
The Random Graph Threshold for k-orientiability and a

Fast Algorithm for Optimal Multiple-Choice Allocation

Julie Anne Cain, U. Melbourne, Australia, J.Cain@ms.unimelb.edu.au and

Peter Sanders,Universität Karlsruhe, Germany, sanders@ira.uka.de. and

Nick Wormald, University of Waterloo, Canada, nwormald@uwaterloo.ca

July 5, 2006

Abstract

We investigate a linear time greedy algorithm for the following load balancing problem:
Assign m balls to n bins such that the maximum occupancy is minimized. Each ball can be
placed into one of two randomly choosen bins. This problem is closely related to the problem of
orienting the edges of an undirected graph to obtain a directed graph with minimum in-degree.
Using differential equation methods, we derive thresholds for the solution quality achieved by
our algorithm. Since these thresholds coincide with lower bounds for the achievable solution
quality, this proves the optimality of our algorithm (as n → ∞, in a probabilistic sense) and
establishes the thresholds for k-orientability of random graphs. This proves an assertion of Karp
and Saks.

1 Introduction

Randomized load balancing is a simple and powerful technique. Many of its applications can be
modelled using a balls into bins terminology — m balls are to be allocated into n bins. Let ℓi denote
the number of balls allocated to bin i. Good load balance means that the maximum occupancy
L := max {ℓi : i ∈ {1, . . . , n}} is small. The simplest variant of this model, where each balls has
a single random choice, has a problem however. Only for fairly large m, we are beginning to
observe good load balance. For example m = Ω (n ln n) balls are needed to have EL = O(m/n).
Interestingly, the situation improves radically if the balls are given just two choices. There are
simple linear time algorithms that achieve L = O(m/n) [14, 10, 15] or L = m/n+O(log log n) [1, 2].
Optimal allocations can be computed in polynomial time [6] using maximum flow computations
and with high probability achieve L = ⌈m/n⌉ or L = ⌈m/n⌉ + 1 [20]. Empirically, there are sharp
thresholds between these two cases. See Figure 1 for the relation between m/n and L. Hence, there
seems to be a tradeoff between simplicity and speed of the method on the one hand and the quality
of load balancing on the other hand. We close this gap by giving simple linear time algorithms that
compute an optimal schedule asymptotically almost surely (a.a.s.) for random allocation.

Many algorithms for two-choice allocation are best understood using a graph model. The bins are
vertices and a ball that can be placed into bins u and v forms an undirected edge {u, v}. The load
balancing problem then amounts to orienting the edges of the allocation graph G such that its

1

maximum in-degree is small. In other words, given the undirected allocation graph G = (V,E) we
are computing a directed output graph G′ = (V,E′).

Several allocation algorithms and their analysis are intimately connected to the concept of cores of a
graph. The k-core of a graph is the maximum vertex induced subgraph with minimum degree ≥ k.
Indeed Czumaj and Stemann [8] give a linear time algorithm achieving maximum load O(m/n)
based on a well known algorithm for computing all cores: Repeatedly choose a vertex v with
minimum degree and remove it from the graph, thus committing all its incident edges (balls) to be
allocated to vertex (bin) v, i.e., all edges of the form {v,w} in G are moved to the output graph G′

using the direction (w, v). Unfortunately, this is not optimal. In particular, as m/n → ∞, L will
approach 2m/n (see also the end of Section 2).

Our algorithms can be viewed as a variation of the same basic approach. The algorithms first
guess the optimal L. This is easy since with high probability there are only two likeley values —
L = ⌈m/n⌉ or L = ⌈m/n⌉ + 1. We can simply start with L = ⌈m/n⌉. If the algorithm fails, we
increment L until a solution is found. The min-degree rule is used exactly for the “safe” vertices
with degree ≤ L. The application of the min-degree rule will first reduce the graph to its (L + 1)-
core. After this we are stuck. We therefore need an additional, lower priority rule that gets things
going again. This rule picks a single edge {u,w} in G, according to some rule, and moves it to G′

choosing an appropriate direction. We also call this process “comitting an edge”. After committing
an edge, the mindegree rule is again tried. But now we have to be a bit careful — only those nodes
qualify that have degree in G plus in-degree in G′ ≤ L.

In Section 2 we analyze the Selfless algorithm originally proposed in [19]. The load-degree of a vertex
v is its degree in G plus twice its in-degree in G′. To understand the idea behind this definition,
note that the load-degree of v is twice the expected in-degree of v in G′ if we were to orient all
remaining edges in G randomly. The algorithm chooses a random vertex v with mininimum load
degree, then a random edge {v,w} incident to v, and moves the edge to G′ using direction (w, v).
We show that a.a.s. the threshold value where the L found by Selfless switches from ⌈m/n⌉ to
⌈m/n⌉ + 1 coincides with the threshold for the (⌈m/n⌉ + 1)-core to have average degree 2 ⌈m/n⌉.
From this it follows that Selfless is indeed optimal.

We say that a graph G is k-orientable if there exists an orientation of the edges of G in which no
vertex has in-degree greater than k. As we show in Section 2, our analysis of Selfless determines the
threshold value for non-k-orientability of the common random graph models, and equivalently for
the appearance of a subgraph of average degree at least 2k. This is the first proof of an assertion
of Karp and Saks. The case average degree 3 was announced to be solved by Molloy [17].

Section 3 discusses implementation details. In Section 4 we report experiments which indicate that
Selfless also perform well for small n. We also present a similar, slightly simpler algorithm that
also performs very well and that might turn out to be easier to analyze. Section 5 summarizes the
results and states some questions for future research.

1.1 Some Applications

A well known application for multiple choice applications are parallel disk servers (see [20] and the
references therein). Logical data blocks are randomly mapped to two out of n identical disks. In
the I/O model for external computing [21], accessing one block from each disk takes one I/O step.

2

Hence, retrieving any m different data blocks which have two possible locations is equivalent to
allocating m blocks (balls) with two random choices to n disks (bins). L will be the number of I/O
steps needed to fetch the data. The duplicate allocation gives us some degree of fault tolerance
and allows very good load balancing for arbitrary access patterns. Fast algorithms for solving this
disk scheduling problem might become even more important in a currently emerging variant of
this setting: Solid state disks contain NAND-flash memory chips. Similar to a hard disk, a NAND
flash is accessed in a blocked manner and has a fairly large access latency (which is much smaller
however than for hard disks). Since these chips are much smaller than hard disks with respect to
size, price, and capacity, solid state disks often have a large number of chips. Hence, we have to
solve larger load balancing problems in less time resulting in a requirement for very fast scheduling
algorithms.

Dietzfelbinger and Weidling [11] have developed a highly space efficient hash table data structure
with worst case constant access time based on allocating table entries to one out of two buckets of
capacity k. Our results are useful for constructing static hash tables using this approch: Given m
objects to store, we first we use the threshold for k-orientability to allocate a table just big enough
to accommodate all m objects. Then the Selfless algorithm is used to allocate the objects. If this
fails, we retry with fresh hash functions until the construction succeeds.

1.2 More Related Work

Refer to [16] for a survey of further results on multiple choice allocation. A survey more oriented to
applications can be found in [19]. Czumaj et al. show that for m > cn log n for some appropriate
constant c, L = ⌈m/n⌉ can be achieved with high probabilty. They give a randomized local search
algorithm which alway converges to an optimal solution and has polynomial expected running time.

2 The Selfless Algorithm

To state the threshold results for k-cores in random graphs we need some notation. For k ≥ 0
integer and λ a positive real, define

fk(λ) = eλ −
k−1
∑

i=0

λi

i!
=

∑

i≥k

λi

i!
.

Let hk(µ) = µ
e−µfk−1(µ)

and define

ck = inf{hk(µ) : µ > 0}.

For c > ck it can be checked that the equation hk(µ) = c has two positive roots (and just one for
c = ck). Define µk,c to be the larger one. In [18] the following theorem was obtained, in a more
precise form, though the part only on number of edges was only implicit in the proofs. (It was
stated explicitly and rederived in [5].)

We use the abbreviation u.a.r. for uniformly at random. An event An defined on a family of
probability spaces indexed by n holds asymptotically almost surely (a.a.s.) if P(An) → 1 as n → ∞.

3

Theorem 2.1 Let c > 0 and integer k ≥ 3 be fixed. Suppose that m ∼ cn/2, and G ∈ G(n,m). For
c < ck, G has empty k-core a.a.s. For c > ck, the k-core of G a.a.s. has e−µk,cfk(µk,c)n(1 + o(1))
vertices and 1

2µk,ce
−µk,cfk−1(µk,c)n(1 + o(1)) edges.

Now define µ̄k to be the positive solution of µ̄kfk(µ̄k)/fk+1(µ̄k) = 2k. By Theorem 2.1, this is the
value of µk+1,c for the threshold of c when the (k + 1)-core first reaches average degree 2k. The
value of this c is then

ρk := hk+1(µ̄k).

We need to explain the algorithm a little more. At each point, the graph has some edges oriented,
and some unoriented. The load-degree of a vertex is equal to the number of incidences it has with
unoriented edges plus twice its in-degree (number of edges directed towards it). Let Vd,j denote
the set of vertices with load-degree d and in-degree j. It is convenient to assign to each vertex a
priority that is a function of load-degree and in-degree. If v is a vertex in Vd,j with d − j ≤ k and
d − 2j > 0, then the remaining d − 2j edges incident with v may be directed to v, after which v
has load-degree j′ with

j′ = j + (d − 2j) = d − j ≤ k.

Such vertices are treated as vertices with the highest priority for selection in the algorithm, and will
be called priority 1 vertices. When there are no priority 1 vertices, a vertex of minimum load-degree
is selected.

Note that the algorithm gives the same result, in terms of success versus failure, whether all edges
are similtaneously directed to priority 1 vertices, or they are randomly chosen one at a time. We take
the latter approach for purposes of the “step-by-step” method of analysis. So we now (re-)define
the algorithm Selfless(k) is defined as follows, where allocate to v means “select an undirected edge
incident with v u.a.r. and direct this edge towards v.”

Selfless(k): If there is a priority 1 vertex, select one such vertex u.a.r. and allocate to it. Otherwise,
if there is a vertex of load-degree less than 2k + 1 and at least one incident undirected edge, select
one such vertex of minimum load-degree u.a.r. and allocate to it. Otherwise, stop.

When the algorithm stops, either all edges are oriented, in which case the maximum load is at most
k, or some are left unoriented, which constitutes failure to achieve the desired maximum load.

Theorem 2.2 Let ǫ > 0 and integer k ≥ 2 be fixed. Suppose that n vertices are given, that
m = ρn/2 where ρ = ρ(n) < ρk − ǫ, and let M be a random multigraph in which the two ends
of each of its m edges are chosen u.a.r. as a pair of distinct vertices (with replacement). Then
Selfless(k) applied to M a.a.s. orients all edges such that maximum indegree is at most k.

Note that, if ρ > ρk + ǫ, then Theorem 2.1 implies that the (k + 1)-core a.a.s. has average degree
greater than 2k. In this case it cannot be k-oriented by any algorithm, and thus ρk determines the
threshold for k-orientability of the random multigraph, and simultaneously the theshold at which
Selfless(k) passes from a.a.s. succeeding (with maximum load k) to a.a.s. failing. Returning to the
terminology of Section 1, nρL/2 is the asymptotic threshold of the number of edges (twice the
number of balls) to obtain a given L. The conclusions also hold for k = 1 by well known properties
of cycles in the random graph. The table below gives numeric values of ρL/2.

4

L 1 2 3 4 5 6 7 8 9 10 11
m/n ≤ 0.5 1.794 2.877 3.921 4.947 5.964 6.975 7.982 8.987 9.991 10.993

Bollobás and Frieze [3] and Chvátal [7] used the following model of random graphs. Take a set of
2m balls arranged in m pairs and throw each ball sequentially into one of n buckets chosen u.a.r.
Call this an allocation of 2m balls into n buckets. From each allocation we obtain a pseudograph,
(perhaps containing loops and multiple edges), with each bucket representing a vertex, each ball a
point in a vertex and each pair of balls forming an edge. Let M(n,m) denote the probability space
of pseudographs which result. We use this model, as in [5], and prove the following.

Theorem 2.3 Theorem 2.2 holds if M is replaced by a random pseudograph with the distribution
of M(n,m).

Note that M(n,m) is not a uniform probability space of pseudographs. However, it is clear that,
restricted to simple graphs (i.e. with no loops or multiple edges), it reduces to G(n,m), the uniform
probability space of simple graphs with n vertices and m edges. Also, restricted to pseudographs
with no loops, it gives the random multigraph M of Theorem 2.2.

It is easy to compute (and was shown in [7]) that for M ∈ M(n,m) and c = 2m/n, the probability
that M is simple is asymptotic to

(

N
m

)

m!2m/n2m ∼ exp(−c/2− c2/4). It follows that anything true
a.a.s. for pseudographs in M(n,m) is true a.a.s. for the other two models just mentioned.

From this we have two conclusions. Firstly, to prove Theorem 2.2 it is enough to prove Theorem 2.3.

Secondly, the same result holds if M is replaced by G ∈ G(n,m). This proves the following result,
for which an incomplete proof by Karp and Saks is referred to in [13].

Theorem 2.4 Let ǫ > 0 and integer k ≥ 1 be fixed, and ρ = ρ(n). For m = ρn/2, G ∈ G(n,m) is
a.a.s. k-orientable if ρ < ρk − ǫ for all n, and not if ρ > ρk + ǫ for all n.

It is well know, for example from Hakimi’s theorem in [12], that a graph (or pseudograph) G is
k-orientable if and only if G contains no subgraph with average degree greater than 2k. So the
theorem above determines the threshold for this property.

We finish our statements of results with some asymptotic observations.

Simple analysis shows that, for large k, firstly µ̄k > k and then µ̄k = 2k−O(
√

k). This implies that
ρk = 2k − (2/e + o(1))k as k → ∞. This gives an approximation of what density graph Selfless(k)
succeeds for, when k is large.

The simple algorithm in [8], mentioned in Section 1, that repeatedly orients all edges to the lowest
degree vertex, must naturally give load at least j, if the j-core exists. As shown in [18, eqn. (1.3)],
cj = j +

√
j log j + O(log j) ∼ j. Thus, by Theorem 2.1, the maximum load resulting from this

algorithm when c ∼ ρk is asymptotically ρk ∼ 2k as k → ∞. (The rate of k going to infinity
here is arbitrarily slow, independent of n.) Thus, for large k the load achieved by this algorithm is
approximately double the optimal load.

The proof of Theorem 2.3 occupies most of the PhD thesis of the first author [4] and will appear
in the long version of this paper. It is available in the companion document to this paper, at

5

http://www.math.uwaterloo.ca/ nwormald/lbalappendix.pdf, which also gives the proof of
the relevant result from [5], i.e. Theorem 2.1.

Proof of Theorem 2.3. (Sketch) Consider the algorithm applied to a random pseudograph
M0 ∈ M(n0,m0) with m < (ρk − ǫ)n/2. Any vertex whose degree exceeds its out-degree by at
most k will have priority 1. When there are no such vertices left, the unoriented edges of M0

form precisely the (k + 1)-core of M0 (and all other vertices can now be ignored). Call this M .
Conditional upon M having n vertices and m edges, then it is straightforward to show that it
is distributed precisely as in M(n,m) conditional upon all vertices having degree at least k + 1.
So we apply the algorithm to this M . Put ρ = 2m/n. By Theorem 2.1, or, more properly, the
analogue for pseudographs as proved in [5], together with monotonicity of the size of the 2-core as
m increases, we may assume that ρ < 2k − ǫ (for a slightly different ǫ).

Define the random variable Yd,j(t) = |Vd,j | after t edges of the (k + 1)-core M have been oriented
by the algorithm. Then define A to be the set of ordered pairs (d, j) with d < 2k and d− jk, B the
ones for which d < 2k and d − j > k. These refer to vertices of load-degree at most 2k − 1, A for
priority 1 vertices and B for the others. Then set

X(t) :=
∑

(d,j)∈B

(2k − d)Yd,j(t) +
∑

(d,j)∈A

(d − 2j)Yd,j(t),

Z(t) :=
∑

{(d,j):d>2k}

(d − 2k)Yd,j .

Here, X(t) is basically the maximum number of edges that could instantaneously be oriented
towards vertices of load-degree less than 2k without any load-degrees exceeding 2k, and Z(t) is
a dual variable, the minimum number of edges needed to be oriented away from vertices of load-
degree at least 2k + 1 to bring all their load-degrees down below 2k + 1. Actually if d > 2k and
j > 0 then Yd,j = 0 unless the minimum load-degree already grew to at least 2k; there is no other
way for the algorithm to direct an edge towards a vertex of load-degree at least 2k. This possibility
can be ignored, as the proof shows that the algorithm a.a.s. does not reach such a situation.

It can be checked that X(0)−Z(0) = n(2k − ρ), so the bound on ρ above gives X(0) > Z(0) + ǫn.
The proof has two main parts. Firstly, we show that for any constants ξ, ǫ > 0, there exist constants
ǫc, ω > 0 such that

a.a.s. if X(0) > Z(0) + ǫn then X(t) > ξZ(t) + ǫcn at some t < Tf − ωn (1)

where Tf = m is the number of steps required to orient all edges.

To prove (1), we first define Tl = Tl(ǫb), for any ǫb > 0, to be the time t when a certain function
of the Yd,j(t) first exceeds 1 − ǫb. This function signifies the growth rate of priority 1 vertices; if it
exceeds 1 we would expect an explosion in their numbers. We use a branching process argument
to show that before time Tl the total change in X − Z is very small. Part of the reason is that
orienting an edge towards a (low load-degree) vertex usually leads to no change in X − Z. Since
both X and Z are decreasing, this implies that the ratio X/Z is, essentially, increasing, and we may
deduce that, assuming X(0) > Z(0) + ǫn, a.a.s. either Tl is reached or X/Z becomes arbitrarily
large before the end of the process: for any constants ξ, ǫ, ǫb > 0, there exist constants ǫc, ω > 0
such that

6

a.a.s. if X(0) > Z(0) + ǫn then either Tl(ǫb) < Tf − ωn or X(t) > ξZ(t) + ǫcn for some
t < Tf − ωn.

We define another stopping time for arbitrary ǫa > 0: Tg(ǫa) := min{t : g(X,Z,H) > ǫa} where
g(x, z, h) = x

z

(

1 − 2z
h

)

− 1 and H is the total load-degree of all vertices of load-degree at least
2k + 1. (Note that edges directed away from vertices do not contribute to their load-degree.) We
may use the differential equation method of [22] together with equations describing the behaviour
of the variables Yd,j that, provided Tg occurs early enough, the ratio X/Z becomes arbitrarily large
before either X or Z gets close to zero: for any constants ξ, ωa, ǫa > 0, there exist constants ǫc,
ωb > 0 such that

a.a.s. if Tg(ǫa) < Tf − ωan then X(t) > ξZ(t) + ǫcn for some t < Tf − ωbn.

Finally, we may show, assuming X(0) > Z(0) + ǫn for some ǫ > 0, that

a.a.s. if there exist sufficiently small constants ǫb, ω > 0 such that Tl(ǫb) < Tf −ωn then
there exists ǫa > 0 such that Tg(ǫa) < Tl(ǫb).

To prove this requires a long, detailed analysis bounding the solutions of the differential equations
associated with the process (which we do not solve explicitly).

These conclusions together imply (1).

For the second part of the proof, we define the stopping time Th to be the least t for which X(t) = 0.
Most of this part of the proof is to show the following.

Lemma 2.5 For any δ > 0, there is a constant ξ = ξ(δ) such that, for any constants ǫc, ω > 0,
a.a.s. if there exists T < Tf − ωn such that X(T) > ξZ(T) + ǫcn, then P(Z(Th) = 0) > 1 − δ.

Since this is true for arbitrarily small δ, we may replace the conclusion by Z(Th) = 0 a.a.s. In view
of (1) and the observations above it, this conclusion has been established unconditionally. A short
argument shows that the algorithm will successfully k-orient M if and only if Z(Th) = 0. So the
proof of Theorem 2.3 is then complete.

We finish this section with some comments on the proof of Lemma 2.5. The intuition behind it is
summarised as follows. A heavy vertex is one of load-degree at least 2k + 1. Note that Z(Th) will
become zero if enough of the H unoriented edges incident with heavy vertices are directed away
from them by time Th, and X(t) is the number of places where edges can be allocated without
the maximum in-degree exceeding k. Qualitatively speaking, if X(t)/Z(t) → ∞ it seems that it
should be possible to do this, unless a dense subgraph containing heavy vertices manages to survive
somehow until Th.

The likelihood of such a subgraph seems very small when X is much bigger than Z, and yet, the
proof of Lemma 2.5 is quite involved. Firstly, we fix (i.e. condition on) the degree sequence of the
subgraph G′ induced by unoriented edges at time T , the distribution of degrees of heavy vertices
being truncated Poisson as shown in [5]. We assign each vertex a number of “points” equal to its
degree. It is possible then to regard the remaining unoriented edges at time T as a random set
of pairs of the points. Taking the appropriate model, the pairing of points can be shown to occur

7

u.a.r. Thus we can regard the algorithm as acting on the common configuration model (also called
pairing model) of random graphs with given degrees. Assuming that the time T in the lemma
exists, we then define a colouring algorithm which builds a matching, MF , on some of these points
as the algorithm proceeds. Finally, we can deduce properties of this matching which imply that
P(Z(Th) = 0) is arbitrarily close to 1 a.a.s.

The definition of MF involves several steps and rules for colouring points red and blue as well as
some other colours. These colours change dynamically and enable us to identify “sources” (points in
heavy vertices) and “sinks” (some points in vertices that, at some time in the process, have degree
less than 2k), and MF is a matching of these sources and sinks. The generation of MF involves
identifying directed paths of allocated edges, from the sources to the sinks. These paths are not
fully completed until time Th. Each of the H(t) points in heavy vertices at time t is a source, and
these are coloured red. There is the potential for X(t) sinks, and X(t) points get coloured blue
dynamically. MF is defined so as to contain all H(t) + X(t) of the red and blue points.

Let us say that a point is free at a given time if the edge it corresponds to is not yet oriented. The
motivation for defining MF is that, firstly, any point matched to a blue point in MF is not free
at time Th. We define a certain graph, GR, from the red-red pairs in MF at time Th, and show
that any free red point at time Th is in the 2-core of GR. Secondly, on showing that MF has the
distribution of a uniformly random matching, we deduce that GR can be generated by a simple
process, and by analysing a related branching process we bound the probability that GR contains a
cycle. This turns out to vanish a.a.s., showing that no red points (corresponding to points in heavy
vertices) remain at this time.

3 Efficient Implementation

Wlog we can assume the our bins (vertices) are numbered from 1 to n. The most natural inputs
for allocation algorithms is a list of m edges. Using bucket sort these can be transformed into an
adjacency list representation of the allocation graph G. This graph must support edge deletion in
constant time or marking deleted edges.

The Selfless algorithm maintains a priority queue of vertices ordered by their load-degree. Since
keys are integers in the range 0 to maxv∈V degree(v) ≤ m we can use a bucket priority queue [9]
— an array b containing one entry for each priority value, i.e., b[i] stores the set of elements with
priority i. These sets have to support the following operations in constant (amortized) time: Delete
a random node and delete or insert a specified node (in order to move it to another bucket). This
is possible by representing a bucket as a growable and shrinkable array (e.g., C++ vector) that
stores vertex numbers in an unordered fashion. In addition, each node has to identify the position
in the bucket where it is currently located.1

By keeping track of the smallest nonempty bucket, the deleteMin operation can find it in constant
time. When this bucket is empty now, the array has to be scanned for the next nonempty one.
Although this time may be nonconstant, it is easy to see that the total number of buckets scanned
during the execution of the Selfless algorithm is at most m plus the total number of decrementKey

1The standard implementation of bucket queues with doubly linked lists does not work because it does not support

choosing random elements in constant time.

8

operations.2

The Selfless algorithm needs to choose random edges incident to a given vertex v. It is not so
easy to do this in constant time since edges can also be removed. However, closer inspection shows
that it is sufficient to randomly permute the input at the beginning and from then on choose the
first remaining edge incident to v in the representation used. This works because this edge will be
immediately deleted.

4 Experiments

Experiments have been valuable in testing the quality of several algorithms and of initial hypotheses
on the connection between threshold values for core sizes and algorithms. For example, it turned
out that the high priority rule for committing vertices with degree ≤ L makes a significant difference
with respect to solution quality.

We want to single out one additional algorithm — random round robin (RRR) — because it is
slightly simpler than Selfless and because we have reasons to believe that it may be considerably
easier to analyze: RRR also uses the rule for vertices with degree ≤ L whenever possible. Besides
that, it traverses the vertices of the L + 1 core in random order and commits a random incident
edge for each of these vertices. These traversals are repeated until no vertices remain.

Figure 1 shows how L develops when RRR, Selfless, or an optimal scheduling are run on small
instances with 16 or 256 bins. As to be expected, the “jumps” in the values of L are less sharp for
small n. But even at n = 16 the threshold values are a quite good indications of actual performance.
Even near the jumps, the quality of Selfless is indistinguishable from the optimal algorithm on this
scale. RRR has a just visible lag near the smaller threshold values.

5 Discussion

We have presented simple and fast algorithms for load balancing in the duplicate allocation model
which have applications for construction of hash tables and disk scheduling. Probabilistic analysis
of one of the algorithms established the threshold of non-k-orientability of a random graph.

Currently we are working on an analysis of RRR. The disk scheduling application suggests a
generalzation to the problem to retrieve r out of w pieces of data that are needed to reconstruct a
logical data block. The parameters r and w can be set to obtain different tradeoffs between space
waste, fault tolerance, and scheduling flexibilty (currently we only have covered the case r = 1 and
w = 2). The cases r = 1, and r = w − 1 seem of particular interest.

Acknowledgments:

We would like to thank Felix Putze for performing experiments with several algorithm variants.

2Note that we are outside the usual operating framework of bucket queues where the minimum element increases

monotonically. We remain efficient because priorities are only decremented by a constant amount with each call so

that we can charge scanning costs to decrementKey operations.

9

 1

 2

 3

 4

 5

 6

 7

 8

 9

 8 7 6 5 4 3 2 1

av
g

L

m/n for n=16

RRR
Selfless
optimal

 1

 2

 3

 4

 5

 6

 7

 8

 9

 7 6 5 4 3 2 1

av
g

L

m/n for n=256

RRR
Selfless
optimal

Figure 1: Comparison of the scheduling quality of Selfless and RRR with optimal scheduling for
n = 16 and n = 256. Measurements are averages over 1000 random instances with m balls that can
be allocated to two randomly choosen different bins. The noninteger tic marks give the asymptotic
threshold values where L makes a jump.

10

References

[1] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal. Balanced allocations. In 26th ACM
Symposium on the Theory of Computing, pages 593–602, 1994.

[2] P. Berenbrink, A. Czumaj, A. Steger, and B. Vöcking. Balanced allocations: The heavily
loaded case. In 32th Annual ACM Symposium on Theory of Computing, pages 745–754, 2000.

[3] B. Bollobás and A. Frieze. On matchings and hamiltonian cycles in random graphs. In
M. Karoński and A. Ruciński, editors, Random Graphs 83, pages 23–46. North-Holland, 1985.

[4] J. Cain. Random graph processes and optimisation. PhD thesis, University of Melbourne,
2006.

[5] J. Cain and N. C. Wormald. Encores on cores. submitted for publication, 2005.

[6] L. T. Chen and D. Rotem. Optimal response time retrieval of replicated data (extended
abstract). In 13th ACM Symposium on Principles of Database Systems, volume 13, pages
36–44. ACM Press, 1994.

[7] V. Chvátal. Almost all graphs with 1.44n edges are 3-colorable. Random structures and
algorithms, 2(1):11–28, 1991.

[8] A. Czumaj and V. Stemann. Randomized allocation processes. Random Structures & Algo-
rithms, 18(4):297–331, 2001.

[9] R. B. Dial. Algorithm 360: Shortest-path forest with topological ordering. Communications
of the ACM, 12(11):632–633, 1969.

[10] M. Dietzfelbinger and F. Meyer auf der Heide. Simple, efficient shared memory simulations.
In 5th ACM Symposium on Parallel Algorithms and Architectures, pages 110–119, Velen, Ger-
many, June 30–July 2, 1993. SIGACT and SIGARCH.

[11] Martin Dietzfelbinger and Christoph Weidling. Balanced allocation and dictionaries with
tightly packed constant size bins. In Lúıs Caires, Giuseppe F. Italiano, Lúıs Monteiro, Catus-
cia Palamidessi, and Moti Yung, editors, Automata, Languages and Programming, 32nd Inter-
national Colloquium, ICALP 2005, Lisbon, Portugal, July 11-15, 2005, Proceedings, volume
3580 of Lecture Notes in Computer Science, pages 166–178. Springer, 2005.

[12] S. L. Hakimi. On the degrees of the vertices of a directed graph. J. Franklin Inst., 279:290–308,
1965.

[13] R. M. Karp. Matchings, cores and dense subgraphs in sparse random graphs. Presentation at
DIMACS workshop on probabilistic analysis of algorithms for hard problems, Rutgers Univer-
sity, 1999.

[14] R. M. Karp, M. Luby, and F. Meyer auf der Heide. Efficient PRAM simulation on a distributed
memory machine. In 24th ACM Symp. on Theory of Computing, pages 318–326, May 1992.

11

[15] F. Meyer auf der Heide, C. Scheideler, and V. Stemann. Exploiting storage redundancy to
speed up randomized shared memory simulations. Theoret. Comput. Sci., 162(2):245–281,
August 1996.

[16] M. Mitzenmacher, A. Richa, and R. Sitaraman. The power of two random choices: A survey
of the techniques and results. In P. Pardalos, S. Rajasekaran, and J. Rolim, editors, Handbook
of Randomized Computing. Kluwer, 2000.

[17] M. Molloy. Private communication. 1999.

[18] B. Pittel, J. Spencer, and N. Wormald. Sudden emergence of a giant k-core in a random graph.
J. Combinatorial Theory, Series B, 67:111–151, 1996.

[19] P. Sanders. Algorithms for scalable storage servers. In SOFSEM 2004: Theory and Practice
of Computer Science, volume 2932 of LNCS, pages 82–101. Springer, 2004.

[20] P. Sanders, S. Egner, and Jan Korst. Fast concurrent access to parallel disks. Algorithmica,
35(1):21–55, 2003. short version in 11th SODA, pages 849–858, 2000.

[21] J. S. Vitter and E. A. M. Shriver. Algorithms for parallel memory, I: Two level memories.
Algorithmica, 12(2/3):110–147, 1994.

[22] N.C. Wormald. The differential equation method for random graph processes and greedy algo-
rithms. In M. Karoński and H.J. Prömel, editors, Lectures on Approximation and Randomized
Algorithms, pages 73–155. PWN, Warsaw, 1999.

12

