a sphere.

4.5 Two thirds is best possible

Theorem 50 For each N > 0, there exists a set of N
disjoint disks in the plane, such that any circle C, cutting
O(
√
N) of the disks, and with at most fN disks entirely

inside and at most fN entirely outside, necessarily has
f ≥ 2/3− o(1).

Proof. Make 3 small-diameter clusters of N/3 disks lo-
cated near the vertices of an equilateral triangle. Each
cluster will be an “exponential spiral” of disks whose
radius increases by a constant factor every turn of the
spiral, and with a constant number of disks per turn,
and such that each disk touches its neighbors in the
spiral ordering. For example, one could use the “loxo-
dromic progression” of circles (pictured in figure 9 page
114 of [54]) each of radius g +

√
g ≈ 2.89005 (where

g = (1+
√

5)/2 ≈ 1.61803 is the “golden ratio”) in which
any 4 consecutive disks are mutually tangent.

In order to get f < 2/3, C would have to cut at least
1 of the 3 clusters into two parts, each of cardinality of
order N . If C’s radius is large compared to the diameter
of a cluster, then this is impossible without cutting order
N disks. If C’s radius is comparable to or smaller than
the diameter of a cluster, then both the other clusters
will lie outside C. 2

Remarks.
(i) The same 2D example, but with d-balls instead of

2-balls, shows that f < 2/3 is also impossible for sphere
separators for balls in d-space, for any d ≥ 2.

(ii) This same counterexample also works in a large
number of other scenarios, for example if the separator
is a square, ellipse of bounded eccentricity, or equilat-
eral triangle, rather than a circle. Or if the objects are
squares rather than discs. In all these cases also, 2/3 is
best possible30.

30 One nice proof for squares arises from clusters that are subsets
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We also claim

Theorem 51 For each N > 0, there exists a set of N
disjoint disks in the plane, such that any circle C with
at most fN disks entirely inside (or entirely outside) it
(for some constant f , 1/2 < f < 1) must cut at least

(1− o(1))
√

2
√

3π(1− f)f circles.

Proof sketch. This comes, via a stereographic projec-
tion, from spherical caps whose centers are from the point
set in the proof of theorem 60. 2

4.6 The dependency on d, κ, and N is best possible up
to a factor ∼ 4.5

In theorem 39, the number of d-cubes partly inside and
partly outside the separating box was

O(dκ1/dN1−1/d) (63)

as N →∞.

Theorem 52 (Construction showing best possi-
ble) For κ-thick objects, this bound (EQ 63) is optimal
up to the implied constant factor in the O, assuming we
are living in toroidal d-space as in remark (i) of theorem
39.

Proof. Let 0 < X < 1. When d ≥ 1 there exists a
lattice tiling of d-space by cubes of side 1 and side X,
where each side-X cube is adjacent to 2d side-1 cubes
(1 per face). Each side-1 cube is adjacent to 2d side-X
cubes (1 per face) as well as to some side 1-cubes.

When d = 1, this tiling is trivial. When d ≥ 2,
the lower-coordinate corners of the unit cubes lie at the
points of the lattice consisting of the integer linear com-
binations of the rows of the following d × d Toeplitz31

matrix M :

1 0 0 ... 0 0 X

-X 1 0 ... 0 0 0

0 -X 1 0 ... 0 0

0 0 -X 1 0 ... 0

...

0 0 0 ... 0 -X 1 .

One may verify that det(M) = 1 +Xd.
Any nonzero integer linear combination of M ’s rows

must have L∞ distance ≥ 1 from ~0. Hence unit cubes
whose lower-coordinate corners lie at the lattice points,
won’t overlap. A cube of side X whose lower-coordinate
corner is at (1, 0, ..., 0) also will not overlap any of the
unit cubes. To see the above two non-overlap claims,
consider the coordinates in left to right order; to get a
small value in each coordinate the next coefficient needs

of the well known “golden spiral” tiling of the plane by squares,
where each successive square’s sidelength is g times larger. This is
best made by starting with a golden rectangle (g × 1), dividing it
into a square and a golden rectangle, and continuing on. (Also see
figure 2.4.9 of [90].)

31A matrix is “Toeplitz” if it is constant on diagonals.

to be at least as large to compensate, which can’t keep
happening since d is finite. An alternative demonstration
of the first nonoverlap claim, pointed out by L.Gurvits, is
to realize that it is implied by the fact that M−1 has L∞
norm < 1, and this fact in turn is easy to see, once you
realize that (1 +Xd)M−1 is also Toeplitz, with diagonal
values −X, −X2, ..., −Xd−1, 1, X, X2, ..., Xd−1 in
order from top right to bottom left.

This tiling is of independent interest. When d = 2 it
was known to the ancients (cf. figure 2.4.2g of [90]), but
already when d = 3 it’s apparently new. In the limit
X → 0 it degenerates to the usual cube tiling from the
lattice Zd; while when X → 1 we get the “checkerboard
lattice” Dd [52].

If X is irrational, then every point of every hyperplane
(except for the union of a measure-0 set with a set of L∞
diameter ≤ 1 + X) lies inside a cubical tile. Thus in a
strong sense, there are no (perfect) “separating hyper-
planes” if d ≥ 2. Also, no two cubes share a (mutually
complete) (d − 1)-face32, or for that matter, apparently
any k-face for any k > 0.

If X = p/q is rational we have a tiling of a cubical
d-torus of side q+p by cubes of sides 1 and X, such that
every point of every hyperplane (except for the union of
a measure-0 set with a set of L∞ diameter ≤ 1 +X) lies
inside a cubical tile.

Tile a d-torus universe with a roughly N1/d ×N1/d ×
...×N1/d grid where each cube has side 1 or side α, where
α is arbitrarily close to 1, as above.

Now, consider a separating d-box. This box cannot
be a 1/3-2/3 separator unless its “inside” and “outside”
both have d-volumes between .33N and .67N .

Now, the box’s surface area S (by an isoperimetric
theorem for d-boxes which is readily proven by Steiner
symmetrization) must then obey S ≥ 2d(.33N)(d−1)/d.
Then, for any d-box with surface area S, we claim at
least (1− o(1))S of our cubes intersect its surface33.

To conclude, we’ve shown the existence of an example
with κ = 1 such that any 1/3-2/3 separating box must
cross at least

2dκ1/d(.33N)1−1/d (64)

of our cubes. The same result for any κ > 1 arises by
superimposing κ copies of the example with κ = 1. 2

This is within an asymptotic factor of 4.5 of the upper
bound (EQ 32) of theorem 39, which, for d large, is

∼ 2.95dκ1/dN1−1/d. (65)

Remark. Other proofs of optimality up to a constant
factor (but with worse constants) may be based on tilings
of the plane by dominos with no separating line (lead-
ing to a proof for all d ≥ 2), or on a clever tiling of

32The small cubes do share their entire face with part of the face
of a large neighbor, though.

33Worries about overcounting cubes which intersect more than
one face of the box may be avoided by realizing that they are
asymptotically negligible if every sidelength of the d-box is � 1.
On the other hand, if any sidelength were only O(1), then the
box’s surface area would be far larger than our bound on S, easily
overcoming any 2d overcounting factor if N = dΩ(d).
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R3 by unit cubes, with no separating plane, found by
Peter Shor: The cubes have centers at (0, 0, 0), (0, 1, x),
(1, x, 0), (x, 0, 1), (0, 1, x̄), (1, x̄, 0), (x̄, 0, 1), and (1, 1, 1)
mod 2, where 0 < x < 1 and x + x̄ = 2 (leading to a
proof for all d ≥ 3).

4.7 Algorithmic versions

For this subsection, assume the input consists of iso-
oriented d-cubes with disjoint interiors. Extensions to
the κ-thick case are quite easy. In O(N2d+1) steps, one
could consider all possible inequivalent rectangle shapes
and thus find the best rectangle separator by brute force.
However, this approach is inefficient.

A better approach is based on the idea of a “separating
d-annulus.” This is two concentric d-boxes of bounded
CV aspect ratios and with a ratio of linear dimensions
bounded below by some constant greater than 1, such
that at least a constant fraction of the objects’s bound-
aries lie inside the inner box, and at least constant a
fraction lie outside the outer box.

If we can find a separating annulus, then it immedi-
ately follows from the assumption that the interiors of
the objects are disjoint – by a randomizing argument
similar to the one in the proof of theorem 39 involving
“F” – that a random d-box containing the inner box and
contained in the outer box, will cut an expected number
of O(N1−1/d) of the objects. Since a nonnegative ran-
dom variable lies at or below twice its expectation value
with probability ≥ 1/2, we may, then, simply guess a box
and then confirm in O(Nd) steps that it works (with an
expected number of 2 guesses being required before suc-
ceeding).

It is also possible to find the best (that is, cutting
the fewest objects) separating box concentric with the
inner annulus box, deterministically in O(N logN) time
by sorting the min-radius and max-radius points in the
objects, then performing a linear time scan over the re-
sulting 1D intervals.

Also, a not necessarily best, but nevertheless good
enough (i.e. within a constant factor of best), separat-
ing box concentric with the inner annulus box, may be
found by a “bucket sort” of these radius values into 2N
equally spaced “buckets,” and then find an upper bound
on the number of 1D intervals overlapping each bucket.
One may prove that at least one bucket must have few
enough overlaps, because otherwise the total d-volume of
the objects would be too large. This approach runs on
O(N) time on a RAM featuring a unit time bxc opera-
tion.

We know of two efficient ways to find a separating
d-annulus; one is deterministic and the other is random-
ized.

4.7.1 Deterministic method

For simplicity, we will describe the method in 2D assum-
ing the objects we are separating are iso-oriented squares.
We’ll then describe its generalization to d dimensions.

We will find a separating d-annulus made of two concen-
tric d-cubes with sidelength ratios 1 : 3. Unfortunately,
this method does not achieve the optimal constant “2/3”
in the split in theorem 39.

1. We assume WLOG that the N input squares are
in general position, in particular the coordinates of
all their corners are distinct. The reason we may
assume this is because when we input them we could
preshrink them by random factors selected from the
range (1− ε, 1), where ε > 0 is infinitesimal.

2. For any ε > 0, we can find34 in linear time num-
bers x1, x2, x3 such that the four intervals (−∞, x1],
(x1, x2], (x2, x3], (x3,∞) each contain 1/4 (plus or
minus ε) of the x-coordinates of the left hand sides
of the squares.

3. Choose whichever of the two finite intervals I is
shorter – WLOG I = (x2, x3]. Let W denote the
set of squares whose left sides fall in (x2, x3] and
now do the same trick with y-coordinates of tops of
squares in W – giving intervals (−∞, y1], (y1, y2],
(y2, y3], (y3,∞) – let J be the shorter of the two
finite ones. Then 1/16± 2ε of all squares have their
top left corners in the rectangle R = I × J . Choose
whichever of I and J is longer, let the inner square
S0 of the annulus just contain R, and let the outer
square S1 have the same center but with side almost
three times longer.

4. Conclusion: Immediately R ⊆ S0 contains bits of at
least N/16 squares. Also, S1 does not reach across
the other of the two inner intervals in the long di-
rection (e.g. if the long direction of R is x-direction,
it does not reach x-coordinate x1), and so at least
N/4 of the squares are not wholly inside S1.

5. To optimize this, instead of 1/4-1/4-1/4-1/4 split in
step 2, use .1-.4-.4-.1. This will force at least .1N
squares to be at least partly inside S0 and at least
.1N to be at least partly outside. S0 and S1 will
still be concentric with length ratio 3 : 1.

This algorithm generalizes to d dimensions. The best
splits are Ai-Bi-Bi-Ai in the ith dimension, where Ai
and Bi may be generated backwards starting from Ad =
Bd = 1/4 by means of the recurrence 2Ai = 1 − 2Bi =
Ai+1/(1 + Ai+1). The solution of this recurrence is
2Ad−k = 1/(2k+2 − 2k − 1).

The outer cube S1 will be 3 times the sidelength of the
inner cube S0, and at least A1N cubes have borders at
least partly inside S0 and at least A1N cubes will not be
wholly inside S1, where A1 = 1/(2d+2 − 2d − 2).

4.7.2 Randomized method

The randomized method is as follows. Pick a random
subset q of the N objects, and find their optimal separa-
tor (or just find any separating d-annulus) by brute force

34By using a linear time selection algorithm [16] [72].
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in (e.g., if the objects are iso-oriented d-cubes) O(|q|)d+1

steps. (Anyhow, some function of |q| and d steps, more
generally.)

Now we claim that, if |q| is a sufficiently large constant,
in fact it will suffice if |q| = Ω(ε−2d3 ln(d/ε)), then the
resulting separator will in fact be a separator with a split
balance only 1 + ε times worse than best possible, with
constant success probability. Success may be verified in
O(Nd) steps.

This may be proven using the VC dimension tech-
niques explained in §4.7.4.

4.7.3 Comparison

To compare the two algorithmic approaches: The ap-
proach of §4.7.1 ran in O(dN) time but produced a possi-
bly exponentially poorly balanced – Ω(2d):1 – split. Also,
although perhaps it may be generalized to separate ob-
jects other than d-cubes by separators other than boxes,
such generalizations seem to be ad hoc and unreliable.
The randomized approach (§4.7.2) produces a well bal-
anced split – O(1):1 at worst, and within (1 + ε) of the
optimal balance, with high probability – but consumes
(d/ε)O(d)N (expected) runtime. This approach is trivial
to generalize maximally.

This same approach also works to algorithmicize the-
orems 47 and 48.

4.7.4 VC dimension in a nutshell

Suppose you have a set of allowed “ranges” R over some
space S.

Definition 53 The “VC-dimension” of R in S is the
maximum v such that for any v-point subset Q of S: for
each of the 2v subsets q of Q, there exists an r ∈ R such
that r ∩Q = q, i.e. Q is “shattered” by R.

Example: If S is d-dimensional Euclidean space and R
is halfspaces, then v = d+ 1.

The two key theorems about VC dimension [177] [63]
[96] [112] are as follows.

Theorem 54 (ε-approximation theorem) . Given a
finite set Q of N points in S, and a set R of ranges
(subsets of Q)35 with finite VC dimension v, there exists
a subset q of these N points which is an “ε-approximation
for R.” Meaning: for all r ∈ R,

| |q ∩ r|
|q|

− |Q ∩ r|
|Q|

| ≤ ε. (66)

Furthermore, not only does such an ε-approximation ex-
ist, in fact a random subset of cardinality

c

ε2
(v ln

v

ε
+ log

1

δ
) (67)

for some absolute constant c (and c = 24 suffices) will
work, with success probability at least 1− δ.

35Instead of requiring Q to be finite, we may instead demand
that the indicator function of R over Q be measurable over the
combined space of both Q and R.

It seems to be unknown what the best possible con-
stant c is, in theorem 54. Indeed the best possible “con-
stant” may tend to zero, since when ε→ 0+ with v held
fixed, better asymptotic behavior is available [129].

However (EQ 68) in the theorem below has the best
possible constant [112].

Theorem 55 (ε-net theorem) Given a finite set Q of
N points in S, and a set R of ranges with finite VC
dimension v, there exists a subset q of these N points, of
cardinality

(1 + o(1))
v

ε
ln
v

ε
(68)

which is an “ε-net for R.” Meaning: for all r ∈ R,

|Q ∩ r|
|Q|

≥ ε ⇒ q ∩ r 6= ∅. (69)

In fact, if “v” in (EQ 68) is weakened to “8v” then a
random subset works, with constant probability.

Now, to prove the algorithmic claim in §4.7.2, we make
the “ranges” be cubical “annuli,” which we can see36

have VC dimension v ≤ 2d + 2 in d-space, and ask for
ε/d approximation.

4.8 Counterexamples to putative strengthenings

The Miller-Thurston theorem 47 cannot be made to hold
for separating, e.g., squares, at least not by means of
some simple trick such as circumscribing circles about
the squares. This is because configurations of disjoint
squares exist whose circumballs are infinitely thick, cf.
figure 10.

Also, it is impossible to get a separator theorem like
theorem 39 or 47 but using a hyperplane as the separa-
tor. This is because “exponential spiral” configurations
of disjoint squares exist such that any line with a con-
stant fraction of the squares lying to each side, must cut
at least a constant fraction of the squares (§6.2 and foot-
note 30).

There exists a set of N 2-thick convex objects in d-
space, for any d ≥ 3, N ≥ 2, such that every pair of
objects overlap. (To see this, consider N mutually neigh-
boring Voronoi polytopes as in [160], shrink each of them
slightly to make them all disjoint, and then “inflate” each
face of each polytope into a low “pyramid” so that every
polytope now intersects every other polytope with which
it used to share a (d − 1)-face.) Hence there is no way
to separate even the elements of a single pair by use of a
hyperplane, or sphere, or anything else.

A simple 2D version of the counterexample above is the
fact than N line segments can (and generally will, if they
are long enough) be mutually crossing. Hence slightly

36 Even the full set of all doubly convex d-annuli, that is, convex
bodies with a hole which is an enclosed convex body, has VC dimen-
sion≤ 2d+2, because the following (2d+3)-point set S = S1∪S2∪P
cannot be shattered: S1 is d + 1 points forming the vertices of a
d-simplex; S2 is another d+ 1 forming an enclosed d-simplex, and
P is a final point enclosed by both simplices. It is impossible for
all of S2 but none of S1 ∪ P to be in a doubly convex d-annulus.
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“thickening” the line segments yields a 2-thick set of N
convex objects, all mutually overlapping. But this coun-
terexample is not as satisfying as the (≥ 3)-dimensional
counterexample above, because our 2D convex objects
are no longer “pseudodiscs.”

“Pseudodiscs” in the plane are the interior of Jor-
dan curves such that any two pseudodiscs intersect in
a manner topologically equivalent to the way two circu-
lar discs intersect. (E.g. with boundaries crossing each
other at ≤ 2 points.) Let N(κ) denote the maximum
number of κ-thick pairwise mutually overlapping pseu-
dodiscs. N(1) = 1.

Fact 56 N(2) = 4. Consequently, among any 5 convex
2-thick pseudodiscs in the plane, there exists a line sepa-
rating at least one of them from at least one other among
them.

Proof. The 2-thick regions may be thought of as the
edges of a planar graph whose N vertices correspond
to the N pseudodiscs. (Planar: because no two 2-thick
regions may intersect, due to 2-thickness.) Kuratowski’s
theorem on the non-planarity of K5 then shows N(2) ≤
4. Figure 1 shows N(2) ≥ 4. The existence of the line
follows from the fact that any two disjoint convex sets,
are separable by a hyperplane. 2

We do not even know whether N(3) is finite.

5 Planar graph separator theorems: four
proofs and two lower bounds

In §5.1 we present simplified versions of older proofs of
the planar separator theorem. Our geometric results lead
to new proofs (§5.2): a “squares” proof which also works
for torus and Klein bottle graphs, and a “circles” proof
yielding a record value [167] for a planar separator con-
stant.

5.1 Two simplified combinatorial proofs

Lipton & Tarjan [125]’s original proof may be greatly
simplified if we weaken their constant to 4 instead of

√
8.

We may assume the graph is maximal planar WLOG
since the separator of a graph with an edge superset can
only be worse, and since the algorithm of [44] will suffice
to embed the graph in the plane (and then triangulating
it by adding diagonals in linear time is trivial) in linear
time.

Theorem 57 (Simple planar separator) The V ver-
tices of any maximal planar graph G with non-negative
vertex weights Wv summing to 1 may be partitioned into
3 sets A, B, C so that

∑
v∈AWv ≤ 2/3,

∑
v∈BWv ≤

2/3, and |C| ≤ 4
√
V . This partition may be found algo-

rithmically in O(V ) time.

Algorithmic Proof. Do a breadth first search of G
starting from some vertex r. This BFS forms a tree T
of the shortest paths from r. Find the least D such that

there is weight ≤ 1/2 among the vertices at distances
≥ D from r. Find two distances D1 and D2 so that
max{0, D −

√
V /2} ≤ D1 ≤ D < D2 ≤ D +

√
V /2 and

such that the numbers of vertices at distances D1 and
D2 from r total ≤ 2

√
V . (These must exist.)

Consider cutting G into ≤ 3 pieces by removing the
vertices at distances D1 and D2 from r. If the middle
piece has weight ≤ 2/3 we are done, so suppose not.
In that case (by contracting all the vertices at distances
≥ D2 from r into a supervertex q, then contracting all
the vertices at distances ≤ D1 from r into r; weights on
supervertices are the sums) we may WLOG assume that
all vertices of G are at distances ≤

√
V from r.

Now the “outside” of T may be thought of as a triangu-
lated simple polygon (drawn on a sphere) with ≤ 2V − 2
sides (the ≤ V − 1 edges of T , going both ways) and
whose diagonals are the edges of G − T . By Chazelle’s
(weighted) polygon cutting theorem (§2.1), this polygon
has a “splitting diagonal” with weight at most 2/3 to
either side of it. But the addition of this edge to T re-
sults in a graph with exactly one cycle, of circumference
≤ 2
√
V .

Let C consist of the vertices of this cycle, together
with the two levels at distances D1 and D2 from r in the
original G. C has total cardinality ≤ 4

√
V and must (by

its removal) split G into pieces of weight ≤ 2/3. 2

A more elaborate version [60] of the argument above
reduces the bound “4

√
V ” to “

√
6V ,” still with an O(V )-

time algorithm. This is the best known linear time algo-
rithmic planar separator result, as measured by either of
the figures of merit (EQ 7), (EQ 8).

Perhaps the simplest proof of the above planar separa-
tor theorem (but now purely an existence proof, without
any O(V )-time algorithm) arises by simplifying the proof
of [4].

Ultrasimple graph-theoretic proof. Consider the
shortest simple cycle containing weight ≥ 2/3 on or “in-
side,” but ≤ 2/3 inside. If this cycle has ≤ 4

√
V edges

we are done, so assume not and we’ll show a contradic-
tion. View the cycle as a “square with >

√
V dots on

each edge.” Remove everything outside the cycle. Dis-
joint paths from the ith vertex on the East side of the
square to the ith on the West must exist, and similarly
North-South. Hence there is a “grid” forcing there to
be > V vertices inside/on the cycle, an impossibility.
Why must all these disjoint paths exist? Well, if a path
existed shorter than

√
V we could contradict minimal-

ity; if two paths conjoined we would contradict mini-
mality also, via “Menger’s theorem,” (a special case of
the max-flow min-cut theorem) which states in this case
that the

√
V North-Souths had better exist disjointly (for

“flow≥
√
V ”), otherwise an East-West path (“cut”) will

exist shorter than
√
V . 2

A much more elaborate version [5] of the above proof
reduces the bound “4

√
V ” to “

√
4.5V .” This is the best

known weighted (and unweighted) planar separator re-
sult, as measured by (EQ 8).
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5.2 Two geometric proofs

But it is also possible to prove our planar separator the-
orems geometrically. We now prove an edge separator
theorem for torus graphs.

5.2.1 Geometric proof via squares – also works for torus
graphs.

There is a beautiful 1-1 correspondence, first discovered
by Brooks, Smith, Stone, Tutte [29], between

• polyhedral (that is, 3-connected) planar graphs G
with E edges, one of them distinguished, and

• “squared rectangles” R (that is, a tiling of a rectan-
gle by squares, not necessarily of equal sizes) with
E − 1 tiles.

We’ll now describe and prove this.
Each vertex of G will correspond to a maximal hori-

zontal line segment in R (note: such a line segment could
be the concatenation of more than one tile side). Each
edge of G will correspond to a square tile in R, except for
the distinguished edge, which corresponds to the exterior
of R. Finally, each face of G corresponds to a maximal
vertical line segment in R.

Figure 5: Squared square with 13 tiles. (Bouwkamp
1946.)

Figure 6: Equivalent electrical network with currents
shown. Dashed edge is the “distinguished” edge con-
taining the battery; other edges are 1Ω resistors.

Now view each edge of G as a 1-ohm resistor, except
for the distinguished edge, which is a battery. The cur-
rent through each edge will correspond to the width of
the corresponding square tile, and the voltage across each
resistor will correspond to the height of the correspond-
ing square tile. The currents that will then arise satisfy
“Kirchoff’s laws,” which state that

• charge conservation The current flowing into a
vertex equals the current flowing out – this corre-
sponds to the fact that the sum of the sidelengths
of the squares above some horizontal line segment
must equal the sum of the sidelengths of the squares
below.

• no flow cycles The voltage differences around any
cycle (in particular a face) of G, excluding cycles
which involve the battery, is 0 – this corresponds
to the fact that the sum of the sidelengths of the
squares to the left of some vertical line segment must
equal the sum of those to the right. (Or equivalently,
this is charge conservation in the planar dual graph
G′ using planar dual currents; planar duality corre-
sponds in the rectangle world to turning your head
90 degrees.)

• Ohm law The current across an 1-ohm resistor is
the same as the voltage across it. This corresponds
to the fact that the height of a square is the same
as its width, i.e. the tiles are indeed squares.

Since any such electrical circuit has a valid current
flow, which is unique, through it, and as we’ve seen the
equations of current flow are exactly the conditions for
validity of a squared rectangle, we see that for each G
with a distinguished edge there exists a unique squared
rectangle. On the other hand, for each squared rectangle
there clearly exists a unique corresponding G.

Now applying theorem 39 instantly shows that for any
embedded 3-connected planar graph G with E edges,
there exists a Jordan curve (which may travel through
faces, or encounter vertices, or cross or traverse edges,
of G) crossing or traversing ≤ (4 + o(1))

√
E edges and

having a total number of encounters with vertices, plus
having a total number of trips through faces, totalling
≤ (4 + o(1))

√
E, and such that this Jordan curve will

split any of a variety of weight measures 1/3-2/3 or bet-
ter.

We conclude

Theorem 58 For any polyhedral graph with E edges,
there exists a smooth closed curve traversing and/or
crossing ≤ (4 + o(1))

√
E edges in total, whose removal

will subdivide the graph into 3 parts, the two main ones
each having weight ≤ 2/3 (for any of a large variety of
permissible non-negative weight functions summing to 1,
e.g. weights on edges).

Remarks:

(i) The proof above leads to a polynomial time algo-
rithm, because the square sizes may be found by solving
a system of V sparse linear equations embodying Kir-
choff’s laws. But this algorithm is not particularly fast –
using the scheme of [127] improved as in footnote 5, we
get a solution in O(V 1.188) arithmetic steps.

(ii) The squares proof above was actually only for 3-
connected planar graphs (“planar nets”) but generalizes
to show that 2-connected torus graphs, each of whose
valencies and face sizes are ≥ 3, have a 1/3-2/3 separator
theorem with≤ (4+o(1))

√
E vertices in the separator via

“squared rectangular toruses” (a “rectangular torus” is a
rectangle with opposite edges identified to get “periodic
boundary conditions,” cf. figure 7).

Squared tori arise as follows. Take a 2-connected
embedded torus graph G (each of whose valencies and
face sizes are ≥ 3, and whose edges are to be regarded
as 1-ohm resistors) and draw a smooth closed non-self-
intersecting curve J which cannot be shrunk to a point
(due to the fact that it winds exactly once around the
“handle” or the “hole” of the torus) and which cuts edges
at most once per edge. Wherever J crosses an edge, put
a battery in series with the 1-ohm resistor corresponding
to that edge. All the batteries have the same voltage and
all their polarities are oriented “outward” with respect
to J .
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(iii) This is not the record smallest constant in a torus
graph separator theorem; e.g. by combining [1] and [4]
one may get an (unweighted) 2/3-separator for torus
graphs with

√
12.5V vertices. However, our separator

has simple structure, since it corresponds to a single
closed curve; the competing theorems so far have only
achieved better constants at the cost of structural com-
plexity. Consideration of the

√
V ×

√
V toroidal grid

graph indicates that it would be impossible to shrink
“
√

12.5” below “2.”

(iv) One can also make “squared cylinders” [9], which
arise very similarly to squared rectangles (which are a
special case of them) except that instead of having a dis-
tinguished edge, we have a distinguished pair of vertices.
Of course, these still are merely a special case of squared
tori.

(v) “Squared Moebius strips” and “squared Klein bot-
tles” can also be done (J in the torus construction now
becomes a cut across the Moebius strip, respectively
across the orientation reversing side of the Klein bottle
square, rather than a closed curve).

(vi) This method does not work to produce abun-
dances of “squared projective planes” because the cur-
rent is supposed to flow “down” and there is no down.
Colloquially, “you can comb the hair on a rectangle,
cylinder, Moebius strip, torus, and Klein bottle, but you
can’t comb the hair on a projective plane.” (See figure
7.) The question of whether it is possible to “square” the
projective plane depends on the definition of a “squar-
ing.” Since L∞ balls can include digons (as in figure
7) and even stranger shapes (figure 8), it seems unnatu-
ral to define “squares” to be “L∞ balls.” This problem
arises because the projective plane, as we have drawn it
in figure 7, is not a manifold at all. However it may be
realized as a hemisphere with antipodal equatorial points
identified (this is just noneuclidean “elliptic” geometry)
in which case we do have a genuine manifold. Then every
point would be locally euclidean, but only in infinitesimal
neighborhoods, since there is constant positive Gaussian
curvature. If we require a “square” to be a 4-gon, then
this curvature frustrates squaring attempts: It is impos-
sible to tile elliptic geometry with topological 4-gons with
90◦ corners37! Nevertheless by consideration of a cube
drawn (by central projection) on the surface of a sphere
(and by identifying antipodal points, the sphere’s surface
may then be converted to elliptic geometry), we see it is
possible to “square” the projective plane, if squares with
120◦ corners, and equal geodesics for edges, are allowed.

From these ruminations we conclude that the only

37Consider the graph of a “squared” manifold with no boundary
(where the vertices of the graph are the points where at least three
squares meet and edges are the sections of boundaries of squares
joining them). With F squares there are 4F “corners,” occurring
two at each vertex of degree 3 and four at each vertex of degree 4.
So if V3 and V4 are the numbers of such vertices respectively we
have 4F = 2V3 + 4V4, but also 2E = 3V3 + 4V4 and V = V3 + V4

where E and V are the numbers of edges and vertices respectively.
From these equations we get E = V +F , so the Euler characteristic
of the surface is 0. Thus a squared torus or Klein bottle is allowed,
but a squared projective plane is not.

“natural” way to define a “squared projective plane” is
to require the “squares” to be simultaneously L∞ balls,
and locally convex 4-gons, i.e. to disallow squares with
a noneuclidean point of the manifold inside. This same
convention allows one to consider, e.g. “squaring the
cube” by regarding the surface of a cube, using the usual
surface metric, as a manifold with 6 special noneuclidean
points. Indeed, it becomes possible to consider “squar-
ing” any other manifold with a finite number of special
points and divisible into regions isometric with euclidean
squares. See §8.2.

Figure 7: Some 2-dimensional manifolds. Pairs of points
on opposite sides of the square are identified in the orien-
tations indicated by the arrows – for sides with arrows.
If there are no arrows, that square side is just a bound-
ary. All manifolds shown have exactly the same metric
as does the Euclidean plane, in all sufficiently small fi-
nite neighborhoods of any non-boundary point, except
for the projective plane, whose “corners” are locally not
euclidean – as may be seen by considering the small 2-gon
shown, which has two 90◦ turns, both “inward.” Thus
as we have drawn it, the projective plane is not really a
manifold at all.

Figure 8: An L∞ ball in the projective plane (center
shown)

5.2.2 Geometric proof via circles

It is a theorem first shown by Koebe in 1936 [111], us-
ing deep techniques from complex analysis, and later by
Andreev and Thurston using simpler techniques from hy-
perbolic geometry, that:

Theorem 59 (Koebe) Every V -vertex planar graph
may be realized as the contact graph of V interior-disjoint
circles in the plane. In fact, every V -vertex planar graph
G may be realized as a circle configuration in this way
while simultaneously realizing its planar dual G′ and with
the contact points for the dual circles (corresponding to
the edges of G′) being identical to the contact points for
the primal circles (corresponding to the edges of G); and
with the primal and dual circles being orthogonal at these
contact points. And this realization is unique up to in-
versive transformations.

Smith [163] extended this theorem (and reproved it) by
showing that suitable center coordinates, and the radii,
of the circles, could be found to D decimal places in time
polynomial in V and D. Smith’s proof worked by reduc-
ing the problem to a “convex minimization program” in
which the function being minimized corresponded to a
certain hyperbolic volume. (Also Mohar [138] indepen-
dently found a polynomial time algorithm.)
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One may argue about whether the Koebe, Andreev,
Thurston geometrization via circles is more or less beau-
tiful than the Brooks, Smith, Stone, Tutte geometriza-
tion via squares, but anyhow, applying theorem 47 in-
stantly yields a (3/4, 1.83973

√
V ) separator theorem for

planar graphs [167], and a (3/4, 1.90463
√
V ) weighted

separator theorem with arbitrary weights (summing to
1) on each vertex, edge, and/or face of a polyhedral pla-
nar graph. If the graph is maximal planar, the separator
produced will automatically be a simple cycle.

These are the best known weighted and unweighted
planar separator results, as measured by (EQ 7).

5.3 Two lower bounds (one new) for planar separator
constants

A lower bound by Djidjev [60], whose proof we will sim-
plify greatly, is

Theorem 60 There exist V -vertex planar graphs such
that any subset C of the vertices whose removal splits
the graph into A, B with |A| ≤ xV , |B| ≤ (1 − x)V ,
x ≤ 1/2, must have cardinality at least

(1 + o(1))

√
2
√

3πx(1− x)V . (70)

Proof. There are configurations of V points on the
unit sphere such that their convex hull graph has ev-

ery edge length (in angular measure) < π
√

2/(
√

3V ),

and such that every spherically convex region of area
4πx, 0 < x < 1/2, x fixed, contains ≤ xV π/

√
12 + o(V )

points. (Such configurations may be constructed with,
e.g., the techniques of [178]; one approximates the sphere
by a sequence of developable surfaces on which are drawn
equilateral triangle grids.) Now the result follows from
the isoperimetric theorem on the sphere [71]. 2

However, as we will now see, Djidjev’s lower bound is
improvable.

Smith [162] observed that the “R-refined icosahedra”
maximal planar graphs IR (obtained by starting with
an icosahedron I0 and getting IR+1 from IR by dividing
every triangle into 4 triangles by adding extra vertices at
the edge midpoints) has 20 · 4R triangles and 10 · 4R + 2
vertices. All the vertices have valence 6 except for 12
vertices of valence 5. These graphs lead to lower bounds
which are slightly stronger than Djidjev’s in the range
0.08112 ≤ x ≤ 0.35759.

For example when x = 1/3, we need at least
√

5V/2 >

1.5811
√
V vertices in the separator, whereas Djidjev’s

bound was ≈ 1.5551; when x = 1/4, we need at least√
2.1V > 1.4491

√
V , versus Djidjev’s ≈ 1.4284. Specifi-

cally:

Theorem 61 (“Icosahedral” lower bound for pla-
nar separator theorem) Let C be a cycle of IR with
at least V/2 vertices outside it (V = 10 · 4R + 2, R suffi-
ciently large) and at least xV inside. Let |C| denote its
length (number of edges).

• If .325 ≤ x ≤ 1/2, then |C| is at least ∼ 5
√
V/10.

(This is superior to Djidjev’s lower bound in the
range 0.325 ≤ x ≤ .35759.)

• If .3 ≤ x ≤ .325, then |C| is at least ∼√
(4x+ 1.2)V . (Superior to Djidjev for all x.)

• If 1
6 ≤ x ≤ .3, then |C| is at least ∼

√
(6x+ .6)V .

(Superior to Djidjev for all x.)

• If 2
15 ≤ x ≤ 1

6 , then |C| is at least ∼
√

(8x+ 4
15 )V .

(Superior to Djidjev for all x.)

• If 0 ≤ x ≤ 2
15 , at least ∼

√
10xV edges are required.

(Superior to Djidjev’s bound when 0.08112 ≤ x ≤
2
15 .)

These cases arise respectively from the following.

Theorem 62 (Isoperimetric theorem for IR) For
simple cycles in IR containing exactly 4Rt triangles, 0 ≤
t ≤ 20:

• With 6.5 ≤ t ≤ 13.5: The length of the cycle is
≥ 5 · 2R − O(1). (Achieved by “geodesics” centered
at icosahedron vertices.)

• With 6 ≤ t ≤ 6.5: If the length of the cycle is 2u ·
2R, then the number of triangles inside is at most
(2u2−6+o(1))4R (for 6 ≤ 2u2−6 ≤ 6.5). (Achieved
by the vertices lying at path distance approximately
(u− 2)2R from two adjacent icosahedron faces.)

• With 10
3 ≤ t ≤ 6: If the length of the cycle is 3u ·

2R, then the number of triangles inside is at most
(3u2−2+o(1))4R (for 10

3 ≤ 3u2−2 ≤ 6). (Achieved
by the vertices lying at path distance approximately
(u− 1)2R from an icosahedron face.)

• With 8
3 ≤ t ≤ 10

3 : If the length of the cycle is 4u ·
2R, then the number of triangles inside is at most
(4u2− 2

3 +o(1))4R (for 8
3 ≤ 4u2− 2

3 ≤
10
3 ). (Achieved

by the vertices lying at path distance approximately
(u − 1

3 )2R from the middle one-third section of an
icosahedron edge.)

• With 0 ≤ t ≤ 8
3 : If the length of the cycle is 5u2R,

then the number of triangles inside is at most (5u2+
o(1))4R (for 0 ≤ 5u ≤ 8

3). (Achieved by “regular
pentagons” of vertices of distance approximately u ·
2R from icosahedron vertices.)

Proof. It is straightforward to confirm the following
claims about simple cycles C in IR of bounded length
and containing the maximum number of triangles inside.

1. In an anticlockwise traversal of C (so that the in-
terior is on the left), at each vertex we must either
“go straight” or make a “left turn.” In this state-
ment, we may define “go straight” to mean that
there are three triangles interior to C meeting the
vertex, whilst at a left turn there are at most two.
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2. It is impossible for C to have 3 consecutive vertices
at which we respectively go straight, turn left by an
acuter than minimal bend, and go straight, unless
C has length at most 9.

3. If three consecutive left turns are at u, v and w then
the number of steps from u to v and the number of
steps from v to w differ by at most 2 (otherwise
changing the number of steps between turns by 1 or
2 creates another cycle with the same length and a
larger number of triangles inside),

4. The number of left turns is equal to 6 minus
the number of 5-valent original icosahedral vertices
which are interior to C.

If u is the (approximate) number of steps between left
turns, then the length of C is ku + O(1) where k is the
number of turns, k ≥ 1. The number of 5-valent vertices
inside is 6− k.

If k = 6 we get a hexagon with length 6u + O(1) and
6u2 +O(u) triangles inside. This is beaten by the k = 5
case.

If k = 5, there is exactly one 5-valent vertex interior;
call it v. Cut IR along one of the original icosahedron
edges incident with v, and lay it out onto the planar
grid of equilateral triangles (usually called the hexagonal
grid). The cycle C becomes part of an almost regular
hexagon in this grid, traversing five of the triangular faces
of IR, and the distance of the cut ends from v must both
be the same. The almost regularity of the hexagon now
forces one of the left turns to be within O(1) steps of the
cut. Hence the centre of the hexagon is within O(1) edge-
lengths of v, and the number of triangles inside it but not
in the cut-out part, and thus inside C, is 5u2+O(u). Here
C has length 5u+O(1).

If k = 4 there are exactly two 5-valent vertices, U and
V , inside, and C has length 4u + O(1). They must be
adjacent in the original icosahedron. We can argue in
a similar fashion, cutting IR along the edges from U to
V and also along one more of the original icosahedral
edges incident with U not sharing a triangle with UV .
Again, C must form part of a nearly regular hexagon,
and the constraint that the distances from the cut ends to
the appropriate vertices of the hexagonal grid are equal
implies that this distance is u − 2 · 2R/3 + O(1). It can
now be calculated that the number of triangles inside C
is 4u2 − 2

34R +O(u).
If k = 3 there are three 5-valent vertices inside. These

must lie in a triangle of the original icosahedron, since
otherwise a simple convexity argument applied to the
shape of C shows that a fourth must be included. (Or it
is very nearly missed, due to the slight inequality in the
lengths of straight paths of C, but this is very nearly the
case k = 4 so can be ignored.) The cutting argument as
above now shows that the cut ends of C have distance
u− 2R +O(1) from the 5-valent vertex. For k = 2 there
are four inside, which again by convexity must form two
triangles, and cutting and flattening gives that C has
distance u− 2 · 2R +O(1) from the double triangle. For

k = 1 there are five vertices inside and convexity rules
this out altogether (or it’s very nearly equal to the k = 0
case). If k = 0 we clearly have one of the geodesics
mentioned above, with t ≥ 6.5.

The claims in the theorem follow from these results af-
ter checking which of the five cases is minimal for which
ranges of t. (Also, it is not hard to verify that us-
ing the union of two or more cycles C, will not allow
enclosing more triangles with the same circumferential
length, essentially because the number of enclosed tri-
angles is a concave-∪ function of u.) Note that in each
range, the required values of r can indeed be realized. (If
they couldn’t, that would lead to an improvement in the
bound anyway.) 2

Probably these bounds could be improved further by
use of more complicated families of graphs than IR.
For example, using refinements of the regular dodecahe-
dron with each pentagonal face subdivided by 5 “spokes”
might extend the region of superiority versus Djidjev’s
bound further toward x = 1/2. But great perseverance
would be required to take on the requisite more compli-
cated case analyses.

6 Separator theorems for geometric graphs

Joe Ganley’s “Steiner tree web page”
http://www.cs.virginia.edu/ jlg8k/steiner/

contained

Conjecture 63 (Ganley, false)38 Given N sites in the
plane, their rectilinear Steiner minimal tree (RSMT) al-
ways has the property that there exists a horizontal or
vertical line, which cuts the RSMT at O(

√
N) places and

which separates the sites into 2 sets, each of cardinality
< cN for some constant c, 0 < c < 1.

We managed to disprove this conjecture. However,
it turns out that some separator theorems quite similar
to Ganley’s conjecture are true, and for several other
geometrical graphs besides just RSMTs.

As one application of these theorems, we’ll obtain new
algorithms for finding optimal RSMTs.

6.1 Definitions of geometrical graphs

Given N point sites in Euclidean space, a “geometrical
graph” is a set of line segments (“edges”) whose end-
points include the sites. In the below we’ll assume the
sites are in general position so that we may avoid worry-
ing about, e.g., nonunique minimum spaning trees.

The optimum traveling salesman tour (TST) is the
shortest cyclic path that visits every site. A cyclic path,
visiting every site (a “tour”), whose length may not be
decreased by removing k edges and substituting k others
(while preserving the property of being a tour) is “k-
optimal.”

A Steiner tree is a network which connects all the sites.
If the network consists solely of line segments parallel to

38Ganley now blames this conjecture partly on Jeff Salowe.
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the coordinate axes, then it is a rectilinear Steiner tree
(RST).

The Steiner minimal tree (SMT) is the shortest Steiner
tree, and the RSMT is the shortest rectilinear Steiner
tree.

A spanning tree is a network made of site-to-site line
segments only, which connects all the sites. The mini-
mum spanning tree (MST) is the shortest spanning tree.

A matching is a partitioning of the N sites into N/2
pairs (for this, we assume N is even). The minimum
matching (MM) is the matching such that the sum of
the lengths (i.e. distances between the 2 members of) of
the pairs is minimum.

The all nearest neighbor digraph (ANND) is the di-
graph in which every site is joined to its nearest neigh-
bor; ANN is the undirected version of this graph (with
duplicate edges uniquified).

The Gabriel graph (GG) is the graph of intersite line
segments such that the circumballs of the line segments
are empty of sites.

The Delaunay triangulation (DT) is the set of d-
simplices, whose vertices are sites, such that the circum-
balls of the simplices are empty of sites. It is known
that

ANND ⊆MST ⊂ GG ⊂ DT. (71)

6.2 Disproof of the Ganley conjecture

Theorem 64 The Ganley conjecture 63 is false. The
analogous conjectures for RMST (rectilinear minimum
spanning tree), SMT (Euclidean Steiner minimal tree),
MST (Euclidean minimum spanning tree), RANN (rec-
tilinear all nearest neighbor graph), ANN (Euclidean
all nearest neighbor graph), and TST (optimal traveling
salesman tour) are also false.

Proof. A suitable point set for all the rectilinear graphs
(aside from TST) is a “squared off exponential spiral.”
Specifically, view the plane as the complex z plane so that
we may write (x, y) coordinates with only one complex
number z = x + iy. Let the nth point zn in an infinite
sequence z0, z1, ... of points be defined by

zn = zn−1 + ibn/kc2n/k. (72)

For all the Euclidean graphs (other than TST), a
“round” exponential spiral such as

zn = 20n/200(cos
2πn

200
+ i sin

2πn

200
) (73)

works.
For TST, one can make a similar example using a dou-

ble spiral (to provide a return path for the tour).
In the above examples, the proof is not yet complete

because we have not yet demonstrated that the SMT,
MST, etc, really are the graphs which they “obviously”
are. In the cases of MST, RMST, ANN, and RANN, it
is easily shown (for example by considering “Kruskal’s
algorithm” for constructing MSTs) that the spiral paths
and the graphs are identical.

We now sketch how this may also be accomplished for
RSMT, SMT, and TST.

To argue that the obvious squared-spiral RMST path
of (EQ 72) with k = 11 (see figure 9) is in fact the RSMT,
we may use the (apparently new) “method of electrical
shorts.”

Figure 9: Disproof of the Ganley conjecture. The fact
that the spiral path shown is the RSMT may be shown
inductively.

Recall that the RSMT is the shortest network of
“wires” required to electrically interconnect all the
“cities,” subject to the constraint that all the wires have
to be horizontally or vertically oriented.

The fundamental lemma underlying this method is

Lemma 65 (Electrical shorting) Let A and B be fi-
nite point sets in a metric space, and let Q be a “metal
plate” (closed polygon) with A interior and B exterior.
Then the length of SMT(A∪B) is at least as great as the
sum of the lengths of SMT(A∪{Q}) and SMT({Q}∪B).
This lemma also holds if “TST” is substituted for “SMT”
everywhere.

Note: By a Steiner tree on A ∪ {Q}) we mean a tree
T containing all the points in A and at least one point
in Q, and not crossing Q; its length is computed for the
purpose of this lemma as the length of T minus the length
of T ∩Q). Hence the name “shorting”: connections along
Q cost nothing.

We will let Q be the dashed polygon shown in the
figure, A are the sites inside and on the boundary of Q,
and B are the sites outside it.

Assume inductively that the shortest RSMT of the
sites A within Q, even if the entire exterior PB of Q is
assumed to be “metal” so that the cost of electrical inter-
connections within PB is zero is the spiral path shown.
Now by a small exhaustive search, we realize that the
shortest RSMT electrically interconnecting the next k
sites on the spiral path, and Q (where now the interior
of Q is regarded as being made of metal, and a 2× larger
scaled version of Q, rotated 90◦, enclosing these next k
sites in a fashion precisely similar to the way Q encloses
the previous k sites [partially shown dot-dashed in the
figure], is also regarded as having a metallic exterior) is
the spiral path shown. Now applying lemma 65 (or, actu-
ally, a generalization involving two polygons) shows that
the inductive assumption on N sites follows from itself
with N − k sites. Hence, after turning our head 90◦ and
adjusting our spectacles so that the length scale is 50%,
we may now continue the induction with k more sites.
The base case of the induction is also handled using a
small exhaustive search39.

39Incidentally, if exhaustive searches to find RSMTs on 11-site
sets with two metallic polygons are regarded as too painful, we re-
mark that we chose the parameters in this example mainly to get
a nice looking picture, as opposed to trying to reduce the size of
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Similarly the fact that the Euclidean MST and SMT
are identical for the round spiral point set (EQ 73) may
be shown by a similar, but easier, induction instead in-
volving the “shorting” of roughly circular regions, and
increasing by only 1 site per inductive step, not k = 11.

For TST (or RTST), we argue that the least cost to
tour all the k outer sites, given that the N−k inner sites
are all “shorted,” is (by exhaustive search) the obvious
double spiral portion. This again leads to an inductive
proof. 2

6.3 Minimum spanning trees, Steiner trees, and All
nearest neighbor graph

We’ll now argue that MST, SMT, and ANN in the Eu-
clidean metric enjoy geometric separator theorems. This
can be (and will be) shown in two ways:

1. We construct a convex object (called a “diamond”)
of bounded DW aspect ratio enclosing each MST
edge, and show that all the diamonds are interior
disjoint. Then we apply a previous geometric sepa-
rator theorem for interior disjoint convex objects of
bounded DW aspect ratio.

2. We show that the circumballs of the MST edges,
although not necessarily disjoint, are “2O(d)-thick”
(definition 8). Then we apply the Miller-Thurston
separator theorems 47, 48 for κ-thick balls.

As stated, these two approaches only prove a separator
theorem for MST, but similar results immediately fol-
low for SMT (since an SMT is the MST of its N sites
and its ≤ N − 2 Steiner points) and ANN (since ANN
is a subgraph of MST, and hence any κ-thickness and
disjointness properties for objects associated with MST
edges, are even more true for ANN edges).

The first method of proof is conceptually simpler and
shorter; and also it yields the best constants in low di-
mensions. The second method seems to lead to better
constants (by a factor of order d2) in high dimensions,
and is the progenitor of the more powerful techniques we
will need later.

Definition 66 The “diamond” of an MST edge AB de-
notes [81] the intersection of two cones of half angle 30◦

with respective apices at A and B, each with axial line
AB.

For example in 2D this is a 60-120-60-120 rhombus
whose 60◦ corners are at A and B. In 3D, the diamonds
are the bodies of revolution obtained by rotation of the
rhombi.

Lemma 67 (Diamond property for euclidean
MSTs) The diamonds of the MST edges in any Eu-
clidean d-space, are interior disjoint.

the computation. By using growth factors larger than 2, the com-
putations may be rendered trivial and much larger “safety factors”
may be incorporated.

Proof. In 2D, this is shown in §8.6 of Gilbert & Pollak
[81]. On page 22 of the same paper, a proof in dimensions
d ≥ 3 is presented, and attributed to R.L.Graham and
J.H.Van Lint. 2

Remark. Lemma 67 is clearly best possible in the sense
that these diamonds cannot be increased by adding any
protuberance (at least, if that addition is made in igno-
rance of the rest of the MST).

By theorem 39 (in the form of remark (ii) after the
proof) applied to 60◦ rhombi40 in 2D, we get

Theorem 68 (2D MST separator theorem) Con-
sider the MST of N sites in the Euclidean plane. There
exists a rectangle R such that at most 2N/3 of the sites
(or the MST edges, or at most 2/3 of any of a wide class
of “weights”) are wholy inside R, at most 2N/3 are wholy
outside, and ≤ (4 · 31/4 + o(1))

√
N MST edges are partly

inside and partly outside R.

In general dimension d, we also get a 2/3-separating
rectangle, but the bound on the number of edge crossings
obtained by this technique is O(d3/2)N1−1/d, which is
not as good a bound as we will obtain in theorem 73
below (albeit at the cost of weakening the split balance
from 2 : 1 to to d+ 1 : 1).

Lemma 69 (MSTs are short) The MST of N sites
in (or on the surface of) a unit ball in d-space has length
< 2d

d−1N
1−1/d(1 +N−1/d).

Proof. Rescale the unit ball to have radius (1 +
N−1/d)−1. By considering their d-volume, we see that
it is impossible for balls centered at the sites and of ra-
dius N−1/d all to be disjoint. Hence, at least one site
has a neighbor within distance 2N−1/d. Draw the edge
between these two closest neighbor sites and then men-
tally remove one of them. Now continue recursively to
draw a spanning tree of the remaining N − 1 sites. The
total length of the spanning tree we construct will be
≤ 2

∑N
m=1m

−1/d, which is < 2d
d−1N

1−1/d. Rescaling by

1 +N−1/d, we get the stated bound. 2

Definition 70 Let τd be the “kissing number” in d-
space, that is, the maximum number of interior-disjoint
unit d-balls which can touch one.

It is known [52] that τ1 = 2, τ2 = 6, τ3 = 12, τ8 = 240,
and τ24 = 196560; and τd ≤ 20.401d+o(d).

Lemma 71 (3D ball lemma) We claim that if two
3D balls B1 and B2 exist, both containing the origin,
and with the radius of B2 being at least 2 times as large
as the radius of B1, and if two antipodal points of B1

both lie outside (or on the surface of) B2, then the angle
subtended by the centers of B1 and B2 at the origin is at
least 60◦.

40Whose area is 1/
√

3 for a unit length SMT edge, so we may
take τ =

√
3.
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Proof. Let B1 be of unit radius WLOG.
This is equivalent to the statement that if we have a

tetrahedron 0ABC where we call the midpoint of AB,
M , then if AB = 2, 2 ≤ 0C ≤ min(AC,BC), 0M = 1,
then 6 M0C ≥ 60◦.

The minimal angle occurs when 0C = AC = BC = 2
and C0M is a 30-60-90 triangle. A and B may be ro-
tated anywhere on the circle of radius 1 at which the
two spheres intersect, and the angle 6 M0C will remain
60◦. On the other hand if AB is rotated out of this plane
then clearly one of {A,B} will penetrate the big sphere,
which is illegal. This proves the configuration mentioned
locally minimizes the angle. In fact it does so globally
because plainly the angle minimizing configuration must
have both A and B on the large sphere’s surface (other-
wise we could push one closer) and if so, the two spheres
must intersect at a great circle of the smaller sphere,
leading to our configuration if the radius of the larger
sphere is r = 2. If r > 2 the angle is larger. 2

Theorem 72 (MST circumballs aren’t too thick)
The circumballs of the edges of an MST in d-space are
M -thick with

M ≤ 1 + 2(
4d

d− 1
)d(τd − 1) ≤ 22.401d+o(d). (74)

Proof. First, we remark that MST edges obey the
“empty lune property” that the intersection (“lune”) of
the two d-balls of radius L centered at A and B (for some
MST edge AB of length L) is empty of sites. The cir-
cumball of AB is entirely contained in the lune of AB,
hence all such circumballs are empty. (Proof: if a site
C were in the lune of AB, then C is connected by an
MST path to either A or B (first), say WLOG A, and
then removing AB and substituting BC would make the
MST shorter but still connected, a contradiction.)

Now suppose some point of d-space (WLOG, the ori-
gin) is contained in M circumballs. WLOG let the small-
est of these balls have diameter 1 and indeed let the di-
ameter of the ith smallest ball be Q[i].

All the 2M endpoints of the MST edges defining
the balls must lie in the ball of radius Q[M ] cen-
tered at the origin. These MST edges have total
length L with L ≥ M . However, the length of an
MST of 2M points in a d-ball of radius Q[M ] is L <
23−1/ddQ[M ]

d−1 M1−1/d. This leads to a contradiction if

Q[M ] ≤ 2−2+1/d d−1
d M1/d. Indeed, we have a contra-

diction if Q[k]/Q[j] ≤ 2−2+1/d d−1
d (k− j)1/d for any j, k,

1 ≤ j < k ≤M .
Therefore, it must be the case that Q[j] ≥ 2Q[j −

2( 4d
d−1 )d], i.e. the balls at least double their diameter

after every 2( 4d
d−1 )d balls.

Now, consider two balls B1 and B2, the second one
having a factor of 2 larger radius. We will be interested
in the centers of these 2 balls, the MST endpoints which
form a diameter of B1, and the origin. These 5 points
lie in a 3-dimensional subspace. (Generically 5 points
define a 4-space, but here the 3 points on the MST edge

are collinear, so we get a 3-space.) Hence by lemma 71,
their centers must subtend an angle ≥ 60◦ at the origin.

Since the maximum number of vectors, all≥ 60◦ apart,
which can exist is τd, we conclude finally that M ≤ 1 +
2( 4d
d−1 )d(τd − 1). 2

Remark. Of course, the theorem above is also true of
SMT edges (since SMTs are MSTs of their vertices) and
ANN edges (since ANN⊆MST).

By applying separator theorem 48 (theorems 39 and
47 could also be applied) we conclude

Theorem 73 (MST, SMT, ANN separator the-
orem) Let MST, SMT, and ANN be the minimum
spanning tree, minimum Steiner tree, and all nearest
neighbor graphs, respectively, of N sites in d-space,
N > d ≥ 1. Then there exists an d-sphere such that
at most (d + 1)N/(d + 2) of the sites are inside it;
at most (d + 1)N/(d + 2) are outside; and at most
cd1/2N1−1/d(1+o(1)) of the graph edges cross the sphere.
Here c = 21.401

√
2/π ≈ 2.11 suffices. Here the “o” ap-

plies when both d and N go to ∞; if only one of them
does, it should be replaced by an “O.”

6.4 Rectilinear minimum spanning trees, Steiner trees,
and All nearest neighbor graph

In this section we’ll show that rectilinear MSTs, SMTs,
and ANN graphs enjoy geometric separator theorems.
One might initially think this demonstration would just
be a straightforward modification of the analogous ar-
guments for the non-rectilinear graphs. In fact, some of
these analogies can be carried through, but others do not
work.

The easiest example of an analogy that does work,
is for 2D RMSTs, which satisfy a “diamond property”
analogous to lemma 67.

Lemma 74 (RMST diamond property in 2D) If
each (horizontal or vertical) RMST line segment in the
plane is regarded as the diagonal of a (45◦ tilted) square,
then: all these squares are interior disjoint.

Proof. WLOG CD is horizontal. If AB is vertical the
result is immediate because CD’s diamond is empty of
A and of B. (We’ve previously seen it’s impossible for
any other site to be inside an RMST edge’s L1 circum-
ball.) So AB is horizontal too; say A is left of B, C is
left of D WLOG. Let AB be shorter than CD WLOG.
(Equal lengths are possible too, but we ignore that case
by a random infinitesimal pre-perturbation.) If the dia-
monds corresponding to AB and CD overlap, where AB
is shorter than CD, then we claim `(CA) < `(CD) and
`(DB) < `(CD), a contradiction with the claim that AB
and CD are both RMST edges. To see that, start at the
corner of CD’s diamond contained in AB’s, WLOG this
is the uppermost corner of CD’s, CD is horizontal, and
AB is horizontal. This corner is closer to both of {A,B}
than it is to either of {C,D}. Now walking left to A only
makes you get closer to C. Similarly walking right to B
only makes you get closer to D. 2
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Remark. Of course, RSMT and RANN also have inte-
rior disjoint diamonds in 2D.
Remark. However, it is possible for the L2-circumballs
of RMST edges to be unboundedly thick, even in 2D, see
figure 10.

Figure 10: Example of unboundedly thick L2-circumballs
for RSMT edges.

Definition 75 The “θ-diamond” of a line segment AB
means the intersection of the cone with apex A and axial
ray ~AB with the cone with apex B and axial ray ~BA,
where both cones have halfangle θ.

Unfortunately,

Lemma 76 RMST and RANN do not enjoy any dis-
joint θ-diamond property, even in 3D and even for arbi-
trarily small θ > 0.

Proof. In 2D draw two length-1 edges crossing one an-
other at right angles at their midpoints. Now join the
Eastmost and Southmost vertices by a long chain of tiny
RMST edges that stay far away from the crossing. Now
lift the “crossing” out of the plane by any ε > 0, and we
claim the result (figure 11),

Figure 11: A 3D rectilinear all nearest neighbor graph
with only infinitesimally skinny disjoint diamonds.

is a valid RMST, and even with care a valid rectilinear
all nearest neighbor graph, in 3D. 2

But RSMT still does enjoy a diamond property, lemma
80 below.

Definition 77 An “L1-ball” of radius r, centered at the
origin in d-space, is the convex hull of the 2d points with
coordinates that are permutations of (±r, 0, 0, ..., 0).

Lemma 78 (Empty octahedron property) The L1

ball whose diameter is an RMST (axis-aligned) edge, is
empty of sites.

Proof. Same as proof of the empty lune property men-
tioned in the proof of theorem 72, only now with L1

distances. 2

Lemma 79 (RSMT diamond property) If d ≥ 3
and θ < arccot(2

√
d− 1), then the θ-diamonds of the line

segments of an RSMT in d-space are interior disjoint.

Actually, rather than proving lemma 79, we will
prove the following strictly stronger lemma 80, which in-
volves stretched d-octahedral, rather than biconical, “di-
amonds.” The new diamonds include the old ones, but
are a lot larger in some directions, e.g. the angle of the
edges to the main axis is arctan 1

2 ≈ 26.6◦.

Lemma 80 (Stronger RSMT diamond property)
For an RSMT edge XY form a “diamond” as follows:
for any point R on XY , include all points Z such that
D1(R,Z) ≤ (1/2) min{D1(R,X), D1(R, Y )}, where D1

denotes L1 distance. All these diamonds are interior dis-
joint.

Proof. Suppose the diamonds of RSMT edges AB
and XY intersect. Let P be a point in the intersec-
tion. WLOG let AB be the further of the two edges
from P and of length 1. Let Q and R be the closest
points to P on AB and XY respectively. Then WLOG
D1(Q,A) ≤ D1(Q,B) and D1(P,Q) < D1(Q,A)/2.
Hence D1(R,Q) < D1(Q,A) ≤ D1(Q,B), contradicting
the definition of the diamond. 2

Remark. The “diamonds” in lemma 80 still are not
optimal in any dimension d ≥ 3. (With d = 2 this was
due to lemma 74 since 45◦ > 26.6◦.) This is because the
intersection of our diamond with a hyperplane perpen-
dicular to XY is an L1-ball in d − 1 dimensions, which
may be “inflated” somewhat due to the fact that if two
skew diamonds just touch, they contact only on their
edges (1-skeletons) and not on higher dimensional facets.
Hence, if we leave the 1-skeleton invariant but “inflate”
the higher dimensional facets (possibly into curved sur-
faces), we can still guarantee disjointness. We do not
know what optimal diamonds are.

When d = 2, we may combine theorem 39 and lemma
74 to get

Theorem 81 (RMST, RSMT, RANN separator
theorem when d = 2) Let MST, SMT, and ANN be
the minimum spanning tree, minimum Steiner tree, and
all nearest neighbor graphs, respectively, of N sites in 2-
space, N > 2. Suppose the number of edges in such a
graph is E. Then there exists a rectangle, rotated 45◦ to
the coordinate axes, such that at most 2N/3 of the sites
are inside it; at most 2N/3 are outside; and at most
4(1+o(1))

√
E of the graph edges cross the box boundary.

Remark. It seems plausible that the 45◦-tilted squares
whose diagonals are RMST edges, cannot tile the plane
and indeed only cover some41 fraction ρ of the plane,
0 < ρ < 1 (assuming we ignore RMST edges longer than
some constant).

Also by combining lemma 80 with theorem 39 we find
that42

Theorem 82 (RSMT separator theorem) Let G be
the RSMT of N sites in d-space, N > d ≥ 1. Let if have
E line segments. Then there exists an iso-oriented d-box
such that at most 2N/3 of the sites are inside it; at most
2N/3 are outside; and at most 32e−2d2(1 + o(1))E1−1/d

41Perhaps ρ = 1/2 is best possible? Cf. [46]. If so, the “4” in
the theorem will be improvable to 4

√
ρ.

42The 32e−2d2 factor arises as follows. A factor of 8d/e comes
from theorem 39, and the remaining factor of 4d/e is really
(4dd!)1/d, arising via remark (ii) of theorem 39 from the fact that
the d-volume of our stretched d-octehedral diamond, for a unit-
length RSMT edge, is 8 · 4−d/d!.
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of the RSMT edges cross the box boundary. Here the “o”
applies when both d and N go to ∞; if only one of them
does, it should be replaced by an “O.”

Because of the unfortunate lemma 76, theorem 82 does
not hold for RMST and RANN. However, it is possible to
generalize the thickness argument (lemma 72) to show:

Theorem 83 (RMST circumballs
aren’t too thick) The L1-circumballs of the edges of
an RMST in d-space are M -thick with

M = dO(d). (75)

This is done with the aid of the following lemmas,
whose proofs are omitted since they are analogous to
previous proofs from §6.3.

Lemma 84 (RMSTs are short) The RMST of N
sites in (or on the surface of) a unit L1-ball in d-space
has length < 2d

d−1N
1−1/d(1 +N−1/d).

Lemma 85 (3D octahedron lemma) We claim that
if two 3D L1-balls B1 and B2 exist, both containing the
origin, and with the radius of B2 being at least 2 times
as large as the radius of B1, and if two antipodal points
of B1 both lie outside (or on the surface of) B2, then the
center of B1 also lies outside (or on the surface of) B2.
Hence the angle subtended by the centers of B1 and B2

at the origin is at least arccot(
√
d).

We conclude similarly to in §6.3 that

Theorem 86 (RMST, RANN separator theorem)
Let RMST, RANN be the minimum spanning tree, and
all nearest neighbor graphs, respectively, of N sites in d-
space, N > d ≥ 1. Let the graph under discussion have
E edges, 1 ≤ E < N . Then there exists an iso-oriented
d-box such that at most 2N/3 of the sites are inside it;
at most 2N/3 are outside; and at most O(d2)E1−1/d of
the graph edges cross the box boundary.

6.5 Optimal traveling salesman tours

Lemma 87 Let λ > 1. Then there exists kλ such that
the set of circumballs of the edges of every minimal TST
is (λ, kλ)-thick. (See definition 9.) Indeed it will suffice
if

kλ = 16d log2 λ, (76)

and it will also suffice if the TST is merely “2-optimal”
(i.e. can’t be shortened by removing 2 edges and substi-
tuting 2 others).

Proof. Let ε > 0 be fixed. We can choose k large enough
that if some point is covered by more than k circumballs
whose sizes vary by factor at most λ, then by the pigeon-
hole principle, at least three of these circumballs come
from edges aa′, bb′ and cc′ whose lengths (after scaling)
are all within ε of 1, and such that a, b and c lie in the
same ball of radius ε, as do a′, b′ and c′.

The minimal TST, outside these three edges, joins
them in a cyclic fashion, and clearly at least one of these
joins must be from a, b or c to a′, b′ or c′. Assume wlog
that it is a to b′. Then replacing the tour edges aa′ and
bb′ by ab and a′b′ shortens the tour provided ε was chosen
sufficiently small – a contradiction.

In fact it will suffice in the first paragraph if

k =
log λ

log([1 + ε]/[1− ε])
(
1 + ε

ε
)2d (77)

and it will suffice in the second paragraph if ε = 1/3,
which leads to (EQ 76). 2

To apply part (c) of theorem 39, we also need to know
that at most a constant number of TST edges larger
than the rectangular “separating annulus” in the proof
of theorem 39, can intersect it. (A very large number
of TST circumballs could intersect the rectangle, but we
ignore them unless the TST edge itself does.)

Lemma 88 At most a constant number (2O(d) suffices)
of TST edges of length ≥ 1 can intersect a unit cube or
ball. (It will suffice if the TST is 2-optimal.)

Proof. Suppose not. Then among the unboundedly
large number of such TST edges, we may by the pigeon-
hole principle find 3 all at angles within ε of each other,
and “nearly overlapping,” i.e. a length of at least 1/2,
say, of one is very close to a similar length of the other.
But then the “minimal” TST could be shortened. 2

We may now combine lemmas 87 and 88 and part (c)
of theorem 39 to get

Theorem 89 (TST separator theorem) Let TST be
any 2-optimal traveling salesman tour of N sites in d-
space, N > d ≥ 1. Then there exists an iso-oriented
d-box such that at most 2N/3 of the sites are inside it;
at most 2N/3 are outside; and at most 2O(d)N1−1/d of
the TST edges cross the boundary of the box.

6.6 Minimum matching

An argument very similar to (but easier than) the TST
argument in §6.5 shows that

Theorem 90 (MM separator theorem) Let MM be
the min-length matching of N sites in d-space, N > d ≥
1, N even. Then there exists an iso-oriented d-box such
that at most 2N/3 of the sites are inside it; at most 2N/3
are outside; and at most O(d)N1−1/d + 2O(d) of the MM
edges cross the boundary of the box.

Remark. It is also possible to prove a result like this
by showing that the θ-diamonds of MM edges are 2O(d)-
overloaded, if θ is a sufficiently small constant.
Remark. No matter how small θ > 0 is, the θ-diamonds
of MM edges can be unboundedly thick as N → ∞
with θ and d fixed. Therefore, no argument based on
κ-thickness could have achieved anything for MM (and
presumably the same is true for TST).
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6.7 “Spanners” and “Banyans”

Definition 91 A “(1 + ε)-spanner” of a set of points is
a subgraph of the complete Euclidean graph where for any
u and v the length of the shortest path from u to v is at
most (1 + ε) times the Euclidean distance between u and
v.

Arya et al. [7] showed (building on earlier work by
[57]) – and their work was redone more quantitatively
by in an appendix of [149] that for N sites in d-space,
and any ε > 0, (1 + ε)-spanners exist

1. Whose total length is only dO(d) times longer than
the Steiner minimum tree of the N sites

2. With maximum valency (d/ε)O(d),

3. Which may be constructed in (d/ε)O(d)N +
O(dN logN) time.

We would now like to indicate here that furthermore,
WLOG, these spanners also obey a (λ, κ)-thickness prop-
erty. Specifically,

Theorem 92 WLOG, for some θ = Ω(ε), the θ-
diamonds (definition 75) of the Arya et al. spanner
edges are (λ, κ)-thick, for some κ = (d/ε)O(d) and with
λ = (d/ε)O(1).

Proof sketch. Follow the argument, sketched in Arya et
al. [7]’s section 5 and again more quantitatively in the
appendix of [149], which proves (what [149] call) “(κ, c)-
isolation.”

This argument remains valid, at the present level of
precision, if, instead of small cylinders of height and ra-
dius c` (where ` is the length of the spanner edge), which
are κ-thick, we instead use skinny diamonds, of width c`.
2

A similar result necessarily holds for the “banyans” of
[149].

Lemma 93 At most a constant number (ε−O(d) suffices)
of Arya spanner edges of length ≥ 1 can intersect a unit
cube or ball.

Proof sketch. Suppose not. Then among the unbound-
edly large number of such spanner edges, we may by
the pigeonhole principle find 2 at angles within ε of each
other, and “nearly overlapping,” i.e. a length of at least
1/2, say, of one is very close to a similar length of the
other. But this would contradict the spanner “shortest
edge in ε-cone” properties enjoyed by the Arya et al [7]
construction. 2

We may now apply part (c) of theorem 39 to get

Theorem 94 (Spanner & Banyan separator the-
orem) Let B be the (1 + ε)-spanner or (1 + ε)-banyan
graph used in [149]. Then there exists an iso-oriented d-
box such that at most 2N/3 of the sites are inside it; at
most 2N/3 are outside; and of the E edges in the spanner
(or banyan), at most (d/ε)O(d)E1−1/d of the edges cross
the boundary of the box.

Theorem 94 has tremendous applicability. For exam-
ple, it immediately proves separator theorems for the
(1 + ε)-approximately optimal SMTs, MSTs, TSTs, and
MMs arising by replacing all edges in the optimal ver-
sions, by paths in the spanner or banyan.

6.8 Delaunay triangulations do not have separating cir-
cles

Since we’ve just demonstrated that a large number of
well known geometric graphs have geometric separator
theorems, it seems only fair to mention a graph without
one – the “Delaunay triangulation.”

For N sites in 3D, the Delaunay triangulation edge-
graph can be the complete graph KN [160] so clearly
there is no separator, even a graph-theoretic one.

For N sites in 2D, the Delaunay triangulation edge-
graph is planar and hence always has a graph-theoretic
(2/3,

√
8N) separator (cf. §2.7), but we argue that it

need not have any separating circle. To do so, we exploit
the fact [66] that the Delaunay triangulation of N sites
in the plane, is the same as the convex hull of those N
sites, stereographically projected onto a sphere in 3D.
The separating circle is then going to correspond to a
plane cutting the sphere and the convex hull.

Theorem 95 Let c > 0. Then there exist N point sites
on a sphere in R3 such that any plane with at least cN
sites on each side of it, must cross at least Ω(N) edges
of the convex hull of the sites.

Proof sketch. Consider some large but constant number
K of roughly equal spherical caps packed on the surface
of the sphere. Space (N/K − 1) sites uniformly around
the perimeter of each cap, and one site at each cap center.
Notice the convex hull graph will include as subgraphs
all the “spoked wheels” corresponding to each of these
caps. If a plane cuts a constant fraction of the perimeter
off any cap, then it must cross at least Ω(N/K) convex
hull edges, proving the theorem – unless it cuts precisely
through the cap center. However, if the caps are in “gen-
eral position” then it is impossible for a plane to cut pre-
cisely through the center of more than 3 caps. Also, if
the caps are packed reasonably densely and K is large
enough as a function of c (It will suffice if K = Ω(1/c))
then it is impossible to avoid cutting at least a constant
fraction off at least a constant number (in fact Ω(

√
K))

of caps43. 2

Remark. The same construction also shows that the
2D Gabriel graph GG need not have a o(N)-separator.

43This may be seen by considering cutting the usual hexagonal
penny packing by a line – no matter what line one uses, a constant
fraction will be cut off some penny.
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7 Applications: Algorithms and data
structures

7.1 Point location in iso-oriented d-boxes

The following problem is a classic task in computer sci-
ence, with efficient solutions in low dimensions tracing
back to G.Lueker and D.Willard in the late 1970s.
Given: A set S of iso-oriented d-boxes, d ≥ 2.
Task: To preprocess them to create a data structure to
support “point location queries.”
These queries are: “Name the boxes containing the point
~x.”

Three possible generalizations are as follows.

1. Box generalization: instead of a query point we have
an iso-oriented d-box and then we are to name the
boxes intersecting the query box.

2. Semigroup generalization: each of the boxes have
“weights” which are elements of some semigroup
with an operation ‘+’; and instead of naming the
boxes, we are required to state the value of the ‘sum’
of the weights. (For example, we could find the
maximum-weight box by using max as our ‘+’.)

3. Group generalization: same as above, but ‘+’ is a
group operation, i.e. there is a ‘-’. (For example, we
could count the boxes by using unit weights and ‘+’
is integer addition.)

Chazelle [38] [37], building on work by a large num-
ber of other authors, solved the box generalization of
our problem, with query time (K + logN) ·O(logd−2N)
(where K − 1 is the size of the output) on a pointer
machine, using storage O(N [lgN/ lg lgN ]d−1), and with
O(N lgd−1N) time required to build the data structure.
Chazelle [39] then showed, for the box generalization
of our problem, the optimality of this storage bound,
on a pointer machine, in any fixed dimension d. (Ap-
parently Chazelle’s lower and upper bounds differ by a
factor dO(d).) Chazelle [41] showed a lower bound on
the query time (amortized over N queries), in the semi-
group and box double generalization of our problem, of
O(N [lgN/ lg lgN ]d−1).

Edelsbrunner, Haring, and Hilbert [65] proposed a so-
lution to our original problem, but provided the boxes
were interior disjoint, requiring: O(Nd) space to store
the data structure, which required N ·O(d+ logN) time
to build, and for which a point location query could be
carried out in time44 O(lgd−1N).

In [162] it was observed that the disjointness require-
ment of [65] could be replaced by a κ-thickness require-
ment, at the cost of increasing the query time bound to
O(κ+ lgd−1N), but with no other cost.

Smith (section III.C.8.2.10 of [162]) further generalized
the problem by allowing the “boxes” to instead be any

44Actually they said O(lgdN), but noted that O(lgd−1 N) was
possible by using an optimal 2D point location structure [105] [157]
at the bottom of their recursion.

mixture of coordinatewise scaled Lp balls (1 ≤ p ≤ ∞),

and achieved O(κ+lgdN) query time and O(N lgd−1N)
space, with O(N lgdN) time required to build the data
structure. Probably some of the space reduction tech-
niques of [38] also could be applied here.

None of the solutions mentioned above utilized any
sort of separator theorem, and instead depended mainly
on properties of ranks as binary numbers.

In fact, our separator theorem 36 does not seem to al-
low improving the previous results of [65] [162]. However,
it does allow us to get approximately the same results us-
ing a different method.

Theorem 96 If the boxes are κ-thick, the task defined at
the beginning of this section may be solved using Storage:
O(Nd). Build time: O(d2N ln(N+2d−κ)). Query time:

≤
(
2d ln(N+2d−κ)

d−2
)
O(d+ κ+ logN).

Proof. If d ≤ 2, one may solve the problem by
Chazelle’s method in optimal (O(N logN) preprocessing
time, O(N) storage, O(logN) query time.

Otherwise, use the separator theorem 36 to decompose
the boxes recursively into a ternary tree. The 3 child
subtrees of a node correspond to the boxes entirely (1)
left of, (2) right of, (3) crossing the separator hyperplane.

Note, subtrees of type (3) are (d− 1)-dimensional, be-
cause we may project all the boxes in the crossing set
orthogonally down onto the hyperplane (also the query
point) while preserving κ-thickness.

Because each of the 3 sets is guaranteed to make
N + 2d − κ become a factor 1 − 1/(2d) times smaller,
the tree has depth ≤ ln(N + 2d − κ)/ ln[2d/(2d − 1)] <
2d ln(N+2d−κ). Because each non-leaf node of the tree
has outvalency 3 and requires O(1) storage (3 pointers,
a number in {1, 2, . . . , d}, and a coordinate) and the leaf
nodes store disjoint sets of objects, the total storage re-
quired is O(Nd).

To locate a point: If the root is childless, determine the
set of boxes the point is in by brute force examination of
all the boxes (of which there will be < 2d+ κ).

Otherwise, see if the point is to the left of, right of,
or on the separating hyperplane for the root node. If
right of, explore subtree (2) recursively. If left of, explore
subtree (1) recursively. Always explore subtree (3) using
the query point projected into the hyperplane, and then,
from the set of boxes returned, prune out the boxes not
containing the query point.

During a query, we will only explore paths in the
ternary tree which include ≤ d − 2 type-3 parent-child
edges. The number of such paths is ≤

(
2d ln(N+2d−κ)

d−2
)
.

Since the work at a leaf node is O(d + κ + log(κN)),
and the work during “prunings” can be made negligible,
the time per query is ≤

(
2d ln(N+2d−κ)

d−2
)
O(d+ κ+ logN).

2

Remark. Note, if d is fixed, our results are the same,
up to constant factors, as the previous solution by [65].
However, the asymptotic behavior of our worst case
query time when d becomes large is a factor roughly
(2e ln 2)d slower than [65]’s. On the other hand, in the
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best case in which our separators, by luck, happen to
yield 50-50 splits, our typical query time will be roughly
d! times faster than [65]’s. (No “luck” is required if the
boxes are very small and far apart, since in this case 50-
50 splitting is normal. And recall that we may use the
“best” hyperplane as in lemma 38 every time – because
sorted list “unmerging” after a split is possible in O(N)
time – with only a constant factor increase in the build
time.) Hence, it is not clear which method is better in
practice.

7.2 Point location in κ-thick d-objects with bounded as-
pect ratios

Given: A set S of κ-thick objects with aspect ratios (def-
inition 4) bounded by B.
Task: To preprocess them to create a data structure to
support “point location queries.”
These queries are: “Name the objects containing the
point ~x.”

Theorem 97 This problem may be solved with a data
structure that may be stored in dO(d)N memory locations.
The expected time required to build it (the build algorithm
is randomized) is dO(d)N logN . Point location queries
require O(κBdO(d)dC + logN) steps. Here C denotes
the time to determine if a point is in one given object.

The data structure may be “dynamized” to allow also
the insertion and deletion of objects. In this case, the
(amortized) time bound for a query increases by a fac-
tor of logN , the space requirement is affected by only a
constant factor, and the insertion and deletion times are
O(1/N) times the build time of a static data structure
for N objects.

Proof.
If N ≤ κBdO(d)d do not build a data structure – we’ll

just do point location by brute force.
Otherwise, use the appropriate variant of the separator

theorem 39 (theorems 47 and 48 could also be used, in
some cases) to decompose the boxes recursively into a
binary tree. The two child subtrees of a node correspond
to the objects (1) inside of or overlapping, (2) outside of
or overlapping the separator.

Because each of the 2 sets is guaranteed to be a con-
stant factor smaller, the tree has depth O(logN) (for
theorem 39; O(d logN) for theorem 47). The 2 chil-
dren of a node may in total correspond to more objects
than were known to its parent, due to duplication of
objects overlapping the separator. However, it is eas-
ily verified45 that the total storage amplification factor
remains bounded by a constant independent of N , in
fact dO(d). Then because each non-leaf node of the tree
has outvalency 2 and requires O(1) storage (2 pointers,
a few numbers describing the separator shape) and the
leaf nodes store disjoint sets of objects, the total storage
required is only a dO(d) factor larger (at most) that the

45Since (1 + dN−1/d)d log N is bounded by dO(d).

storage required to write down the input objects in the
first place.

To locate a point: If the root is childless, determine the
set of boxes the point is in by brute force examination of
all the boxes (of which there will be κBdO(d)d).

Otherwise, see if the point is inside, outside, or on
the separator boundary for the root node. If inside or
on, explore subtree (1) recursively. Otherwise, explore
subtree (2) recursively.

The total query time will be O(κBdO(d)dC + logN)
(with theorem 39; with theorem 47, where the objects
must be balls, it is O(κ2O(d)C + d logN)).

To build the data structure, employ the randomized al-
gorithmic version of theorem 39 in §4.7.2. The expected
time to build the data structure is then dO(d)N logN .

Finally, the dynamization results are a standard ap-
plication of the ideas in [142]. In short, one maintains
O(logN) different static structures, each a factor ≈ 2
larger than the preceding one. Queries are performed by
searching all logN structures. Insertions are performed
by destroying and rebuilding the smallest structure – al-
though if the resulting structure would be too large, then
a “carry” is performed, and a destruction and rebuild of
the next larger structure is required. Deletions are done
“lazily” by simply marking deleted objects as “nonexis-
tent.” Once 50% of the objects become nonexistent, a
global rebuild is performed to get rid of them. 2

7.3 Finding all intersections among N κ-thick d-objects
with bounded aspect ratios

Given: A set S of κ-thick objects with aspect ratios (def-
inition 4) bounded by B.
Task: To find all intersection relationships among pairs
of objects.

Theorem 98 The problem above may be solved in time
(logN+κBdT )dO(d)N while consuming dO(d)N memory
locations. Here it takes time T to determine whether two
given objects intersect.

Proof. In the point-location tree structure of the pre-
vious section, objects can only intersect other objects if
they are in the same leaf of the tree. Since each tree leaf
corresponds to a set of objects of cardinality κBdO(d)d at
most, and the total number of objects in leaves, counting
all duplicated objects multiply, is O(N), the total run-
time (assuming the tree has already been constructed)46

is κO(d)dNT . 2

7.4 Finding the optimal traveling salesman tour of N
sites in d-space

Given: N sites in d-space.
Task: To find their optimal traveling salesman tour.

46Note, because we counted all duplicated objects multiply, we
have correctly taken account of the fact that an object could be in
more than one leaf of the tree.
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Theorem 99 This47 may be accomplished in time

2d
O(d)

NO(dN1−1/d). (78)

The algorithm will be to guess the separating box

of theorem 89 among
<∼ [(N + 1)N ]d inequivalent pos-

sibilities. Then the optimal tour must cross this box
at O(dN1−1/d) + 2O(d) places out of ≤ (N − 1)N
possibilities48. Guess them too. Finally, for each such
guess, guess also the “boundary conditions”’ at the cross-
ing points, that is, how the tour joins the crossing points
on each side of the separator surface. For C crossing
points, this is C! possible kinds of boundary conditions.
(In the plane, there are only 2O(C) possibilities [162].)

Finally, solve the two smaller “traveling salesman tour
plus boundary conditions” problems inside and on, and
outside and on, the separator, recursively. (If N < dO(d),
solve the problem by brute force in 2O(N) steps.)

Needless to say, all “guessing” must be done exhaus-
tively.

The runtime T (N) obeys the recurrence

T (N) ≤ [(N+1)N ]d·NO(dN1−1/d)+2O(d)

[T (2N/3)+T (N/3)].
(79)

The solution is

T (N) = 2d
O(d)

NO(dN1−1/d). (80)

The space needs can be kept linear [162]. 2

7.5 Finding the rectilinear Steiner minimal tree of N
sites in d-space

Given: N sites in d-space.
Task: To find their optimal rectilinear Steiner tree.

Theorem 100 This may be accomplished in

2d
O(d)

NO(d3N1−1/d) (81)

steps.

A “rectilinear Steiner tree” (RST) is a collection of line
segments parallel to the coordinate axes, which intercon-
nect N given sites. The rectilinear Steiner minimal tree
(RSMT) is the shortest such network.

Some properties of RSMTs:

1. They are trees. (If a cycle existed, one could shorten
the RSMT by removing the longest edge in the cycle,
contradicting minimality.)

2. The angle formed by 2 coterminous line segments is
≥ 90◦.

47We assume we are using a real RAM [147] or similar model of
computation, so that difficulties arising from having to determine
which of two sums of square roots of integers is greater [76] may
be ignored.

48Defined by the (N−1)N/2 site pairs, and using the fact that a
line segment can cross a box boundary in ≤ 2 places because boxes
are convex. Actually we could eliminate the 2-time crossings from
consideration and hence reduce the “(N − 1)N” to “(N − 1)N/2.”

3. Each vertex has valency ≤ 2d.

4. The total number of “Steiner points” (points of va-
lency ≥ 3 which are not sites) is ≤ N − 1.

5. The total number of line segments is < 2dN .

A RST “topology” is a specification of the tree struc-
ture of the RST, indicating where each site lies, but ig-
noring the locations of 2-valent non-site corners on paths,
and ignoring geometric information (such as lengths, co-
ordinates) generally.

A fundamental theorem about RSMTs was shown by
Hanan [92] when d = 2, but it seems to be only a “folk
theorem” for general d (meaning: we were unable to find
a proof in previous literature!). This is

Theorem 101 The shortest RST with a given “topol-
ogy” WLOG is one in which all line segments are edges
(1-flats) in the arrangement of dN hyperplanes orthogo-
nal to the coordinate axes going through the sites.

Proof. In the shortest RST, the coordinates of a Steiner
point are determined by the coordinates of its ≤ 2d
neighbors as follows: the ith coordinate is the median of
the ith coordinates of all the neighbors. (The “median”
of an even number of values is non-unique, and any value
lying at or between the bimedians may be used without
affecting the length.)

Hence, the complete system of equations for the op-
timal coordinates of all Steiner points in a given RST
topology are a system of linear equations, in which ev-
ery equation is of the form a = b. Hence, every Steiner
point’s ith coordinate is the same, WLOG, as some site’s
ith coordinate. 2

This theorem implies that WLOG there are only Nd

possible locations for Steiner points (lying on an N ×
N × . . .×N “grid”) and only

(
N
d−1
)
d! < dNd−1 possible

lines that RSMT line segments could be subsegments of.
Hence we’ve reduced the problem of finding the RSMT
to a finite search problem.

Our algorithm will be to guess the separating d-box of

theorem 82 from among
<∼ NO(d) inequivalent possibil-

ities. In 2D, it is probably best to use a d-box rotated
45◦ due to theorem 81, but in high dimensions we just
use a box aligned with the coordinate directions.

Then the optimal RSMT must cross the separator
boundary at O(d2N1−1/d) places out of < 2dNd−1 pos-
sibilities. Guess them too. Finally, for each such guess,
guess also the “boundary conditions”’ at the crossing
points, that is, how the RSMT partitions the joinings of
the crossing points induced by the RSMT on each side
of the separator surface.

For C crossing points, this is certainly < 4CC! possible
kinds of boundary conditions. (In the plane, there are
only 2O(C) possibilities [162].)

Finally, solve the two smaller “RSMT plus boundary
conditions” problems inside and on, and outside and on,
the separator, recursively. (If N < dO(d), solve the prob-
lem by brute force in 2O(N) steps.)
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Needless to say, all “guessing” must be done exhaus-
tively.

The runtime T (N) obeys the recurrence

T (N) ≤ NO(d)(8dNd−1)d
2N1−1/d

[T (2N/3) + T (N/3)].
(82)

The solution is (we assume N > d)

T (N) = 2d
O(d)

NO(d3N1−1/d) (83)

The space needs are linear. 2

7.6 Euclidean Steiner minimal trees in the plane

Can the exact SMT on N sites in the plane be found in

NO(
√
N), or anyhow 2o(N), time?49

Warme [179] and Winter and Zachariasen [181] con-
centrated on the practical – as opposed to theoretical
– problem of how to find 2D SMTs, and advocated a
2-phase strategy.

1. Generate a superset of all the possible “full Steiner
trees50” (FSTs) that the SMT could be made of.

2. In phase 2, one finds the best way to combine (an
appropriate subset of) the FSTs from phase 1, to
get the shortest possible SMT.

The most naive possible strategy for phase 1 would
simply be to consider all the 2N possible subsets of the N
sites, and all the possible ordered binary tree topologies
on each subset, and then find the best coordinates for the
Steiner points for each one. However, the vast majority
of the resulting FSTs would obviously be impossible, and
could be ruled out by simple geometrical tests such as the
requirement that no two edges cross, or the “empty lune
condition” mentioned in the proof of theorem 72. Winter
and Zachariasen [181] worked long and hard to devise an
FST generation algorithm that incorporated many such
geometrical tests. Empirically, for N random sites in a
unit square, N ≤ 150, their program seems to run in
≈ 0.02N2.2 seconds and generates .75N + .001N2 FSTs.
Furthermore, FSTs involving more than 6 sites seem to
be extremely rare.

But, it seems possible to devise artificial N -site sets
which will cause [181]’s FST generator – or anything like
it – to generate cN FSTs for some c > 1. Of course we are
leaving this intentionally vague (what does “anything like
it” mean?), but here is the vague idea. All we need is a
single k-point set which has ≥ 2 “valid” FSTs sufficiently
nearby in angle. We then eliminate one of the k sites
(“amputating an arm” of the SMT) and replace it with
a “hand” which is a sufficiently tiny scaled copy of the
original set (also with a site eliminated). The result is
a 2k − 2 site set with ≥ 4 valid FSTs. Continuing on
with similar surgical operations using smaller and smaller

49A positive solution to this problem – albeit dependent on a
conjecture – was given in [164].

50An N -site SMT is “full” if it has exactly N − 2 Steiner points.
All SMTs are unions of FSTs on site subsets.

scaled copies, m in all, we get sets with k+(k−2)m sites
with ≥ 2m FSTs.

Warme [179] recognized the combining problem in
phase 2 to be one of finding the “minimum spanning tree
in a hypergraph” and showed how to solve it via “branch
and cut” methods from integer programming. The re-
sulting 2 phase algorithm was, empirically, astonishingly
effective – allowing the determination of the exact SMT
for a 2000-site set [179]! However, because the MST in
hypergraph problem is NP-complete51 it is unlikely that
such good performance persists forever, or in hard cases.

We thus have the paradox that the best known algo-
rithm – empirically – for solving SMT and RSMT in the
plane, would appear to have a worst case runtime behav-

ior growing at least doubly exponentially, like AB
N

for
some A,B > 1; and this algorithm is capable of solving
real-world problems with N = 2000... thus proving the
inadequacy of theoretical computer science.

We will now partially ameliorate this embarrassing sit-
uation by showing that

1. Phase 2 may be accomplished in MO(
√
N) steps,

where M is the number of edges in the FSTs from
phase 1. In other words, the MST in a hypergraph
problem is soluble in subexponential time, if the hy-
pergraph arises from FSTs from N sites in the eu-
clidean plane.

2. If phase 1 is only permitted to generate FSTs of at
most k sites, 2 ≤ k ≤ N , then it (even using brute
force instead of [181]) is easily implemented to run
in O(N)k steps.

3. The combination of phase 2 and truncated phase

1 as above, will therefore run in NO(k
√
N) steps. If,

e.g., k = O(N0.49), this is subexponential time. The
SMT it finds will be optimal if the true SMT hap-
pens to have no FSTs with more than k sites. Other-
wise, although it will be non-optimal, still [24] shows
that its length will be at most 1 + 1/ lg(k/2) times
longer than the optimal SMT52. (Cf. §8.3.)

4. Also, by a different algorithm running in

(N1+pdd)O(d5/2N1−1/d) time, we can find an approxi-
mate SMT of N sites in d-space, which is guaranteed
to be at most 1+N−p times longer than the optimal
SMT.

Item 2 is easy.
Item 1 is by a “guess the separator” algorithm simi-

lar to the ones in §7.4 and §7.5. We know from theo-
rem 68 that the SMT has a separating rectangle with
at most 2N/3 sites on each side, and crossing at most
(4 · 31/4 + o(1))

√
N of the SMT edges. Hence if we knew

51As Warme [179] mentioned, giving a proof he ascribed to
M.Queyranne. Also, NP-completeness follows because in the con-
structions of [76] [77] showing the NP-hardness of computing the
SMT or RSMT of sites in the plane, all FSTs are on ≤ 4 sites.
Hence “phase 1” is polynomial time, and only “phase 2” (the MST
in hypergraph problem) can be NP-hard.

52We would conjecture 1 +O(k−p) for some constant p > 0.
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this rectangle, we could then guess the places where the
SMT crosses it from the ≤ 2M possible candidate loca-
tions. We could then also guess the “boundary condi-
tions” specifying the topologies of the joinings of these
crossing points. If we knew all this, we could then solve
the two resulting subproblems. Because there are only
(2M)4 possible inequivalent rectangles at most, we can
do our “guessing” exhaustively. Letting T (N) denote
the time required to solve our problem on N sites, and
performing all guessing exhaustively, we get a time re-
currence

T (N) ≤ (2M)4
(

M

O(
√
N)

)
2O(
√
N)[T (N/3) + T (2N/3)]

(84)

which solves to T (N) = MO(
√
N), assuming WLOG that

M ≥ N ≥ 4.
Of course, one might quibble that although our sepa-

rator theorem 68 holds for SMTs, it does not necessarily
hold for the minimal trees Tk that are unions of SMTs on
(≤ k)-site subsets. The answer to that quibble is that Tk
still necessarily obeys the empty lune property. Hence
the proof of theorem 72 still goes through (appropriately
modified) and we still get a separator theorem analogous
to theorem 73 for Tk for any k ≥ 2.

Finally, we must prove item 4.
Draw the complete graph on all the N sites, then de-

fine a circumball for each edge in this graph, then fill
each circumball, expanded about its center by a fac-
tor of dO(d)Np, with a grid of points, with grid spacing
N−pd−O(d)L, where L is the length of the corresponding
edge of the complete graph. The result is a set of points
of cardinality

N2dp+2dO(d2). (85)

Finally, consider the complete graph G drawn on these
points (as well as the original N sites), which has

N4dp+4dO(d2) (86)

line segment edges.
It is shown in section 4 of [149] that G is a “(1+N−p)-

banyan;” that is, some interconnecting network lying en-
tirely inside G exists, which is ≤ 1 + N−p times longer
than the SMT.

Now, apply our usual “guess the separating sphere”
trick to find a good approximate SMT; everything is as
before, except that the O(d−1/2N1−1/d) points where
the SMT edges cross the separator are going to be se-
lected from the points where G crosses it. There are
(N1+pdd)O(d2) inequivalent spheres. After guessing the
separating d-sphere, and these crossing points, and the
“boundary conditions,” we solve the two smaller sub-
problems recursively. The runtime recurrence is

T (N) ≤ NO(d2)(N1+pdd)O(d3/2N1−1/d) ×
[T ((d+ 1)N/(d+ 2)) + T (N/(d+ 2))] (87)

which solves (assuming 2 ≤ d < N WLOG) to

T (N) = (N1+pdd)O(d5/2N1−1/d). (88)

Of course, one might quibble that our separator theo-
rem 73 held for SMTs, and not necessarily for the min-
imal trees that lie inside our “banyan.” The answer to
that quibble is these trees are still the MSTs of their
vertices, and hence our theorem 73 does apply.

Theorem 102 Given N sites in d-space, 2 ≤ d < N ,
and any fixed real p > 0. An algorithm running in time
T (N), defined in (EQ 88), exists to find a Steiner tree
at most 1 +N−p times longer than the Steiner minimal
tree.

7.7 Approximate obstacle avoiding shortest paths in the
plane

Given: A set P of M convex polygonal obstacles in the
plane. We will suppose them κ-thick (note: this allows
us to make nonconvex obstacles) and they each have DW
aspect ratio ≤ B, and they have the property that the
points where the boundaries of a given pair of them in-
tersect, or the points where a given object’s boundary
intersects a line, may be computed in O(1) time. (This
computational property is true for, e.g., triangular and
rectangular obstacles.)
Task: To preprocess these polygons to create a
data structure to support “approximate shortest path
queries.”
These queries are: Given two arbitrary points s and t,
find an approximately shortest path (avoiding the obsta-
cles) between s and t (or report that there is no such
path) and/or just report the length of such a path.

Theorem 103 Let ε > 0. This task may be
solved in preprocessing time O(Bκ1/2ε−1N3/2 logN)
with storage O(B2κε−2N logN) (this must be multi-
plied by min(ε−1/2, logN) for L2 metric) and query time
O(B4κ2ε−2 + logN + P ) (the logN term may be elimi-
nated if s and t are obstacle vertices) and approximation
factor 3+ε, where N = O(κBM) is the number of bound-
ary segments in the arrangement of the M obstacles, and
paths are measured in the L1 metric. P is the size of the
output, i.e. P = O(1) if only the distance is reported, but
if the entire path is reported, P = O(N) is the number
of segments in that path. In the path reporting case the
storage requirement grows to S(N) = O(Bκ1/2ε−1N3/2).

Proof. We’ll concentrate on demonstrating this when
the paths are to be found in the L1 metric (i.e., the path
is required to be made of vertical and horizontal line
segments, or curve segments along an obstacle boundary
measured in the L1 norm) where only the path length is
to be reported. Side notes will show how to alter things
to make it work in the L2 metric, and the alterations
to allow path reporting as well as distance reporting are
straightforward. The fact that N = O(κBM) arises by
realizing that an obstacle can intersect at most O(κB)
obstacles of larger area.

We first find a 45◦ rotated square ♦ which separates
the convex obstacles, and which O(B

√
κN) cross. (The-

orem 39 (a).)
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On each of the O(B
√
κN) subsegments of ∂♦ between

obstacles, we place 2ε−1 uniformly spaced artificial ex-
tra vertices. Then we cut away all the parts of all the
obstacles outside ♦, and find the L1 Voronoi diagram
[135]53 (in the L1 obstacle avoiding metric) of 4 artificial
sites at (supposing ♦ has corners at (0,±1) and (±1, 0)
WLOG) (±1,±1). This L1 Voronoi diagram (after pre-
processing [157] to support fast “point location”) enables
the determination of the L1 obstacle avoiding shortest
path distance from any point inside ♦ to its boundary in
O(logN) time. In fact with 4 times the work we could
determine the shortest path distance, among paths which
never go outside ♦, from any point inside ♦ to any de-
sired one of the 4 sides of ♦.

Similarly, by cutting away all the parts of all the ob-
stacles inside ♦, and finding the Voronoi diagram of an
artificial site at (0, 0), we then may quickly determine
the shortest path distance from any point outside ♦ to
its boundary. In fact by use of artificial obstacles inside
♦ and 4 times the work, we could determine the shortest
path distance from any point outside ♦ to any desired
one of the 4 sides of ♦, among paths never going inside54

♦.

Note: if we wish to use the L2 metric instead of L1,
then the unpublished paper of Hershberger & Suri [99],
giving an O(N logN) time and space algorithm to find
L2 voronoi diagrams in obstacle avoiding metrics in the
plane, must be used in place of [135]. This paper works
via a “wavefront propagation” paradigm and must be
initialized with a wavefront shaped like the boundary of
♦.

Recursively proceed to separate the objects overlap-
ping (or outside) ♦ recursively (the recursions stop once
there are O(B2κ) objects left), creating a well balanced
“separator tree.”

To find the approximate shortest path distance from s
to t, we begin by locating s and t with respect to the 45◦

rotated squares defining the nodes of this separator tree,
and then by finding the “youngest common ancestor” of
s and t (all of which requires time O(logN)) we may
find a separator square “♦” separating s and t. (If s
and t are vertices of the arrangement induced by the
obstacles, then this location task may be performed in
O(1) steps by lookup in a precomputed table, and the
deepest ancestor identification is also possible in O(1)
time [158].)

Assuming s and t are respectively inside and outside
♦, we shall use, as the approximately shortest path from
s to t, the shortest path from s to ∂♦ (say it hits ∂♦ at
a point Ps), the shortest path from t to ∂♦, (say it hits
at Pt) and the shortest path from Ps to Pt. The union of
these 3 paths is easily seen to be no more than 3 times

53Also perhaps relevant are [136] [173]. Mitchell’s algorithms
in theorems 2 and 3 of [135], required O(N log2N) time and
O(N logN) space. However, Mitchell in a private communication
has informed us that he has unpublished improvements of both of
these bounds by logN factors.

54This restriction may be enforced by placing O(B
√
κN) artifi-

cial barriers into the problem used to define the Voronoi diagram.

as long as the shortest path from s to t. But actually,
instead of using the true shortest path from Ps to Pt,
we shall use an (1 + ε/2) approximately shortest path.
Specifically:

1. If Ps and Pt are on the same segment of the same
side of ∂♦ (i.e. with no obstacles between) then
use the direct line segment PsPt, which is the true
shortest path.

2. If Ps and Pt have obstacles between, then walk from
Ps along ∂♦ toward Pt until you hit an obstacle
or one of the 2ε−1 artificial vertices on the current
segment (call this point Ps

′). Similarly define Pt
′.

Then retrieve the precomputed true shortest path
from Ps

′ to Pt
′.

3. The above two ideas could generate a factor of 2
too long an L1 path from Ps to Pt in the very ex-
ceptional case where Ps and Pt are on adjacent but
different sides of ♦ with no artificial vertices nor ob-
stacles between. But even then it seems that we may
redefine Ps and Pt to force them to lie on the same
side (among the 4 sides of) ♦ (since we may try
all 4 sides and take the shortest of the 4 final paths
we wind up with, in addition to trying the preceding
two ideas), and thus assure (1+ε/2) approximation.

We have left unmentioned the possibility that both s
and t are inside (or both outside) ♦, which can only hap-
pen if they are both in the same “leaf” of the separator
tree. But in this case an approximately shortest st path
may be found by brute force in time O(B4κ2/ε2) with the
aid of the precomputed distances among the O(B2κ/ε)
points on the boundary of the separating square defining
that leaf.

The storage requirement in our algorithm obeys a re-
currence like S(N) = B2κε−2N+S(2N/3)+S(N/3) with
solution S(N) = O(B2κε−2N logN) with the dominant
cost being the tables of precomputed shortest path dis-
tances among the O(Bκ1/2ε−1

√
N) points on the bound-

ary of the separator squares. Note, the costs to store the
L1 Voronoi diagrams are O(N); and note the essential
fact that since we are only considering shortest paths
to ∂♦, the objects on the other side of ♦ are irrelevant
and may be discarded when computing the Voronoi dia-
gram. The preprocessing time in our algorithm obeys a
recurrence like T (N) = Bκ1/2ε−1N3/2 logN+T (2N/3)+
T (N/3) with solution T (N) = O(Bκ1/2ε−1N3/2 logN).
Here the dominant cost is computing the exact short-
est path distances to put in the tables. Incidentally, all
shortest path distances among U of the V vertices of
an E-edge graph with positive real edge weights may
be found in UO(E + V log V ) time and stored in O(U2)
space [74], and the paths themselves may be stored in
O(UV ) space. So we may compute a vertical and hor-
izontal “visibility graph” with O(N) edges and vertices
and use it when computing these tables (or proceed di-
rectly by using the algorithm of [135]). In the L2 case
we could proceed directly by using [99], or we could use
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a O(ε−1/2)-directional visibility graph with O(N) ver-
tices and O(Nε−1/2) edges (this approximation of the
L2 metric by a metric based on a regular O(ε−1/2)-gon
instead of a circular norm, causes a path length increase
by a factor of 1 + ε). In the case where paths as well
as distances need to be reported, these visibility graph
approaches incur a space usage recurrence of the form
S(N) = Bκ1/2ε−1N3/2 + S(2N/3) + S(N/3) with solu-
tion S(N) = O(Bκ1/2ε−1N3/2). 2

Remark. We claim without proof that one may reduce
the length approximation factor to 1 + ε, provided that
the storage bound is increased to O(Bε−1κ1/2N3/2 +
B2κε−2N logN) and the query time to O(B4κ2ε−2 +
logN +Bε−1κ1/2N1/2 + P ).

It seems likely that our separator theorem may not
have been needed here, because the plain Lipton-Tarjan
theorem could have been made to suffice. It would be
more complicated, though. Another virtue of our ap-
proach is its possible use in higher dimensions in the
future.

7.8 Coloring, independent sets, and counting problems

For optimally coloring, or finding maximum indepen-
dent sets in, or finding maximum cliques in (or count-
ing cliques, or maximal cliques, in), intersection graphs
of d-objects with bounded aspect ratio and bounded

thickness in fixed dimension d, 2O(N1−1/d) time suffices
[150]. Counting k-colorings may be accomplished in

(k − 1)O(N1−1/d) time.

7.9 Gaussian elimination for systems with the graph
structure of an intersection graph of d-objects of
bounded aspect ratio and thickness

In a V vertex graph family with a (αV, βV p) separa-
tor theorem (definition 11), one may perform “Gaussian
elimination” to solve a system of linear equations in time
T (V ), where T (V ) obeys the recurrence

T (V ) ≤ T (αV ) + T ((1− α)V ) + (βV p)ω. (89)

Here ω, 2 < ω ≤ 3, is the exponent for the runtime of
dense matrix multiplication. If ωp > 1, this solves to

T (V ) = O(
βω

1− αpω − (1− α)pω
V pω). (90)

If we use ω ≤ 2.376 [53] and p = 1− 1/d, we see that we
have subquadratic time when d ≤ 6. This idea dates to
[127].

In contrast, the “conjugate gradient method” [86] may
be used to solve any system of V linear equations, where
there are E nonzero terms in the matrix, in O(V E) arith-
metic operations. For a sparse graph – with E = O(V )
– this is quadratic time.

7.10 Universal graphs

The following results55 are typical ones about “universal
graphs.”

1. For each V ≥ 1 there exists a graph with V vertices
and O(V 3/2) edges containing all planar V -vertex
graphs [10].

2. If η is fixed, then there exists a graph with Oη(V )
vertices and Oη(V log V ) edges containing every V -
vertex planar graph with maximum valence η [15].

3. For each V ≥ 1 there exists a graph with V vertices
and O(V log V ) edges containing all V -vertex trees
[47] and indeed all V -vertex outerplanar graphs [15].
This is optimal up to a constant factor [47].

4. If η is fixed, then there exists [15] a graph with V
vertices and maximum valence F (η), containing ev-
ery V -vertex planar graph with maximum valence
η.

Many of these results arose from separator theorems.

Theorem 104 There exists a V -vertex graph with
O(dκ1/dBV 2−1/d)+[O(d)dκBd]2 edges containing all in-
tersection graphs of V convex d-objects with aspect ratio
bounded by B and thickness κ.

Proof sketch. The graph is constructed recursively by
placing O(dκ1/dBV 1−1/d) vertices in the “middle” and
joining each of these middle vertices to every vertex.
Then two disjoint sets of V/2 vertices each are chosen
and one recursively constructs universal graphs on these
two subsets. The fact that this graph is universal arises
from the fact that our intersection graphs have 1/2-1/2
separators of size O(dκ1/dBV 1−1/d), which arises from
our 1/3-2/3 geometric separator theorem as in the dis-
cussion near (EQ 8). The recursions stop, and one uses
a complete graph, when V < O(d)dκBd. 2

Theorem 105 There exists a universal V -vertex graph
with O(dκ1/dBV 2−2/d) edges containing all bounded va-
lence intersection graphs of V convex d-objects with as-
pect ratio bounded by B and thickness bounded by κ.

Proof. Follows from our separator theorem 39 (a) and
[15]. 2

8 Open problems

8.1 Graphs of genus g

It should be possible to prove a Kh,c

√
V separator the-

orem for V -vertex graphs embeddable in 2-dimensional
manifolds with h handles and c crosscaps, by geometric

55Bondy [21] posed as an open problem: “How many edges are
required in a V -vertex graph containing every n-cycle with 3 ≤ n ≤
V ?” He stated without proof that V + lg(V − 1) + log∗ V + O(1)
edges suffice.
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means. This may allow either better constants, separa-
tors of simpler structure, or better understanding.

This is because essentially any graph embeddable on
any “orbifold” is realizable as a contact graph of an infi-
nite periodic arrangement of interior-disjoint discs. Here
“periodic” means symmetric under an infinite symmetry
group corresponding to the orbifold; this often requires
using hyperbolic or spherical plane geometries instead of
the usual Euclidean one56. In other words, just as pat-
terns drawn on tori may be “unwrapped” to get infinite
periodic patterns in the plane, general orbifolds may also
be unwrapped.

The main obstacle seems to lie in bounding the as-
pect ratio of the fundamental “unit cell” of the infinite
periodic arrangement.

8.2 “Squared” projective plane?

In §5.2 we observed that rectangles, cylinders, Moebius
strips, toruses, and Klein bottles could be “squared,”
e.g. tiled by unequal squares. Can any interesting ex-
amples of “squared” projective planes (see figure 7) be
produced? 57 Related problems are discussed in [75].

8.3 k-Steiner ratio

The “k-Steiner ratio” is the supremal value of the ratio of
the length of the shortest interconnecting network that
is a union of Steiner minimal trees on (≤ k)-element
subsets, to the length of the Steiner minimal tree, for
some point set in some metric space. (Cf. §7.6.)

In the case when the metric space is the Euclidean
plane, we conjecture that the k-Steiner ratio is 1+O(k−p)
for some fixed constant p > 0; but the best known upper
bound at present [24] is 1 +O(1/ log k).

8.4 Hadwiger hypothesis and related covering problems

The “Hadwiger hypothesis” conjectures that any convex
d-body may be covered by 2d smaller scaled translated
copies – and less than 2d should suffice unless the body is
a parallelipiped. We’ve also conjectured that any convex
d-body may be covered by 2 smaller-volume affine ver-
sions – and that spheres require the largest volume scal-
ing factor (EQ 28). The question of how many smaller
copies one needs if rotations (but not affinities) are al-
lowed, seems comparatively very difficult. See §3 for our
survey of all this. Some open questions that ought to be
comparatively easy to resolve:

56These noneuclidean geometries are no problem for us, since,
e.g., the circle separator theorems 47 48 remain valid – since the
stereographic projection of spherical geometry onto euclidean ge-
ometry [and the analogous “conformal disk model” of the hyper-
bolic plane inside a euclidean disk] is circle preserving.

57To enforce nontriviality we would prefer a “simple perfect”
example (in the terminology of [27]), i.e. one not containing a
squared rectangle or Moebius strip, and in which all the square
tiles have unequal sizes. Also, one must define a “square” and a
“squaring” as in the discussion of §5.2, remark (vi).

1. What is the minimal s, 0 < s < 1, such that any
2D convex body may be covered by 3 rotated and
translated versions of itself, each scaled by s?

2. Find the minimal scaling factor s for covering a unit
Lp ball in Rd by d+ 1 such balls of radius s.

Re the 1/e volume splitting theorem 42, another open
problem is how badly balanced the split of surface area
can be.

Conjecture 22, about the existence of a good cut plane
for splitting face count, would immediately yield a data
structure of size NF (d) for solving the “post-office prob-
lem” of locating the closest city (among N cities) to a
query point, and the polytope containment problem of
deciding whether is query point is inside some fixed d-
polytope (with N faces), in Od(logN) time per query.
This would not be as good as [51], although still inter-
esting because of its simplicity and the prospect of typical
performance much better than the worst case bounds.

8.5 Practicality of algorithms; more applications

We’ve presented new algorithms with either more sim-
plicity, or better asymptotic runtime bounds (or both),
for finding rectilinear steiner minimal trees and optimal
traveling salesman tours forN sites in d-space. Can these
algorithms be actually be implemented to yield champion
computer programs for these tasks?

Deneen et al. [58] had previously realized that our
RSMT separator theorem, and in fact Ganley’s con-
jecture 63, hold (with high probability) under the as-
sumption that the sites are randomly selected from the
uniform distribution on [0, 1]2. They implemented a

NO(
√
N) algorithm depending on that assumption. But,

their program performed poorly in comparison to com-
peting programs [156] [73] [179] only featuring 2O(N) run-
time bounds – or worse. This experience suggests that
either our RSMT algorithmic framework is not practi-
cal, or that making it practical depends on hybridizing
our subexponential framework with the ideas in [156] [73]
[179]. Similar remarks apply even more strongly to Eu-
clidean TST [118].

It seems quite likely that our point location (§7.2) and
intersection graph (§7.3) algorithms are of practical in-
terest.
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