Errata: Encores on cores

Julie Cain and Nicholas Wormald

$26^{\text {th }}$ October, 2006

In Corollary 2, $n p_{2 \hat{M} / \hat{N}, k, j}$ should be $\hat{N} p_{2 \hat{M} / \hat{N}, k, j}$.
In Corollary 3 and Theorem 3, $n p_{\tilde{c}, k, j}$ should be $n e^{-\mu} \mu^{j} / j$!, where $\mu=\mu_{k, c}$ in Corollary 3, and $\mu=\mu_{d, k, c}$ in Theorem 3. The proofs remain unchanged.

With these corrections, the results read as follows.
Corollary 2 Fix $j \geq k \geq 2$, and let $m=m(n) \sim c n / 2$ where $c>c_{k}$ is fixed. Let \hat{N} and \hat{M} be the (random) numbers of vertices and edges of $\mathcal{K}(n, m, k)$, and let Y_{j} be the number of vertices having degree j. Then for sufficiently small $\epsilon>0$, conditional upon $\hat{M}-k \hat{N}>\epsilon n$ and $\hat{N}>\epsilon n$, we have

$$
\mathbf{P}\left(\left|Y_{j}-\hat{N} p_{2 \hat{M} / \hat{N}, k, j}\right|>a \sqrt{\hat{N}}\right)=O(\sqrt{n}) e^{-2 a^{2}}
$$

for all $a>0$, where, with λ_{b} as in (4),

$$
\begin{equation*}
p_{b, k, j}=\frac{\lambda_{b}^{j}}{j!f_{k}\left(\lambda_{b}\right)} . \tag{5}
\end{equation*}
$$

Corollary 3 Fix $j \geq k \geq 2$, and let $m=m(n) \sim c n / 2$ where $c>c_{k}$. The number of vertices of degree j in $\mathcal{K}(n, m, k)$ is a.a.s. $n e^{-\mu} \mu^{j} / j!+o(n)$, where $\mu=\mu_{k, c}$.

Theorem 3 Let $c>0$ and integers $d \geq 3, k \geq 2$ be fixed. Suppose that $m \sim c n / d$, and $G \in \mathcal{G}(d, n, m)$. For $c<c_{d, k}, G$ has empty k-core a.a.s. For $c>c_{d, k}$, the k-core of G a.a.s. has $e^{-\mu_{d, k, c}} f_{k}\left(\mu_{d, k, c}\right) n(1+o(1))$ vertices and $\frac{1}{d} \mu_{d, k, c} e^{-\mu_{d, k, c}} f_{k-1}\left(\mu_{d, k, c}\right) n(1+o(1))$ hyperedges. Moreover, let $j \geq k$ be fixed, and assume $c>c_{d, k}$. Then the number of vertices of degree j in $\mathcal{K}(d, n, m, k)$ is a.a.s. $n e^{-\mu} \mu^{j} / j!+o(n)$, where $\mu=\mu_{d, k, c}$.

