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Abstract

In this paper we study the diameter of the random graph G(n, p), i.e., the largest
finite distance between two vertices, for a wide range of functions p = p(n). For p =
λ/n with λ > 1 constant we give a simple proof of an essentially best possible result,
with an Op(1) additive correction term. Using similar techniques, we establish two-
point concentration in the case that np → ∞. For p = (1 + ε)/n with ε → 0, we
obtain a corresponding result that applies all the way down to the scaling window of
the phase transition, with an Op(1/ε) additive correction term whose (appropriately
scaled) limiting distribution we describe. Combined with earlier results, our new results
complete the determination of the diameter of the random graph G(n, p) to an accuracy
of the order of its standard deviation (or better), for all functions p = p(n). Throughout
we use branching process methods, rather than the more common approach of separate
analysis of the 2-core and the trees attached to it.

1 Introduction and main results

Throughout, we write diam(G) for the diameter of a graph G, meaning the largest graph
distance d(x, y) between two vertices x and y in the same component of G:

diam(G) = max{d(x, y) : x, y ∈ V (G), d(x, y) <∞},

where, as usual, V (G) denotes the vertex set of G. In this paper we shall study the diameter
of the random graph G(n, p) with vertex set [n] = {1, 2, . . . , n}, where each possible edge is
present with probability p = p(n), independently of the others. For certain functions p = p(n),
tight bounds on the diameter of G(n, p) are known; our main aim is to prove such bounds for
all remaining functions. In particular, in the special case p = λ/n with λ > 1 constant we shall
determine the diameter up to an additive error term that is bounded in probability, where
earlier results achieved only o(logn). A secondary aim is to present a particularly simple
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proof in this case. All our results apply just as well to G(n,m); in the range of parameters
we consider there is essentially no difference between the models. More precisely, although
the results for one model do not obviously transfer to the other, the proofs for G(n,m) are
essentially the same.

We treat three ranges of p = p(n) separately: p = λ/n with λ > 1 constant, np → ∞
but with an upper bound on the growth rate that extends well into the range covered by
classical results, and finally p = (1 + ε)/n with ε(n) → 0 but ε3n → ∞. In each case, our
analysis investigates the neighbourhoods of vertices, and has three components or phases:
‘early growth’ — we study the distribution of the number of vertices at distance t from a
given vertex v when t is small; ‘regular growth’ in the middle — we show that the number of
vertices at distance t is very likely to grow regularly once the neighbourhoods have become
‘moderately large’; ‘meeting up’ — we show that the distance between two vertices is almost
determined by the times their respective neighbourhoods take to become ‘large’. This is
eventually translated into a result on the diameter.

Our overall plan is made possible by the very accurate information we obtain on the first
phase (early growth). The main approach for this is to compare the neighbourhoods of a vertex
of G(n, λ/n) with the standard Poisson Galton–Watson branching process Xλ = (Xt)t≥0; this
starts with a single particle in generation 0, and each particle in generation t has a Poisson
Po(λ) number of children in the next generation, independently of the other particles and of
the history.

A particle in the process Xλ survives if it has descendants in all later generations; the
process survives if the initial particle survives. If λ > 1, then the survival probability s =
P(∀t : |Xt| > 0) is the unique positive solution to

1 − s = e−λs. (1.1)

Since particles in generation 1 survive independently of each other, the number of such parti-
cles that survive has a Po(sλ) distribution, the number that die has a Po((1−s)λ) distribution,
and these numbers are independent. It follows that conditioning on the process dying, we
obtain again a Poisson Galton–Watson process Xλ⋆ = (X−

t )t≥0, with the ‘dual’ parameter

λ⋆ = λ(1 − s), (1.2)

which may also be characterized as the solution λ⋆ < 1 to

λ⋆e
−λ⋆ = λe−λ. (1.3)

This parameter is crucial to understanding the diameter of G(n, λ/n). For this and other
basic branching process results, see, for example, Athreya and Ney [3].

Throughout the paper we use standard notation for probabilistic asymptotics as in [28]. In
particular, Xn = op(f(n)) means Xn/f(n) converges to 0 in probability, and Xn = Op(f(n))
means Xn/f(n) is bounded in probability.

Our first aim is to give a proof of a tight estimate for the diameter of G(n, λ/n) when
λ > 1 is constant as n → ∞ that is simpler than our result for the general case, and also
compares favourably with the existing proofs of much weaker bounds for the more general
models discussed below.
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Theorem 1.1. Let λ > 1 be fixed, and let λ⋆ < 1 satisfy λ⋆e
−λ⋆ = λe−λ. Then

diam(G(n, λ/n)) =
logn

log λ
+ 2

logn

log(1/λ⋆)
+Op(1). (1.4)

As usual, we say that an event holds with high probability, or whp, if its probability tends
to 1 as n→ ∞. Theorem 1.1 simply says that, for any K = K(n) → ∞, the diameter is whp
within K of the sum of the first two terms on the right of (1.4).

The proof of Theorem 1.1 is fairly simple, and will be given in Section 2.
Turning to the case λ = λ(n) → ∞, we obtain the following result, proved in Section 3

using essentially the same method, although there are various additional complications.

Theorem 1.2. Let λ = λ(n) satisfy λ → ∞ and λ ≤ n1/1000, and let λ⋆ < 1 satisfy
λ⋆e

−λ⋆ = λe−λ. Then diam(G(n, λ/n)) is two-point concentrated: there exists a function
f(n, λ) satisfying

f(n, λ) =
log n

log λ
+ 2

log n

log(1/λ⋆)
+O(1)

such that whp diam(G(n, λ/n)) ∈ {f(n, λ), f(n, λ) + 1}. Furthermore, for any ε > 0 and any
function λ such that, for large n, neither log n/ log(1/λ⋆) nor log n/ log λ is within ε of an
integer, we have

diam(G(n, λ/n)) =

⌈
logn

log λ

⌉
+ 2

⌊
logn

log(1/λ⋆)

⌋
+ 1 (1.5)

whp.

Bruce Reed has independently announced a related result, in joint work with Nikolaos
Fountoulakis; the details are still to appear. We believe that the methods used are quite
different.

The main interest of Theorem 1.2 is when λ tends to infinity fairly slowly; if λ grows
significantly faster than logn, then the situation is much simpler, and much more precise
results are known. Indeed, when λ/(log n)3 → ∞, Bollobás [6] showed concentration of the
diameter on at most two values, and found the asymptotic probability of each value. In the
light of this result we would lose nothing by assuming that λ ≤ (log n)4, say; however, the
bound λ ≤ n1/1000 turns out to be enough for our arguments.

The bulk of the paper is devoted to the case of expected degree tending to 1, where we
prove the following result.

Theorem 1.3. Let ε = ε(n) satisfy 0 < ε < 1/10 and ε3n → ∞. Set λ = λ(n) = 1 + ε, and
let λ⋆ < 1 satisfy λ⋆e

−λ⋆ = λe−λ. Then

diam(G(n, λ/n)) =
log(ε3n)

log λ
+ 2

log(ε3n)

log(1/λ⋆)
+Op(1/ε). (1.6)

Our method in fact gives a description of the limiting distribution of the final correction
term (after rescaling); see Theorem 5.1.

A weaker form of Theorem 1.3 has been obtained independently by Ding, Kim, Lubetzky
and Peres [19, 20]; see the Remark below.
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In the rest of this section we briefly discuss the results above and their relationship to
earlier work.

Theorem 1.1 is best possible in the following sense: it is not hard to see that the diameter
cannot be concentrated on a set of values with bounded size as n → ∞. Indeed, given any
(labelled) graph G with diameter d and at least two isolated vertices, let G′ be constructed
from G by taking a path P of length d joining two vertices at maximal distance in G, and
adding an edge joining each end of P to an isolated vertex. Each graph G′ constructed in this
way contains a unique pair of vertices at maximal distance d + 2, and G may be recovered
uniquely from G′ by deleting the (unique) edges incident with these vertices. Restricting our
attention to graphs G with Θ(n) isolated vertices, the relation (G,G′) is thus 1 to Θ(n2).
Since the probability of G′ in the model G(n, p), p = λ/n, is equal to the probability of G
multiplied by p2/(1 − p)2 = Θ(1/n2), it follows easily that for any d we have

P
(
diam(G(n, λ/n)) = d+ 2

)
≥ Θ(1)P

(
diam(G(n, λ/n)) = d

)
− o(1);

the o(1) term comes from the possibility that G(n, λ/n) has fewer than Θ(n) isolated vertices.
It follows that diam(G(n, λ/n)) cannot be concentrated on a finite set of values. In fact, our
methods allow us to obtain the limiting distribution of the Op(1) correction term in (1.4),
although this is rather complicated to describe; we return to this briefly in Section 5.

A much weaker form of Theorem 1.1, with a o(logn) correction term, is a special case of
a result of Fernholz and Ramachandran [23] for random graphs with a given degree sequence,
and also of a result of Bollobás, Janson and Riordan [11, Section 14.2] for inhomogeneous
random graphs with a finite number of vertex types. We shall follow the ideas of [11] to some
extent, although the present simpler context allows us to take things much further, obtaining
a much more precise result. Earlier, Chung and Lu [16] also studied diam(G(n, λ/n)), λ > 1
constant, but their results were not strong enough to give the correct asymptotic form. Indeed,
they conjectured that, under suitable conditions, the diameter is approximately log n/ log λ,
as one might initially expect.

For the subcritical case, which is much simpler,  Luczak [32] proved very precise results:
he showed, for example, that if ε → 0 and ε3n → ∞, then the subcritical random graph
G = G(n, (1 − ε)/n) satisfies

diam(G) =
log(2ε3n) +Op(1)

− log(1 − ε)
; (1.7)

see his Theorem 11(iii), and note that the exponent 2 instead of 3 appearing there is a
typographical error. (He also proved a simple formula for the limiting distribution of the Op(1)
term – the probability that it exceeds a constant ρ tends to 1 − exp(−e−ρ) as n → ∞; the
limiting distribution in the present supercritical case turns out to be much more complicated.)
 Luczak’s results are effectively the last word on the subcritical case, which we shall not discuss
further.

Returning to constant λ > 1, the lack of concentration on a finite number of points
contrasts with the case of random d-regular graphs studied by Bollobás and Fernandez de la
Vega [10], who established concentration on a small set of values in this case. Sanwalani and
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Wormald [38] have recently shown two-point concentration. (More precisely, they prove one-
point concentration for almost all n, and for the remaining n find the probabilities of the two
likely values within o(1).) Note that the diameter in this case is simply log(n logn)/ log(d−
1) +Op(1) for d ≥ 3; as we shall see, the behaviour of the two models for this question is very
different. Usually, G(n, λ/n) is much simpler to study than a random regular graph, but here
there are additional complications corresponding to the 2 logn/ log(1/λ⋆) term in (1.4).

Let us briefly mention a few related results for other random graph models. Perhaps the
earliest results in this area are those of Burtin [14, 15] and Bollobás [6]. Turning to results
determining the asymptotic diameter when the average degree is constant, one of the first is
the result of Bollobás and Fernandez de la Vega [10] for d-regular random graphs mentioned
above; another is that of Bollobás and Chung [9], finding the asymptotic diameter of a cycle
plus a random matching, which is again logarithmic. Later it was shown by ‘small subgraph
conditioning’ (see [39]) that for such graphs any whp statements are essentially the same as
for the uniform model of random 3-regular graphs. The same goes for a variety of other
random regular graphs constructed by superposing random regular graphs of various types.
For a rather different model, namely a precise version of the Barabási–Albert ‘growth with
preferential attachment’ model, Bollobás and Riordan [12] obtained a (slightly) sublogarithmic
diameter, contradicting the logarithmic diameter suggested by Barabási, Albert and Jeong [2,
4] (on the basis of computer experiments) and Newman, Strogatz and Watts [35] (on the basis
of heuristics).

More recently, related results, often concerning the ‘typical’ distance between vertices,
rather than the diameter, have been proved by many people, for various models. A few
examples are the results of Chung and Lu [17, 18], and van den Esker, van der Hofstad,
Hooghiemstra, van Mieghem and Znamenski [22, 25, 26]; for a discussion of related work
see [25], for example.

The formula (1.4) is easy to understand intuitively: typically, the size of the d-neighbourhood
of a vertex (the set of vertices at distance d) grows by a factor of λ at each step (i.e., as d is
increased by one). Starting from two typical vertices, taking log(

√
n)/ log λ steps from each,

the neighbourhoods reach size about
√
n; at around this point the neighbourhoods are likely

to overlap, so the typical distance between vertices is logn/ log λ. The second term in (1.4)
comes from exceptional vertices whose neighbourhoods take some time to start expanding,
or, equivalently, from the few very longest trees attached to (typical vertices of) the 2-core
of G(n, λ/n), the maximal subgraph with no vertices of degree 0 or 1. It is well known that
the trees hanging off the 2-core of G(n, λ/n) have roughly the distribution of the branching
process Xλ⋆ ; hence, some of these trees will have height roughly logn/ log(1/λ⋆), and it turns
out that the diameter arises by considering two trees of (almost) maximal height attached to
vertices in the 2-core at (almost) typical distance.

Although we shall use the 2-core viewpoint later, its use has an intrinsic difficulty caused
by the significant variation in the distances between vertices in the 2-core. One can view
the variation in the distance between two random vertices of G = G(n, λ/n) as coming from
three sources: (i) variation in the distances to the 2-core, (ii) variation in the times the
neighbourhoods in the 2-core take to start expanding, and (iii) variation in the time the
neighbourhoods of the two vertices take to join up once they have reached a certain size. An
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advantage of our approach is that it seamlessly integrates (i) and (ii), by looking simply at
neighbourhood growth in the whole graph G. Taking this viewpoint, the dual parameter λ⋆
arises as follows: let X+

t ⊂ Xt be the set of particles of Xλ that survive (have descendants
in all future generations). Then X+

0 contains the initial particle with probability s, and is
empty otherwise. Moreover, conditioning on a particle being in X+

t is exactly the same as
conditioning on at least one its children surviving, so the number of surviving children then
has the distribution Z = Zλ of a Po(sλ) random variable conditioned to be at least 1. Hence,
(X+

t ) is again a Galton–Watson branching process, but now with offspring distribution Z,
and X+

0 either empty or, with probability s, consisting of a single particle. Note that

P(Z = 1) =
sλe−sλ

1 − e−sλ
=
sλ(1 − s)

s
= λ⋆, (1.8)

using (1.1) and (1.2). Hence, the probability that X+
t consists of a single particle, given

that the whole process survives, is exactly λt⋆. Roughly speaking, this event corresponds to
the branching process staying ‘thin’ for t generations, i.e., the neighbourhood growth process
taking time t to ‘get going’. In the next section we shall prove a more precise version of this
statement.

Turning to Theorem 1.3, the form of the diameter here differs from what one might
expect in the presence of the factors ε3 inside the logarithms in the numerators. Very loosely
speaking, these factors turn out to be related to the fact that the branching process survives
with probability Θ(ε), and then usually has size Θ(1/ε) larger than its unconditional expected
size, as well as to the fact that, roughly speaking, it takes on the order of 1/ε generations for
anything much to happen; we shall return to this at various points. An alternative way of
thinking about these factors is that the ‘interesting’ structure of G(n, p) is captured by the
kernel, the graph obtained from the 2-core by suppressing vertices of degree 2. The results of
 Luczak [31] or alternatively Pittel and Wormald [36] imply in particular that the number of
vertices in the kernel is asymptotically 8ε3n/6.

Remark. In the first draft of this paper, we obtained a slightly weaker form of Theorem 1.3,
giving the same conclusion but requiring an additional assumption, that ε3n grows at least as
fast as an explicit extremely slowly growing function of n (essentially log∗ n, i.e., the minimum
k such that the kth iterated logarithm of n is less than 1). This is a less restrictive assumption
than what is common in related contexts, that ε3n is at least some power of logn. Since then,
Ding, Kim, Lubetzky and Peres [19, 20] have obtained a form of Theorem 1.3 with a larger
error term (a multiplicative factor of 1 + o(1)), valid whenever ε3n → ∞ and ε → 0; under
these assumptions, log λ ∼ ε and log(1/λ⋆) ∼ ε, so the diameter is (3 + op(1)) log(ε3n)/ε.
Their approach, based around the 2-core and kernel, is very different to ours. Seeing this
paper stimulated us to remove the unnecessary restriction on ε; it turned out that one simple
observation (Lemma 4.28 below) was the main missing ingredient. Using this lemma, it
became possible to simplify some of our original arguments and, with a little further technical
work, to extend them to the entire weakly supercritical range.

We remark also that  Luczak and Seierstad [33] have obtained a ‘process version’ of The-
orem 1.3. This gives much weaker bounds on the diameter, differing by a constant factor,
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but can be applied to the random graph process to show (roughly speaking) that whp these
bounds hold simultaneously for the entire range of densities considered in Theorem 1.3.

In Theorem 1.3, the condition ε ≤ 1/10 is imposed simply for convenience; this may be
weakened to ε = O(1) without problems. However, for ε = O(1) bounded away from zero
one can instead apply Theorem 1.1: it is not hard to check that the constants implicit in the
correction term vary smoothly with λ, and so are bounded over any compact set of ε > 0.
For this reason, in proving Theorem 1.3 we may assume that ε → 0 as n → ∞; we shall do
this whenever it is convenient.

On the other hand, the condition εn1/3 → ∞ is almost certainly necessary for our method
to give nontrivial information. If εn1/3 is bounded, then we are inside the ‘window’ of the
phase transition, so G(n, (1 + ε)/n) is qualitatively similar in behaviour to G(n, 1/n), and the
behaviour of the diameter is much more complicated than outside the window. For one thing,
there is no longer a unique ‘giant’ component that is much larger than all other components.
Also, the 2-core of each non-tree component contains only a bounded number of cycles; to
study the distribution of the diameter accurately, one needs to study the distribution of the
lengths of these cycles, which is very different from the situation with supercritical graphs.
Nachmias and Peres [34] showed that inside the window the diameter of the largest component
is Op(n1/3), with a corresponding lower bound; more recently, Addario-Berry, Broutin and
Goldschmidt [1] have established convergence in distribution of the rescaled diameter, and
given a (rather complicated) description of the limit in terms of continuum random trees.

Finally, as in Theorem 1.1, the Op(1/ε) correction term in Theorem 1.3 is in some sense
best possible. As noted earlier, our method gives a description of the limiting distribution of
this correction term; see Section 5.

In summary, the results of  Luczak [32] (below the critical window), Addario-Berry, Broutin
and Goldschmidt [1] (inside the window), Theorem 1.3 (above but average degree tending to
1), Theorem 1.1 (constant average degree), Theorem 1.2 (average degree tending to infinity
slowly) and Bollobás [6] (average degree tending to infinity quickly) together establish tight
bounds on the diameter of G(n, p) throughout the entire range of the parameters.

2 The case p = λ/n, λ > 1 constant

In this section we shall prove Theorem 1.1. We start by recalling a basic fact about branching
processes.

From standard branching process results (see, for example, Athreya and Ney [3]), the
martingale |Xt|/λt converges almost surely to a random variable Y = Yλ whose distribution
(which depends on λ) is continuous except for mass 1 − s at 0, with strictly positive density
on R

+. Furthermore, Y = 0 coincides (except possibly on a set of measure zero) with the
event that the branching process dies out. Since almost sure convergence implies convergence
in probability, a trivial consequence of this is that, for λ > 1 and 0 < c1 < c2 all fixed,

inf
t

P
(
c1λ

t ≤ |Xt| ≤ c2λ
t
)
> 0, (2.1)

where the infimum is over all t ≥ 1 such that the interval [c1λ
t, c2λ

t] contains an integer. The
following result indicates that unusually small populations in a given generation are typically
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due (at least, with a significant probability) to a branching process that stays essentially
nonbranching (with only small ‘side branches’) until a point where it branches at a typical
rate.

Lemma 2.1. Let λ > 1 be fixed. There are constants c, C > 0 such that for every ω ≥ 2 and
t ≥ 1 we have

cmin{λt−t1⋆ , 1} ≤ P
(
0 < |Xt| < ω

)
≤ Cλt−t1⋆ , (2.2)

where t1 = ⌊logω/ log λ⌋.

Proof. The lemma is essentially a statement about the asymptotics of Y near 0; this statement
follows, for example, from a result of Harris [24]. However, translating back to a statement
about Xt rather than Y would introduce an extra error term, corresponding to the probability
that Xt/λ

t still differs from Y by more than a constant factor when Xt first exceeds ω, so we
shall give a direct proof.

We start by proving the upper bound. Conditioned on Xλ = (Xt)t≥0 dying out, an event
of probability 1−s, this process has the distribution of the subcritical process Xλ⋆ = (X−

t )t≥0.
Hence,

P
(
|Xt| > 0, ∃t′ : Xt′ = ∅

)
= (1 − s)P(|X−

t | > 0) ≤ (1 − s) E(|X−
t |) = (1 − s)λt⋆.

Let pt = P(|Xt| > 0). Then

pt = s+ P
(
|Xt| > 0, ∃t′ : Xt′ = ∅

)
= s+O(λt⋆). (2.3)

Let us note for later that the implicit constant is independent of λ; indeed, it may be taken
to be 1.

We may partition X1, the set of children of the initial particle, into two sets: the set S
consisting of those that have descendants t−1 generations later (i.e., in Xt), and the set X1\S
of those that do not. Since the probability that a particle in X1 has one or more descendants
in Xt is pt−1, the size of S has a Poisson distribution with mean λpt−1. Let us condition on
|Xt| > 0. Then the conditional distribution of |S| is that of a Poisson distribution with mean
λpt−1 conditioned on being at least 1, and we have

P
(
|S| = 1

∣∣ |Xt| > 0
)

=
λpt−1e

−λpt−1

1 − e−λpt−1
=

λse−λs

1 − e−λs
(1 +O(λλt−1

⋆ )) = λ⋆ +O(λλt⋆),

using (2.3) and (1.8). Note for later use that the implicit constant is independent of λ provided
λ > 1 and λ is bounded away from 1.

Let rt = P(|Xt| < ω | |Xt| > 0). If |Xt| < ω, then every particle in S has fewer than ω
descendants in Xt. Hence,

rt ≤ P
(
|S| = 1

∣∣ |Xt| > 0
)
rt−1 + P

(
|S| > 1

∣∣ |Xt| > 0
)
r2
t−1

= (λ⋆ +O(λλt⋆))rt−1 + (1 − λ⋆ +O(λλt⋆))r
2
t−1

= rt−1(λ⋆ + (1 − λ⋆)rt−1) +O(λλt⋆rt−1). (2.4)
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Setting r′t = rt/λ
t
⋆ and recalling that λ is constant, we thus have

r′t ≤ r′t−1 +
1 − λ⋆
λ⋆

rt−1r
′
t−1 +O(rt−1). (2.5)

Using only the trivial inequality P(0 < |Xt| < ω1) ≤ P(0 < |Xt| < ω) for ω1 < ω, the
upper bound in (2.2) for ω at least some constant ω0 implies the same bound, with a different
constant, for all ω ≥ 2. Thus we may assume that ω is at least some large constant ω0, and
hence that t1 is large. We may also assume t ≥ t1. By (2.1) we have P(|Xt1| > ω) ≥ c0 for
some constant c0 > 0. Hence rt1 ≤ 1− c0 is bounded away from 1. Choosing ω0 large enough,
so λt⋆ ≤ λt1⋆ is small, the error term in (2.4) can be assumed arbitrarily small relative to rt−1.
Using (2.4), and noting that for t > t1 we have λ⋆ + (1− λ⋆)rt−1 < λ⋆ + (1− λ⋆)(1− c0) < 1,
it then follows that rt decreases exponentially as t increases from t1, i.e., that there is a
c1 > 0 (depending only on λ, not on ω) such that rt1+t ≤ e−c1t. Hence,

∑
t≥t1 rt is bounded

(independently of ω). Using (2.5), it follows that there is a constant C0 such that for t ≥ t1
we have r′t ≤ C0(r′t1 + 1). In other words,

rt ≤ C0λ
t−t1
⋆ rt1 + C0λ

t
⋆ ≤ C0(1 + λt1⋆ )λt−t1⋆ ≤ 2C0λ

t−t1
⋆ = O(λt−t1⋆ ).

Since
P
(
0 < |Xt| < ω

)
≤ P

(
|Xt| < ω

∣∣ |Xt| > 0
)

= rt,

this completes the proof of the upper bound.
Turning to the lower bound, this is essentially trivial if t ≤ t1: in this case, P(0 < |Xt| < ω)

is bounded away from 0 by (2.1). We may thus assume that t > t1. We shall prove the lower
bound by considering the following much more specific event E, the event that |X+

t−t1 | = 1,
that the unique particle v of X+

t−t1 has between 1 and ω − 1 descendants in Xt, and that no
other particles of Xt−t1 have descendants in Xt. Clearly, if E holds then 0 < |Xt| < ω.

Recalling that X
+ = (X+

t ) is the set of particles whose descendants survive forever, any
such particle always has at least one child by definition, and, by (1.8), has exactly one child
with probability λ⋆. Thus

P(|X+
t−t1 | = 1) = sλt−t1⋆ . (2.6)

Given that |X+
t−t1 | = 1, the number Nv of descendants in Xt of the unique particle v in X+

t−t1
has the distribution of |Xt1 | conditioned on the whole process surviving. From (2.1), the
(unconditional) probability that |Xt1 | is between ω/2 and ω − 1, say, is bounded away from
zero, and the conditional probability that Xλ survives given this event is at least s. Thus

P
(
Nv < ω

∣∣ |X+
t−t1 | = 1

)
= P

(
|Xt1 | < ω

∣∣ ∀t : |Xt| > 0
)

≥ P
(
|Xt1| < ω, ∀t : |Xt| > 0

)
≥ c2,

for some positive constant c2.
It remains to exclude descendants in Xt of other particles in Xt−t1 . By definition, these

particles do not survive. We may construct Xλ as follows: first construct X
+ = (X+

t )t≥0. Then
add in the particles that die: for each particle in each set X+

r , we must add an independent
copy of Xλ⋆ rooted at this particle.

9



Given that |X+
t−t1 | = 1, we have |X+

r | = 1 for all r ≤ t − t1. The probability that the
copy of Xλ⋆ started at time r survives to time t is P(|X−

t−r| > 0) ≤ λt−r⋆ . Since the different
copies are independent, the probability that all die before time t is at least

∏
r≤t−t1(1−λt−r⋆ ).

Now λ⋆ < 1, so
∑

r≤t−t1 λ
t−r
⋆ = O(λt1⋆ ) = O(1), and

∏
r≤t−t1(1 − λt−r⋆ ) ≥ c3, for some c3 > 0

depending only on λ. Hence,

P
(
0 < |Xt| < ω

)
≥ sλt−t1⋆ c2c3 = Ω(λt−t1⋆ ),

completing the proof of the lemma.

The above lemma tells us virtually all we need to know about the branching process for
the ‘early growth’ part of the proof of Theorem 1.1. The next ingredient for this phase is a
lemma connecting the growth of neighbourhoods in the graph to the branching process. The
branching process model is most relevant if the growing neighbourhood of a vertex remains a
tree. To be sure, almost all vertices do not lie on or near a short cycle. However, we cannot
simply ignore the exceptional vertices, since a result about the diameter makes a statement
about all vertices, not just almost all. So we must be a little careful.

We deal with the problem of non-tree neighbourhoods as follows. Given a vertex x of
a graph G, let Γt(x) be the set of vertices at graph distance t from x. Let G≤t(x) be the
subgraph of G induced by

⋃
t′≤t Γt′(x), regarded as a rooted graph with root x. We shall

explore the neighbourhoods Γt(x) in the following essentially standard way. Fix once and for
all an order on V (G). Having found Γt(x) (starting with t = 0), go through the vertices of
Γt(x) one by one in the predetermined order. For each vertex v we expose all edges from v to
vertices not yet reached in the exploration; this means we test each potential edge to an as
yet unreached vertex for its presence; any edges detected are called ‘uncovered.’ If we uncover
an edge vw, we add w to Γt+1(x). Of course this process correctly identifies the sets Γt(x).
However, it only uncovers certain edges: let G0

≤t(x) denote the graph formed by the edges
uncovered in our tests exploring up to Γt(x). Then G0

≤t(x) is a tree: it is a spanning tree in
the graph G≤t(x).

In the following results, X≤t denotes the union of generations 0 to t of the branching process
Xλ, regarded as a rooted tree with root the initial particle, and ∼= denotes isomorphism of
rooted trees.

Lemma 2.2. Let λ > 0 be fixed. For any rooted tree T with |T | ≤ n/2 we have

P
(
G0

≤t(x) ∼= T
)

= eO(|T |2/n)
P
(
X≤t ∼= T

)

and
P
(
G≤t(x) ∼= T

)
= eO(|T |2/n)

P
(
X≤t ∼= T

)
,

where the implicit constants depend only on λ.

Proof. This is well known and easy to prove. The first statement follows from the natural step-
by-step coupling between G0

≤t(x) and the branching process, where each step investigates the
children (of a vertex or a particle, respectively). Suppose we have reached r−a vertices in total

10



so far. Then the probabilities of finding a vertices in the next step are p1 =
(
n−r+a

a

)
(λ/n)a(1−

λ/n)n−r and p2 = e−λλa/a! in the two models. The ratio of these probabilities is

p1/p2 = (n− r + a)(a)n
−a(1 − λ/n)−reλ(1 − λ/n)n = eO(ar/n+rλ/n+λ2/n),

where x(a) = x(x−1) · · · (x−a+1). The sum of ar or r over all vertices in the tree is trivially
at most |T |2, so it follows that

P
(
G0

≤t(x) ∼= T
)

P
(
X≤t ∼= T

) = exp
(
O(|T |2/n+ λ|T |2/n + λ2|T |/n)

)
. (2.7)

Since λ is fixed, this proves the first statement.
If G≤t(x) ∼= T , then G≤t(x) is a tree, so G0

≤t(x) = G≤t(x). Hence G≤t(x) ∼= T implies
G0

≤t(x) ∼= T . Given that G0
≤t

∼= T , the probability that none of the untested edges between

the |T | vertices found is also present is again eO(|T |2/n). So the second statement follows from
the first.

Using Lemmas 2.1 and 2.2, we can study the initial rate of growth of the neighbourhoods
of the vertices of G(n, λ/n). The first step is to show that these neighbourhoods cannot stay
small but non-empty for too long. The basic picture is that after about

t1 = ⌊logω/ log λ⌋ (2.8)

steps, we expect a typical vertex neighbourhood to expand to size approximately ω. It is
very unlikely that there are any vertices in the graph whose neighbourhoods expand to some
reasonable size, say around log n, and then fail to expand to size ω in roughly the expected
time from that point. However, some unusual vertices take up to

t0 = ⌊log n/ log(1/λ⋆)⌋ (2.9)

steps before their neighbourhoods expand significantly, and so take this many more steps than
usual to reach size roughly ω.

We argue this more precisely as follows.
Set ω = (log n)6, say, and define t0 and t1 as above. Let K = K(n) tend to infinity slowly

(for instance, slower than log logn).
For each vertex x, let B1(x) be the ‘bad’ event that 1 ≤ |Γt′(x)| < ω holds for all 0 ≤ t′ ≤

t = t0 + t1 +K. The event B1(x) is a disjoint union of events of the form G0
≤t

∼= T , where each
tree T has size at most tω = o(

√
n). Also, the corresponding union of the events X≤t ∼= T is

the event that 0 < |Xt′ | < ω holds for all t′ ≤ t. Hence, by Lemma 2.2,

P(B1(x)) ∼ P
(
∀t′ ≤ t : 0 < |Xt′ | < ω

)
≤ P

(
0 < |Xt| < ω

)
= O(λt0+K⋆ ), (2.10)

where the last step is from Lemma 2.1.
Let B1 be the event that B1(x) holds for some x. Then

P(B1) ≤ nP(B1(x)) = O(nλt0+K
⋆ ) = O(λK⋆ ) = o(1). (2.11)
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We now move on to the ‘regular growth’ part of the proof. That is, our next aim is to
show that once the neighbourhoods of a vertex x reach size ω, with very high probability they
then grow at a predictable rate until they reach size comparable with n. We shall use the
following convenient form of the Chernoff bounds on the binomial distribution; see [27], for
example.

Lemma 2.3. Let Y have a binomial distribution with parameters n and p. If 0 ≤ δ ≤ 1 then

P
(
|Y − np| ≥ δnp

)
≤ 2e−δ

2np/3.

�

Let 0 < δ < 1/1000 be an arbitrary (small) constant. Let us say that a vertex x has
regular large neighbourhoods if one of the following holds: either |Γt(x)| < ω for all t, or,
setting t− = min{t : |Γt(x)| ≥ ω} and t+ = t− + log(n3/4/ω)/ logλ, we have

(1 − δ)λt−t
−+1|Γt−−1(x)| ≤ |Γt(x)| ≤ (1 + δ)λt−t

−+1|Γt−−1(x)|

for t− ≤ t ≤ t+. In other words, the neighbourhoods grow by almost exactly a factor of λ at
each step from just before the first time they reach size ω until they reach size around n3/4.
Note that since we start from the last ‘small’ neighbourhood Γt−−1(x), the growth condition
above certainly implies that

1 − δ

1 + δ
≤ |Γt(x)|

ωλt−t−
≤ λ(1 + δ) (2.12)

holds for t− ≤ t ≤ t+.
Let B2(x) be the ‘bad’ event that a given vertex x of G(n, λ/n) fails to have regular large

neighbourhoods, and B2 =
⋃
xB2(x) the global bad event that not all vertices have regular

large neighbourhoods.

Lemma 2.4. For each fixed vertex x of G(n, λ/n) we have P(B2(x)) = o(n−1). Thus P(B2) =
o(1).

Proof. This is well known (c.f. Janson,  Luczak and Ruciński [28, Section 5.2]), and essentially
trivial from the Chernoff bounds (or Hoeffding’s inequality); we nevertheless give the details.
We explore the successive neighbourhoods of x in G(n, λ/n) in the usual way, writing at for
|Γt(x)|. Conditional on a0, a1, . . . , at, the distribution of at+1 is binomial with parameters
n−m and p = 1 − (1 − λ/n)at , where m =

∑
t′≤t at′ and p is the probability that one of the

undiscovered vertices is adjacent to at least one member of Γt(x). Assuming that m = O(n3/4),
say, we have E(at+1 | a0, . . . , at) = λat(1 + O(n−1/4)). It then follows from Lemma 2.3 that,
conditional on a0, . . . , at, if at ≥ ω/(100λ) then we have

P

(∣∣∣∣
at+1

at
− λ

∣∣∣∣ ≥
1

(logn)2

)
= e−Ω((log n)−4at) = o(n−100),

using ω = (log n)6. Similarly, if at < ω/(100λ) then P(at+1 ≥ ω) ≤ n−100.

12



Let t− be the first t with at ≥ ω, if such a t exists. We have already shown above that
the probability that 0 < at < ω holds for all t up to t0 + t1 + K = O(logn) is o(n−1), so
with probability 1 − o(n−1) either t− is undefined, in which case there is nothing to prove, or
t− = O(logn), in which case we have so far uncovered O(t−ω) = o(n3/4) vertices. From the
estimates above, with very high probability at−−1 ≥ ω/(100λ), and, from this point on, the
ratios at+1/at are within a factor 1 + O((logn)−2) of λ until at first exceeds n3/4. It follows
that x has regular large neighbourhoods with probability 1 − o(n−1), as claimed.

Note that we took ω as large as (log n)6 just to simplify the estimates. If we are a little
more careful, a large constant times log n will in fact do: significant deviations in the ratio
at+1/at are only likely near the beginning, so we can bound these ratios above and below by
sequences approaching 1 geometrically with high enough probability.

We now move onto the third phase of the proof, where we consider the meeting up of
neighbourhoods of different vertices and hence the distance between them. This still involves
a careful look at the early development of neighbourhoods, since, from the second phase
of the proof, we know that vertices with large close neighbourhoods will have large distant
neighbourhoods. We treat the upper and lower bounds in the Theorem 1.1 separately.

2.1 Upper bound

As above, set ω = (logn)6, say, and let K = K(n) tend to infinity slowly.
For x ∈ V (G) let tω(x) = min{t : |Γt(x)| ≥ ω}, if this minimum exists; otherwise tω(x)

is undefined. Note that if the event B1 defined above does not hold, then whenever tω(x) is
defined, we have tω(x) ≤ t0 + t1 +K.

Set
t2 = ⌊log(n/ω2)/ log λ⌋,

and, for x, y ∈ V (G), let Ex,y,i,j be the event that tω(x) = t0 + t1 − i, tω(y) = t0 + t1 − j, and
d(x, y) ≥ tω(x) + i + tω(y) + j + t2 + 3K + c0 all hold, where c0 > 2 is some constant. Our
next aim is to bound the probability of the event Ex,y,i,j for given vertices x and y and given
i, j ≥ −K.

Recall that B2 is the event that not all vertices have regular large neighbourhoods. We
claim that there is some c > 0 (depending only on λ) such that

P(Ex,y,i,j \B2) ≤ λt0−i⋆ λt0−j⋆ e−cλ
3K+i+j

+ o(n−100)

= O
(
n−2λ−i−j⋆ e−cλ

3K+i+j)
+ o(n−100). (2.13)

First, arguing as in the proof of (2.10), using Lemma 2.1 and a version of Lemma 2.2 where
we start with two vertices and compare with two copies of the branching process, we see that

P
(
tω(x) = t0 + t1 − i, tω(y) = t0 + t1 − j, d(x, y) > tω(x) + tω(y)

)
= O(λt0−i⋆ λt0−j⋆ ).

Exploring the neighbourhoods of x and y in the obvious way, suppose we find that tω(x) =
t0 + t1 − i, tω(y) = t0 + t1 − j, and d(x, y) > tω(x) + tω(y), i.e., our explorations have not yet
met. Set ℓ = ⌊(t2 + 3K+ i+ j)/2⌋. Suppose for the moment that ℓ ≤ ℓ0 = log(n3/4/ω)/ logλ.
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Continuing the exploration of the two neighbourhoods a further ℓ steps in each case, we may
assume that with respect to the neighbourhoods of x and y that have been revealed so far, the
regular large neighbourhood condition has not yet been violated. (If it has been, the event
B2 must hold, and we are bounding the probability of an event contained in the complement
of B2.) Then

min{|Γtω(x)+ℓ(x)|, |Γtω(y)+ℓ(y)|} ≥ 0.99ωλℓ = Ω
(√

nλ3K+i+j
)
.

It may be that d(x, y) ≤ tω(x)+ℓ+ tω(y)+ℓ, in which case we are done. Otherwise, the edges
between Γtω(x)+ℓ(x) and Γtω(y)+ℓ(y) have not yet been tested, so the chance that no such edge
is present is

(1 − λ/n)|Γtω(x)+ℓ(x)||Γtω(y)+ℓ(y)| ≤ e−(λ/n)Ω(nλ3K+i+j ) ≤ e−cλ
3K+i+j

,

for some constant c > 0. Multiplying by the O(λt0−i⋆ λt0−j⋆ ) bound obtained above gives (2.13)
in this case.

If ℓ > ℓ0, the argument is similar; this time, assuming B2 does not hold only allows us
to control the sizes of the neighbourhoods for ℓ0 < ℓ steps beyond tω(x) and tω(y). But by
this time they reach size at least n3/4/2, and the probability that they do not join is at most

e−(λ/n)n3/2/4 = o(n−100).
Let B be the event that

diam(G) ≥ 2t0 + 2t1 + t2 + 3K + 10 ≥ 2
logω

log λ
+ 2

log n

log(1/λ⋆)
+

log n− 2 logω

log λ
+ 3K

=
log n

log λ
+ 2

log n

log(1/λ⋆)
+ 3K.

Our aim is to prove that with K → ∞ arbitrarily slowly, we have P(B) = o(1); in order to
do so, it suffices to show that P(B \ (B1 ∪ B2)) = o(1).

Suppose that B holds but B1 ∪ B2 does not, and let x and y be vertices at maximum
distance. Since B1 does not hold, and d(x, y) is so large, exploring successive neighbourhoods
of x and y, these neighbourhoods both reach size at least ω before they meet. Hence Ex,y,i,j
holds for some i and j. Since B1 does not hold, Ex,y,i,j can only hold if i, j ≥ −K. Hence,
using (2.13),

P(B \ (B1 ∪ B2)) ≤
∑

i,j≥−K

∑

x,y∈V (G)

P(Ex,y,i,j \B2)

≤ o(n−90) + n2
∑

i,j≥−K
n−2O

(
λ−i−j⋆ e−cλ

3K+i+j
)
,

which is o(1) since

∑

r≥−2K

(r + 2K + 1)λ−r⋆ e−cλ
3K+r

= O(e−cλ
K

) = o(1).

This completes the proof of the upper bound.
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Remark. Note that one cannot prove the upper bound directly by the first moment method;
a separate argument excluding very long thin neighbourhoods (bounding the probability of
B1) is needed. Indeed, it is not too hard to show that the estimates above are essentially
tight. Thus, if for some r ≥ K there happens to be a vertex x with tω(x) = t0 + t1 + r, say,
an event of probability around λr⋆, then x will be at distance roughly d = 2t0 + 2t1 + t2 + K
from many of the roughly (1/λ⋆)

r−K vertices y with tω(y) = t0 + t1 − r +K. Since there are
Θ(log n) possible values of r, the expected number of pairs of vertices at distance d will tend
to infinity if K → ∞ slowly enough.

2.2 Lower bound

The idea of the lower bound is simple. Let S be the set of vertices x with tω(x) ≥ t0 + t1 −K.
Then, from the arguments in the previous section, the expected size of S is roughly (1/λ⋆)

K ,
which tends to infinity. We would like to show that |S| is large with high probability using
the second moment method. Since two vertices in S are likely to be far apart, the result will
follow. There are two problems. A minor one is that the events that different vertices lie in S
are not that close to independent: vertices in S will usually be located in trees attached to the
2-core, and S roughly corresponds to the set of vertices at least a certain distance from the
2-core. Although most trees attached to the 2-core will contain no such vertices, it turns out
that, on average, each tree contributing one or more such vertices contributes some constant
number larger than 1, so |S| is not well approximated by a Poisson distribution. A more
serious, related, problem is that to find vertices at large distance we need to find vertices in S
whose short-range neighbourhoods do not overlap, i.e., vertices coming from different trees.
We solve both these problems by looking for vertices x ∈ S satisfying an additional condition,
the strong wedge condition, that usually corresponds to x being the unique vertex in its tree
at maximal distance from the 2-core.

Note that as we are now looking for a lower bound on the diameter, we do not need to
consider all promising pairs of vertices for our candidate vertices at large distance. We may
thus impose additional conditions as convenient, and our result will still be sharp enough
as long as these conditions are likely enough to be satisfied. One such condition is that the
neighbourhoods are trees up to a suitable distance.

Let x ∈ V (G), and suppose that G≤t(x) is a tree for some t > 0. The weak/strong wedge
condition holds from x to x2 ∈ Γt(x) if for every z 6= x in the graph G≤t(x), the distance
from z to the closest vertex y on the unique path from x to x2 is at most/strictly less than
the distance from x to y. Note that either condition implies that the degree of x in G must
be 1. In this section we shall always work with the strong wedge condition; the weak wedge
condition will play a role in Section 4.

Let tK denote t0 − K, where K = K(n) → ∞ arbitrarily slowly, in particular with
K ≤ log log n, and let W 0

x be the event that G≤tK (x) is a tree with the following properties:
there is a unique vertex x2 at distance tK from x, and the strong wedge condition holds from
x to x2. Let Wx be the event that W 0

x holds and G≤tK (x) contains fewer than ω/2 vertices,
where ω = (logn)6 as before.

Note for later that if Wx (or W 0
x ) holds, then the tree G≤tK (x) consists of an x-x2 path Px

of length tK with a (possibly empty) set of trees attached to each interior vertex, the height
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of each tree being strictly less than the distance to the nearest endvertex of Px. (Thus W 0
x is

a sort of ‘diamond’ condition. We will use a precise version of this terminology in the next
section.) It follows that the diameter of G≤tK (x) is tK , and that x and x2 are the unique pair
of vertices of G≤tK (x) at this distance.

Let W 0 and W be the branching process events corresponding to W 0
x and Wx, so W 0 is

the branching process version of our diamond condition. The event that W holds is a disjoint
union of events that X≤tK is one of certain trees with at most ω/2 = o(n1/2) vertices, so by
Lemma 2.2 we have P(Wx) ∼ P(W ).

Once the branching process reaches size (log n)4, it is very unlikely ever to shrink down to
size 1, and in fact the probability that W 0 holds but one of the first tK = t0 −K generations
has size at least (log n)4 is o(n−100). (This follows from the proof of Lemma 2.4, but is much
simpler.) Assuming this does not happen, the sum of sizes of the first t0 −K generations is
at most t0(log n)4 = O(log5 n). It follows that P(W 0 \W ) = o(n−100), so

P(W ) = P(W 0) + o(n−100). (2.14)

To calculate P(W 0), consider the event W ′, that W 0 holds and the unique particle in
generation t0 −K survives. Note that

P(W ′) = sP(W 0). (2.15)

If W ′ holds, then |X+
t | = 1 for t = t0 − K and hence for t = 0, 1, . . . , t0 − K, an event of

probability sλt0−K⋆ . Conversely, constructing Xλ as before by starting from X
+ and adding in

independent copies of Xλ⋆ = (X−
r ) started at each particle, W ′ holds if and only if |X+

t0−K | = 1
and, for 0 ≤ t < t0 − K, the copy of Xλ⋆ started at the unique particle of X+

t dies within
min{max{t, 1}, t0 − K − t} generations: dying within t0 − K − t generations ensures that
|Xt0−K | = |X+

t0−K | = 1, and, for t > 0, dying within t generations ensures that the strong
wedge condition holds. Let dt = P(|X−

t | = 0) be the probability that the subcritical process
Xλ⋆ dies within t generations. Then we have

P(W ′) = sλt0−K⋆ d1

t0−K−1∏

t=1

dmin{t,t0−K−t}

= sλt0−K⋆ d1d
2
1d

2
2d

2
3 · · · d2

⌊(t0−K)/2⌋−1d
θ
⌊(t0−K)/2⌋, (2.16)

where the exponent θ of the last factor is 1 or 2 depending on the parity of t0 −K. As we
shall see, the later factors in the product are essentially irrelevant. Indeed,

1 − dt = P(|X−
t | > 0) ≤ E(|X−

t |) = λt⋆, (2.17)

so 1 − λt⋆ ≤ dt ≤ 1, and − log dt = O(λt⋆). Since
∑

t λ
t
⋆ is convergent, we thus have

∏
t dt =

Θ(1), so P(W ′) = Θ(λt0−K⋆ ) and, using (2.14) and (2.15),

P(W ) = P(W 0) + o(n−100) = s−1
P(W ′) + o(n−100) = Θ(λt0−K⋆ ).

Since λt0⋆ is of order 1/n and K → ∞, it follows that nP(W ) → ∞, and hence that nP(Wx) →
∞.
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Recalling that t1 = ⌊logω/ logλ⌋, set t = tK = t0−K, let W+
x be the event that Wx holds,

|Γt+t1(x)| ≥ ω, and |V (G≤t+t1(x))| < ω2. If Wx holds, then exploring the neighbourhoods of
x to distance t we have by definition reached at most ω/2 vertices. Using (2.1), it is easy to
show that P(W+

x |Wx) = Θ(1), so P(W+
x ) = Θ(P(Wx)).

LetN be the number of vertices x for which W+
x holds, so E(N) = nP(W+

x ) = Θ(nP(Wx)) →
∞. We shall use the second moment method to show that N is concentrated about its mean.
The argument is slightly more complicated than one might expect (or hope for); while one
can give simpler arguments that are very plausible, we have so far failed to turn such an
argument into a rigorous proof. In fact, the argument we do present deals with all issues of
possible dependence with very little calculation.

Suppose that x and y are distinct vertices and that W+
x and W+

y both hold. Then Wx

and Wy also hold. Our immediate aim is to show that the subgraphs G≤t(x) and G≤t(y) must
be edge disjoint, i.e., they can meet only if x2 = y2, and then only at this one vertex. We
shall write Wx ⋆ Wy for the event that Wx and Wy hold, and G≤t(x) and G≤t(y) are edge
disjoint. In other words Wx ⋆Wy = Wx ∩Wy ∩ {d(x, y) ≥ 2t}. We define W+

x ⋆W+
y similarly,

so W+
x ⋆ W+

y = W+
x ∩ W+

y ∩ {d(x, y) ≥ 2t + 2t1}. (One must be careful here: when Wx

holds, G≤t(x) is not a certificate for this event in the sense of the van den Berg–Kesten box
product [5], i.e., specifying that this particular subgraph is present as an induced subgraph
does not guarantee that Wx holds. To guarantee Wx, one must also certify that various edges
are absent, from G≤t−1 to vertices outside G≤t; such certificates for Wx and Wy can never be
disjoint, so we cannot simply apply Reimer’s Theorem [37] to bound P(Wx ⋆ Wy).)

Still assuming that x and y are distinct vertices such that W+
x and W+

y both hold, suppose
first that y lies strictly inside G≤t(x), i.e., that y ∈ V (G≤t(x)) \ {x2}. As noted earlier, since
Wx holds, G≤t(x) has diameter t, and this diameter is realized uniquely by x and x2. Thus
the vertex y2, which is at distance t from y, must lie outside G≤t(x). But then the unique
y-y2 path Py passes through x2. Considering the vertex z where Py first meets Px, the strong
wedge condition for x gives d(y, z) < d(x, z). But the strong wedge condition for y gives
d(x, z) < d(y, z), a contradiction.

We may thus assume that y lies outside V (G≤t(x)) \ {x2}. Suppose now that y2 also lies
outside this set, and that y2 6= x2. Since x2 is a cutvertex, it follows that all of Py is outside
V (G≤t(x)) \ {x2}. If G≤t(x) and G≤t(y) meet, then, since x2 is a cutvertex, x2 must be a
vertex of G≤t(y). Furthermore, since G≤t(y) consists of y2 plus a component of G \ {y2}, all
of G≤t(x) lies in G≤t(y) \ {y2}. In particular x ∈ G≤t(y) \ {y2} and we obtain a contradiction
as above.

If x2 = y2, then each of G≤t(x) and G≤t(y) is formed by x2 together with a tree component
of G−x2. Since each of x and y is the unique vertex at maximal distance from x2 = y2 within
its tree, and x 6= y, these components are different, and so disjoint, so Wx ⋆ Wy holds.

We may thus assume that, if W+
x ∩ W+

y holds but Wx ⋆ Wy fails, then y lies outside
V (G≤t(x)) \ {x2} but y2 is inside. It is easy to check that in this case G≤t(x) ∪G≤t(y) forms
a component of G (and actually y2 must lie on the path from x to x2). Since W+

x holds,
this component (the component of G containing x) has size at least |Γt+t1(x)| ≥ ω; however,
Wx ∩Wy also holds, so it has size less than 2ω/2, a contradiction.

We have just shown that if W+
x ∩W+

y holds, then so does Wx ⋆ Wy. It follows that either
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W+
x ⋆ W+

y holds, or d(x2, y2) ≤ 2t1, implying d(x, y) ≤ 2(t0 −K + t1). Thus, for the second
moment,

EN2 − EN =
∑

x

∑

y 6=x
P(W+

x ∩W+
y )

=
∑

x

∑

y 6=x
P(W+

x ∩W+
y ∩ (Wx ⋆ Wy))

≤
∑

x

∑

y 6=x
P(W+

x ⋆ W+
y ) + P

(
Wx ⋆ Wy ∩ {d(x, y) ≤ 2(t0 −K + t1)}

)
.

For the first term, we have P(W+
x ⋆W

+
y ) ∼ P(W+

x )P(W+
y ), since testing the event W+

x uses up
at most ω2 vertices, which does not affect the probability of W+

y significantly. (Alternatively,
as before we may use Lemma 2.2 and a version of this lemma where we start at two vertices.)

To handle the second term, we use the following inequality, which we shall prove in a
moment:

P
(
Wx ⋆ Wy ∩ {d(x, y) ≤ 2(t0 −K) + t3 −K ′}

)
= o(n−2), (2.18)

where K ′ = 3K log(1/λ⋆)/ log λ and t3 = logn/ log λ. Assuming this, using the fact that
2t1 ≤ t3 −K ′ for large n if K tends to infinity sufficiently slowly, we have EN2 ≤ EN + (1 +
o(1))(EN)2 + n2o(n−2). Since EN → ∞, it follows that EN2 ∼ (EN)2, so by Chebyshev’s
inequality N is concentrated about its mean, and in particular, N ≥ 2 whp.

Set d = 2(t0 − K) + t3 − K ′, so d = logn/ log λ + 2 logn/ log(1/λ⋆) − O(K). With K
tending to infinity arbitrarily slowly, our aim in this subsection is to prove that diam(G) ≥ d
holds whp.

Let M be the number of pairs of distinct vertices x, y for which Wx ⋆ Wy ∩ {d(x, y) ≤ d}
holds. Using (2.18) again, we have EM = o(1), so M = 0 whp. Thus, whp, we have N ≥ 2
and M = 0. Then there are distinct vertices x, y for which W+

x and W+
y hold. As shown

above, it then follows that Wx ⋆ Wy holds. Since M = 0, we have d(x, y) > d. From the
classical results of Erdős and Rényi [21], there is some constant A > 0 such that whp exactly
one component of G, the ‘giant’ component, contains more than A logn vertices. Since (for
n large) W+

x implies that x is in a component with at least ω > A logn vertices, whp any
pair x, y satisfying the conditions above lies in the giant component, so d < d(x, y) <∞, and
diam(G) > d, as required.

It remains only to prove (2.18). To do so, we explore the neighbourhoods of a given pair
x, y of vertices as usual, to test whether Wx ⋆Wy holds. If so, the possible edges between the
remaining vertices, including x2 and y2, have not yet been tested, so each is present with its
original unconditional probability. Hence, given Wx ⋆Wy, summing over all possible paths we
see that the probability that d(x2, y2) ≤ ℓ is at most

∑

k≤ℓ
nk−1(λ/n)k =

∑

k≤ℓ
λk/n = O(λℓ/n)
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and

P
(
Wx ⋆ Wy ∩ {d(x, y) ≤ 2(t0 −K) + t3 −K ′)}

)
= P(Wx)P(Wy)O(λt3−K

′

/n)

= O
(
λt0−K⋆ λt0−K⋆ λ−K

′
)

= O(1/n2)(1/λ⋆)
2Kλ−K

′

= O(1/n2)(1/λ⋆)
2K−3K = o(n−2),

as required.
Combining the lower bound on the diameter we have just proved, and the upper bound

proved in Subsection 2.1, we obtain Theorem 1.1.

3 Average degree tending to infinity

In this section we shall prove Theorem 1.2. Throughout, when we consider G(n, λ/n) we
assume that λ = λ(n) → ∞ with λ ≤ n1/1000. For convenience, we always assume that λ is
larger than some absolute constant λ0, chosen so that the various statements ‘provided λ is
large enough’ in what follows hold for λ ≥ λ0. With λ tending to infinity, some aspects of the
proof become easier than the λ constant case, whilst some become more difficult.

We retain the same basic plan of attack as for the case of λ constant. One of the main
problems is that we cannot simply work with the time that the neighbourhoods of a vertex
take to reach a certain size ω, since the first neighbourhood larger than this may have size
anywhere from ω to around λω; this difference is too big for our later arguments. Instead
we will look at the size of the neighbourhoods at a specific time. We could consider sizes in
certain ranges, but it turns out that we can simply consider individual sizes, bounding the
probability that a certain neighbourhood has exactly a certain size r. Roughly speaking, as in
the previous section, the probability that the neighbourhoods of a vertex take a generations
longer than usual to reach (or exceed) some given size turns out to be around λa⋆, where λ⋆ < 1
is the dual branching process parameter, defined by λ⋆e

−λ⋆ = λe−λ. This event corresponds
to the (later) neighbourhoods being a factor of λa smaller than usual. So we study for real
parameters a the probability that the neighbourhoods are λa smaller than usual, expressing
this probability as a power of λ⋆.

Throughout this section it will be useful to bear in mind the asymptotic formula

λ⋆ = λe−λ +O(λ2e−2λ), (3.1)

which follows easily from λ⋆e
−λ⋆ = λe−λ and λ⋆ < 1. Note in particular that λ⋆ is asymptot-

ically smaller than any constant negative power of λ.

3.1 Branching process preliminaries

We first give some lemmas describing the growth behaviour of the branching process.

Lemma 3.1. Suppose λ ≥ 10 and 0 < δ ≤ 1/2. Given that |Xr| = k ≥ 1, with probability at
least 1 − e−cδ

2λk we have |Xt|/(λt−rk) ∈ [1 − δ, 1 + δ] for all t ≥ r, where c > 0 is an absolute
constant.
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Proof. We may assume without loss of generality that r = 0. For t ≥ 0, let ρt = |Xt+1|/(λ|Xt|),
and let Et be the event that |ρt − 1| > δ/3t+1; it suffices to prove that P(

⋃
tEt) ≤ e−cδ

2λk.
Let Ft be the event that Et holds but no Es holds, s < t, so P(

⋃
tEt) =

∑
P(Ft). If no Es

holds for s < t, then |Xt| ≥ kλt
∏

s<t(1 − δ/3s+1) ≥ kλt/10. Turning to |Xt+1|, conditional
on |Xt|, by Lemma 2.3 the probability that ρt lies outside [1 − δ/3t+1, 1 + δ/3t+1] is at most
2 exp(−c0δ29−tλ|Xt|), for some c0 > 0. Hence P(Ft) ≤ 2 exp(−c0δ29−tλt+1k/10), and the
result follows by summing this rapidly decreasing sequence.

For 0 ≤ a < 1 define g(a) = g(λ, a) by λ
g(a)
⋆ = P(Z ≤ λ1−a), where Z has a Poisson

distribution with mean λ. Thus λ
g(a)
⋆ is the probability that Z is smaller than its mean by

a factor of λa or more. Note that g(a) is (weakly) increasing in a. Also, as λ → ∞ we have
P(Z ≤ λ) → 1/2 and λ⋆ → 0, so g(0) = o(1). A simple calculation shows that g(a) = 1−o(1)
for any fixed 0 < a < 1. Also, using (3.1) we have P(Z ≤ 1) = (1+λ)e−λ = λ⋆e

−λ⋆(1+1/λ) >
λ⋆ for large enough λ, and so

0 ≤ g(a) < 1 (3.2)

for all 0 ≤ a < 1.
Extend g to the real line by defining g(x) = ⌊x⌋ + g(x − ⌊x⌋); this gives an increasing

function which, from (3.2), satisfies

⌊x⌋ ≤ g(x) ≤ ⌊x⌋ + 1 (3.3)

for all x. It is straightforward to check that for any constant b ≥ 3, say, if n is large enough
then

λg(a−log b/ log λ)
⋆ ≥ λb/4λg(a)⋆ (3.4)

holds for all a. Indeed, if m ≤ a−log b/ log λ, a < m+1 for some integer m, then (3.4) decodes
to a statement of the form P(Z ≤ bk) ≥ λb/4P(Z ≤ k), where 1 ≤ k ≤ λ/b; the inequality
is easily verified by considering, for example, the ranges k ≥ λ/(10b),

√
λ ≤ k ≤ λ/(10b),

and 1 ≤ k ≤
√
λ. On the other hand, if a − log b/ log λ < m ≤ a then it decodes to

λ−1
⋆ P(Z ≤ kb/λ) ≥ λb/4P(Z ≤ k), with k < λ and bk > λ; this is easily verified by considering

the cases k ≥ 0.9λ and k < 0.9λ, say.
We next give an analogue of the upper bound in Lemma 2.1; note that we do not round

t1 to an integer.

Lemma 3.2. Suppose that ω ≥ λ and that t ≥ 0 is an integer. Then for λ at least some
absolute constant, setting t1 = logω/ logλ we have

P
(
0 < |Xt| < ω/2

)
≤ 3λg(t−t1)

⋆ .

Proof. Note first that if t < t1, then g(t− t1) ≤ 0 by (3.3), so the result holds trivially. We
may thus assume that t ≥ t1, so t ≥ ⌈t1⌉.
Case 1: t ≥ ⌈t1⌉ + 1.

Similar to the proof of Lemma 2.1, set rt = P(|Xt| < ω/2 | |Xt| > 0). Then it suffices to

show that rt ≤ 3λ
g(t−t1)
⋆ . We shall show in a moment that if t = ⌈t1⌉ + 1, then

P
(
0 < |Xt| < ω/2

)
≤ 1.1λg(t−t1)

⋆ . (3.5)
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Suppose for the moment that this holds. Then by monotonicity of g and the fact that
g(1) ≥ 1, and since P(|Xt| > 0) ∼ 1, for such t we have rt ≤ 1.2λ⋆ if λ is at least some
(absolute) constant.

As noted in the proof of Lemma 2.1, the implicit constant in all O(·) notation leading to
(2.4) may be taken to be absolute when λ > 1 is bounded away from 1, so this bound applies
with λ growing as a function of n. In particular, from (2.4), we have for arbitrary t ≥ 1

rt ≤ rt−1(λ⋆ + rt−1 +O(λλt⋆)) = rt−1(λ⋆ + rt−1 + o(λt−1
⋆ )), (3.6)

using λλ⋆ = o(1) for the last step, which follows from (3.1).
We may iterate (3.6), with λ⋆ sufficiently small in the following (as λ can be assumed

large). Beginning with t = ⌈t1⌉ + 1, when rt ≤ 1.2λ⋆ from (3.5) and hence rt+1 ≤ 2.7λ2
⋆ from

(3.6), we see that that rt decreases extremely rapidly: rt ≤ 3λ⋆rt−1 for t > ⌈t1⌉ + 1. Feeding
the resulting bound r⌈t1⌉+k ≤ (3λ⋆)

k, k > 1, back into (3.6), it follows that for t > ⌈t1⌉ + 1
we have rt ≤ rt−1λ⋆(1 + εt) where the first error term ε⌈t1⌉+2 is at most 1.3 and later ones
decrease extremely rapidly. Since

∏
t(1 + εt) ≤ 2.4 for λ large enough, the result for Case 1

now follows from (3.5).
It remains to prove (3.5). Assuming now that t = ⌈t1⌉ + 1, put a = t − t1 − 1, so that

0 ≤ a < 1. We claim that
P
(
0 < |X2| ≤ λ1−a) ∼ λ1+g(a)

⋆ (3.7)

and that
P
(
|X2| > λ1−a, |Xt| < ω/2

)
= o(λ1+g(a)

⋆ ). (3.8)

Since 1 + g(a) = g(t− t1), these imply (3.5).
Note that P(|X1| = 1) = λe−λ ∼ λ⋆, and the probability that subsequently |X2| ≤ λ1−a is

λ
g(a)
⋆ by definition of g. Thus,

P
(
|X1| = 1, |X2| ≤ λ1−a) ∼ λ1+g(a)

⋆ .

On the other hand, conditioning on |X1| = k ≥ 2, the conditional distribution of |X2| is
Poisson Po(kλ). Since a ≥ 0, we may assume that λ1−a ≤ kλ/2, and it follows that there
is an absolute constant c2 > 0 such that for all k ≥ 2, P(|X2| ≤ λ1−a | |X1| = k) < e−c2kλ.
Fixing k0 > 3/c2, we have

P
(
|X1| > k0, |X2| ≤ λ1−a) ≤ P

(
|X2| ≤ λ1−a ∣∣ |X1| > k0

)

≤ e−3λ = o(λ2
⋆) = o

(
λ1+g(a)
⋆

)
.

Turning to 2 ≤ k ≤ k0, we have P(|X1| = k) = O(λk−1λ⋆). Suppose firstly that g(a) < c2
as defined above. Then P

(
(2 ≤ |X1| ≤ k0)∧ |X2| ≤ λ1−a) < O(λk0−1λ⋆)e

−2c2λ = λ
1+2c2+o(1)
⋆ =

o(λ
1+g(a)
⋆ ). So we may assume that g(a) ≥ c2. Then, noting that for |X2| ≤ λ1−a to hold each

particle in X1 must have at most λ1−a children, we have

P
(
|X1| = k, |X2| ≤ λ1−a) = O(λk−1λ⋆λ

kg(a)
⋆ ) = o(λ1+g(a)

⋆ ),

since λλ
g(a)
⋆ = λ

g(a)−o(1)
⋆ = o(1). Putting the pieces together, we have established (3.7).
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The proof of (3.8) is similar. Condition on |X2| = k, where k > λ1−a. In the event
that |Xt| < ω/2, the average number of descendants in Xt of a particle in X2 is less than
ω/(2λ1−a). However, we know that any one such particle expects λt−2 = λt1+a−1 = ω/λ1−a

such descendants, and applying Lemma 3.1, we see that P(|Xt| < ω/2 | |X2| = k) ≤ e−c3kλ

for some c3 > 0. Arguing as for the proof of (3.7), there exists k1 such that P(|Xt| < ω/2 |
|X2| > k1) = o

(
λ

1+g(a)
⋆

)
.

We are left with showing (3.8) in the case that λ1−a < |X2| ≤ k1, which requires |X2| ≥ 2

since a < 1. It is easy to see that P(|X2| ≤ k1) = Θ(λk1−1λ2
⋆) = λ

2−o(1)
⋆ . Conditional upon this,

for |Xt| < ω/2 to hold at least one particle in X2 must have at most half its expected number
of descendants in Xt. By Lemma 3.1 and the union bound, the conditional probability of this
is at most k1e

−c3λ = o(λ
c3/2
⋆ ). Hence

P(|X2| ≤ k1) P
(
|Xt| < ω/2

∣∣ λ1−a < |X2| ≤ k1

)
= o(λ2−o(1)+c3/2

⋆ ) = o(λ2
⋆)

and we have (3.8) since 1 + g(a) ≤ 2.

Case 2: t = ⌈t1⌉.
In this case, setting a = t− t1 ∈ [0, 1), we have P(0 < |X1| ≤ λ1−a) < λ

g(a)
⋆ by definition of

g. Using this in place of (3.7), it suffices to show that P
(
|X1| > λ1−a, |Xt| < ω/2

)
= o(λ

g(a)
⋆ );

the proof is identical to that of (3.8), apart from the notation.

We next turn to the analogue of the lower bound in Lemma 2.1; as there, we bound the
probability of a rather specific event involving extra conditions that will be needed in our
lower bound on the diameter.

We say that the branching process (Xt) satisfies the diamond condition to generation r
if |X1| = 1, there is a unique particle xr in Xr, and the chain x0x1 · · ·xr of ancestors of xr
is such that any ‘side branches’ starting from xi die within min{i, r − i} further generations.
For r = 0 we interpret the diamond condition to hold vacuously.

Lemma 3.3. Let t′ ≥ 0 be an integer, and 0 ≤ a < 1 a real number. Let F0 be the event
that |Xt′| = 1 and the diamond condition holds to generation t′, and let F1 be the event that
|Xt′+1| ≤ λ1−a. Then as λ→ ∞ we have

P(F0 ∩ F1) ∼ λg(t
′+a)

⋆ ,

uniformly in t′ and a. Furthermore, provided λ is at least some absolute constant, then for
any ω ≥ λ and t ≥ t1 = logω/ logλ there is a ρ with ω/3 ≤ ρ ≤ 2ω such that

P
(
F0 ∩ F1 ∩ {|Xt| = ρ}

)
≥ λg(t−t1)

⋆ /(3λω),

where F0 and F1 are defined as above with t′ and a the integer and fractional parts of t− t1,
respectively.

Note that t1 is not rounded to an integer. Essentially, the lemma says that the probability
that Xλ survives but (after some time) is a factor λx smaller than it should be is around λ

g(x)
⋆ .

The second statement shows that there is some specific size in a suitable range such that the
probability of hitting exactly this size is not much smaller.
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Proof. The event F0 is exactly the event W 0 referred to in (2.14), but with t0−K replaced by
t′. Using (2.15) to translate (2.16) back in terms ofW 0, we have λt

′

⋆ ≥ P(F0) ≥ λt
′

⋆ d1d
2
1d

2
2d

2
3 · · · ,

where dt = P(|X−
t | = 0) is at least 1−λt⋆ from (2.17). Since λ⋆ → 0, it follows that P(F0) ∼ λt

′

⋆ .
Conditioning on F0 says nothing about the descendants of the unique particle z in Xt′ , so

if Z is Poisson with mean λ then

P(F1 | F0) = P(Z ≤ λ1−a) = λg(a)⋆ ,

where the last step is the definition of g(a). Since λt
′

⋆λ
g(a)
⋆ = λ

g(t′+a)
⋆ , this proves the first

statement.
Turning to the second statement, suppose that ω ≥ λ and t ≥ t1 = logω/ logλ. Let

t′ = ⌊t − t1⌋ and a = t − t1 − t′. Let F ′
1 be the event that |Xt′+1| = ⌊λ1−a⌋. Noting

that x = ⌊λ1−a⌋ is the most likely value x of Z with x ≤ λ1−a, arguing as above we have

P(F ′
1 | F0) ≥ λ

g(a)
⋆ /λ, and hence P(F0 ∩ F ′

1) ≥ λ
g(t′+a)
⋆ /(2λ), provided λ is large enough.

Noting that t − t′ ≥ t1 ≥ 1, let F2 be the event that the ratio |Xt|/(λt−t′−1|Xt′+1|) is
between 9/10 and 11/10. Then by Lemma 3.1 we have P(F2 | F0 ∩ F ′

1) → 1, so

P(F0 ∩ F ′
1 ∩ F2) ≥ λg(t

′+a)
⋆ /(3λ).

Noting that λ1−aλt−t
′−1 = λt−(t′+a) = λt−(t−t1) = λt1 = ω, and that ⌊λ1−a⌋ ≥ λ1−a/2, if

F0 ∩ F ′
1 ∩ F2 holds then so does the event Eρ = F0 ∩ F1 ∩ {|Xt| = ρ} for some ρ between

9ω/20 and 11ω/10. So there is some ρ in this range for which P(Eρ) ≥ λ
g(t−t1)
⋆ /(3λω), as

required.

We also need an analogue of Lemma 2.2 without the assumption that λ is fixed.

Lemma 3.4. Let λ = λ(n) satisfy λ ≤ n1/10. Then the estimates

P
(
G≤t(x) ∼= T

)
∼ P

(
G0

≤t(x) ∼= T
)
∼ P

(
X≤t ∼= T

)

hold uniformly over rooted trees T with |T | ≤ n2/5, where t is the height of T .

Proof. The proof is essentially identical to that of Lemma 2.2. Indeed, the estimate (2.7) is
valid assuming only that |T |, λ ≤ n/2, say; under our present assumptions this estimate is
exp(O(n−1/5 +n−1/10 +n−2/5)) = 1+o(1). As before, the result for G≤t(x) follows, now noting
that the expected number of untested edges present is O(λ|T |2/n) = o(1).

3.2 Neighbourhoods in the graph and how they meet

Our immediate plan is to examine those vertices for which the breadth first search procedure
takes an unusually long time to reach a ‘large’ number of vertices. For convenience we choose
‘large’ to mean around λ10; since we assume λ < n1/1000, say, λ10 is much less than n1/4.
We do not attempt to optimise the power of n giving the upper bound on λ. We first work
towards a lemma that gives asymptotically the probability that two neighbourhoods of size
at least λ9/4 have a certain distance between them. This will be needed in particular later
when we make variance calculations in using the second moment method.
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As in Section 2, set
t0 = ⌊log n/ log(1/λ⋆)⌋.

For r ≥ 1, let Sr be the set of vertices x in the random graph with |Γt0+10(x)| = r.
Lemmas 3.3 and 3.2, in conjunction with Lemma 3.4, give some information on the ex-

pected size of Sr, or, more precisely, on the size of unions of such sets over r in suitable ranges,
though (as will be apparent in the argument below) the upper and lower bounds given by the
lemmas can differ by a factor of λ or more.

We first consider the branching process. For r ≥ λ, setting ω = 3r > 2r in Lemma 3.2
gives

P(0 < |Xt| ≤ r) < 3λg(t−log(3r)/ log λ)
⋆ . (3.9)

Although we shall not use it, let us note that in the other direction, with α constant and λ
large enough, applying Lemma 3.3 with ω = 1

2
αr and then Lemma 3.1 gives

P(0 < |Xt| < αr) ≥ 1

2
λg(t−log(αr/2)/ log λ)
⋆ , (3.10)

provided the argument of g is greater than 0.
We will transfer the bounds above to the random graph using Lemma 3.4, which shows

that the corresponding random graph and branching process events have asymptotically the
same probability, provided there are not too many vertices close to x, so that the trees used
in applying Lemma 3.4 are not too large. First, define Γ≤i(x) =

⋃i
j=0 Γj(x).

Let B1 be the (‘bad’) set of vertices x such that |Γ≤t0+10(x)| > n1/4. From (3.1) we have
log(1/λ⋆) ∼ λ, which is much larger than logλ, so λt0+10 = no(1)λ10 ≤ n1/8 if n is large enough.
For fixed k ≥ 1, the number of unlabelled rooted trees of height t with exactly k (non-root)
leaves, all at distance t from the root, can be estimated by adding paths to leaves one at a
time, giving the crude upper bound O(1)(t+ 1)k−1. It is thus easily seen that for fixed k we
have E |Γ≤t(x)|k ≤ O(1)(t + 1)k−1λtk. With t = t0 + 10 = O(logn) and k = 20, this gives
E |Γ≤t0+10(x)|20 ≤ (log n)O(1)n2.5 = o(n3). Thus Markov’s inequality gives

E |B1| ≤ nP
(
|Γ≤t0+10(x)|20 ≥ n5

)
= o(n−1). (3.11)

A similar calculation shows that
P(B0

1) = o(n−2), (3.12)

where B0
1 is the branching process event corresponding to B1.

Define µ̃r to be the expected number of vertices x in Sr \B1. Applying Lemma 3.4 to each
relevant tree, which has at most n1/4 vertices by definition, and summing over x, we have
µ̃r ≤ (1 + o(1))nP(|Xt0+10| = r), so by (3.9) we have

µ̃r < n(3 + o(1))λg(t0+10−log(3r)/ log λ)
⋆

< (3 + o(1))λ8−log(3r)/ log λ
⋆ (3.13)

using (3.3).
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We can similarly see easily that the union of the sets Sr \ B1 over all r < λ9/4 is whp
empty: setting ω = λ9/2 in Lemma 3.2 gives

P
(
0 < |Xt0+10| < λ9/4

)
≤ 3λg(t0+1+log 2/ log λ)

⋆

≤ 3

n
λg(log 2/ log λ)
⋆

which is 3n−1
P(Po(λ) ≤ λ/2) = o(1/n). Hence, using Lemma 3.4 again,

∑
r<λ9/4 µ̃r = o(1).

Since E |B1| = o(1), it follows that

⋃

1≤r≤λ9/4

Sr = ∅ whp. (3.14)

Thus, we are interested in Sr for r ≥ λ9/4.
An annoying feature of the present situation is that with some small probability, the size

of Γi(x) can ‘misbehave’ for i > t0 + 10. Although there are whp no vertices for which this
happens to a significant extent, we need to treat these vertices separately. Define ℓ(r) =
max{0, ⌈log

(
2(log6 n)/r

)
/ log λ⌉}, so ℓ(r) ≥ 0 is minimal subject to rλℓ(r) ≥ 2 log6 n. Let B2

be the set of ‘bad’ vertices x with the property that |Γt0+10(x)| ≥ λ9/4, and the ‘ratio error’

|Γt0+10+i(x)|
λi|Γt0+10(x)| − 1 (3.15)

has absolute value at least λ−2 for some 0 ≤ i ≤ ℓ(r). We write V0 = V \ (B1 ∪ B2) for the
set of ‘good’ vertices.

Lemma 3.5. (a) E |B2| = o(1).

(b) Conditional on two vertices x and y being in Sr1 ∩ V0 and Sr2 ∩ V0 respectively, where
λ9/4 ≤ ri ≤ n1/4 (i = 1 and 2), and additionally conditional on d(x, y) > 2t0 + 20 +
ℓ(r1) + ℓ(r2), we have

P
(
d(x, y) > 2t0 + 20 + k

)
= exp

(
− r1r2

n

(
1 +O(λ−2)

) k∑

i=1

λi
)

+ o(n−3)

for all k > ℓ(r1) + ℓ(r2), where the constant implicit in the O(·) terms is uniform over
all such r1, r2 and k.

Proof. As in the proof of Lemma 2.4, we explore the successive neighbourhoods of a vertex.
If at denotes |Γt(x)|, then conditional on the part of the graph explored up to this point, and
assuming that it contains at most n2/3 vertices, at+1 is distributed as binomial with parameters
n−O(n2/3) and p = (λat/n)(1+O(λat/n)). The mean is λat(1+O(n−1/4)), so by Lemma 2.3
(a Chernoff bound) we have

P(|at+1 − λat| ≤ (λat)
3/4) = 1 − e−Ω(

√
λat). (3.16)
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To prove (a), in view of (3.11) we only need to show that E |B2 \B1| = o(1). First explore
the successive neighbourhoods of any vertex x up to Γt0+10(x). If the cardinality of this set,
at0+10, is less than λ9/4 or greater than 2 log6 n, or if |Γ≤t0+10(x)| > n1/4, then x is certainly
not in B2 \B1. Condition on the exploration so far assuming that none of these events hold,
and that at0+10 = r, so λ9/4 ≤ r ≤ 2 log6 n. Next, continue exploring a further ℓ(r) steps.
Provided the event in the left side of (3.16) holds at each exploration step, the ‘relative error’
|at+1/λat − 1| is at most (λat)

−1/4. In this case,

∣∣∣∣
at0+10+i

λiat0+10

− 1

∣∣∣∣ < 2(λat0+10)−1/4,

which is less than λ−2 since at0+10 ≥ λ9/4. This implies x /∈ B2. On the other hand, the
probability that the event in the left side of (3.16) fails to hold for at least one of the relevant

t is at most e−Ω
(√

λr
)
, which is λ

Ω
“√

r/λ
”

⋆ since λ⋆ > e−λ. The expected number of vertices
x /∈ B1 with at0+10 = r is O(λ

8−log(3r)/ log λ
⋆ ) by (3.13). Multiplying these bounds together and

summing over r ≥ λ9/4 gives o(1), that is, E |B2 \B1| = o(1), as required.
We turn to (b). Let λ9/4 ≤ ri ≤ n1/4 (i = 1 and 2). Take any vertices x and y, and

explore the successive neighbourhoods of each up to distance t0 +10+ℓ(r1) and t0 +10+ℓ(r2)
respectively. At this point, it is revealed whether these neighbourhoods are all disjoint, which
is equivalent to d(x, y) > 2t0 + 20 + ℓ(r1) + ℓ(r2), and also (recalling that V0 = V \ (B1 ∪B2))
whether x ∈ V0 and y ∈ V0. Condition on the event that all three of these hold. It follows
from x /∈ B2 that |Γt0+10+i(x)| = r1(1 +O(λ−2))λi for 0 ≤ i ≤ ℓ(r1), and similarly for y.

We next explore the further neighbourhoods of x and y, each time choosing the smaller
of the two for further exposure, until one of them has reached cardinality at least n3/5, or
until they meet, whichever happens first. Note that for all r we have rλℓ(r) ≥ 2 log6 n by
the definition of ℓ. Since x /∈ B2, using the ‘error ratio’ property in the definition of B2 (see
(3.15)) it follows that |Γt0+10+ℓ(r1)(x)| ≥ log6 n, and similarly for y. So, by applying (3.16) and
conditioning on non-failure at each step, we conclude that with probability at least 1−o(n−3),
at each step

|Γt0+10+k(x)| = r1λ
k(1 +O(λ−2)),

and similarly for y. So we may assume this is the case each time. From this, when the sum
of the two distances is 2t0 + 20 + k − 1, the product of the sizes of the neighbourhoods is
r1r2λ

k−1(1 +O(λ−2)), and hence the probability of not joining in the next step is

exp
(
− r1r2λ

k−1(1 +O(λ−2))λ/n
)
.

The result follows, as long as the probability that they do not meet by the time that one
of the neighbourhoods has reached size n3/5 is bounded above by o(n−3). This must be the
case since on the previous step, the neighbourhood that was extended must have had size at
least n3/5/λ(1 + o(1)), so the product of sizes on the previous step must have been at least
n6/5/λ2(1 + o(1)) which is at least n11/10 as λ < n1/1000. Thus the probability of not joining
on the last step was at most exp(−λn1/10(1 + o(1)) = o(n−3).

We now turn to the proof of Theorem 1.2.
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Proof of Theorem 1.2. Recall that λ = λ(n) is some given function of n satisfying λ→ ∞ and
λ ≤ n1/1000. All limits are as n → ∞, or, equivalently, as λ → ∞. As usual, all inequalities
we claim are required to hold only if n (or λ) is sufficiently large.

Our first aim is to estimate the probability of the event conditioned on in Lemma 3.5(b).

Let P̂r denote the probability that a given vertex is in V0∩Sr, and P̂r1,r2 the probability that a
given pair of distinct vertices x and y satisfy x ∈ V0∩Sr1 , y ∈ V0∩Sr2, and d(x, y) > 2t0 +20+
ℓ(r1) + ℓ(r2). Note that x ∈ V0 ∩ Sr1 iff the set of vertices at distance at most t0 + 10 + ℓ(r1)
from x forms one of a specific set of graphs with less than n1/4 + O(λ(logn)6) = o(n1/3)

vertices, and P̂r1,r2 counts configurations in which the explorations from x and y are disjoint.
Since each exploration ‘uses up’ o(n1/3) vertices, it is easy to see (for example using a version
of Lemma 3.4 starting with two vertices) that

P̂r1,r2 ∼ P̂r1P̂r2 . (3.17)

For any r, let µ̂r denote nP̂r, the expected size of V0 ∩ Sr; recall that µ̃r = E |Sr \ B1|,
so µ̂r = µ̃r + o(1) by Lemma 3.5(a). Also, for integer k ≥ 1 define µ̂(r1, r2, k) to be the
expected number of ordered pairs (x, y) of vertices with x ∈ V0 ∩ Sr1, y ∈ V0 ∩ Sr2, and
d(x, y) > 2(t0 + 10) + k. Since V0 = V whp, the number of such pairs essentially determines
the diameter. From the above observations and Lemma 3.5(b),

µ̂(r1, r2, k) ∼ µ̂r1µ̂r2

(
exp

(
− r1r2(1 +O(λ−2))

k∑

i=1

λi/n
)

+ o(n−3)

)
(3.18)

provided k > ℓ(r1) + ℓ(r2) and r1 and r2 satisfy the constraints of Lemma 3.5. Note that we
shall consider values of k that are at least logn/ log λ− 30, which is larger than 2ℓ(r) for any
r > 0.

Define µr = nP(|Xt0+10| = r), which we shall analyse using Lemmas 3.3 and 3.2. We
claim that

µ̂r ≤ µ̃r ≤ µr(1 + o(1)); (3.19)

indeed, the first inequality holds by definition. If r > n1/4 then µ̃r = 0; otherwise the second
inequality follows from Lemma 3.4, summing over the possible neighbourhoods of x. In the
other direction, although we shall not these bounds, note that for r ≤ n1/4 we have

µ̂r ≥ µr(1 + o(1)) + o(1),

since µ̂r ≥ µ̃r+o(1) by Lemma 3.5(a), and µ̃r ≥ µr(1+o(1))+o(1) from Lemma 3.4, together
with (3.12).

We next show that vertices in sets V0 ∩ Sr with r > λ13.1 will not determine the diameter
of the graph, for the reason that they join too quickly to all vertices under consideration: we
claim that whp all such vertices have distance at most log n/ log λ+ 2t0 − 0.05 from all other
vertices; we will see later that whp the diameter is greater than this. To establish this claim,
without loss of generality consider only r1 ≥ λ13.1 and r2 ≥ λ9/4. Note that the conditions
on the ri in Lemma 3.5(b) are so restrictive because it aims for a fairly accurate asymptotic
estimate. In this case we only need to observe that if x ∈ V0∩Sr for r = r1 or r2, by definition
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of B2, |Γt0+10+i(x)| ∼ λir until the neighbourhoods reach size at least (log n)6 (which they
may do at i = 0), and for larger neighbourhoods up to size n2/3, (3.16) provides the same
relation with probability at least 1 − e−Ω(log3 n) = 1 − o(n−5). Summing over all O(n2) pairs
of vertices x and y gives

µ̂(r1, r2, k) ≤ µ̂r1µ̂r2 exp
(
− (1 + o(1))r1r2λ

k/n
)

+ o(n−3), (3.20)

which is similar to (3.18) but does not have the same restrictions on r1 and r2. For k =
⌊log n/ log λ − 20.05⌋ we have r1r2λ

k/n > (r1/λ
13.1)(4r2/λ

9)λ1.04. Now (3.19) and (3.13),
together with λ⋆ = e−λ+o(λ) (see (3.1)), give

µ̂r = O(1) exp
(
(1 + o(1))λ(log(3r)/ log λ− 8)

)
.

Summing the resulting bound on µ̂(r1, r2, k) over all r1 ≥ λ13.1 and r2 ≥ λ9/4 gives o(1),
as required to establish the claim. (The key observation is that when r1 and r2 take their
minimum values, we have µ̂r1µ̂r2 = exp(O(λ)), while the exponential factor in (3.20) is at most
exp(−λ1.04). When r1 and r2 increase, so does µ̂r1µ̂r2 , but the exponential factor decreases
more than fast enough to compensate.)

Recalling (3.14), let R be the set of indices r, λ9/4 ≤ r ≤ λ13.1, for which µ̂r > λ−14.
Then, by the union bound, the expected number of vertices in all sets V0 ∩ Sr with r in this
range but not in R is o(1), i.e., there are whp no such vertices. Since V0 = V whp, using the
observation above about sets Sr with r > λ13.1 and (3.14), we have shown that

diam(G) = max
(r1,r2)∈R2

max{d(x, y) : x ∈ V0 ∩ Sr1, y ∈ V0 ∩ Sr2} whp. (3.21)

It only remains to examine r1 and r2 in R. Note that if r ∈ R then r ≤ λ13.1, so from (3.13)
and (3.19) we have

µ̂r < λ−6
⋆ < e6λ. (3.22)

Let k0(r1, r2) denote the maximum k such that µ̂(r1, r2, k) > λ−27. (This number k0 depends
on n.) Then µ̂(r1, r2, k0(r1, r2) + 1) ≤ λ−27. Let kmax be the maximum value of k0 over all
pairs (r1, r2) in R2. From (3.20), (3.22) and the definition of R, it is easy to check that
kmax = log n/ log λ + O(1). Setting f(n, λ) = 2(t0 + 10) + kmax, to prove the first part
of Theorem 1.2 we shall show that the diameter is whp either f(n, λ) or f(n, λ) + 1. Since
|R2| = O(λ26.2), by the union bound, the expected number of pairs of vertices x and y counted
in (3.21) at distance greater than f(n, λ) + 1 is o(1). Thus diam(G) ≤ f(n, λ) + 1 holds whp.

To see that the diameter is whp at least f(n, λ) = 2(t0 + 10) + kmax we shall look for
vertices at this distance in suitable sets Sri. Choose (r1, r2) in R2 with k0(r1, r2) = kmax. Note
that µ̂(r1, r2, kmax) > λ−27. That is, from (3.18),

µ̂r1µ̂r2 exp
(
− r1r2(1 +O(λ−2))

kmax∑

i=1

λi/n
)

+ o(µ̂r1µ̂r2/n
3) > (1 + o(1))λ−27.

By definition µ̂ri ≤ n, and n−1 = o(λ−27), so

µ̂r1µ̂r2 exp
(
− r1r2(1 +O(λ−2))

kmax∑

i=1

λi/n
)
> λ−27(1 + o(1)).
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Using (3.22) for r = r1 and r = r2, it follows that

exp
(
− r1r2(1 +O(λ−2))

kmax∑

i=1

λi/n
)
> λ−28e−12λ > e−13λ,

if n is large enough. Taking logs and stopping the sum one step earlier, this gives

−r1r2(1 +O(λ−2))
kmax−1∑

i=1

λi/n > −13. (3.23)

Hence, by Lemma 3.5(b), vertices x and y whose (t0 + 10)-neighbourhoods have sizes r1 and
r2 respectively have a significant (at least e−13 +o(1)) probability of being at distance at least
2t0 + 20 + kmax. Although by design we expect a large number of pairs of such vertices x and
y, it is still possible that the expected number of possibilities for either x or y goes to 0! Our
strategy is to consider vertices with |Γt0+10(·)| around 2000ri, say, and show that this gives
us many vertices x and y to work with. We also impose certain extra conditions on their
neighbourhoods needed later.

For i = 1, 2, since ri is in R, we have µ̂ri > λ−14. Now (3.19) shows that P(|Xt0+10| = r) =
µri/n > (1 + o(1))λ−14/n. By (3.9) it follows that

λg(t0+10−log(3ri)/ log λ)
⋆ > (1/3 + o(1))λ−14/n. (3.24)

Let ωi = 1000ri ≤ λ14. By (3.4) and (3.24) we have

λg(t0+10−log ωi/ log λ)
⋆ > (1/3 + o(1))λ250/3λ−14/n ≥ λ40/n, (3.25)

if λ is large enough. For i = 1, 2, applying Lemma 3.3 with ω = ωi and t = t0 + 10, there
is some ρi with ωi/3 ≤ ρi ≤ 2ωi such that the event F0 ∩ F1 ∩ {|Xt0+10| = ρi} described in
Lemma 3.3 has probability πi satisfying

πi ≥ λg(t0+10−logωi/ log λ)
⋆ /(3λωi) ≥ λ39/(3nωi) ≥ λ25/n, (3.26)

using (3.25). Let Ẽρi
(x) denote the event that x /∈ B1 and the neighbourhoods of x up to

distance t0 + 10 form a tree that, when viewed as a branching process, satisfies the conditions
F0 ∩ F1 ∩ {|Xt0+10| = ρi}. By (3.12) and Lemma 3.4, we have P(Ẽρi

(x)) ∼ πi + o(n−2). Since

πi is much larger than n−2, it follows that P(Ẽρi
(x)) ∼ πi ≥ λ25/n.

Let Eρi
(x) be the event that Ẽρi

(x) holds and x ∈ V0, so the only additional condition is
that x /∈ B2. Let Pi = P(Eρi

(x)). Since P(x ∈ B2) = o(1/n), we have

Pi ∼ P(Ẽρi
(x)) ∼ πi ≥ λ25/n. (3.27)

Note also for later that, writing ti and ai for the integer and fractional parts of t0 +
10 − logωi/ log λ, and writing F0(x) for the event that the neighbourhoods of x satisfy the
diamond condition to distance ti (corresponding to F0 in Lemma 3.3), then starting from the
first statement of Lemma 3.3 and arguing as above we have

P
(
F0(x) ∩ {|Γti+1(x)| ≤ λ1−ai}

)
∼ λg(t0+10−logωi/ log λ)

⋆ .
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Using the first inequality in (3.26) it follows that

Pi ≥ λ−15
P
(
F0(x) ∩ {|Γti+1(x)| ≤ λ1−ai}

)
. (3.28)

In other words, once we have explored the neighbourhoods to the ‘branching vertex’ x0, and
found few neighbours in the next step, it is not that unlikely that Eρi

(x) holds.
Given distinct vertices x and y, as in (3.17) the probability that Eρ1(x) and Eρ2(y) hold and

d(x, y) > 2(t0 +10)+ℓ(ρ1)+ℓ(ρ2) is (1+o(1))P1P2. Furthermore, conditional on this holding,
then by a variant of Lemma 3.5 that simply includes extra conditions on the neighbourhoods
of a vertex up to distance t0 +10, the conditional probability P that d(x, y) ≥ 2(t0 +10)+kmax

satisfies

P = exp

(
− ρ1ρ2

n
(1 + o(1))

kmax−1∑

i=1

λi
)

+ o(n−3). (3.29)

Since ρi ≤ 2ωi = 2000ri, using (3.23) shows that P ≥ exp(−O(1)), so P = Θ(1).
Let us call an ordered pair (x, y) a regular far pair if Eρ1(x) and Eρ2(y) hold, and d(x, y) ≥

2(t0 + 10) + kmax, and let N denote the number of regular far pairs; our aim is to show that
N ≥ 1 holds whp. From (3.27) we have nP1, nP2 ≥ (1 + o(1))λ25 → ∞, so

EN ∼ n2P1P2P → ∞.

Unfortunately, we cannot use the trick from Subsection 2.2 to complete the proof: this trick,
which allowed us to avoid considering the second moment of the number of pairs of vertices at
large distance, needed P ∼ 1. This will in fact hold for almost all values of the parameters in
the present setting, but not all. Moreover, we now have less tolerance in the final estimate of
the diameter, and consequently less flexibility. Instead we apply the second moment method
directly to N . In the arguments that follow we shall avoid using the fact that P = Θ(1),
using only

P ≥ n−1/20, (3.30)

say; this will be useful later.
Let M = E(N2) denote the expected number of pairs ((x, y), (z, w)) of regular far pairs;

our aim is to show that EM ∼ (EN)2. Note that the number of distinct vertices in {x, y, z, w}
may be 2, 3 or 4. The contribution to M from sets with 2 distinct vertices is trivially at most
2 EN = o((EN)2) (the factor 2 arises only if ρ1 = ρ2). Let us leave aside the case of 3 vertices,
noting only that we expect the contribution from pairs with x = z, say, to be asymptotically

nP1(nP2)
2P 2 ∼ (EN)2/(nP1) = o((EN)2),

since nP1 → ∞. The argument for the case of 4 distinct vertices that we shall now give adapts
easily to show this.

Let M0 be the contribution to M arising from sets of 4 distinct vertices {x, y, z, w} whose
neighbourhoods up to distance t0 + 10 + ℓ(ρi) are all disjoint, where i = 1 or 2 as appropriate.
To estimate M0, explore from four distinct vertices, and test whether the relevant events Eρi

(·)
hold with the neighbourhoods disjoint. As in (3.17), this has probability (1+o(1))P 2

1P
2
2 . Our

aim is to bound from above the conditional probability that d(x, y), d(z, w) ≥ 2(t0+10)+kmax,
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showing that it is at most (1 + o(1))P 2. Since none of x, y, z, w is in B2, the neighbourhoods
have already reached size at least log6 n. From this point onwards, as before, we may assume
they grow at almost exactly the expected rate. Note that we may ignore events of conditional
probability o(n−1/10) = o(P 2), since we have already conditioned on an event of probability
(1 + o(1))P 2

1P
2
2 .

Since we stop the explorations when the neighbourhoods are no larger than n3/5, say, we
may assume that any intersections between neighbourhoods are small, involving at most a
fraction n−1/3 of the vertices in a neighbourhood. Such small intersections do not materially
affect the calculations in Lemma 3.5(b), so the conditional probability that d(x, y), d(z, w) ≥
2(t0 + 10) + kmax is indeed (1 + o(1))P 2.

It remains to deal with cases where some of the neighbourhoods meet within distance
t0 + 10 + ℓ(ρi) from the respective vertices. As above just after (3.25), let ti be the relevant
parameter t′ in Lemma 3.3, where i = 1 or 2 depending on which vertex we consider. Note
that to have the property Eρi

(v), all our starting vertices v must have the property that Γti(v)
contains a unique vertex v0. Also, within the tree up to this point, v must be the unique
vertex at maximal distance from v0, so our ‘diamond’ condition holds. As in Subsection 2.2,
it follows that in a quadruple contributing to M , the neighbourhoods cannot meet before
the corresponding vertices v0, so the minimum possible distance between starting vertices is
ti + tj .

Returning to the random graph without conditioning, let us explore the neighbourhoods
of our 4 distinct vertices x, y, z, w out to distance ti − 1 in each case, assuming these
explorations are disjoint, and that there are no edges between the final sets (such an edge
would give distance ti+ tj−1). Furthermore, let us test for each of these vertices v how many
neighbours Γti−1(v) has in the remaining set U of ‘unused’ vertices, but not which neighbours
it has. If our quadruple is to contribute, in each case there must be exactly one neighbour,
v0. Now conditional on the information so far, the probability that x0 = z0, say, is exactly
1/|U | ∼ 1/n. If this happens, then going forwards, the remaining calculations are exactly as
if we had x = z in the beginning. Summing the corresponding contributions to M , the total
from cases with x 6= z but x0 = z0 has an extra factor of n from the choice of z (compared to
the case x = z), but also an extra factor that is asymptotic to 1/n as noted above. (There
is also the extra factor of at most 1 from the condition on the neighbourhoods of z up to
distance ti−1; we can ignore this). In total, the contribution here is at most that with x = z,
which is o((EN)2) as noted above. (The argument here is not circular; when considering here
the three-vertex case, a collision of this form reduces to the two-vertex case.)

So we may assume that x0, y0, z0 and w0 are distinct. Repeating the trick above, let us
first test how many neighbours each has among the unused vertices (not testing edges such as

x0z0 for now). For our quadruple to contribute, by definition of Ẽρi
(·) the numbers must be

at most λ1−ai with i = 1, 2 as appropriate. Since there are n − O(n1/4) unused vertices, the
probability of this happening is very close to P(Po(λ) ≤ λ1−ai). Using (3.28), it follows that the

probability that all our tests so far, for the relevant events Ẽρi
(·), succeed is at most λ61P 2

1P
2
2 .

Hence, going forward, we may neglect any event of probability smaller than n−1/4 = o(λ−61),
say. So far we revealed the numbers of neighbours, which were all at most λ, but not which
vertices they were. But the probability of a collision isO(λ2/n) = o(n−1/4), which is negligible.
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Also, the probability of an edge between x0 and z0, say, is O(λ/n) = o(n−1/4). Recall that
any vertex in a pair counted in N , or a quadruple in M or M0, has the property Eρi

for some
i and is hence in V0 = V (G) \ (B1 ∪ B2). Exploring further up to distance 10 + ℓ(ρi) steps
from each vertex v0, where i = 1 or 2 as appropriate, assuming typical growth as we may,
the probability that two neighbourhoods meet, starting as they do with at most λ neighbours
of v0, is O(λ20+ℓ(ρi)+ℓ(ρj)/n) = o(n−1/4). So we may assume this does not happen, and hence
M −M0 is negligible compared with M .

In summary, it follows that M = E(N2) ∼ n4P 2
1P

2
2P

2 ∼ (EN)2 → ∞, so the second
moment method shows that N ≥ 1 whp. But then the diameter is at least 2(t0 + 10) + kmax,
completing the proof of the first half of Theorem 1.2.

The second part of the theorem states that for ‘most’ values of n the diameter is almost
determined, and gives a formula. The general exact formula is a bit complicated if we want to
include all values of the parameters, even restricting to those for which the diameter is almost
determined. In formulating Theorem 1.2 we omitted some additional problematic values of
n, giving a much simpler formula. One way to explain the source of the problematic cases is
to observe that, although the difference between the upper and lower bounds (3.9) and (3.10)
is usually negligible, when the typical diameter is close to jumping to the next integer, the
fact that these bounds do not exactly match becomes important.

Writing {x} for x− ⌊x⌋, in proving the second part of the theorem we may assume that

5ε < {log n/ log λ} < 1 − 5ε,
5ε < {log n/ log(1/λ⋆)} < 1 − 5ε,

(3.31)

where ε is some positive constant, which we may take to be smaller than 1/10.
Let us first consider some values of r that, as it will turn out, in many cases (i.e., for many

values of n) typically determine the diameter of the random graph.

Define qn to be the infimum of q such that n−1 > λ
t0+g(q)
⋆ . From the definition of g, with

λ fixed and q varying, λ
g(q)
⋆ jumps by a factor of at most λ at each discontinuity. (With

X ∼ Po(λ), the ratios P(X ≤ k + 1)/P(X ≤ k) are between 1 and λ, while the ratio
λ−1
⋆ P(X ≤ 1)/P(X < λ) is asymptotically 1/P(X < λ) ∼ 2.) Thus for large n

n−1 = λt0+g(qn)
⋆ /ξ (3.32)

for some ξ = ξ(n) between 1 and λ. We call n ‘normal’ if qn < ε and g(qn) > 4λ−ε. Taking logs

in (3.32), since ξ = λ
o(1)
⋆ , while t0 = ⌊logn/ log(1/λ⋆)⌋, we have g(qn) = {logn/ log(1/λ⋆)} +

o(1), so g(qn) ≥ ε ≥ 4λ−ε if n is large. Since for any constant 0 < a < 1 we have g(a) → 1,
while g(qn) ≤ 1 − ε, it follows that qn = o(1), so any (large enough) n satisfying (3.31) is
normal.

Putting t = t0 + 10 and ω = λt1 such that t1 = 10 − qn − log 5/ log λ in Lemma 3.2, we
find

P(0 < |Xt0+10| < λ10−qn/10) ≤ 3λg(t0+qn+log 5/ log λ)
⋆ = 3λt0+g(qn+log 5/ log λ)

⋆ ,

which is at most 3λ
t0+g(qn)
⋆ /λ5/4 = o(n−1) by (3.4) and (3.32). Hence, arguing as for (3.14),

we only need to consider vertices in Sr with r ≥ λ10−qn/10.
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Put b = ⌊log n/ log λ + 2qn⌋ and φ = {logn/ log λ+ 2qn}. Call n ‘standard’ if 3ε < φ <
1 − 3ε. Since qn < ε for normal n, any n satisfying (3.31) is standard.

As noted above, for normal n we only need to consider r1 and r2 at least λ10−qn−o(1), and
for such cases (3.18) gives

µ̂(r1, r2, b− 18) ≤ (1 + o(1))µ̂1µ̂r2 exp(−λ20−2qn−o(1)+b−18−log n/ log λ + o(n−3))

= (1 + o(1))µ̂r1µ̂r2 exp(−λ2−φ−o(1) + o(n−3)).

For standard n the exponential above is at most exp(−λ1+ε−o(1)) + o(n−3). Hence for such n
the quantity µ̂(r1, r2, b− 18) goes to 0 quickly unless µ̂r1 or µ̂r2 is much bigger than e100λ say.
From arguments as above, we know this forces r1 and r2 to be much larger than the typical
values of around λ10, at least λ100, say, and then µ̂(r1, r2, b− 18) is much smaller. Using the
argument that earlier permitted us to restrict parameters to the set R, such cases can be
neglected. Thus, whp there are no vertices in sets Sr1 ∩V0, Sr2 ∩V0 that have distance greater
than 2(t0 + 10) + b− 18, for any r1 or r2. Hence the diameter is at most 2t0 + b+ 2 whp for
any n satisfying (3.31) (or indeed, though we won’t need it, for any normal standard n).

Continuing with standard normal n, let ω = λ10. Then using (3.32) and since g(qn) ≥ 4λ−ε,
λ−1
⋆ = eλ+O(log λ) and ξ = eO(log λ),

λg(t0+10−logω/ log λ)
⋆ = λt0⋆

= λ−g(qn)
⋆ ξ/n

> exp(4λ1−ε +O(log λ))/n

> exp(3λ1−ε)/n.

Since the final bound is larger than λ40/n if λ is large enough, the bound (3.25) holds with
ωi = ω for i = 1, 2. The calculations down to (3.28) go through as before, now with ρ1 = ρ2 = ρ
and λ10/3 ≤ ρ ≤ 2λ10. This time we have P1 = P2 ∼ πi ≥ exp(3λ1−ε)λ−O(1)/n, using (3.26)
and the bound above.

Writing N for the number of pairs of vertices with property Eρ at distance at least 2(t0 +
10) + b− 18, as before we have EN ∼ (P1n)2P , with

P = exp

(
− ρ2

n
(1 + o(1))

b−19∑

i=1

λi
)

+ o(n−3)

in place of (3.29). Since ρ ≤ 2λ10 we have

log(1/P ) ≤ (4 + o(1))λ20+b−19−logn/ log λ ∼ 4λ1+2qn−φ ≤ 4λ1−ε

for normal standard n. Since P1n ≥ exp(3λ1−ε − O(logλ)), we thus have EN → ∞. The
second moment argument goes through as before to show that whp N ≥ 1, so the diameter
is whp at least 2(t0 + 10) + b − 18. (Note that we still have (3.30) since (3.31) forces λ⋆ to
be much larger than 1/n, and hence λ = O(logn), so log(1/P ) = o(logn).) Hence, from the
upper bound shown above, the diameter of the graph is, for normal standard n, whp equal to

2t0 + b+ 2 = 2⌊log n/ log(1/λ⋆)⌋ + ⌊log n/ log λ+ 2qn⌋ + 2.
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Using (3.31) again, and recalling that qn < ε, this is

2⌊logn/ log(1/λ⋆)⌋ + ⌊log n/ log λ⌋ + 2,

which is in turn exactly the diameter claimed in (1.5), completing the proof of Theorem 1.2.

Remark. With hindsight, it is easy to explain intuitively why the diameter in the last case
treated above is given by (1.5). Indeed, with t0 = ⌊log n/ log(1/λ⋆)⌋, the probability that a
given vertex has |Γt0(v)| = 1 is roughly λt0⋆ , which is significantly larger than 1/n. On the other
hand, typically no vertices will have |Γt0+1(v)| = 1, or indeed |Γt0+1(v)| much smaller than
λ. So the diameter is likely to come from two of these ‘candidate’ vertices with |Γt0(v)| = 1.
Each of these has a unique vertex at distance t0. Let us call such vertices active. Any given
pair of active vertices will usually be at distance d = ⌈log n/ log λ⌉ from each other. However,
there are usually many candidate vertices (at least λ−ε⋆ , which is roughly eελ), and hence (not
necessarily, but usually) about the same number of active vertices. The expected number
of paths of length d joining two given active vertices is roughly λd/n = λ1−f , so we might
expect the probability that a given pair is at distance d+ 1 to be of order exp(−λ1−f ), where
f is the fractional part of logn/ log λ. The probability of no path of length d + 1 is roughly
exp(−λ2−f ), which is much smaller than the reciprocal of the number of pairs of candidate
vertices. So we expect the diameter to be 2t0 + d+ 1 whp, as we have shown.

4 Just above the critical point

In this section we shall prove Theorem 1.3, which is the analogue of Theorem 1.1 forG(n, λ/n),
where now λ = 1 + ε with ε = ε(n) tending to zero at a suitable rate. Roughly speaking,
we shall simply repeat the arguments in Section 2 more carefully; however, there are many
additional complications that we shall contend with as we go. As mentioned in the introduc-
tion, we shall also prove a stronger result, describing the (normalized) limiting distribution
of the correction term; we postpone the somewhat unpleasant statement of this result until
Section 5.

Throughout this section we write λ for 1+ε, always assuming that 0 < ε < 1/10, and often
that ε = ε(n) → 0. As before, we write λ⋆ for the unique solution λ⋆ < 1 to λ⋆e

−λ⋆ = λe−λ,
so

λ⋆ = 1 − ε+
2

3
ε2 − 4

9
ε3 +O(ε4). (4.1)

Sometimes it will be convenient to note that

λ⋆ > 1 − ε (4.2)

for all ε > 0; this is easily seen using the fact that λ⋆e
−λ⋆ has positive derivative, and

(1 − ε)e−(1−ε) < λe−λ. As before we write s for the survival probability of the branching
process Xλ, so (from (1.1)), we have

s = 2ε+O(ε2). (4.3)
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Note that as ε → 0 we have
log(1/λ⋆) ∼ ε ∼ log λ. (4.4)

The overall plan of the proof is as for the cases λ constant and λ→ ∞. We shall treat the
second phase (regular growth) in Subsection 4.1 and the first phase, approximation by the
branching process, in Subsection 4.2. To be able to carry out the third phase, we still need
to study the distribution of the time the branching process takes to reach a large size. We
do this in Subsection 4.3, and prove various other branching process lemmas we shall need
in Subsection 4.4. In Subsection 4.5 we consider the typical distances in the 2-core. Finally,
armed with all these results, we prove the lower bound on the diameter in Subsection 4.6,
and the upper bound in Subsection 4.7; this turns out to be not as easy as one might expect,
and both proofs involve considerable re-examination of the first phase, the early growth of
the neighbourhoods.

One complication concerns the wedge condition used in Section 2; here this turns out to
have probability Θ(ε3), or Θ(ε2) if we condition on the vertex being in the giant component.
In Section 2, we used a much stronger ‘diamond’ condition, that allowed us to simply avoid
dependence between the neighbourhoods of the vertices we considered. Unfortunately, the
diamond condition corresponds roughly to two wedge conditions, and has probability Θ(ε4)
after conditioning on being in the giant component. When ε → 0, we cannot afford to give
up a factor ε2 in the number of vertices we consider to develop neighbourhoods from in the
third phase.

Except that Subsections 4.3 and 4.4 belong together, Subsections 4.1 to 4.4 may be read
in any order. We have chosen the present order as the first two subsections are relatively
simple, and may be seen as motivating the extensive branching process analysis that follows.

Throughout we write Λ for ε3n, and assume that Λ → ∞. In particular, we allow ourselves
to assume that Λ is ‘sufficiently large’ (i.e., larger than some implicit constant) whenever this is
convenient. As noted in the introduction, in proving Theorem 1.3 we may assume that ε → 0;
correspondingly, we shall assume without comment that ε is ‘sufficiently small’ whenever
convenient.

In what follows we shall use standard results about the component structure of G(n, p)
just above the phase transition; let us recall these here. We write Ci(G) for the number of
vertices in the ith largest component of a graph G.

Theorem 4.1. Let λ = 1 + ε, where ε = ε(n) > 0 satisfies ε → 0 and Λ = ε3n→ ∞, and let
s = s(λ) denote the survival probability of Xλ. Then

C1(G(n, λ/n)) = sn+Op(εn/
√

Λ), (4.5)

and

C2(G(n, λ/n)) = δ−1

(
log Λ − 5 log log Λ

2
+Op(1)

)
,

where
δ = λ− 1 − log λ = ε2/2 − ε3/3 +O(ε4).

�
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This result, which extends results of Bollobás [7, 8] by removing a logarithmic lower bound
on Λ from the conditions, is essentially due to  Luczak [30]. Note, however, that the actual
formula for C2 given in [30] is incorrect; see the discussion in Bollobás and Riordan [13, Section
3.4], where a proof of the above result based on branching processes is given.

Formally, by the giant component of G = G(n, λ/n) we mean the component C1 with the
most vertices (chosen according to any rule if there is a tie). Recalling from (4.3) that s ∼ 2ε,
under the conditions of Theorem 4.1 we have

|C1| = (2 + op(1))εn. (4.6)

4.1 Large neighbourhoods and meeting in the middle

In this subsection we show that whp once the neighbourhoods of a vertex become large, they
grow at the expected rate until reaching size

√
εn log Λ, say. Showing this is not quite as

simple as proving Lemma 2.4, since when ε is small, even when the neighbourhoods are fairly
large, the expected increase in size from one step to the next may still be smaller than the
standard deviation. Hence it may well happen that Γt(x) is smaller than Γt−1(x) for some t.
However, this is unlikely to happen for many consecutive t.

We shall start by proving a corresponding growth result for a Galton–Watson branching
process. It may well be that a similar result exists in the literature, but we have not found it;
the key point is the dependence of the bounds on the parameters of the branching process.
The general theme here and throughout this section is that the behaviour of the branching
process is only ‘regular’ once it reaches sizes larger than 1/ε, and that it is best seen on time
scales on the order of 1/ε, the typical time required for a constant factor change in the size
of a generation.

Given parameters µ = 1 + ε and n, consider a Galton–Watson branching process (Zt)t≥0

starting with a fixed number N0 of particles, in which each particle has a binomial number
of children in the next generation, with parameters n and µ/n. Let Nt = |Zt| denote the
number of particles in generation t.

Lemma 4.2. Let 0 < ε, δ < 1 and n be given, and define (Nt) as above, with µ = 1 + ε.
Writing ω for εN0, the probability that

(1 − δ)N0µ
t ≤ Nt ≤ (1 + δ)N0µ

t (4.7)

holds for all t ≥ 0 is at least 1 − O(e−c0δ
2ω), where c0 > 0 is an absolute constant, and the

implicit constant in the O(·) notation is absolute.

Proof. We may and shall assume that δ2ω ≥ 100, say; otherwise, there is nothing to prove.
We may construct (Zt) in small steps in the following standard way: let A1, A2, . . . be

independent binomial Bi(n, µ/n) random variables. As we construct the process, we number
the particles in order of the time they are born; we start by numbering the particles of Z0

with 1, 2, . . . , N0 in any order. To define (Zt), simply take Ai to be the number of children of
the ith particle. Writing St for

∑
t′<tNt′ , we then have

Nt = N0 +
∑

i≤St

(Ai − 1) = N0 +BSt − St, (4.8)

36



where Bi =
∑

j≤iAj .
For t ≥ −1/ε set

δt =
εδ

8

∫ t

s=−1/ε

µ−s/4 ds,

and set δt = 0 if t < −1/ε. Note that δt is an increasing function of t, with

0 ≤ δt ≤
εδ

8

4

log µ
µ1/(4ε) ≤ δ,

using (1 + ε)1/(4ε) < eε/(4ε) = e1/4 and ε/ logµ = ε/ log(1 + ε) ≤ 1/ log 2.
The key property of δt is that if t ≥ 0 and r = t− 1/ε, then

δt − δr ≥ (t− r)
εδ

8
µ−t/4 = δµ−t/4/8. (4.9)

For t ≥ 1, let Et be the event that Nt > (1 + δt)N0µ
t holds but Ns ≤ (1 + δs)N0µ

s for all
0 ≤ s < t. Suppose that the upper bound in (4.7) fails for some t. Then Nt > (1 + δt)N0µ

t

for this t, and it follows that one of the events Et holds.
Suppose that Et holds for some t ≥ 0. Set r = t−1/ε, and, for convenience, set Ns = µsN0

for all negative integers s, so
∑

s<0Ns = N0/ε. Then, with all sums starting at −∞ unless
otherwise indicated,

St +N0/ε =
∑

s<t

Ns ≤
∑

s<t

(1 + δs)µ
sN0

≤
∑

s<r

(1 + δr)µ
sN0 +

∑

r≤s<t
(1 + δt)µ

sN0

=
∑

s<t

(1 + δt)µ
sN0 −

∑

s<r

(δt − δr)µ
sN0

=
N0

ε

(
(1 + δt)µ

t − (δt − δr)µ
⌈r⌉)

<
N0

ε

(
(1 + δt)µ

t − (δt − δr)
µt

4

)
,

since µt−⌈r⌉ = (1 + ε)⌊1/ε⌋ ≤ (1 + ε)1/ε < e < 4.
For each fixed i, let f(i) = (1 + ε)i denote the expectation of Bi =

∑i
j=1Aj . From the

above, we have

f(St) − St +N0 = εSt +N0 = ε(St +N0/ε) ≤ N0(1 + δt)µ
t −N0(δt − δr)µ

t/4.

On the other hand, since Et holds we have Nt > (1 + δt)µ
tN0, so from (4.8) it follows that

BSt − St +N0 = Nt > (1 + δt)µ
tN0.

Combining the two equations above, using (4.9), and recalling that N0 = ω/ε, we see that

BSt − f(St) > N0(δt − δr)µ
t/4 ≥ N0(δµ−t/4/8)µt/4 = δωε−1µ3t/4/32. (4.10)
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On the other hand, from the bound on St +N0/ε above we have, very crudely,

St ≤
N0

ε
(1 + δt)µ

t ≤ 2ωε−2µt. (4.11)

From (4.10) and (4.11) it follows that BSt − f(St) ≥ g(St), where

g(i) = max
{
δωε−1/32, i3/4δω1/4ε1/2/60

}
.

Let Fi be the event that Bi − f(i) = Bi − EBi ≥ g(i). We have shown that if one of the
events Et holds, then so does one of the events Fi. At this point we could simply bound the
probability of the union of the Fi by the sum of their probabilities, but as they are highly
dependent, this is rather inefficient.

Let T = ⌈ω/ε2⌉, noting that T ≥ 100 (when ε is small enough) and T < 2ω/ε2. For
k = 0, 1, 2, . . ., let Gk be the event

⋃
kT<i≤(k+1)T Fi, so

P

(⋃

t≥1

Et

)
≤ P

(⋃

i≥1

Fi

)
= P

(⋃

k≥0

Gk

)
≤

∞∑

k=0

P(Gk).

Finally, let G′
k be the event that B(k+2)T − EB(k+2)T ≥ g(kT ). Let us estimate P(G′

k | Gk).
We test whether Gk holds by examining each Bi in turn, stopping at the first i > kT for
which Fi holds. Suppose Gk does hold, and that we stop at i = i′, so kT < i′ ≤ (k + 1)T .
Recalling that Bi =

∑
j≤iAj , where the Aj are independent with distribution Bi(n, µ/n), we

have not yet examined any Aj , j > i′. Hence the conditional distribution of ∆ = B(k+2)T −
Bi′ =

∑
i′<j≤(k+2)T Aj is just its unconditional distribution, which is binomial with mean

(1 + ε)((k + 2)T − i′) ≥ T ≥ 100. It is easy to check (for example from the Berry–Esséen
Theorem) that this binomial distribution is well approximated by a normal distribution, and
in particular, ∆ exceeds its mean with probability at least 1/3. But when this happens,

B(k+2)T − EB(k+2)T = Bi′ − EBi′ + ∆ − E ∆ ≥ Bi′ − EBi′ ≥ g(i′) ≥ g(kT ),

since we are assuming Fi′ holds, and g(·) is non-decreasing. Thus, given Gk, the event G′
k

holds with probability at least 1/3. Hence P(G′
k) ≥ P(Gk)/3, so P(Gk) ≤ 3P(G′

k).
Now G′

0 is the event that B2T , a variable with binomial distribution with mean µ0 =
(1 + ε)2T ≤ 4T ≤ 8ωε−2, exceeds its mean by at least x0 = δωε−1/32. Since x0 ≤ µ0,
Lemma 2.3 applies, and we see that P(G′

0) ≤ 2 exp(−x2
0/(3µ0)) ≤ 2 exp(−δ2ω/24576).

For k ≥ 1, G′
k is the event that B(k+2)T , which has a binomial distribution with mean

µk = (1+ε)(k+2)T ≤ 12kωε−2, exceeds its mean by xk = g(kT ) ≥ g(kωε−2) ≥ k3/4ωε−1δ/60.
Since xk ≤ µk, by Lemma 2.3 we have P(G′

k) ≤ 2 exp(−c0k1/2δ2ω) for some absolute constant
c0 > 0. Hence, reducing c0 if necessary,

P

(⋃

t

Et

)
≤ 3

∑

k

P(G′
k) ≤ 2e−c0δ

2ω +
∑

k≥1

2e−c0k
1/2δ2ω = O

(
e−c0δ

2ω
)
,

recalling that δ2ω ≥ 100. As noted above, if the upper bound in (4.7) fails, then some Et
holds, so we have proved that the upper bound holds with the required probability.
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The argument for the lower bound is almost identical. Let E ′
t be the event that Nt <

(1−δt)N0µ
t holds but Ns ≥ (1−δs)N0µ

s for all s < t. Changing signs in the argument above,
we see that if E ′

t holds then the equivalent of (4.10) holds, namely

BSt − f(St) ≤ −δωε−1µ3t/4/32. (4.12)

The proof of (4.11) only assumed Ns ≤ (1 + δs)N0µ
s for s < t, which we now know to be true

with the required probability. If (4.11) does hold, then (4.12) implies that Bi − f(i) ≤ −g(i)
holds for some i. We may bound the probability of this event just as for Fi above, completing
the proof.

Turning to the graph, Lemma 4.2 enables us to prove the required growth result. Our
choice of the parameters here is somewhat arbitrary, but will be useful later. Recall that
V (G) denotes the vertex set of a graph G, and Γr(x) the set of vertices at graph distance r
from a vertex x.

Lemma 4.3. Let ε = ε(n) ≤ 1 satisfy Λ = ε3n → ∞. Set λ = 1 + ε, ω = Λ1/6, and
M =

√
ωεn. For x ∈ V (G(n, λ/n)) and r ≥ 0, let Ex,r be the event that

(1 − 2ω−1/3)λt|Γr(x)| ≤ |Γr+t(x)| ≤ (1 + ω−1/3)λt|Γr(x)|

holds for 0 ≤ t ≤ T = log(εM/ω)/ logλ. Then, for some absolute constant c0,

P
(
Ex,r

∣∣ |Γ0(x)|, . . . , |Γr(x)|
)
≥ 1 − O

(
exp(−c0ω1/3)

)
= 1 − o(Λ−100)

whenever ω/ε ≤ |Γr(x)| ≤ 2ω/ε and
∑

r′≤r |Γr(x)| ≤ n2/3.

In other words, once we reach size ω/ε in the neighbourhood exploration, provided we
have not so far used up too many vertices, the neighbourhoods grow at the expected rate
until they reach size approximately M . Note that if Λ = ε3n ≥ (log n)20, then the error term
in the form O(exp(−c0ω1/3)) is o(n−100), i.e., utterly negligible.

Proof. Condition on the result of the exploration up to step r, assuming that we find between
ω/ε and 2ω/ε vertices in the last generation and have seen at most n2/3 vertices so far. Let
N ′
t = |Γr+t(x)|. The (conditional) distribution of the process (N ′

t)t≥0 is very similar to that
of (Nt): the only difference is that each vertex gives rise to a binomial Bi(m,λ/n) number of
children in the next generation, where m is the number of vertices not seen so far.

For the upper bound on the neighbourhood sizes, we simply note that m ≤ n, so (N ′
t) is

stochastically dominated by (Nt). The result thus follows immediately from Lemma 4.2.
For the lower bound, set n′ = n−2n2/3. Note that if the upper bound holds, which it does

with probability 1−O(exp(−c0ω1/3)), then by time T we have used at most n2/3 + 10M/ε ≤
2n2/3 vertices, so we still have at least n′ left. For times t by which we have used up at
most 2n2/3 vertices, the process (N ′

t) stochastically dominates a process (N ′′
t ) in which each

particle has Bi(n′, λ/n) children. This binomial has mean µ = λn′/n = (1 + ε)(1 − 2n−1/3).
Applying Lemma 4.2 again, it follows that with probability 1 − O(exp(−c0ω1/3)) we have
|Γr+t(x)| ≥ (1 − ω−1/3)µt|Γr(x)| for 0 ≤ t ≤ T . Since T = log(ε3/2n1/2ω−1/2)/ log λ ≤
log(Λ1/2)/(ε/2) = ε−1 log Λ ≤ n1/3/ω, we have µt/λt ≥ 1− 3/ω for t ≤ T , so the lower bound
follows.
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Remark. Let us note that, while the various constants can certainly be improved, Lemmas 4.2
and 4.3 are tight in several ways. Firstly, since the survival probability of the branching
process Xλ = (Xt) is of order ε, if we start from a neighbourhood Γr(x) of size a/ε, the
neighbourhood exploration process will die quickly with probability e−Θ(a). Hence, in order
to make it very likely that the neighbourhoods grow at the right rate, we certainly need |Γr(x)|
to be much larger than 1/ε. In other words, neighbourhoods are only ‘large’ over size ω/ε,
for some ω → ∞. Similarly, it can be seen that the form exp(−Ω(δ2ω)) of the error bound in
Lemma 4.2 is best possible.

Finally, when ε is close to the lower end of the range we consider, we cannot extend
Lemma 4.3 to growth much beyond size

√
εn; shortly beyond this point, the number of vertices

‘used up’ — which is larger than
√
n/ε =

√
εn/ε since about 1/ε generations are roughly the

same size
√
εn — is sufficient to slow the growth appreciably. Fortunately, neighbourhoods

of two different vertices are likely to join up when they have size around
√
εn, as we shall

now see. The basic explanation for this is that the probability of the
√
n/ε vertices seen near

one vertex being distinct from the
√
nε at a given distance from the other vertex becomes

small. (It is misleading to consider separately each of the
√
n/ε vertices ‘near’ one vertex

being distinct from
√
n/ε vertices ‘near’ the other, since these events do not have the required

independence.) The fact that neighbourhoods typically join up when they each have size
√
εn

explains one factor of ε in the first log in (1.6).

For x ∈ V (G) and a > 0, let ta(x) denote the smallest r for which |Γr(x)| ≥ a, if such an
r exists; otherwise ta(x) is undefined. The following simple lemma captures the observation
that, for large a, we are unlikely to ‘overshoot’ our cutoff a by too much.

Lemma 4.4. Let λ = 1 + ε and fix an integer a, a vertex x and δ > 0. Given that ta(x) is
defined, the probability that |Γta(x)(x)| exceeds (1 + δ)(1 + ε)a is e−Ω(δ2a), where the implicit
constant is absolute.

Proof. The event that ta(x) is defined may be written as a disjoint union of events of the form
E = {ta(x) = t, |Γ≤t−1(x)| = m, |Γt−1(x)| = s}, where 0 < s < a. Let us condition on one
such event. Given that |Γ≤t−1(x)| = m and |Γt−1(x)| = s, the distribution of |Γt(x)| is binomial
with parameters n−m and 1−(1−λ/n)s ≤ sλ/n. Hence, given E, the conditional distribution
of |Γt(x)| is that of a binomial distribution with mean at most sλ = (1 + ε)s < (1 + ε)a
conditioned to be at least a. It is easy to check that the probability that such a distribution
exceeds (1+δ)(1+ε)a is maximal when s is maximal, and is then (from the Chernoff bounds)
of the form e−Ω(δ2a).

We now turn to the time neighbourhoods take to meet having reached some ‘reasonably
large’ size.

Lemma 4.5. Let ε = ε(n) and λ = 1 + ε be such that ε → 0 and Λ = ε3n → ∞. Set
ω = Λ1/6, and t2 = log(ε3n/ω2)/ log λ. Let x and y be two vertices of G(n, λ/n). Writing E
for the event that tω/ε(x) = r1, tω/ε(y) = r2, and the graphs G≤r1(x) and G≤r2(y) each contain
at most n2/3 vertices and are disjoint, we have

P
(
d(x, y) ≥ r1 + r2 + t2 + a

∣∣ E
)

= e−(1+o(1))λa

+O(e−c0ω
1/3

) = e−(1+o(1))λa

+ o(Λ−10) (4.13)
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for any function a = a(n) ≥ −t2/2, and

P
(
d(x, y) ≤ r1 + r2 + t2 −K

∣∣ E
)

= o(1)

whenever K = K(n) is such that εK → ∞.

Proof. It suffices to prove the first statement: since log λ = Θ(ε), if εK → ∞ then K log λ→
∞, so λ−K → 0, and the second statement follows immediately from the first. In proving
(4.13), we may assume that a ≤ amax = logω/(2 logλ): otherwise, λa ≥ ω1/2, and the additive
error term in (4.13), which is independent of a, dominates the main term.

We explore the neighbourhoods of x and y in the usual way, initially stopping each ex-
ploration when we first reach a neighbourhood of size greater than ω/ε. At this point, the
conditions of the theorem allow us to assume that we have used up at most n2/3 vertices in
each exploration, and that the explorations, having taken r1 steps from x and r2 steps from
y, have not met. By Lemma 4.4, with conditional probability at least 1 − e−Ω(ω) the last
generation in each exploration has size at most (1 +

√
ε)ω/ε ∼ ω/ε.

We now continue both explorations. At the start of step i, i = 0, 1, 2, . . ., we have explored
the neighbourhoods of x out to distance r1 + ⌈i/2⌉ and those of y out to distance r2 + ⌊i/2⌋.
During step i, we first test whether any of the |Γr1+⌈i/2⌉(x)||Γr2+⌊i/2⌋(y)| ‘cross-edges’ between
these two neighbourhoods is present. If so, d(x, y) = r1 + r2 + i+ 1, and we stop. Otherwise,
we uncover the next neighbourhood of either x or y as appropriate and continue, stopping if
we have found no cross-edge by step t2 + a, in which case d(x, y) > r1 + r2 + t2 + a.

After t2 + amax steps as above, each extending either x’s or y’s neighbourhood, the typical
size of the neighbourhood of x or y reached is (ω/ε)λ(t2+amax)/2 = ω1/4

√
εn. In particular, this

size is much less than the quantity M defined in Lemma 4.3. Hence, by Lemma 4.3, we may
assume that

|Γrk+j(xk)| ∼ λj|Γrk(xk)| ∼ λjω/ε

for k = 1, 2 and all j ≤ (t2 +amax)/2, where x1 = x and x2 = y. Furthermore, the error terms,
which are factors of the form (1 +O(

√
ε) +O(ω−1/3)), are uniform in j.

It follows that at step i we test (1 + o(1))λi(ω/ε)2 potential cross-edges, and that by any
step i ≥ t2/2 we have tested in total

(1 + o(1))

i∑

j=0

λj(ω/ε)2 ∼ (ω/ε)2
i∑

j=−∞
λj ∼ (ω/ε)2ε−1λi

potential cross-edges. (The bound i ≥ t2/2 is used for convenience only, to allow us to
approximate the sum from j = 0 by the sum from j = −∞.)

Since each cross-edge tested is present with its original unconditional probability of λ/n ∼
1/n, it follows that up to a O(e−c0ω

1/3
) error term (from the conclusion of Lemma 4.3 not

holding, etc), the probability that the explorations do not meet by step t2 + a is

p≥a = (1 − λ/n)(1+o(1))ω2ε−3λt2+a

.

Since
log(1/p≥a) ∼ (1/n)ω2ε−3λt2λa = λa,

the proof is complete.

41



Roughly speaking, Lemma 4.5 tells us that once the neighbourhoods of two vertices reach
a decent size, ω/ε, then whp these neighbourhoods then meet within O(1/ε) steps of ‘when
they should’, which is after an extra t2 steps. To study the diameter of G(n, λ/n), we shall
need the full strength of the bound actually proved. Note that there is variation of order 1/ε
in the actual time taken to meet, as may be seen from (4.13), where any a = O(1/ε) gives a
probability bounded away from 0 and 1.

In the light of Lemma 4.5, as in the case of λ constant or λ→ ∞, the key to understand-
ing the diameter of G(n, λ/n) is understanding the distribution of the time taken until the
neighbourhoods of a vertex reach a reasonable size (in this case ω/ε); this will be our aim in
the next few subsections. We shall take ω = ω(n) = Λ1/6, but there is in fact a wide flexibility
in the choice of the function ω = ω(n): the requirements in what follows are that ω is at
least a certain power of log Λ, and at most a certain power of Λ. If Λ is large enough to allow
ω/ logn→ ∞, then many arguments simplify; we shall not assume this, however.

In the remainder of this section we explain why Lemma 4.5 already gives us the typical
distance between vertices in the giant component, if Λ = ε3n is at least (log n)20, say. Indeed,
the neighbourhoods of a random vertex of G = G(n, λ/n) behave much like the branching
process Xλ = (Xt)t≥0, at least to start with. Roughly speaking, a vertex is in the giant
component if and only if the corresponding branching process survives, which it does with
probability s ∼ 2ε. So we will be interested in the expected size of |Xt| conditioned on the
process surviving.

Lemma 4.6. Let S be the event that Xλ survives. Then

E(|Xt| | S) =
λt − (1 − s)λt⋆

s
,

which is asymptotically λt/s ∼ λt/(2ε) if ε→ 0 and εt→ ∞.

Proof. Writing 1A for the indicator function of an event A, we have

E(|Xt|1S) = E(|Xt|) − E(|Xt|1Sc) = λt − (1 − s) E(|Xt| | Sc) = λt − (1 − s)λt⋆,

since the distribution of Xλ conditioned on Sc is that of Xλ⋆ . The result follows.

It is not hard to see that the ‘typical’ size of |Xt| given S is of the same order as the
expected size; we shall give some precise results on this later. Hence, for most vertices in
the giant component, their neighbourhoods take time logω/ logλ to reach size ω/ε, so the
typical distance is 2 logω/ logλ+ t2 = log(ε3n)/ log λ. More precisely, one can check that the
distance between two random vertices of the giant component is log(ε3n)/ log λ + Op(1/ε);
we shall not give the details. The rest of the proof of Theorem 1.3 essentially shows that the
other term in the formula in that theorem accounts for vertices whose neighbourhoods take
an abnormally long time to start growing large.

4.2 Branching process to graph

At some point, we need to compare the probabilities of events defined in terms of our random
graph G = G(n, λ/n) with events in the branching process. It turns out that we have
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to consider events involving trees of height Θ(log Λ/ logλ) = Θ(ε−1 log Λ), recalling that
Λ = ε3n, with (it will turn out) up to around 1/ε vertices at each distance from the root. For
this reason, we need to consider trees with at least Θ(ε−2) vertices. If ε is smaller than n−1/4,
then we cannot simply extend Lemma 2.2 to cover such trees using the same proof, since the
error terms |T |2/n would be too large.

Fortunately, it is easy to prove a result that applies for the trees we need. Although this
is in some sense a coupling result, the obvious coupling between G0

≤t(x) and Xλ fails here.
This obvious coupling is based on the fact that a Po(λ) and a Po(λ(1 − δ)) distribution can
naturally be coupled to agree with probability at least 1− λδ. In fact, much better couplings
are possible. Recall that X≤t denotes the first t generations of Xλ, seen as a rooted tree.

Lemma 4.7. Let λ = 1 + ε, where ε = ε(n) = O(1). Let δ(n) be any function with δ > 0
and δ → 0 as n → ∞. Let t = t(n) ≥ 0 and let T = T (n) be a rooted tree of height t with
ε|T |2 ≤ δn, each generation of size at most n1/3, and |T | ≤ δn2/3. Then

P
(
G0

≤t(x) ∼= T
)
∼ P

(
X≤t ∼= T

)

and
P
(
G≤t(x) ∼= T

)
∼ P

(
X≤t ∼= T

)
,

where the asymptotics is uniform over all such sequences T (n).

Proof. Rather than couple, we simply calculate directly; it is convenient to order the vertices
first. When constructing Xλ starting from X0, let us number the particles 1, 2, 3, . . . in the
order they appear, so the initial particle is particle 1, and test particles in numerical order to
see how many children they have. We number the vertices uncovered in the neighbourhood
exploration process by which we find G0

≤t(x) analogously, this time using any (deterministic
or random) rule to decide in which order to number the children of a vertex.

For each numbering T ⋆ of T that can arise in such an exploration, let E1(T
⋆) be the event

that X≤t is isomorphic to T ⋆ with the labels matching. Then {X≤T ∼= T} is the disjoint
union of the events E1(T

⋆), where T ⋆ runs over all numberings of T ; note that these events
are equiprobable. Similarly, let E2(T ⋆) be the event that G0

≤t(x) ∼= T ⋆ with labels matching,
so {G0

≤t(x) ∼= T} is the disjoint union of the E2(T
⋆). Fix one particular numbering T ⋆. Since

the probabilities of E1(T
⋆) and E2(T

⋆) do not depend on the numbering, it suffices to show
that P(E1(T

⋆)) ∼ P(E2(T ⋆)).
Let r be the number of vertices of T at distance t from the root, and m = |T | the total

number of vertices. For 1 ≤ i ≤ m − r, let di denote the number of children in T of the
ith vertex. Now E1(T ⋆) is simply the event that for i = 1, . . . , m− r, the ith particle of the
branching process has exactly di children. Thus,

P(E1(T
⋆)) =

m−r∏

i=1

λdi

di!
e−λ.

Similarly, E2(T ⋆) is the event that for every i, when exploring the neighbours of the ith
vertex reached, we find exactly di new neighbours. Let ui = 1 +

∑
j<i dj denote the number
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of vertices already ‘used’ (reached) at the point that we look for new neighbours of the ith
vertex. Then

P(E2(T
⋆)) =

m−r∏

i=1

P
(
Bi(n− ui, λ/n) = di

)
=

m−r∏

i=1

(n− ui)(di)

di!
(λ/n)di(1 − λ/n)n−ui−di.

Hence,

ρ =
P(E2(T ⋆))

P(E1(T ⋆))
=

m−r∏

i=1

(n− ui)(di)

ndi

(1 − λ/n)n−ui−di

e−λ
.

Since n − ui ≥ n/2 and di is bounded by n1/3, we have n − ui − j = (n − ui)e
O(n−2/3) for

0 ≤ j ≤ di, so

log

(
(n− ui)(di)

ndi

)
= log

(
(n− ui)

di

ndi

)
+O(n−2/3di)

= −uidi
n

+O(di(ui/n)2) +O(n−2/3di) = −uidi
n

+O(n−2/3di),

using ui ≤ |T | ≤ n2/3 in the last step. Also,

(n− ui − di) log(1 − λ/n) = (n− ui − di)(−λ/n +O(1/n2))

= −λ + uiλ/n+O(di/n) +O(n−1).

Hence,

log ρ =

m−r∑

i=1

(
ui
λ− di
n

+O(n−2/3di) +O(n−1)

)
= o(1) +

m−r∑

i=1

ui
λ− di
n

,

using
∑

i di = m− 1 = o(n2/3).
Now λ = 1 + ε, and

∑
ui ≤ m2. By assumption εm2 = o(n), so

log ρ = o(1) +

m−r∑

i=1

ui
1 − di
n

= o(1) +

m−r∑

i=1

ui
1

n
−

m−r∑

i=1

ui
di
n
.

We can rewrite the final sum as
∑m−r

i=1

∑
j ui/n, where j runs over the children of i. Each

j in the range 2 up to m appears exactly once in the double sum, so the sum is equal to∑m
j=2 uj′/n, where j′ is the parent of j. For any vertex j, the vertex j′ is in the generation

before j, so uj − uj′ is at most twice the maximum number of vertices in a generation. We
have assumed this maximum is at most n1/3, so |uj − uj′| ≤ 2n1/3. Hence,

log ρ = o(1) +

m−r∑

i=1

ui
n

−
m∑

i=2

ui′

n

= o(1) +
u1

n
+

m−r∑

i=2

ui − ui′

n
−

m∑

i=m−r+1

ui′

n

= o(1) + o(1) +
∑

i

O(n−2/3) − O(rm/n) = o(1) +O(rm/n) = o(1),
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and the first statement follows.
For the second, it suffices to prove that P

(
G≤t(x) ∼= T

∣∣ G0
≤t(x) ∼= T

)
∼ 1. But this is

immediate since there are at most 2n1/3|T | = o(n) extra edges that we must test.

For any fixed k, Lemma 4.7 extends to k starting vertices and k trees, with virtually the
same proof.

Lemma 4.8. Fix k ≥ 2. Let λ = 1 + ε, where ε = ε(n) = O(1). Let δ(n) be any function
with δ > 0 and δ → 0 as n → ∞. Let T1, . . . , Tk be rooted trees, with ε|Ti|2 ≤ δn, each
generation of Ti of size at most n1/3, and |Ti| ≤ δn2/3. Given distinct vertices x1, . . . , xk
of G = G(n, λ/n), let E = E(x1, . . . , xk, T1, . . . , Tk) denote the event that G≤ti(xi)

∼= Ti for
1 ≤ i ≤ k, and d(xi, xj) > ti + tj for 1 ≤ i < j ≤ k, where ti is the height of T . Then

P(E) ∼
k∏

i=1

P
(
X≤ti

∼= Ti
)
,

where the asymptotics is uniform over all choices of T1, . . . , Tk. �

In other words, the event that the ti-neighbourhood of each xi is isomorphic to Ti, and these
neighbourhoods are disjoint, has asymptotically the probability suggested by independent
branching processes. One can prove Lemma 4.8 by adapting the proof of Lemma 4.7 in the
obvious ways. Alternatively, it follows from Lemma 4.7 by simple calculations.

4.3 Slow initial growth: the branching process

In this subsection we study the probability that the branching process Xλ survives, but takes
much longer than usual to reach generations of some large size. One might expect the results
we need to be in the branching process literature, and perhaps they are. However, we have
not found them. The key point is that here λ is variable, tending down to 1 from above, so
results for fixed λ are not of much use. Furthermore, although there is a natural scaling limit
as λ → 1 from above (described below), results about this limit are not directly applicable
either: we wish to consider events of probability around 1/n, and this probability tends to
0 as λ → 1. In other words, we need explicit bounds on the rate of convergence of some
properties of the branching process as λ→ 1. Fortunately, as is often the case, the branching
process results we need are not hard to prove directly.

With λ = 1 + ε > 1 fixed for the moment, let Xλ = (Xt)t≥0 and X
+
λ = (X+

t )t≥0 be defined
as before, so X+

t ⊂ Xt is the set of particles in Xt which have descendants in all future
generations. Recall that X

+
λ is again a Galton–Watson branching process, with |X+

0 | = 1 or
0 depending on whether Xλ survives, and with offspring distribution Zλ. Here, as before, Zλ
denotes the distribution of a Poisson Po(sλ) random variable conditioned to be at least 1,
where s = s(λ) is the probability that Xλ survives forever.

From standard results (see Athreya and Ney [3], for example), we have |Xt|/λt → Y = Yλ
a.s., and |X+

t |/λt → Y + = Y +
λ a.s., for some random variables Yλ and Y +

λ . Our first (standard,
trivial) observation is that Yλ and Y +

λ coincide up to a constant factor.
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Lemma 4.9. We have Y +
λ = sYλ a.s.

Proof. Fix δ > 0, and let N = N(δ) be a suitably chosen large integer. From standard results,
with probability 1, either Xλ dies out, or there is some minimal t with |Xt| ≥ N . Choosing
N large enough, at this time t the inequalities ||Xt|/λt−Y | ≤ δ and ||X+

t |/λt−Y +| ≤ δ hold
with probability at least 1 − δ. But t is a stopping time, so given t and |Xt|, each particle
in Xt survives independently with probability s, and from the Chernoff bounds, provided N
was chosen large enough, the ratio between |X+

t | and |Xt| is within a factor 1 ± δ of s with
probability at least 1 − δ.

Hence, with probability at least 1−3δ either Y +
λ = Yλ = 0, or Y +

λ = (1+O(δ))sYλ+O(δ).
The result follows by letting δ → 0.

Our ultimate aim is to estimate P(0 < |Xt| < ω) in the range of parameters where
this probability is very small (around 1/(ε2n), it will turn out). Essentially, this reduces to
estimating the lower tail of Y ; in the light of Lemma 4.9, we may study Y + instead. This
turns out to be easier, since (X+

t ) is in some sense ‘better behaved’ than (Xt) when ε → 0.
When studying X

+
λ = (X+

t ) it makes sense to condition on the event that X+
0 is non-

empty, i.e., that Xλ survives. Let us write X̃
+
λ = (X̃+

t )t≥0 for the conditioned process, i.e., a
Galton–Watson process with offspring distribution Zλ started with a single particle. Let Ỹ +

denote limt→∞ |X̃+
t |/λt, which exists a.s. Thus Ỹ + is simply Y + conditioned on Y + > 0, up

to a set of measure 0. By standard results, Ỹ + is a continuous random variable with strictly
positive density on (0,∞).

It turns out that we will need both upper and lower tail bounds on Ỹ + = Ỹ +
λ . The

dependence of these bounds on ε = λ− 1 is very important. We start with the upper tail.

Lemma 4.10. There is an absolute constant c > 0 such that for any 1 < λ < 2 and any
x > 0 we have P(Ỹ +

λ > x) ≤ 2e−cx.

Proof. Recall that Zλ denotes a Poisson distribution with mean sλ conditioned to be at least
1, where s = s(λ) is the positive solution to 1 − s = e−λs. Set

fλ(x) = E(xZλ) =
∑

k≥1

xk
(sλ)ke−sλ

k!(1 − e−sλ)
=

(exsλ − 1)e−sλ

s
=
e(x−1)sλ − e−sλ

s
.

Note that fλ(1) = 1, and, expanding about x = 1, we have

fλ(x) = 1 + λ(x− 1) +
sλ2

2
(x− 1)2 + · · · = 1 + λ(x− 1) +O(sλ2(x− 1)2),

provided sλ(x − 1) is bounded. More precisely, recalling that s ∼ 2ε as λ → 1, and that
λ ≤ 2, it is easy to check that if 0 ≤ x ≤ 2, say, then we have

fλ(x) ≤ 1 + λ(x− 1) + C1ε(x− 1)2 (4.14)

for some absolute constant C1, which we shall take to be at least 1.
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Suppressing the dependence on λ in the notation, for t ≥ 0 let gt(θ) = E(eθ|X̃
+
t |/λt

) − 1.
Since |X̃+

0 | is always 1, we have g0(θ) = eθ − 1 = θ +O(θ2) for θ bounded; in particular,

g0(θ) ≤ θ + θ2 (4.15)

if θ ≤ 1.
Given N = |X̃+

1 |, the conditional distribution of |X̃+
t+1| is simply the sum of N independent

copies of |X̃+
t |, so

gt+1(θ) = E
(
E(eθ|X̃

+
t+1|/λt+1 | N)

)
− 1 = E

(
E(eθ|X̃

+
t |/λt+1

)N
)
− 1

= E
(
(1 + gt(θ/λ))N

)
− 1 = fλ(1 + gt(θ/λ)) − 1,

since N = |X̃+
1 | ∼ Zλ. With θ and t fixed, set yr = gr(θ/λ

t−r), so yt = gt(θ), y0 = g0(θ/λt),
and yr+1 = fλ(1 + yr) − 1 for 0 ≤ r ≤ t− 1. From (4.14), if yr ≤ 1, then

yr+1 ≤ λyr + C1εy
2
r ≤ λyr(1 + C1εyr). (4.16)

Suppose θ ≤ 1/(100C1) ≤ 1/100. Then we claim that

yr ≤ 2θ/λt−r (4.17)

holds for r = 0, 1, . . . , t. This is certainly true for r = 0, since y0 = g0(θ/λ
t) ≤ (θ/λt)(1 +

θ/λt) ≤ 2θ/λt. If (4.17) holds for r = 0, 1, . . . , s − 1, then in particular yr ≤ 1 for r < s, so
from (4.15) and (4.16) we have

ys = y0

∏

r<s

yr+1

yr
≤ θ

λt
(1 + θ/λt)λs

∏

r<s

(1 + C1εyr) ≤
θ

λt−s
exp

(
θ

λt
+ C1ε

∑

r<s

yr

)
.

Using (4.17) for r < s, we have
∑

r<s yr ≤ ∑
0≤r≤t 2θ/λt−r ≤ 2θ

∑
r≥0 λ

−r = 2θ(1 + ε)/ε.
Since θ ≤ 1/(100C1), (4.17) for r = s follows, completing the proof of (4.17) by induction.

Setting r = t in (4.17), we have in particular that yt = gt(θ) ≤ 1/(50C1) ≤ 1 for θ ≤ θ0 =

1/(100C1). Hence the moment generating functions E(eθ|X̃
+
t |/λt

) are uniformly bounded by 2
for all 1 < λ ≤ 2 and all θ ≤ θ0.

With λ fixed, we have |X̃+
t |/λt → Ỹ + a.s. By Fatou’s Lemma, it follows that

E
(
eθỸ

+) ≤ lim inf
t→∞

E
(
eθ|X̃

+
t |/λt

)
= lim inf

t→∞
gt(θ) ≤ 2.

Applying Markov’s inequality, it follows that for any x we have P(Ỹ + ≥ x) ≤ 2e−θx, complet-
ing the proof of the lemma.

Our main application of the upper tail bound above is to show that the sum of many
independent copies of Ỹ + is tightly concentrated.

Lemma 4.11. Let c, A and δ be positive constants. There is a constant α = α(c, A, δ) > 0
such that, if Z is any random variable satisfying the tail bound P(|Z −EZ| > x) ≤ Ae−cx for
all x > 0, and Sn is the sum of n independent copies of Z, then

P
(
|Sn/n− EZ| ≥ δ

)
≤ e−αn

for all n ≥ 1.

47



Proof. For |θ| < c, let φ(θ) = E(eθ(Z−µ−δ)) where µ = EZ; the tail bound on Z implies that
φ(θ) is finite. Then φ(0) = 1, φ′(0) = −δ, and

φ′′(θ) = E
(
(Z − µ− δ)2eθ(Z−µ−δ)

)
,

which is bounded by a constant due to the tail bound. Hence there are positive constants c′′

(which we may take smaller than c/δ) and c′ such that φ(θ) < 1 − c′δ2 when θ = c′′δ. Now
with Z1, . . . , Zn independent copies of Z and Sn =

∑
Zi, we have

P(Sn ≥ n(µ+ δ)) ≤ E eθSne−θ(µ+δ)n

= E e
P

i θ(Zi−µ−δ)

= φ(θ)n by independence of the Zi

< (1 − c′δ2)n < e−c
′δ2n.

An exponential upper bound on P(Sn ≤ n(µ−δ)) is obtained by considering φ̂(θ) = E(eθ(µ−δ−Z))
similarly.

Using Lemma 4.11 it is easy to show that up to an error probability that is exponentially
small in ω, the martingale |X̃+

t |/λt has essentially converged to its (almost sure) limit Ỹ +

by the time that |X̃+
t | first reaches size ω. As before, it is crucial that the concentration we

obtain is uniform in λ as λց 1.

Lemma 4.12. Let 0 < δ < 1, 1 < λ ≤ 2 and ω ≥ 1 be given, let tω = min{t : |X̃+
t | ≥ ω},

whenever this is defined, and let E be the event that |X̃+
t |/λt is within a factor 1 ± δ of Ỹ +

for all t ≥ tω.
Then tω is defined with probability 1, and P(E) = 1 − e−Ω(ω), where the implicit constant

depends on δ but not on λ.

Proof. The sequence |X̃+
t | is non-decreasing, and increases with probability bounded away

from zero (at least P(Zλ > 1)) at each step, so X̃+
t → ∞ a.s., and tω is indeed defined with

probability 1.
Let A be the event

A =
{

(1 − δ/10)|X̃+
tω |/λtω ≤ Ỹ + ≤ (1 + δ/10)|X̃+

tω |/λtω
}
.

Our first aim is to show that A is very likely to hold. Let us condition on the event tω = t,
where t ≥ 0, and also on |X̃+

t |. Since tω is a stopping time, given that tω = t and |X̃+
t | = m,

the descendants of the m ≥ ω particles in X̃+
t form independent copies of the original process.

Let nt′,i denote the number of descendants in generation t′ of the ith particle in X̃+
t . Then for

each i we have nt′,i/λ
t′−t → Ỹ +

i a.s., where the Ỹ +
i are independent and have the distribution

of Ỹ +. It follows that Ỹ + =
∑m

i=1 Ỹ
+
i /λ

tω a.s.
Now Ỹ + has mean 1, and m ≥ ω. Applying Lemmas 4.10 and 4.11, we see that

P

(∣∣∣∣∣
1

m

m∑

i=1

Ỹ +
i − 1

∣∣∣∣∣ ≥ δ/10

)
= e−Ω(m) = e−Ω(ω),
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so P(A) = 1 − e−Ω(ω).
Let B− be the event that tω is defined, and there is some t > tω for which |X̃+

t |/|X̃+
tω | ≤

(1−δ/2)λt−tω . If B− holds, let t1 be the first such time. Then t1 (which is not always defined)
is again a stopping time so, arguing as above, given that t1 = t and |X̃+

t1 | = m, we have

Ỹ + =
∑m

i=1 Ỹ
+
i /λ

t1 , where the Ỹ +
i are iid with the distribution of Ỹ +. This also holds if we

condition on the entire history up to time t1, and in particular on tω and r = |X̃+
tω |.

By definition of B− we have m ≤ m0 = (1 − δ/2)λt−tωr, so recalling that the Ỹ +
i are

independent copies of Ỹ +,

P

(
m∑

i=1

Ỹ +
i ≥ (1 + δ/10)m0

)
≤ P




⌊m0⌋∑

i=1

Ỹ +
i ≥ (1 + δ/10)m0


 = e−Ω(m0) = e−Ω(ω),

using Lemma 4.11 and the fact that λt−tωr ≥ r ≥ ω for the last step. If B− and A both hold,
then the event appearing on the left above also holds, so we have shown that P(A | B−) =
e−Ω(ω). Hence, P(A ∩ B−) ≤ P(A | B−) = e−Ω(ω).

Define B+ to be the event that there is some t > tω for which |X̃+
t |/|X̃+

tω | ≥ (1+δ/2)λt−tω .
A similar but simpler argument shows that P(A ∩ B+) = e−Ω(ω). Hence with probability
1 − e−Ω(ω) the event A holds, while neither B− nor B+ does, and the lemma follows.

Returning to the original branching process Xλ = (Xt), recall that this survives with
probability s = s(λ) = Θ(ε), where λ = 1 + ε. Recall also that Xt/λ

t → Y a.s., where by
standard results E(Y ) = 1, and Y = 0 if and only if the process dies out, so P(Y 6= 0) = s.
Also, recalling that Ỹ + has the distribution of Y + conditioned on Y + > 0, Lemma 4.9 implies
that the distribution of sY given that Y 6= 0 is exactly the distribution of Ỹ +.

The next lemma will be similar to Lemma 4.12, but concerning Xλ = (Xt). This will lead
us to consider the sum SN of N independent copies Yi of Y , for ω large and N ≥ ω/ε. Given
0 < δ < 1, from concentration of the binomial distribution, with probability 1 − e−Ω(ω) the
number M of i with Yi 6= 0 is within a factor 1 ± δ of its mean sN = Ω(ω). Conditional
on M , the variable sSN is the sum of M independent copies of sY each conditioned to be
positive, or equivalently of M independent copies of Ỹ +, so by Lemma 4.11, with probability
1 − e−Ω(M) this sum is within a factor 1 ± δ of its mean M . It follows that with probability
1− e−Ω(ω) we have |SN/N − 1| ≤ 3δ, say. Using this fact in place of concentration of the sum
of ω copies of Ỹ +, the proof of Lemma 4.12 gives the following result, which is more or less a
sharpening of Lemma 4.6. Recall that Y = limt→∞ |Xt|/λt.
Lemma 4.13. Let δ > 0, 1 < λ ≤ 2 and ω ≥ 1 be given, and set ε = λ−1. Let tω/ε = min{t :
|Xt| ≥ ω/ε}, whenever this is defined, let Sω be the event that tω/ε is defined, let E ⊂ Sω be
the event that |Xt|/λt is within a factor 1±δ of Y for all t ≥ tω/ε, and let S = {∀t : |Xt| > 0}
be the event that the process survives.

Then P(E | Sω) = 1 − e−Ω(ω), where the implicit constant depends on δ but not on λ.
Furthermore, P(S | Sω) = 1 − e−Ω(ω) and P(Sω \ E) = O(εe−Ω(ω)).

Proof. The first statement follows by modifying the proof of Lemma 4.12 as described above.
The second is an immediate consequence (and also easy to verify directly). It implies in par-
ticular that P(S)/P(Sω) is bounded below, so P(Sω) = O(P(S)) = O(ε). The final statement
then follows from the first.
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Lemma 4.13 tells us that for ω large enough, the probability that the branching process
takes much longer than expected to reach size ω/ε is essentially determined by the tail of the
distribution of Y = Yλ near 0. Lemma 4.12 will be useful in studying this tail indirectly.

Writing R
+ for the set of non-negative reals, let (Yt)t∈R+ be a standard Yule process.

Thus Y0 consists of a single particle, and each particle in the process survives forever and
gives rise to children according to a Poisson process with rate 1, independently of the other
particles and of the history. Note that |Yt| is a (random) non-decreasing function of t, and
that E(|Yt|) = et. It is well known that limt→∞ |Yt|/et exists with probability 1 (see, for
example, [3, Section III.7]); we denote this (random) limit by W .

It is not hard to see that as λ decreases to 1, the suitably rescaled process X̃
+
λ converges

in some sense to (Yt). All we shall need is a very weak result of this form.

Lemma 4.14. Let T > 0 be fixed. As λ = 1 + ε tends to 1 from above, the distribution of
|X̃+

⌊T/ε⌋| converges to that of |YT |.

Proof. We take snapshots of (Yt) at times separated by ε, i.e., consider Yn = Ynε, n =
0, 1, . . . , T . Each particle x in Yn always survives to Yn+1, has no children in Yn+1 with
probability P(Po(ε) = 0) = e−ε = 1 − ε + O(ε2), and has exactly one child in Yn+1 with
probability P(Po(ε) = 1) = ε + O(ε2). Furthermore, the probability that this child (if it
exists) has children of its own by time (n+ 1)ε is O(ε). Hence, the number Z ′ of descendants
of x in Yn+1 is 1 with probability 1 − ε + O(ε2), two with probability ε + O(ε2) and three
or more with probability O(ε2). Hence Z ′ and Zλ, the offspring distribution in X̃

+
λ , can be

coupled to agree with probability 1 −O(ε2).
Using the independence properties of X̃

+
λ and of (Yt), it follows that these processes can

be coupled so that the event E = {|X̃+
n | = |Yn|, n = 0, 1, . . . , ⌊T/ε⌋} fails to hold with

probability at most

O(ε2)
∑

n≤T/ε
E(|Yn|) = O(ε2)

∑

n≤T/ε
eεn = O(ε)eT = O(ε).

Since Yε⌊T/ε⌋ = YT with probability 1 − O(ε), the result follows.

Corollary 4.15. As λ = 1 + ε tends to 1 from above, Ỹ +
λ converges in distribution to W .

Proof. Fix δ > 0. It suffices to show that for ε sufficiently small we can couple Ỹ +
λ and W so

that they agree within a factor of 1 +O(δ) with probability 1 − O(δ).
Let ω be a constant to be chosen below, depending on δ but not on ε. Since |Yt| → ∞

with probability 1, there is some T such that P(|YT | < ω) ≤ δ. From Lemma 4.14, if ε is
sufficiently small, then we may couple X̃

+
λ and (Yt) so that with probability at least 1− δ we

have |YT | = |X̃+
⌊T/ε⌋|. Then with probability at least 1 − 2δ we have |YT | = |X̃+

⌊T/ε⌋| ≥ ω.

Let n = ⌊T/ε⌋. Applying Lemma 4.12, it follows that if ω is chosen large enough (depend-
ing only on δ, not on ε), then with probability at least 1 − 3δ the limit Ỹ +

λ is within a factor
1± δ of |X̃+

n |/λn. A similar result holds for (Yt). (Indeed, since |Yt|/et →W a.s., there must
be some constant T ′ such that with probability 1 − δ we have |Yt|/et within a factor 1 ± δ of
W for all t ≥ T ′.) In particular, if ω is large enough, then with probability 1 − δ the ratio
|YT |/eT is within a factor of (1 ± δ) of W .
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Putting the pieces together, and noting that λn = (1 + ε)⌊T/ε⌋ = eT + O(ε), for ε small
enough the quantities Ỹ +

λ , |X̃+
n |/λn, |X̃+

n |/eT , |YT |/eT and W agree up to factors of 1 +O(δ)
with probability 1 − O(δ), completing the proof.

It is well known, and not hard to check, that the (positive) random variable W associated
to the Yule process has an exponential distribution with mean 1; this is an exercise in [3], for
example. In particular,

P(W ≤ x) = 1 − e−x ∼ x (4.18)

as x→ 0 from above. We are now ready to prove our bound on the lower tail of Ỹ +
λ .

Theorem 4.16. Let λ = 1 + ε. As ε and x tend to 0 from above we have

P(Ỹ +
λ ≤ x) ∼ xlog(1/λ⋆)/ log λ.

Note that we make no assumption on the relative rates at which ε and x tend to zero.
With x fixed, the result would be immediate from (4.18) and Corollary 4.15.

Proof. Let δ > 0 be given. We must show that there are constants x0 = x0(δ) and ε0 = ε0(δ)
such that for all 0 < ε < ε0 and 0 < x < x0 we have P(Ỹ +

λ ≤ x) = eO(δ)xlog(1/λ⋆)/ log λ, where
the implicit constant is absolute.

By (4.18), there is an x1 > 0 such that for all x ≤ x1 we have

e−δ ≤ P(W ≤ x)/x ≤ eδ. (4.19)

Fix such an x1, and set x0 = min{x1, δ}.
Trivially, for (1 − δ)x0 ≤ x ≤ x0 and any λ, we have

P
(
Ỹ +
λ ≤ (1 − δ)x0

)
≤ P(Ỹ +

λ ≤ x) ≤ P(Ỹ +
λ ≤ x0).

As ε → 0, from Corollary 4.15, for any constant a we have P(Ỹ +
λ ≤ a) → P(W ≤ a). Applying

this with a = x0 and a = (1 − δ)x0, it follows that there is an ε0 such that

e−δP
(
W ≤ (1 − δ)x0

)
≤ P(Ỹ +

λ ≤ x) ≤ eδP(W ≤ x0) (4.20)

for all ε ≤ ε0 and all x in the interval I = [(1 − δ)x0, x0]. We may and shall assume that
ε0 < 1/10, say. Since log(1/λ⋆)/ log λ → 1 as ε → 0 (see (4.4)), reducing ε0 if necessary, we
have xlog(1/λ⋆)/ log λ = eO(δ)x uniformly in x ∈ I and ε ≤ ε0. Using (4.19) and (4.20), it follows
that

P(Ỹ +
λ ≤ x) = eO(δ)xlog(1/λ⋆)/ log λ (4.21)

for all x ∈ I and ε ≤ ε0, where the implicit constant is absolute.
At this point we return to the definition of Ỹ +

λ in terms of (X̃+
t ). Recall that Z = Zλ is a

Poisson distribution with parameter sλ conditioned on being non-zero, and that E(Z) = λ and
P(Z = 1) = λ⋆. Now Ỹ +

λ has the distribution of the sum of Z independent copies Y1, . . . , YZ
of Ỹ +

λ /λ. Hence, for any x,

P(Ỹ +
λ ≤ x) ≥ P(Z = 1, Ỹ +

λ ≤ x) = P(Z = 1)P(Y1 ≤ x) = λ⋆P(Ỹ +
λ ≤ λx).
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Given any x ≤ x0, there is some non-negative integer r such that x′ = xλr lies in I. From the
inequality above it follows that P(Ỹ +

λ ≤ x) ≥ λr⋆P(Ỹ +
λ ≤ x′). Applying (4.21) to bound the sec-

ond probability, and noting that λr⋆ = exp((−r) log(1/λ⋆)) = exp(log(1/λ⋆) log(x/x′)/ log λ),
it follows that

P(Ỹ +
λ ≤ x) ≥ (x/x′)log(1/λ⋆)/ log λeO(δ)(x′)log(1/λ⋆)/ log λ = eO(δ)xlog(1/λ⋆)/ logλ,

completing the proof of the lower bound.
For the upper bound we use the inequality

P(Ỹ +
λ ≤ x) = P

(
Z = 1, Ỹ +

λ ≤ x
)

+ P
(
Z ≥ 2, Ỹ +

λ ≤ x
)

≤ P(Z = 1)P(Y1 ≤ x) + P(Z ≥ 2)P(Y1 + Y2 ≤ x)

≤ P(Z = 1)P(Ỹ +
λ ≤ λx) + P(Z ≥ 2)P(Ỹ +

λ ≤ λx)2

= λ⋆P(Ỹ +
λ ≤ λx)

(
1 +

1 − λ⋆
λ⋆

P(Ỹ +
λ ≤ λx)

)
.

Given x ≤ x0, as before there is a non-negative integer r such that x′ = xλr ∈ I. For 0 ≤ i ≤ r
let xi = x′/λi, so x0 = x′ and xr = x. Let pi = P(Ỹ +

λ ≤ xi), so

pi+1 ≤ λ⋆pi(1 + λ−1
⋆ (1 − λ⋆)pi)

and hence, by induction,

pi ≤ λi⋆p0

∏

j<i

(1 + (λ−1
⋆ − 1)pj) ≤ λi⋆p0 exp

(
(λ−1

⋆ − 1)
∑

j<i

pj

)
. (4.22)

Now p0 = P(Ỹ +
λ < x′) and x′ ∈ I, so, recalling that x0 ≤ δ, we have p0 = O(δ). Thus

p0 ≤ 1/10, say, if we assume δ is small, which we may. It follows by induction on i that
pi ≤ 2λi⋆p0 ≤ λi⋆/5. Indeed, if this holds for j < i, then the term inside the exponential in
(4.22) is at most

(λ−1
⋆ − 1)

∑

j<i

λj⋆/5 ≤ λ−1
⋆ (1 − λ⋆)

∞∑

j=0

λj⋆/5 = λ−1
⋆ /5 ≤ 1/4,

and e1/4 < 2. Plugging pj ≤ 2λj⋆p0 back into (4.22), we see that pi ≤ λi⋆p0 exp(3p0) = λi⋆p0e
O(δ).

Calculating as for the lower bound as above, this establishes the required upper bound.

Remark. The method used above shows that for λ and x bounded above, P(Ỹ +
λ ≤ x) is

within a factor C of xlog(1/λ⋆)/ log λ, where C depends only on the bounds we assume on λ and
x. For λ constant and x→ 0, this is a standard result. Perhaps surprisingly, the conclusion of
Theorem 4.16 does not hold in this case: as pointed out to us by Svante Janson, the limiting
behaviour of P(Ỹ +

λ ≤ x)/xlog(1/λ⋆)/ log λ as x → 0 is oscillatory. One period corresponds to
changing x by a factor of λ, and the tail probability by a factor of 1/λ⋆.

In the light of Lemma 4.9 and the fact that Ỹ +
λ is just Y +

λ conditioned on being non-zero,
an event of probability s = s(λ) ∼ 2ε by (4.3), Theorem 4.16 has the following corollary.
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Corollary 4.17. Let λ = 1 + ε. As ε and x tend to 0 from above we have

P
(
0 < Yλ ≤ x/ε

)
∼ 4εxlog(1/λ⋆)/ log λ.

Proof. Let s = s(λ) denote the survival probability of Xλ. Then

P
(
0 < Yλ ≤ x/ε

)
= P

(
0 < Y +

λ ≤ sx/ε
)

= P(Y +
λ > 0)P

(
Y +
λ ≤ sx/ε | Y +

λ > 0
)

= sP
(
Ỹ +
λ ≤ sx/ε

)
,

where the first step is from Lemma 4.9 and the rest are from the definitions. Applying
Theorem 4.16, and using once again s ∼ 2ε and log(1/λ⋆)/ log λ ∼ 1, it follows that

P(0 < Yλ ≤ x/ε) ∼ s(sx/ε)log(1/λ⋆)/ log λ

∼ 2ε
(
(2 + o(1))x

)log(1/λ⋆)/ log λ ∼ 4εxlog(1/λ⋆)/ log λ,

as claimed.

In turn, Corollary 4.17 and Lemma 4.13 will give us the required estimate on the prob-
ability that the branching process Xλ = (Xt)t≥0 takes a long time to begin to have a large
population.

Before turning to our tail bound, let us make a simple observation; the proof is analogous
to, but simpler than, that of Lemma 4.4, so we omit it.

Lemma 4.18. Let λ = 1 + ε, M ≥ 1 and δ > 0, and let tM = min{t : |Xt| ≥ M}, whenever
this is defined. Given that tM is defined, the probability that |XtM | exceeds (1 + δ)(1 + ε)M is
e−Ω(δ2M), where the implicit constant is absolute. �

In the following result, tω/ε denotes min{t : |Xt| ≥ ω/ε}, whenever this is defined.

Theorem 4.19. Let λ = 1 + ε, and suppose that ε = ε(n) → 0, ω = ω(n) → ∞, and t = t(n)
satisfy t ≤ 100 logω/ logλ and εt→ ∞. Then, with t1 = logω/ logλ, we have

P(tω/ε > t1 + t) ∼ 4ελt⋆,

P
(
0 < |Xr| < ω/ε, 0 ≤ r ≤ t1 + t

)
∼ 4ελt⋆,

P
(
0 < |Xt1+t| < ω/ε

)
∼ 4ελt⋆

and
P
(
(Xr) survives and 0 < |Xt1+t| < ω/ε

)
∼ 4ελt⋆.

Proof. We first show for any fixed δ > 0 we have

P
(
tω/ε > t1 + t

)
= (1 +O(δ))4ελt⋆ +O(εe−Ω(ω)), (4.23)

P
(
0 < |Xr| < ω/ε, 0 ≤ r ≤ t1 + t

)
= (1 +O(δ))4ελt⋆ +O(εe−Ω(ω)), (4.24)

P
(
0 < |Xt1+t| < ω/ε

)
= (1 +O(δ))4ελt⋆ +O(εe−Ω(ω)) (4.25)
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and

P
(
(Xr) survives and 0 < |Xt1+t| < ω/ε

)
= (1 +O(δ))4ελt⋆ +O(εe−Ω(ω)). (4.26)

Note that the events considered in (4.23) and (4.24) are not quite the same: by the event
A = {tω/ε > t1 + t} we mean the event that tω/ε is defined and greater than t1 + t; this
certainly implies the event considered in (4.24), but the latter may also hold with T = tω/ε
undefined. Let S be the event that the process survives, noting that

P(S | {tω/ε is defined}) ≥ 1 − (1 − s)ω/ε = 1 − e−Ω(ω). (4.27)

In particular, for large n this conditional probability is at least 1/2, so the probability that
T is defined is at most 2s = O(ε).

Let B1 be the ‘bad’ event that T = tω/ε is defined and there is an r ≥ T with |Xr|/λr
outside the interval (1 ± δ)Yλ. By Lemma 4.13, we have P(B1 | T defined) = e−Ω(ω), so
P(B1) = O(εe−Ω(ω)). Let B2 be the event that T is defined and |XT | ≥ (1 + δ)ω/ε. If ε is
small enough, which we may assume, then (1 + δ) ≥ (1 + ε)(1 + δ/2), and from Lemma 4.18
we have P(B2) = e−Ω(ω/ε) = O(εe−Ω(ω)).

Suppose that B1 does not hold. Then if tω/ε is defined, the process survives. Thus, off B1,
the event that T is defined coincides with S and hence with the event Yλ > 0. Moreover, off
B1 ∪B2, whenever Yλ > 0 we have Yλ = (1 +O(δ))|XT |/λT = (1 +O(δ))(ω/ε)/λT . Thus, off
B1 ∪ B2, for all sufficiently large constants a, b > 0,

(i) Yλ > (1 + aδ)(ω/ε)/λt1+t = (1 + aδ)/(ελt) implies T ≤ t1 + t, and

(ii) 0 < Yλ ≤ (1 − bδ)/(ελt) implies T > t1 + t.

Since εt→ ∞ we have 1/λt → 0. Thus using Corollary 4.17 to bound the probabilities of the
events on the left in (i) and (ii) above, and recalling that P(B1 ∪B2) = O(εe−Ω(ω)), we obtain
the bound (4.23).

To deduce (4.24), it suffices to show that the probability that the indicated event holds
but T is undefined is o(ελt⋆). Recall that up to probability 0 events, if S holds, then T is
defined. So it suffices to bound the probability that |Xt1+t| > 0 but S does not hold. Now

P(|Xt1+t| > 0, Sc) = P(Sc)P(|Xt1+t| > 0 | Sc) = (1 − s)P(|X−
t1+t| > 0) ∼ P(|X−

t1+t| > 0),

where (X−
r ) is the process conditioned on dying out, which has the distribution of Xλ⋆ . As

we shall see shortly (see Lemma 4.21), P(|X−
a | > 0) = Θ(ελa⋆) as ε → 0 and a → ∞ with

a = Ω(1/ε). Since log λ = Θ(ε), we have t1 + t ≥ t1 = Ω(1/ε), so

P(|Xt1+t| > 0, Sc) = Θ(ελt1+t
⋆ ) = Θ(ελt⋆(1/ω)log(1/λ⋆)/ logλ) = o(ελt⋆),

using log(1/λ⋆)/ logλ ∼ 1 (see (4.4)) and ω → ∞ for the last step. So (4.24) follows.
To see that (4.25) holds, note that we may extend the implication (i) above to imply

|Xt1+t| > ω/ε. Also (ii) can trivially be extended to imply |Xt1+t| < ω/ε. Again applying
Corollary 4.17 gives (4.25). Now (4.26) also follows since survival coincides with Yλ > 0.
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To deduce that the various statements in the theorem hold, observe that under the as-
sumptions given on ε, ω and t but with δ > 0 fixed, we have λt⋆ = ω−O(1), while any function
that is e−Ω(ω) decreases faster than any power of ω, so the probabilities in (4.23)–(4.26) are
all asymptotically (1 + O(δ))4ελt⋆. Since δ > 0 is arbitrary, the same conclusion follows for
δ → 0 slowly enough.

Theorem 4.19 is the analogue of Lemma 2.1, giving (in the relevant range) the distribution
of the time the branching process takes to grow to a certain size. It will turn out, however,
that we need several further results about the branching process.

4.4 Further branching process lemmas

Theorem 4.19 gives good bounds on the probability that the branching process grows more
slowly than expected. It will turn out that we also need a bound on the probability that it
grows faster. Such a bound is immediate from Lemmas 4.9, 4.10 and 4.13. However (to handle
the case where ε3n grows slowly), when εt is small we shall need a bound that is stronger than
the one obtained this way. This is easy to obtain directly using moment generating functions
as in the proof of Lemma 4.10. Note that we study (|Xt|) here rather than (|X̃+

t |).

Lemma 4.20. Suppose that 0 < ε < 1/10 and εt < 1/10. Then for all N ≥ 20t we have

P(|Xt| ≥ N) ≤ t−1e−N/(20t).

Proof. Let mr(θ) = E eθ|Xr | be the moment generating function of |Xr|, so m0(θ) = eθ ≤ 1+2θ
for θ < 1/2. We have

mr+1(θ) = E(mr(θ)
|X1|) = eλ(mr(θ)−1) ≤ 1 + λ(mr(θ) − 1) + 2λ2(mr(θ) − 1)2

as long as λ(mr(θ)− 1) ≤ 3/2. Let gr = mr(1/(20t))− 1, noting that g0 ≤ 2/(20t) = 1/(10t).
Then, as long as gr ≤ 2/5, we have

gr+1 ≤ λgr + 2λ2g2
r ≤ gr(1 + ε+ 3gr) ≤ gr exp(ε+ 3gr).

We claim that for r ≤ t ≤ ε−1/10 we have

gr ≤ g0 exp
(
εr + 3

∑

i<r

gi

)
≤ g0 exp

(
1/10 + 3/10

)
< 2g0 ≤ 1/(10t).

The proof is by induction using the final bound gi < 1/(10t) for i < r to establish the second
inequality. Hence,

E
(
e|Xt|/(20t)) = 1 + gt ≤ 1 + 1/(10t).

Applying Markov’s inequality to e|Xt|/(20t) − 1, which is always non-negative, it follows that

P(|Xt| ≥ N) ≤ 1

10t

(
eN/(20t) − 1

)−1 ≤ 1

5t
e−N/(20t)

whenever N ≥ 20t, as required.
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We next turn to various events associated to the subcritical branching process Xλ⋆ = (X−
t ).

We start by estimating the probability that the process survives to time t, as well as a derived
quantity associated to the wedge condition. If our aim is just to prove Theorem 1.3, then a
considerably simpler form of the following lemma will do. However, we shall prove a more
precise result useful also when it comes to studying the distribution.

Lemma 4.21. Let ε → 0 and set st = st(ε) = P(|X−
t | > 0). Then for t = o(1/ε) we

have st ∼ 2/t, while for t ≥ ε−2/3 we have st ∼ 2ε
λ−t

⋆ −1
. In particular, if t = Ω(1/ε), then

st = Θ(ελt⋆), and if εt→ ∞, then st ∼ 2ελt⋆. Furthermore,

∞∏

t=1

(1 − st) ∼ γ0ε
2

for some constant γ0 > 0.

Proof. Let s̃t be the probability that a critical Poisson Galton–Watson branching process
survives to time t, so s̃0 = 1 and s̃t+1 = 1− exp(−s̃t). It is well known (see [29] or [3, Section
I.9, Thm 1]) that s̃t ∼ 2/t as t→ ∞, and indeed one can check that

s̃t = 2t−1 +O(t−2). (4.28)

Moreover, ts̃t approaches 2 from below. Clearly, st < s̃t, so we have

st < s̃t < 2/t (4.29)

for all ε > 0 and t ≥ 1.
On the other hand, we may construct Xλ⋆ by first constructing a critical process, and

then deleting each edge of the resulting tree with probability 1− λ⋆ ∼ ε, independently of all
other edges. If the critical process survives to time t, then there is at least one path of length
t witnessing this, and it follows that st ≥ s̃t(1 − λ⋆)

t = s̃t(1 − O(εt)). If t = o(1/ε), then
(1−λ⋆)

t ∼ 1, so st ∼ s̃t and the first statement of the lemma follows. Note also for later that

st = s̃t − O(εt)s̃t = s̃t − O(ε). (4.30)

For larger t we use the following iterative formula, obtained by considering the number of
particles in X−

1 with descendants in generation t+ 1:

st+1 = P
(
Po(λ⋆st) > 0

)
= 1 − e−λ⋆st = λ⋆st − λ2

⋆s
2
t/2 +O(s3

t ),

where, since λ⋆ ≤ 1 and st ≤ 1, the implicit constant is absolute. Note also that st+1 ≤ λ⋆st.
Rewriting the formula above,

st+1 = λ⋆st exp
(
−λ⋆st/2 +O(s2

t )
)
. (4.31)

We now simply ‘guess’ an approximate form for st (obtained by solving a differential equation,
although things are not quite that simple): for t ≥ 1, set

rt =
2(1 − λ⋆)

λ⋆(λ
−t
⋆ − 1)

∼ 2ε

λ−t⋆ − 1
.
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Since a ≥ 0 implies (1 + a)t− 1 ≥ at, we have rt ≤ r1/t = 2/t for all t. In particular, rt ≤ 1/2
for t ≥ 4. Also,

λ⋆rt
rt+1

=
λ⋆(λ

−t−1
⋆ − 1)

λ−t⋆ − 1
=
λ−t⋆ − λ⋆
λ−t⋆ − 1

= 1 +
1 − λ⋆
λ−t⋆ − 1

= 1 + λ⋆rt/2.

In particular, rt+1 ≤ λ⋆rt. Furthermore, for t ≥ 4, which implies rt ≤ 1/2, we have

rt+1 = λ⋆rt(1 + λ⋆rt/2)−1 = λ⋆rt exp
(
−λ⋆rt/2 +O(r2

t )
)
. (4.32)

Using (4.31) and (4.32), it is now not hard to show that st and rt remain close for all large
t. Set T = ⌊ε−2/3⌋, noting that T → ∞ and T = o(1/ε). Note that

λ−T⋆ = (1/λ⋆)
T = (1 + ε+O(ε2))T = 1 + Tε+O(T 2ε2 + Tε2) = 1 + Tε(1 +O(ε1/3)),

so
rT , sT = (1 +O(ε1/3))2/T, (4.33)

using (4.28) and (4.30) for sT .
Let ρt = st/rt − 1, noting that ρT = O(ε1/3). Then, from (4.31) and (4.32),

1 + ρt+1 = (1 + ρt) exp
(
−λ⋆(st − rt)/2 +O(r2

t + s2
t )
)

= (1 + ρt) exp
(
−λ⋆ρtrt/2 +O(r2

t + s2
t )
)
.

Since rt and st are bounded, we have exp(O(r2
t +s2

t )) ≤M(r2
t +s2

t ) for some absolute constant
M . For ε small and t ≥ T we have rt ≤ rT ≤ 1/10, say. It follows that whatever the sign of
ρt, the exp(−λ⋆ρtrt/2) term ‘pulls (1 + ρt) towards 1’ without overshooting, and hence that

|ρt+1| ≤ |ρt| + (1 + |ρt|)M(r2
t + s2

t ).

Using rt ≤ λt−T⋆ rT and st ≤ λt−T⋆ sT , it follows that

|ρt| ≤ |ρT | + 2M
∑

0≤s≤t−T
λ2s
⋆ (r2

T + s2
T ),

provided |ρs| < 1 for T ≤ s < t. Since r2
T ∼ s2

T ∼ (4/T )2 = Θ(ε4/3), while
∑

s≥0 λ
2s
⋆ = O(1/ε),

it follows easily that |ρt| does remain bounded by 1, and in fact that |ρt| = O(ε1/3) uniformly
in t ≥ T . In particular, st ∼ rt for t ≥ T , proving the second statement of the lemma. The
next two statements follow.

Finally, we turn to the estimate on
∏

t≥1(1− st). From (4.28) we see that
∑

t |s̃t− 2/t| =
∑

tO(t−2) is bounded. It follows that
∑

t≥3 log
(

1−s̃t

1−2/t

)
converges; let us write c for the value

of this sum, which does not involve ε. Since T → ∞, the sum truncated at T converges to c
as ε → 0. Hence, from (4.30),

∏

t<T

(1 − st) =
∏

t<T

(1 − s̃t +O(ε)) = eO(εT )
∏

t<T

(1 − s̃t)

∼ (1 − s̃1)(1 − s̃2)ec
∏

3≤t<T
(1 − 2/t) ∼ γ0T

−2,
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for some constant γ0 > 0. On the other hand, comparison with an integral shows that
∑

t≥T
rt = −2 log(εT ) +O(εT ) = −2 log(εT ) + o(1).

We have already seen that
∑

t≥T r
2
t = o(1), and the same for st, so, using the bound on |ρt|

established above, it follows that

log
∏

t≥T
(1 − st) = o(1) −

∑

t≥T
st = o(1) − (1 +O(ε1/3))

∑

t≥T
rt

= 2 log(εT ) + o(1) +O(ε1/3 log(εT )) = 2 log(εT ) + o(1).

Thus
∏

t≥1(1 − st) ∼ γ0T
−2(εT )2 = γ0ε

2, as claimed.

The final statement of Lemma 4.21 shows that if we start one copy of Xλ⋆ at each time
t ≥ 1, the probability that for every t the tth copy dies within t generations is asymptotically
γ0ε

2.

Remark. Constructing Xλ first by constructing X
+
λ , and then adding the subcritical trees,

we see that pr =
∏r

t=1(1 − st) is exactly the probability that |Xr| = 1 given that |X+
r | = 1.

We have

P
(
|Xr| = 1

∣∣ |X+
r | = 1

)
= P

(
|X+

r | = 1
∣∣ |Xr| = 1

)
P(|Xr| = 1)/P(|X+

r | = 1)

= sP(|Xr| = 1)/P(|X+
r | = 1) = sP(|Xr| = 1)/(sλr⋆) = P(|Xr| = 1)/λr⋆.

So the final statement of Lemma 4.21 is equivalent to the statement that for large r, P(|Xr| =
1) ∼ γ0ε

2λr⋆ for some constant γ0, which can presumably be seen more directly somehow.

Before turning to our next real lemma, let us get a simple observation out of the way.
Trivially, E(|X−

t |) = λt⋆; a simple inductive calculation gives the standard formula E(|X−
t |2) =

λt⋆(1+λ⋆+· · ·+λt⋆). Since λ⋆ > 1−ε (see (4.2)), this gives E(|X−
t |2) ≤ ε−1λ2t

⋆ , so Var(|X−
t |) ≤

ε−1(E |X−
t |)2. If we start Xλ⋆ with N ≥ 10/ε particles in generation 0, and r ≤ 1/ε, then the

size of generation r has expectation µ ≥ N(1 − ε)1/ε ≥ N/3, and, using independence of the
offspring of different particles, variance at most ε−1µ2/N ≤ µ2/10. It follows by Chebyshev’s
inequality that

P
(
|X−

r | ≥ N/6
∣∣ |X−

0 | = N
)
≥ 1/2 (4.34)

whenever N ≥ 10/ε and r ≤ 1/ε.
Let (Dt)t≥0 denote the union of countably many independent copies of Xλ⋆ , where the ith

process starts with a single particle in generation i. Thus |D0| = 1, while given |Dt|, the
distribution of |Dt+1| has the form 1 + Po(λ⋆|Dt|).
Lemma 4.22. Let 0 < ε < 1/10 be given, and define λ = 1 + ε and λ⋆ = λ(1 − s(λ)) as
usual. For ω ≥ 20 and t ≥ 0 we have P(|Dt| ≥ ω/ε) = e−Ω(ω), where the implied constant is
absolute. Furthermore, for T ≥ 1/ε,

P
(
∃t : 0 ≤ t ≤ T, |Dt| ≥ ω/ε

)
= O(εTe−Ω(ω)).
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Proof. Let ft(x) = Ex|Dt| be the probability generating function of |Dt|. Then f0(x) = x,
while from the relationship between Dt+1 and Dt above we have

ft+1(x) = xft
(
eλ⋆(x−1)

)

for all t ≥ 0 and all x. Fix t ≥ 0 and let x0 = 1 + ε/10, say. Inductively defining xr by
xr+1 = eλ⋆(xr−1) > 1, note that

ft(x0) =

t∏

r=0

xr ≤
∞∏

r=0

xr. (4.35)

We claim that for every r we have

xr ≤ 1 + (1 − ε/3)rε/10, (4.36)

say. This certainly holds for r = 0. Suppose then that (4.36) holds for some particular r. Since
λ⋆ < (1− ε/2), it follows that xr+1 ≤ exp((1− ε/2)(1− ε/3)rε/10). Using exp(y) ≤ 1 + y+ y2

for y ≤ 1, we thus have

xr+1 ≤ 1 + (1 − ε/2)(1 − ε/3)rε/10 + (1 − ε/3)rε2/100 ≤ 1 + (1 − ε/3)r+1ε/10,

and (4.36) follows by induction.
Combining (4.35) and (4.36) we have, crudely, log(ft(x0)) ≤ 2

∑
r(1−ε/3)rε/10 = 6/10, so

ft(x0) ≤ 2. Recalling that x0 = 1+ε/10, we thus have P(|Dt| ≥ ω/ε) ≤ ft(x0)/x
ω/ε
0 ≤ 2e−Ω(ω),

and the first statement of the lemma follows, for all ω ≥ 2, say.
For the second statement, suppose now that ω ≥ 20. Using (4.34), and simply ignoring the

one new particle added in each generation, for 0 ≤ r ≤ 1/ε, conditional on |Dt| = N ≥ 10/ε,
the probability that Dt+r ≥ N/6 is at least 1/2. Let k = ⌊1/ε⌋. Examining Dt, Dt+1, . . ., one
by one, stopping the first time any of these sets has size more than ω/ε, it follows that

P
(
|Dt+k| ≥ ω/(6ε)

∣∣ ∃t′ : t ≤ t′ ≤ t+ k, |Dt′ | ≥ ω/ε
)
≥ 1/2,

so
P
(
∃t′ : t ≤ t′ ≤ t+ k, |Dt′ | ≥ ω/ε

)
≤ 2P

(
|Dt+k| ≥ ω/(6ε)

)
= e−Ω(ω),

using the first part for the final bound. Summing over 0 ≤ t ≤ T in steps of k = ⌊1/ε⌋, the
second statement follows.

Next we shall show that conditioning Xλ⋆ to survive to (at least) a certain time does not
increase its expected total size too much.

Lemma 4.23. Suppose that ε > 0 and t ≥ 1. Let N denote the total number of particles in
Xλ⋆. Then E(N | X−

t 6= ∅) ≤ (t+ 1)/ε.

Proof. We shall use repeatedly the observation that for any µ, the distribution of a Poisson
Po(µ) random variable conditioned to be at least 1 is stochastically dominated by 1 + Po(µ).
(This may be seen by considering the first point, if any, of a Poisson process in an interval.)

59



We may view the first generation of Xλ⋆ as the union of two sets: the set S1 consisting of
those children of the root that survive to time t, and the set S2 of those that do not. The
full process is then obtained by taking a copy of the process conditioned to survive for t− 1
generations for each particle in S1, and a copy conditioned to die within t− 1 generations for
each in S2. The sets S1 and S2 have independent Poisson sizes. Conditioning on X−

t being
non-empty is equivalent to conditioning on |S1| ≥ 1. Let us instead simply add a new particle
to S1. By the observation at the start of the proof, this gives a process whose distribution
dominates that of Xλ⋆ . Our new process consists exactly of the standard process Xλ⋆ , together
with a copy of Xλ⋆ conditioned to survive at least t− 1 generations started at time 1.

Applying the same procedure to the new copy (i.e., to the children of the extra particle
in S1, but not to those of the other particles in S1), and continuing, it follows that the
distribution of Xλ⋆ conditioned to survive to time t is dominated by the distribution of the
union of t + 1 copies of Xλ⋆ , one started at each time r, 0 ≤ r ≤ t. This has expected total
size (t + 1)/(1 − λ⋆) ≤ (t+ 1)/ε.

Finally, we observe that if we condition on Xλ surviving, this process quickly realizes its
conditional expected size, which by Lemma 4.6 is a factor (1 + o(1))/s ∼ 1/(2ε) larger than
the unconditioned size.

Lemma 4.24. Let λ = 1 + ε, where ε = ε(n) → 0. Let ω(n) and ω′(n) satisfy ω′ → ∞ and
ω/ω′ → ∞, and set t1 = ⌊logω/ logλ⌋. Then P

(
|Xt1 | ≥ ω′/ε | (Xt) survives

)
→ 1 as n→ ∞.

Proof. This is a simple consequence of Lemma 4.13 together with (a weak form of) our tail
bound on the (a.s. defined) limit Y = limt→∞ |Xt|/λt. Starting with the tail bound, set
x = 2ω′/ω = o(1). From Corollary 4.17 we have

P(0 < Y ≤ x/ε) ∼ 4εxlog(1/λ⋆)/ log λ = o(ε),

since log(1/λ⋆)/ log λ ∼ 1. Recalling that Y > 0 if and only if the process survives, it follows
that P

(
Y ≤ x/ε

∣∣ (Xt) survives
)

= o(1).
Conditional on survival, there is some generation with size at least ω′/ε with probabil-

ity 1. By Lemma 4.13, with probability 1 − o(1) the first such generation occurs at time
log(ω′/ε)/ logλ − log Y/ logλ + O(1/ε). By the tail bound on Y above, this is less than t1
with probability 1 + o(1). Moreover, with probability 1 − o(1), from this point on |Xt| is
within a factor 2, say, of λtY . At time t1, λ

t1Y ≥ 2ω′/ε unless Y ≤ 2ε−1ω′/ω = x/ε, an event
of probability o(1).

4.5 Typical distances in the 2-core

We are now almost ready to prove our lower bound on the diameter of G(n, p). It turns out
that we need a result concerning typical distances in the 2-core. Unfortunately, this does not
seem to follow easily from any published results, and our proof is a little painful. We first
need a result that essentially bounds the kth moment of the size of the giant component.

Let G = G(n, λ/n). We say that a k-tuple (x1, . . . , xk) of not necessarily distinct vertices
of G is useful if for each i, either xi is in a component of G containing a cycle, or it is joined by
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a path in G to some other xj . It turns out that almost all useful k-tuples arise as they should,
i.e., from vertices in the giant component. Recall that if N is the number of vertices in the
giant component of G(n, λ/n), then N = (2 + op(1))εn; see (4.6). An immediate consequence
is that EN ≥ (2 − o(1))εn. (In fact, it is well known that EN ∼ 2εn.)

Lemma 4.25. Let λ = 1 + ε, where ε = ε(n) > 0 satisfies ε → 0 and Λ = ε3n→ ∞, and let
k ≥ 1 be fixed. Then the expected number of useful k-tuples in G(n, λ/n) is (1 + o(1))(2εn)k.

Proof. The lower bound is immediate, since the number of useful k-tuples is at least the kth
power of the number N of vertices in the largest component of G, and ENk ≥ (EN)k ≥(
(2 − o(1))εn

)k
.

Let ψ = ψ(n) tend to infinity very slowly.
We first get a simple observation out of the way. Let us say that a k-tuple of vertices is

close if each xj , j > 1, is within distance ψ/ε of x1 in G. Let Ck denote the number of close
k-tuples. Set t = ⌊ψ/ε⌋. Then ECk = nE(|G≤t(x)|k−1), where x = x1 is any fixed vertex
of G. Now |G≤t(x)| is stochastically dominated by |X≤t|, the union of the first t generations
of Xλ. (We are simplifying slightly here: a binomial Bi(n, p) is dominated by a Poisson with
mean −n log(1 − p) = np + O(np2), so we should consider the branching process with a
parameter slightly larger than λ; the difference is negligible.) It is easy to check (for example
by calculating inductively) that with r fixed, E |X≤t|r = O(t2r−1λrt) = O(ψ2r−1erψε−(2r−1)) =

Õ(ε−(2r−1)), where we write f = Õ(g) if f is bounded by a function of ψ times g. It follows
that

ECk = Õ(nε−(2k−3)) = o(εknk), (4.37)

provided ψ grows slowly enough, since ε3k−3nk−1 → ∞.
Turning to useful k-tuples, we shall proceed by induction on k. Let Uk denote the number

of k-tuples of distinct vertices that are useful. Since εn → ∞, it suffices to prove that
EUk ∼ (2εn)k. We may then bound the total number of useful k-tuples in terms of U1, . . . , Uk.

From now on we insist that x1, . . . , xk are distinct. Let us say that a useful k-tuple is
reducible if it contains a non-empty subset S which forms a close r-tuple within a component
of G containing none of the remaining xi. If this holds, then there is some set of edges present
witnessing that S is a close r-tuple, and a disjoint set witnessing the event that the remaining
set Sc is useful. (We may have k − r = 0; a 0-tuple is always useful.) By the van den
Berg–Kesten inequality [5], the probability of this event is at most the probability that S is
close times the probability that Sc is useful. Using (4.37) and the induction hypothesis, this
probability is o(εr)O(εk−r) = o(εk). Summing over r and over the

(
k
r

)
sets S, we see that the

expected number of reducible useful k-tuples is o(εknk).
Finally, we estimate the number of irreducible useful k-tuples. To do so, let us pick

x1, . . . , xk one-by-one; we do not fix them in advance. Each xi is chosen uniformly from the
remaining n− i+ 1 vertices.

Having chosen xi, let us explore its neighbourhoods as follows. First, if xi itself is in the set
R of vertices previously reached by such explorations, we do not explore at all, and declare xi
to be ‘atypical for reason 1’. Otherwise, we explore the neighbourhoods of xi as usual, except
that we do not (for the moment) test for edges to R. Also, we stop as soon as either (i) we
reach generation ψ/ε, or (ii) we find ψ/ε vertices in one generation t. (We then stop partway
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through this generation.) Let Γi denote the set of vertices reached. Our next step is to test
all edges from Γi to R; if such an edge is present, xi is ‘atypical for reason 2’. We then test
for non-tree edges within Γi, i.e., for edges between two vertices in Γi at distance t from xi,
or for ‘redundant’ edges between vertices at distances t and t+ 1. If we find such a non-tree
edge, then xi is ‘atypical for reason 3’. Finally, if we have not yet labelled xi as atypical, then
we label xi as ‘good’ if condition (i) or (ii) held, and ‘bad’ otherwise, i.e., if we ran out of
vertices to explore.

Note that if any xi is bad, then Γi is its entire component, this component is a tree, and
every vertex of this tree is within distance ψ/ε of xi. If (x1, . . . , xk) is useful and some xi is
bad, then it follows that at least one later xj lies in Γi, so (x1, . . . , xk) is reducible. Thus we
may bound the expected number of irreducible useful k-tuples by nk times the probability
that no xi is bad. We do this by showing that the conditional probability that xi is atypical
or good given x1, . . . , xi−1 and the associated explorations is at most (1 + o(1))2ε.

The definition of the exploration ensures that each Γi contains at most ψ2/ε2 vertices,

so |R| ≤ kψ2ε−2 and the probability that xi is atypical for reason 1 is Õ(ε−2n−1) = o(ε).
Suppose this does not happen. Then |Γi| is stochastically dominated by |X≤ψ/ε|, which has

expectation
∑

r≤ψ/ε λ
r = O(ε−1λψ/ε) = Õ(ε−1). At the end of the previous exploration, we

have already uncovered all edges incident with all vertices of each Γj, j < i, except (possibly)
for vertices in the last two generations. (Two because we may have stopped part way through

a generation.) There are at most 2ψk/ε = Õ(ε−1) such vertices in total. Hence, given Γi,

the conditional probability that xi is atypical for reason 2 is at most |Γi|Õ(ε−1/n), so the

unconditional probability is at most Õ(E |Γi|ε−1/n) = Õ(ε−2n−1) = o(ε).
Similarly, given Γi, the conditional probability that xi is atypical for reason 3 is at most

|Γi|(2ψ/ε)λ/n, since for each vertex we have to test edges to the at most 2ψ/ε other vertices
in the same generation or the previous generation. Hence the probability that xi is atypical
for this reason is also o(ε).

Finally, the exploration leading to Γi is dominated by Xλ, so the probability that xi is
good is bounded by the probability that the branching process Xλ either reaches size ψ/ε,
or lasts for at least ψ/ε generations. It is easy to check that the probability of this event is
(1+o(1))s ∼ 2ε; indeed, from Lemma 4.13 (say), the event that Xλ reaches size ψ/ε coincides
up to probability o(ε) with the event that Xλ survives, and Lemma 4.21 and the fact that Xλ

conditioned on dying is (X−
t ) show that the events that Xλ survives for ψ/ε generations and

that it survives forever agree up to probability o(ε).

Lemma 4.26. Let λ = 1 + ε, where ε = ε(n) > 0 satisfies ε → 0 and Λ = ε3n→ ∞, and let
C denote the 2-core of G = G(n, λ/n). Then N = |C| satisfies

E(Nk) ∼ (2ε2n)k (4.38)

for each fixed k. Furthermore, if d = log Λ/ log λ− ω/ε with ω = ω(n) → ∞, then

EM
(k)
d = o(ε2knk), (4.39)

where M
(k)
d is the number of k-tuples of vertices of C some pair of which are within distance d.
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One might expect the first statement to be known. Indeed, Pittel and Wormald [36]
have shown that the distribution of the size of the 2-core is asymptotically normal, with mean
(2+o(1))ε2n and variance (12+o(1))εn = o(ε4n2). Unfortunately, convergence in distribution
does not imply convergence of the relevant moments, so we cannot simply deduce (4.38). We
shall prove (4.38) using Lemma 4.25; it is then easy to deduce (4.39).

Proof. Fix k distinct vertices x1, . . . , xk, and let A be the event that x1, . . . , xk are all in the
2-core. It suffices to show that P(A) ≤ (1 + o(1))(2ε2)k.

Let G′ = G−{x1, . . . , xk}, so G′ has the distribution of G(n′, λ′/n′) where n′ = n− k and
λ′−1 ∼ λ−1. Let Ur denote the number of useful r-tuples of not necessarily distinct vertices
of G′. By Lemma 4.25, we have

EUr ≤ (1 + o(1))(2εn)r (4.40)

for any fixed r.
Suppose that A holds, and let E be a minimal set of edges witnessing A. Note that every

vertex of S = {x1, . . . , xk} meets at least two edges of E. Also, since a vertex is in the 2-core
if and only if it is on a cycle or on a path joining two cycles, E may be written as the union
of k graphs with maximum degree at most 3, so at most 3k2 edges of E meet S.

Let E0, E1 and E2 denote respectively the sets of edges of E with both ends in S, one end
in S, and neither end in S. List the edges of E1 as aibi, 1 ≤ i ≤ r ≤ 3k2, where each ai is in
S and each bi in G′. From the minimality of E, each bi is either joined to some other bj by a
path in E2 (which may have length 0 if bi = bj), or is joined by a path in E2 to a cycle in E2.
(Otherwise, removing pendant edges from E, we obtain a smaller witness to A.) It follows
that the r-tuple (b1, . . . , br) is useful in the graph G′. Let t = |E0|.

Suppose first that t = 0 and |E1| = 2k. (More precisely, suppose there is a (minimal)
witness E with these properties.) Since each xi meets at least two edges of E1, it meets
exactly two. Hence there is a 2k-tuple (b1, . . . , b2k) that is useful in G′, with xi joined to b2i−1

and b2i. But from (4.40) and the independence of G′ and the edges between S and G′, the
expected number of such 2k-tuples is at most (1 + o(1))(2εn)2k(λ/n)2k ∼ 22kε2k. Since the
2k-tuple is ordered, whenever there is one there are at least 2k (swapping b1 and b2, etc), so
the probability that a witness E exists with t = 0 and |E1| = 2k is at most (1 + o(1))(2ε2)k.

It remains to show that the probability that there is a witness E with t > 0 or t = 0 and
|E1| > 2k is o(ε2k), for which we simply bound the expected number of such witnesses. Since
each vertex of S meets at least two edges of E1, we have r = |E1| ≥ 2k − 2t, while, as noted
above, r ≤ 3k2. Hence, setting ∆ = 0 if t > 0 and ∆ = 1 if t = 0, the expectation is bounded
by

(k
2)∑

t=0

(
k

2

)t
(λ/n)t

3k2∑

r=2k−2t+∆

kr(EUr)(λ/n)r,

since there are most
(
k
2

)
choices for each of the t edges inside S, and, given r, at most kr

possibilities for which of the xj each ai is. (Some bi may coincide, but we do not care.) By
(4.40), each term in the sum may be bounded by a constant times

n−t(2εn)rn−r = O(n−tεr) = O(n−tε2k−2t+∆).
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For t = 0 this is O(ε2k+1) = o(ε2k). For t ≥ 1, since ε2n → ∞, the final bound is o(ε2k). It
follows that P(A) ∼ (2ε2)k, completing the proof of (4.38).

Finally, as noted above, it is relatively easy to deduce (4.39) from (4.38). Let M be the
number of k-tuples of vertices of C in which every pair is at distance larger than d. Then
it suffices to show that EM ≥ (1 + o(1))(2ε2n)k. In proving such a lower bound, we may
consider k-tuples with additional properties that make the analysis easier.

Let ψ = ψ(n) = o(ω) tend to infinity very slowly, let E be the branching process event that
at least two particles in generation 1 survive to generation t = ψ/ε, that these particles each
have at least ψ/ε descendants in Xt, and that |Xt′ | ≤ ψ10ε−1λψ/ε = eO(ψ)ε−1 for 0 ≤ t′ ≤ t.
Recalling that, conditioned on survival, the branching process typically has size of order ε−1λt

′

in generations t′ where t′ is significantly larger than 1/ε (see Lemmas 4.24 and 4.13), it is easy
to check that P(E) ∼ s2/2 ∼ 2ε2, the asymptotic probability that two particles in generation
1 survive. Also, Lemma 4.7 applies to all trees consistent with E.

Given distinct vertices x1, . . . , xk of G, let E ′
k denote the event that for every i the t-

neighbourhood of xi has the property corresponding to E, and these t-neighbourhoods are
disjoint. Also, let Ek be the event that E ′

k holds, every xi is in the 2-core, and d(xi, xj) > d for
all i and j. By Lemma 4.8 we have P(E ′

k) ∼ P(E)k ∼ (2ε2)k. Since EM ≥ (1 +o(1))nkP(Ek),
it thus suffices to show that P(Ek | E ′

k) = 1 − o(1).
But after testing whether E ′

k holds, we have not looked at any edges outside the relevant
neighbourhoods. The expected number of paths of length at most d joining one pair of vertices
in the last generation of these neighbourhoods is bounded by

∑

1≤i≤d
ni−1(λ/n)i = n−1

∑

i≤d
λi ∼ ε−1n−1λd.

There are at most
(
k
2

)
eO(ψ)ε−2 pairs to consider, so the probability of finding any such path

is at most
eO(ψ)ε−3n−1λd = eO(ψ)Λ−1Λλ−ω/ε = eO(ψ)e−(1+o(1))ω = o(1).

Also, since for each of x1, . . . , xk we have two neighbours with many (at least ψ/ε) descendants
in generation t, given E ′

k it is very likely that these neighbourhoods continue to expand and
eventually meet, so whp each xi is in C. Thus P(Ek | E ′

k) = 1 − o(1), as required.

In fact, one can easily bound the expected number of pairs of vertices of C at distance
significantly larger than log Λ/ log λ, noting that all but at most o(ε4n2) such pairs also have
the property E ′

2. Using Lemma 4.5 it is then easy to extend the argument above to show that
if x and y are chosen uniformly at random from C, then

d(x, y) = log Λ/ logλ+Op(1/ε).

Furthermore, one can obtain the limiting distribution of the correction term without too much
difficulty. We omit the details as this is not our focus, and Lemma 4.26 is all we shall need
to know about the 2-core.

With the simple preliminaries of the last few subsections behind us, we are now ready to
begin the proof of Theorem 1.3.
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4.6 The lower bound on the diameter

In this section we shall prove the lower bound on the diameter in Theorem 1.3. As noted in
Section 1, we may assume that ε → 0. The argument we present will be rather complicated.
It is difficult to explain why this is the case, other than to say that we have tried many
promising simple approaches, and while several are extremely plausible, we could not make
the details rigorous. Of course, a much simpler proof may nevertheless exist.

We must show that with high probability vertices x and y at large distance exist. In
doing so we may focus on vertices x and y whose neighbourhoods satisfy certain restrictions,
although if we are too restrictive, we will not get a good bound. Before turning to the graph,
let us describe the corresponding restrictions on the branching process. Overall, our aim is to
consider the event that a certain ‘wedge’ condition holds, and tω/ε > t, for t near t0 +t1, but to
make our arguments work we need some additional technical conditions. We start by insisting
that the process (X+

t ) consisting of those particles with infinitely many descendants has size
1 for a large number of generations, then bifurcates, and the non-surviving descendants of all
the particles up to this point have died out before very long, in a way to be made precise. This
condition will include an analogue of the weak wedge condition described in Subsection 2.2.

For the rest of this section let ε = ε(n) > 0 satisfy ε → 0 and Λ = ε3n→ ∞. Set

ω = Λ1/6,

and let
t1 = ⌊logω/ log λ⌋

and
t0 = ⌊log(ε3n)/ log(1/λ⋆)⌋,

as before. (The rounding to integers will always be irrelevant in calculations.) Later, we shall
also consider

t2 = log(ε3n/ω2)/ log λ.

For r, q = O(1/ε), set T0 = t0 + r and T1 = t0 + t1 + q. Recalling from (4.4) that
log λ, log(1/λ⋆) ∼ ε, note that T0, T1 = O(ε−1 log Λ). We shall assume that |r| ≤ t0/2 and
that |r|, |q| ≤ t1/10; these conditions hold for n sufficiently large.

Let A = Ar be the event that |X+
T0
| = 1 and |X+

T0+1| = 2. Then P(A) = sP(Zλ =
1)T0P(Zλ = 2), where, as before, Zλ is a Poisson with mean sλ conditioned to be at least
1. From (1.8) we have P(Zλ = 1) = λ⋆, while from the definition of Zλ we have P(Zλ =
2)/P(Zλ = 1) = (sλ)/2 ∼ ε. Hence,

P(A) ∼ 2ελT0
⋆ ελ⋆ ∼ 2ε2λT0

⋆ ∼ 2ε−1n−1λr⋆ = Θ(ε−1n−1). (4.41)

When A holds, let xi denote the unique particle in X+
i for 0 ≤ i ≤ T0, and let y, y′ be the

two particles in X+
T0+1.

Let B = Br be the event that A = Ar holds, and the following conditions are satisfied:
(i) (the strong wedge condition) x0 has no children other than x1 and, for 1 ≤ i < T0, no

children of xi other than xi+1 or y, y′ have descendants in generation 2i.
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(ii) no particles in XT0+1 other than y and y′ have descendants in XT ′

1
, where T ′

1 =
t0 + ⌊t1/2⌋.

Note that T0 < T ′
1 < T1. Also, since T ′

1 − T0 = ⌊t1⌋/2 − r = t1/2 + O(ε−1), we have
ε(T ′

1 − T0) → ∞. For the moment we could simply write T1 in place of T ′
1 in condition (ii),

but for the distribution result in Section 5 it is convenient that T ′
1 does not depend on q.

Unfortunately, it takes some effort to examine the effect that condition (i) has upon
the distribution of tω/ε, the time the branching process takes to reach size ω/ε. (Condi-
tion (ii) presents no problems.) Constructing Xλ from X

+
λ by adding independent copies of

the subcritical process Xλ⋆ starting at each particle, condition (i) says that for i < T0 the
subcritical process started at xi dies by time max{i, 1} (measured from its starting time),
and condition (ii) that for i ≤ T0 the process started from xi dies by time T ′

1 − i. Writing
dt = 1 − st = P(|X−

t | = 0) for the probability that Xλ⋆ dies by time t, we thus have

P(B | A) = d1

T0∏

i=1

dmin{i,T ′

1−i},

so

d1

min{T0,T ′

1/2}∏

i=1

di ≥ P(B | A) ≥ d1

∞∏

i=1

di

∞∏

i=T ′

1−T0

di. (4.42)

By Lemma 4.21, as εi→ ∞ we have si ∼ 2ελi⋆, and so log(1−si) ∼ −2ελi⋆. Since ε(T ′
1−T0) →

∞, it follows that

∑

i≥T ′

1−T0

log(1 − si) ∼ −2ε
∑

i≥T ′

1−T0

λi⋆ = O
(
λ
T ′

1−T0
⋆

)
= o(1).

Hence,
∏

i≥T ′

1−T0
di ∼ 1. Similarly, since εmin{T0, T

′
1/2} = εT ′

1/2 → ∞, we have
∏

i≥min{T0,T ′

1/2}
di ∼

1. From (4.42) it then follows that

P(B | A) ∼ d1

T ′

1/2∏

i=1

di ∼ d1

∞∏

i=1

di ∼ d1γ0ε
2 = e−λ⋆γ0ε

2 ∼ γ0e
−1ε2, (4.43)

using Lemma 4.21 to estimate the infinite product.
Let C be the event that A holds, and the particles y and y′ each have at least ω′/ε

descendants in XT1 , where ω′ =
√
ω = Λ1/12. (Later we shall need to know that vertices

corresponding to y and y′ have many ‘descendants’ at distance T1 from x0; this will ensure
that xT0 is in the 2-core.) By Lemma 4.24, applied with T1−(T0+1) = t1+q−r−1 = t1+O(1/ε)
in place of t1, i.e., with λt1+q−r−1 = Θ(ω) in place of ω, we have

P(C | A) = 1 − o(1).

We would like to impose the condition that |Xt| < ω/ε for 0 ≤ t ≤ T1; however, for
technical reasons we must consider the descendants of xT0 separately from the remaining
particles.
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Let D1 be the event that A holds, and between them the particles y and y′ have fewer
than (ω − 2ω′)/ε descendants in each set Xt, T0 + 1 ≤ t ≤ T1, noting that ω − 2ω′ ∼ ω.
Conditioning on A, the trees of descendants of the two particles y, y′ form independent copies
of Xλ, each conditioned on the event that it survives. By Lemma 4.13, whp as soon as the
number of descendants of y in XT0+1+r is large compared to ε−1, it then remains close to
Ỹ λr, where Ỹ has the distribution of Y = Yλ conditioned to be positive. Let Ỹ2 have the
distribution of the sum of two independent copies of Y each conditioned to be positive. Then
it follows that

P(D1 | A) = o(1) + P
(
Ỹ2λ

T1−T0−1 < (ω − 2ω′)/ε
)
.

Now λT1−T0−1 = λt1+q−r−1 = ωλq−r+O(1) ∼ ωλq−r, and ω − 2ω′ ∼ ω, so

P(D1 | A) = o(1) + P
(
Ỹ2 < (1 + o(1))λr−q/ε

)
= o(1) + P

(
sỸ2 < (2 + o(1))eε(r−q)

)
,

recalling that s ∼ 2ε and noting that, since ε(r − q) is bounded and λ = 1 + ε, we have
λr−q ∼ exp(ε(r − q)). In a moment we shall sum over r; we can evaluate the sum of the
corresponding terms above by relating it to a certain disjoint union of events and using
Theorem 4.19. While this is aesthetically pleasing, we in fact know the asymptotic distribution
of Ỹ2, so we shall just use it.

Recall from Lemma 4.9 and Corollary 4.15 that sY conditioned on Y > 0 has the dis-
tribution of Ỹ + = Ỹ +

λ , which converges in distribution to an exponential with parameter 1
as ε → 0. It follows that sỸ2 converges in distribution to the sum of two independent such
exponentials, which has distribution function Ψ(x) =

∫ x
y=0

e−y(1−e−(x−y)) dy = 1−(x+1)e−x.
Thus

P(D1 | A) = Ψ(2er
′−q′) + o(1),

where r′ = εr and q′ = εq and we use uniform continuity to remove the (1 + o(1)) factor in
the argument of Ψ.

Since r′ − q′ = Θ(1), we thus have P(D1 | A) = Θ(1), and hence the above equation
can be written as P(D1 | A) ∼ Ψ(2er

′−q′). Since P(C | A) = 1 − o(1), it follows that
P(C ∩D1 | A) ∼ Ψ(2er

′−q′). Given A, the events B and C ∩D1 are independent, so

P(C ∩D1 | A ∩B) ∼ Ψ(2er
′−q′). (4.44)

Turning to particles other than the descendants of y, y′, first let D′
1 be the event that A

holds and, for T0 ≤ t ≤ T1, the set Xt contains at most ω′/ε particles that are descendants
of xT0 but not of y or y′. Given A ∩B, these particles form a copy of Xλ starting at xT0 and
conditioned to die within T ′

1−T0 generations. This process may be viewed as Xλ⋆ conditioned
to die by a certain time, so its distribution is dominated by that of Xλ⋆ . Since the total
expected size of Xλ⋆ is O(ε−1), it follows that P((D′

1)
c | A ∩ B) = o(1).

Let D2 be the event that A holds and, for 0 ≤ t ≤ T1, the set Xt contains at most ω′/ε
particles that are not descendants of xT0 . Given A ∩ B, the tree of particles that are not
descendants of xT0 has the distribution of one copy of Xλ⋆ started at each time t, 0 ≤ t < T0,
conditioned on the various copies of Xλ⋆ dying by various times. This distribution is dominated
by that studied in Lemma 4.22, so by Lemma 4.22 we have P(Dc

2 | A∩B) = O(εT1e
−Ω(ω′)) =

o(1), recalling that T1 = O(ε−1 log Λ).
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Let D = D1 ∩D′
1 ∩D2. Since P((D′

1)
c ∪Dc

2 | A ∩ B) = o(1), from (4.44), we have

P(C ∩D1 ∩D′
1 | A ∩ B) ∼ Ψ(2er

′−q′) (4.45)

and
P(C ∩D | A ∩B) ∼ Ψ(2er

′−q′).

Note for later that if D holds, then |Xt| < ω/ε for t ≤ T1.
Finally, setting Er,q = A ∩ B ∩ C ∩D, and recalling (4.41) and (4.43), we have

P(Er,q) ∼ 2ε−1n−1λr⋆γ0e
−1ε2Ψ(2er

′−q′) ∼ 2γ0e
−1εe−r

′

Ψ(2er
′−q′)/n.

Since this estimate holds uniformly in r, q with r, q = O(1/ε), it also holds uniformly in r, q
with |q|, |r| ≤ 2M/ε, say, for some function M = M(n) tending to infinity. For |q| ≤ M/ε,
let Eq =

⋃
−2M/ε≤r≤2M/εEr,q. For fixed q, the events Er,q are disjoint, so we have

P(Eq) ∼ 2γ0e
−1εn−1

∑

−2M/ε≤r≤2M/ε

e−r
′

Ψ(2er
′−q′)

= 2γ0e
−1εn−1e−q

′
∑

−2M/ε−q≤r−q≤2M/ε−q
e−(r′−q′)Ψ(2er

′−q′).

The sum above simplifies considerably, since it corresponds to splitting a single event
according to the time that (X+

t ) first subdivides. Rather than using this observation, we
simply calculate. Since Ψ(x) = O(1) as x → ∞ and Ψ(x) = O(x2) as x → 0, the sum above
has exponentially decaying tails. Recalling that r′ and q′ simply denote εr and εq, it follows
easily that

P(Eq) ∼ 2γ0e
−1n−1e−εq

∫ ∞

−∞
e−xΨ(2ex) dx.

A simple computation shows that the integral evaluates to 2, so

P(Eq) ∼ 4γ0e
−1n−1e−εq ∼ 4γ0e

−1n−1λq⋆,

uniformly in |q| ≤M/ε, provided M = M(n) tends to infinity sufficiently slowly.
Note that the event Eq requires that y, y′ ∈ X+

T0+1, an event depending on an infinite
number of generations of the process Xλ. To work with the graph, we seek an event depending
on a finite number of generations of Xλ. Let Fq be the event corresponding to Eq but depending
only on the first T1 = t0 + t1 + q generations. More precisely, Fq is the event that there are
exactly two particles, y and y′, say, in some generation T0+1 = t0+r+1, −2M/ε ≤ r ≤ 2M/ε,
with descendants in generation T ′

1 = t0 + ⌊t1/2⌋, each of these particles has at least ω′/ε
descendants in XT1 , y and y′ have a common parent xT0 , the equivalent of the strong wedge
condition (i) holds, and D = D1 ∩ D′

1 ∩ D2 holds. From the strong wedge condition, if Fq
holds then, in the tree obtained from Xλ by deleting all descendants of xT0 , the initial particle
is the unique particle at maximum distance from xT0 .

If Eq holds, then so does Fq. Furthermore, P(Eq | Fq) = 1+o(1), since for each of y and y′,
the probability that none of its at least ω′/ε descendants in generation T1 goes on to survive
forever is O((1 − s)ω

′/ε) = o(1). Hence,

P(Fq) ∼ P(Eq) ∼ 4γ0e
−1n−1λq⋆.
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Let T be a tree of height t = T1 consistent with Fq. Then t = O(ε−1 log Λ), while, since
D holds, each generation contains at most ωε−1 = ωΛ−1/3n1/3 = o(n1/3) vertices. Also, the
total size |T | of T is

O(ωε−2 log Λ) = O(ωΛ−2/3n2/3 log Λ) = o(n2/3), (4.46)

and ε|T |2 = O(ω2ε−3 log2 Λ) = O(ω2Λ−1n log2 Λ) = o(n). Lemma 4.7 applies to all such trees,
telling us that

P
(
G≤t(x) ∼= T

)
∼ P

(
G0

≤t(x) ∼= T
)
∼ P

(
X≤t ∼= T

)
.

Let Fq(x) denote the event that G≤T1(x) is a tree satisfying the property Fq, where T1 =
t0 + t1 + q. Summing over all such trees, we see that

P(Fq(x)) ∼ P(Fq) ∼ 4γ0e
−1n−1λq⋆ (4.47)

uniformly in q such that |εq| ≤M , for some M → ∞.
Let q0 be chosen so that εq0 tends to minus infinity very slowly, and let F (x) = Fq0(x).

Let N be the number of vertices x for which F (x) holds; then

EN = nP(Fq0(x)) ∼ 4γ0e
−1λq0⋆ → ∞.

We are now almost finished: it remains to use a second moment argument to show that
N is whp large, and then to bound the probability that two vertices satisfying the relevant
condition are close.

Given distinct vertices x and y of G = G(n, λ/n), let A(x, y) be the event that F (x)
and F (y) both hold, with the trees ‘witnessing’ this being disjoint. For trees T1 and T2

consistent with Fq0, by Lemma 4.8 the probability that the relevant neighbourhoods of x and
y are disjoint and isomorphic to T1 and T2 respectively is asymptotically the product of the
individual probabilities. It follows easily that

P(A(x, y)) ∼ P(F (x))P(F (y)) = P(F (x))2. (4.48)

At this point, it seems that there should be a simple argument involving ‘pulling the trees
off the 2-core and reattaching them randomly’. However, once again, we did not manage to
make such an argument precise in a simple way.

Our next aim is to show that it is very unlikely that F (x) and F (y) hold and the trees
witnessing these events overlap. Recall that if F (x) holds, then there is a unique ‘first’ vertex
in the neighbourhoods of x with two children with descendants in generation t0+t1+q0. Let x′

denote this vertex. Since the two children of x′ each have at least ω′/ε = Λ1/12/ε descendants
in generation t0 + t1 + q0, with probability at least 1 − o(Λ−100), say, their neighbourhoods
continue to grow, and eventually meet, in which case x′ is in the 2-core. Let F̃ (x) be the event
that F (x) holds and x′ is in the 2-core, so P(F̃ (x)) ∼ P(F (x)). Also, let B1 be the ‘global
bad event’ that there is some vertex x such that F (x) holds but x′ is not in the 2-core. Then

P(B1) ≤ nP(F (x))o(Λ−100) = o(λq0⋆ Λ−100) = o(1), (4.49)

assuming, as we may, that εq0 ≥ − log log Λ, say.
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Similarly, if F (x) and F (y) hold, then it is very likely that x and y are in the same
component. Writing B2 for the event that there are x and y in different components such that
F (x) and F (y) hold, we have

P(B2) = o(1). (4.50)

For our second moment bound, we will study Ñ , the number of vertices x such that F̃ (x)
holds. Note that whp Ñ is equal to N , since B1 has probability o(1). Also,

E Ñ = nP(F̃ (x)) ∼ nP(F (x)) = EN ∼ 4γ0e
−1λq0⋆ → ∞.

Let Ã(x, y) denote the event that F̃ (x) and F̃ (y) hold, with the trees witnessing F (x)
and F (y) disjoint. If Ã(x, y) holds, then so does A(x, y). On the other hand, continuing to
explore as before, we see that given A(x, y), the vertices x′ and y′ are very likely to be in the
2-core, so

P(Ã(x, y)) ∼ P(A(x, y)) ∼ P(F (x))2 ∼ P(F̃ (x))2. (4.51)

It remains to consider the case of overlapping trees.
We defined F (x) in such a way that if F (x) holds, then x′ together with the component of

G−x′ containing x forms a tree, in which x is the unique vertex at maximal distance from x′.
If F̃ (x) holds, so x′ is in the 2-core, then x is the unique vertex of this tree at maximal distance
from the 2-core. Let Tx denote this tree, or, in general, the tree component containing x if
we delete from G all edges lying in the 2-core. If F̃ (x) and F̃ (y) both hold, then from this
uniqueness property, the trees Tx and Ty are disjoint, except possibly at x′ and y′: they are
two distinct trees attached to the 2-core.

Let B̃(x, y) be the event that F̃ (x) ∩ F̃ (y) holds and the trees Tx and Ty are disjoint
(except possibly at x′ and y′), but the trees witnessing F (x) and F (y) overlap. From the
remarks above, for x 6= y,

F̃ (x) ∩ F̃ (y) = Ã(x, y) ∪ B̃(x, y). (4.52)

To bound P(B̃(x, y)), we first test whether F (x) (not F̃ (x)) holds, in a way that first uncovers
the tree Tx. Roughly speaking, we would like to show that the number of trees Tx hanging
off the 2-core is well behaved (i.e., its second moment is not too large). Then we could say
that the attachment points to the 2-core are uniformly distributed, so it’s unlikely that there
are two trees attached to close points. The problem is that we need independence to get the
second moment bound, and we do not have this, as we can’t tell in advance when we have
reached the 2-core and should stop exploring the tree from x. To get around this, we choose
a stopping vertex in advance.

Given distinct vertices x and x̄, let F (x; x̄) be the event that F (x) holds, with the division
vertex x′ equal to x̄. Note that F (x) is the disjoint union of the events F (x; x̄), x̄ ∈ V (G)\{x},
all of which are equally likely. Thus

P(F (x; x̄)) = (n− 1)−1
P(F (x)) ∼ n−1

P(F (x)). (4.53)

Let T (x; x̄) be the event that x̄ together with the component of G − x̄ containing x forms
a tree consistent with F (x; x̄). In other words, T (x; x̄) is the event that the part of G that
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we can reach from x if we do not allow ourselves to pass through x̄ is one of a certain set of
trees. Note that we do not insist that x̄ is in fact in the 2-core, and that if F (x; x̄) holds then
T (x; x̄) must hold.

Crucially, we may test whether T (x; x̄) holds by exploring the neighbourhoods of x in
the usual way, except that if we reach x̄ at some point, we do not test for edges from x̄ to
unseen vertices. (Since we require the relevant neighbourhood to be a tree, we do test for
edges between all pairs of reached vertices.) Also, given T (x; x̄), we may test whether F (x; x̄)
holds by continuing to explore from x̄; roughly speaking, the property required of this further
exploration is captured by C ∩D1 ∩D′

1 above (this was the reason for ‘splitting off’ D′
1 from

D2), and has probability essentially Θ(ε2).
More precisely, suppose that T (x; x̄) holds and let us condition on the particular tree

Tx revealed by the exploration so far. Let V ′ = V (G) \ V (Tx) ∪ {x̄}. Then we have not
yet examined any edges inside V ′, and the only edges outside V ′ are those of Tx. Since Tx
is required to be consistent with F (x; x̄), we know that d(x, x0) = t0 + r for some r with
|r| ≤ 2M/ε, and, from (4.46), that Tx contains o(n2/3) vertices.

Now (recalling that F (x) = Fq0(x)), the event F (x; x̄) holds if and only if the following
conditions are satisfied as we explore a further t = T1 − (t0 + r) = t1 + q0 − r steps from x̄
in G[V ′]: (i) the graph we uncover is a tree, (ii) there are exactly two vertices (y and y′) in
Γ1(x̄) with ‘descendants’ in ΓT ′

1−(t0+r)(x̄), where T ′
1 = t0 + ⌊t1/2⌋, (iii) these two vertices each

have at least ω′/ε descendants in Γt(x̄), (iv) between them, y and y′ have at most (ω−2ω′)/ε
descendants in each Γt′(x̄), t′ ≤ t, and (v) the neighbours of x̄ other than y and y′ have in
total at most ω′/ε neighbours in each of these sets. Indeed, (i) and (ii) together with the fact
that Tx is consistent with F (x; x̄) ensure that the event corresponding to A ∩ B ∩D2 in the
definition of F = Fq0 holds, (iii) ensures that C holds, (iv) that D1 holds, and (v) D′

1.
Arguing as for (4.47), we can approximate the probability of these conditions holding by

that of the corresponding branching process event (the conditions ensure that only o(n2/3)
vertices are involved in total). Then we may consider the infinite version of the branching
process event, differing only in that we assume that y and y′ are in X+

1 . Now we require
that |X+

1 | = 2; since |X+
1 | ∼ Po(sλ), this has probability Θ(ε2). Given this, in the branching

process the remaining conditions corresponding to (iii), (iv) and (v) are exactly the conditions
C, D1 and D′

1 considered earlier, except that now x̄ plays the role of the initial particle x0,
and all generation numbers are offset by t0 + r. In particular, the conditional probability of
these events is exactly the probability P(C∩D1∩D′

1 | A∩B) evaluated in (4.45), with r′ = εr
and q′ = εq0.

Let ψ = ψ(n) be a function tending infinity to arbitrarily slowly (more slowly than the

reciprocal of the implicit function in the o(·) notation in (4.39)), and let us write f = Θ̃(g)
if f/g = ψO(1). Taking M(n) to tend to infinity sufficiently slowly, from the comments above
and (4.45), we see that

P
(
F (x; x̄) | T (x; x̄)

)
= Θ̃(ε2)

whenever T (x; x̄) holds. From (4.53) it follows that for all x̄ 6= x we have

P(T (x; x̄)) = Θ̃
(
ε−2n−1

P(F (x))
)

= Θ̃(ε−2n−2),

recalling (from (4.47)) that P(F (x)) = Θ(n−1λq0⋆ ) = Θ̃(n−1).
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Given x 6= y and x̄, ȳ, let B′(x, y, x̄, ȳ) be the event that T (x, x̄) ∩ T (y, ȳ) holds, with
the trees Tx and Ty edge disjoint. Note that if this event holds, then x̄, ȳ /∈ {x, y}. We may
test whether B′(x, y, x̄, ȳ) holds by exploring from x and y respectively (with the explorations
modified at x̄ and ȳ), and the two explorations cannot ‘help’ each other. Arguing as for (4.48)
above, using Lemma 4.8, it follows that

P(B′(x, y, x̄, ȳ)) ∼ P(T (x, x̄))P(T (y, ȳ)) = Θ̃(ε−4n−4)

for all x̄, ȳ /∈ {x, y}; the probability is 0 if x̄ or ȳ ∈ {x, y}.
Fix vertices x 6= y, and let x and y be chosen independently and uniformly at random

from V (G). Note that

P(B′(x, y,x,y)) = Θ̃(ε−4n−4). (4.54)

Let us condition on B′(x, y,x,y). Moreover, we condition on Vx = V (Tx) \ {x}, on
Vy = V (Ty) \ {y} and on the structure of the trees Tx and Ty, but not on x and y. Given this
information, x and y are independent and uniform from V ′ = V (G) \ (Vx ∪ Vy). Indeed, the
given information says that certain trees Tx and Ty are attached to x,y ∈ V ′. Each tree is
equally likely to be attached to any vertex of V ′, so, given this, the attachment vertices are
uniform on V ′.

The event we have conditioned on does not depend on the edges in V ′. Hence, the
conditional distribution of G[V ′] is that of G′ = G(n′, λ/n), where n′ = n−|Tx|+ 1−|Ty|+ 1.
From the definition of Fq0, we have |Tx|, |Ty| = o(n2/3), so n′ = n − o(n2/3). The edge
probabilities in G′ are thus λ′/n′ where

λ′ = λn′/n = (1 + ε)(n− o(n2/3))/n = 1 + ε− o(n−1/3) = 1 + ε′,

with ε′ ∼ ε.
Let B̃′(x, y) be the event that B̃(x, y) holds, and x = x′, y = y′, so

P(B̃′(x, y)) = n−2
P(B̃(x, y)). (4.55)

If B̃′(x, y) holds, then so does B′(x, y,x,y). Furthermore, x and y must be in the 2-core of
G, which is the same as the 2-core U of G′. Also, x and y must be close, i.e., within distance
d = 2t1 + 4M(n)/ε ∼ 2t1.

From the remarks above, we may bound P
(
B̃′(x, y) | B′(x, y,x,y)

)
by the conditional

probability (given the trees Tx, Ty etc but not x, y) that x and y are close in U , and hence
by

|G′|−2
EMd(G

′) ∼ n−2
EMd(G

′),

where Md(G
′) is the number of close pairs in U , and the expectation is over the random graph

G′.
Now G′ has the distribution of G(n′, λ′/n′), with λ′ = 1 + ε′ and ε′ ∼ ε. Also, d ∼ 2t1 ∼

2 logω/ε = log(ε3n)/(3ε) ∼ 3−1 log((ε′)3n′)/ε′. By Lemma 4.26, we thus have EMd(G
′) =

o(ε4n2). Taking our slowly growing function ψ(n) small enough, the expectation is smaller
than ε4n2 by at least a factor eψ, say. It follows that

P
(
B̃′(x, y) | B′(x, y,x,y)

)
≤ Θ(ε4e−ψ).
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Using (4.54) it follows that P(B̃′(x, y)) = Õ(n−4e−ψ) = o(n−4), and hence, from (4.55), we
have

P(B̃(x, y)) = o(n−2). (4.56)

It follows that whp there are no pairs (x, y) for which B̃(x, y) holds. Recalling (4.49), (4.50)
and (4.52), and noting that Ã(x, y) trivially implies A(x, y), we see that whp every pair of
vertices x 6= y for which F (x) ∩ F (y) holds has the properties

d(x, y) <∞ and A(x, y). (4.57)

Using (4.51), (4.52) and (4.56), and recalling that Ñ denotes the number of vertices x
such that F̃ (x) holds, we have

E(Ñ(Ñ − 1)) =
∑

x

∑

y 6=x

(
P(Ã(x, y)) + P(B̃(x, y))

)
= (1 + o(1))(E Ñ)2 + o(1).

Since E Ñ → ∞, it follows that E Ñ2 ∼ (E Ñ)2, and hence that Ñ is concentrated about
its mean. Since EN ∼ E Ñ , and Ñ and N are whp equal, we thus have N concentrated about
its mean also, where N is the number of x such that F (x) holds.

Finally, the end of the proof is as in Section 2.2. Set t2 = log(ε3n/ω2)/ log λ, let Kε→ ∞
very slowly, let N be the number of vertices x for which F (x) holds, and let M be the number
of pairs x, y for which A(x, y) holds (i.e., F (x) and F (y) hold disjointly) but d(x, y) ≤ d,
where

d = 2(t0 + t1 + q0) + t2 −K = 2
log(ε3n)

log(1/λ⋆)
+ 2

logω

log λ
+

log(ε3n/ω2)

log λ
+O(1) + 2q0 −K

=
log(ε3n)

log λ
+ 2

log(ε3n)

log(1/λ⋆)
+O(1) + 2q0 −K.

Given that F (x) and F (y) hold disjointly, the (t0 + t1 + q0)-neighbourhoods of x and y each
contain at most ω/ε vertices. Exploring from x and y in the obvious way, the rest of the
graph is ‘unseen’, and the expected number of paths of length at most t2 − K joining one
neighbourhood to the other is at most

(ω/ε)2
∑

k≤t2−K
nk−1(λ/n)k = ω2ε−2n−1

∑

k≤t2−K
λk

= O(ω2ε−3n−1λt2−K) = O(λ−K) = o(1).

(Here it is important that we work with F (x) and not F̃ (x).) Hence, the conditional proba-
bility that d(x, y) ≤ d is o(1), so EM = o

(
n(n − 1)P(A(x, y))

)
= o((EN)2), using (4.48). It

follows that whp there are at least EN/2 ≥ 2 vertices x for which F (x) holds, but at most
(EN)2/5 pairs of vertices with A(x, y) holding but d(x, y) ≤ d. Using (4.57), it follows that
diam(G) ≤ d whp. Recalling that both −q0ε > 0 and Kε may be taken to tend to infinity
arbitrarily slowly, this completes the proof of the lower bound in Theorem 1.3.
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4.7 The upper bound

Throughout we fix a function ε = ε(n) > 0 satisfying ε → 0 and ε3n → ∞. As before we
shall often write Λ for ε3n, and set

ω = Λ1/6.

As before, let t0 = log(ε3n)/ log(1/λ⋆), t1 = logω/ log λ, and t2 = log(ε3n/ω2)/ log λ; we
ignore rounding to integers, which makes no essential difference in our calculations.

Let K = K(n) be such that Kε→ ∞, and let

d0 = log(ε3n)/ log λ+ 2 log(ε3n)/ log(1/λ⋆) = 2t0 + 2t1 + t2, (4.58)

so our aim is to prove that diam(G) ≤ d0 +K holds whp, and we may assume if we like that
Kε grows slower than any given function of n tending to infinity. The basic idea is to simply
estimate the expected number of pairs x, y with d(x, y) ≥ d0 +K. However, the calculations
in the previous sections imply that on its own, this will not work; the expectation turns out
to be roughly ε−4 if Kε grows slowly. The reason is that, given that a tree hanging off the
2-core has height at least h, the expected number of vertices it contains at distance at least
h from the 2-core is of order ε−2.

To get around this, we need to impose a version of the wedge condition; we should like
to consider only vertices x that are at maximal distance from the 2-core in their tree. (Note
that we cannot insist that x is the unique vertex at this distance in its tree, as we did before.)
This suggests the weak wedge condition: roughly speaking, we should like any ‘side branches’
starting from Γt(x) to have height at most t, one more than the height allowed in the strong
wedge condition. This is all very well if the neighbourhoods of x out to the relevant distance
form a tree, but in the upper bound we must consider all vertices x, so we must modify the
condition. Unfortunately, most of the work in this section will be needed to show that we can
rule out various unlikely cases (such as the diameter coming from a pair x, y where x is close
to a short cycle).

Suppose that x and y are a pair of vertices at maximal distance, pick any t ≤ d(x, y),
and consider any shortest path P from x to y. Then, tracing P backwards from y to x, we
first meet G≤t(x) at some vertex vt ∈ Γt(x). Since P is shortest, d(vt, y) = d(x, y) − t, so
continuing from vt to x along the unique path in G0

≤t(x) joining these vertices, we find another
shortest path P ′ from x to y that starts with v0v1v2 · · · vt, a path in G0

≤t(x). We shall split
the tree G0

≤t(x) into the trunk T , consisting of all vertices with descendants in Γt(x), plus
one side branch Bv for each v ∈ T . Here Bv consists of v together with all its descendants in
G0

≤t(x) that are not descendants of another trunk vertex. (This corresponds roughly to the
decomposition of Xλ into X

+
λ together with independent copies of Xλ⋆ ; the difference is that

we only consider finitely many generations, as we must in the graph.)
Of course each vi is a trunk vertex. The key observation is that for 0 ≤ i ≤ t, the side

branch Bvi
is either short, i.e., has height at most i, or is reattached, i.e., Bvi

− vi meets an
edge of G≤t(x) \ G0

≤t(x). Otherwise, let w be a vertex of Bvi
at maximum distance from vi

in Bvi
. Since Bvi

is not reattached, any path from w to y must pass via vi. Since Bvi
is not

short, the total length of such a path exceeds d(x, y), contradicting the assumption that x
and y are at maximum distance.
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Given 1 ≤ d ≤ t and a vertex x, let S denote the set of vertices of Γd(x) that have one or
more descendants in Γt(x), in the tree G0

≤t(x). We say that x is (d, t)-acceptable if there is a
vertex v ∈ S such that every side branch in G0

≤t(x) of the path x = v0v1 · · · vd = v is either
short or reattached. From the observation above, if x and y are at maximal distance, then x
and y must be (d, t)-acceptable for any 1 ≤ d < t < d(x, y).

Set h = ε−1 log log Λ, say. (Here ε−1 times any slowly-enough growing function will do.)
For t > h, let At = At(x) be the event that x is (h, t)-acceptable, and let Bt = Bt(x) be the
event that 0 < |Γr(x)| < ω/ε holds for 0 ≤ r ≤ t. The following lemma will play a key role in
our estimates.

Lemma 4.27. Under the assumptions of Theorem 1.3 we have

P(At ∩ Bt) ≤ (1 + o(1))4γ0ε
3λt−t1⋆ (4.59)

uniformly in all t in the range t1 + 3h ≤ t ≤ 10ε−1 log Λ, where γ0 > 0 is the constant
appearing in Lemma 4.21.

Recall that, by the second part of Theorem 4.19, in the branching process Xλ we have

P
(
0 < |Xr| < ω/ε, r = 0 . . . t

)
∼ 4ελt−t1⋆ (4.60)

for any t ≤ 10ε−1 log Λ such that ε(t− t1) → ∞; by Lemma 4.7, this carries over to the graph.
Thus Lemma 4.27 says essentially that the conditional probability that our modified wedge
condition holds is asymptotically γ0ε

2. We postpone the proof of the lemma for the moment.
Unfortunately, to handle the case when Λ = ε3n grows slowly, it turns out that we need

two further lemmas. The first is a very simple observation; once one thinks of the lemma, it
is very easy to prove. We thought of it after seeing the preprint of Ding, Kim, Lubetzky and
Peres [20].

Lemma 4.28. Let L = L(n) be any function satisfying L = o(1/ε). Then, under the condi-
tions of Theorem 1.3, whp the giant component of G(n, λ/n) contains no cycle of length at
most L.

Proof. Fix 3 ≤ ℓ ≤ L and a sequence v1, . . . , vℓ of distinct vertices of G = G(n, λ/n). Let E
be the event that this sequence forms a cycle, i.e., that the edges v1v2, v2v3, . . . , vℓv1 are all
present, so P(E) = λℓ/nℓ ∼ n−ℓ. Let F be the event that E holds and this cycle is in the
giant component. First testing whether E holds, and then exploring outwards from this cycle,
by comparison with the branching process as usual we see that P(F | E) = O(ℓs) = O(εℓ),
with the implicit constant universal. Hence P(F ) = O(εℓn−ℓ). Summing over all at most nℓ

sequences, and dividing by 2ℓ to avoid overcounting, the expected number of ℓ-cycles in the
giant component is thus O(ε). Finally summing over ℓ ≤ L and using Markov’s inequality
gives the result.

Lemma 4.29. Let ψ = ψ(n) be some function of n tending to infinity slowly, with ψ =
O(Λ1/8) and ψ = o(ε−1/10). Let A∗(x) denote the event that tω/ε(x) is defined, x is (d, t)-
acceptable for all 1 ≤ d < t ≤ tω/ε(x), and G≤t(x) is a tree for t = min{tω/ε(x), ε−1/ψ}.
Under the assumptions of Theorem 1.3 we have

P(A∗(x)) = O(ε3ψ8) = O(ε3Λ).
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(It is likely that the probability estimated above is O(ε3), at least if the quantity ε−1/ψ
in the definition of t is replaced by a small constant times ε−1, but even a bound such as
O(Λ100ε3) would be more than enough for us here.)

Assuming Lemmas 4.27 and 4.29 for the moment, it is not hard to complete the proof of
Theorem 1.3, calculating as in Section 2, by summing the expected number of pairs x, y with
tω/ε in certain ranges and both having acceptable neighbourhoods.

Proof of Theorem 1.3. Let d0 be defined by (4.58), and let K = K(n) be such that Kε→ ∞
and K ≤ ε−1 log log Λ, say. Our aim is to show that whp there is no pair (x, y) of vertices in
the same component with d(x, y) ≥ d0+K. In the light of  Luczak’s bound (1.7) from [32], and
a standard duality argument, we need only consider the giant component. (In fact,  Luczak
and Seierstad [33] have shown that in the random graph process, whp, for all densities in the
range considered here, the diameter is realized by the giant component.)

Let us say that a vertex x is tree-like if G≤ε−1/ψ(x) is a tree. By Lemma 4.28, whp every
vertex in the giant component is tree-like, so it suffices to consider pairs (x, y) in which both
x and y have this property.

As noted above, in any pair (x, y) at maximal distance greater than d0, both x and y must
be (d, t)-acceptable for any d < t < d0. Set

t+ = t0 + t1 +K/3,

noting that t+ < d0/2 and t+ > h = ε−1 log log Λ. By Lemma 4.27, for any vertex x we have

P(At+(x) ∩ Bt+(x)) ≤ (4 + o(1))γ0ε
3λt

+−t1
⋆ = O(n−1λK/3⋆ ) = o(n−1),

so whp there is no vertex for which this event holds. Let A′(x) be the event that tω/ε(x) is
defined and at most t+, and A∗(x) holds, where A∗(x) is defined in Lemma 4.29. Let us call
(x, y) a regular far pair if d(x, y) > d0 +K, and the events A′(x) and A′(y) hold. Then from
the comments above it suffices to prove that whp there are no regular far pairs.

We may test whether A′(x) holds by uncovering successive neighbourhoods of x, stopping
at the first (if there is one) with at least ω/ε vertices, and then testing for acceptability and
the tree condition, or stopping after t+ steps if there is no such neighbourhood (in which
case A′(x) does not hold). By definition, each neighbourhood other than the last has at most
ω/ε vertices. By Lemma 4.4, the probability that we find more than 2ω/ε vertices in the
last neighbourhood is at most exp(−Ω(ω/ε)) = exp(−Ω(ε−1/2n1/6)) = o(n−100). Ignoring this
event, testing A′(x) involves uncovering

O(t+ω/ε) = O(ω log Λ/ε2) = O(Λ1/3ε−2) = O(Λ1/3Λ−2/3n2/3) = o(n2/3)

vertices. Also, we uncover O(ω/ε) = o(n1/3) vertices in each generation. Noting that
ε(t+ω/ε)2 = O(Λ2/3ε−3) = O(nΛ−1/3) = o(n), Lemmas 4.7 and 4.8 apply to the corresponding
trees. By Lemma 4.8 it follows that for x and y distinct,

P
(
A′(x) ∩A′(y) ∩ {d(x, y) > tω/ε(x) + tω/ε(y)}

)

= (1 + o(1))P(A′(x))P(A′(y)) + o(n−100) = O(Λ2ε6), (4.61)
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using P(A′(x)) ≤ P(A∗(x)) and Lemma 4.29 for the final bound. (In fact, we have glossed
over something here: using Lemma 4.8 shows that the events that the explorations from
x and y give certain trees consistent with A′(x) and A′(y) are asymptotically independent.
However, the events A′(z), z = x, y, depend not just on the trees, but also on any additional
edges between the trees’ vertices. Since these are present independently with probability λ/n,
asymptotic independence of the trees gives asymptotic independence of the entire neighbour-
hoods.)

Suppose we have explored the neighbourhoods of x and y and found that the event de-
scribed above holds, i.e., A′(x) and A′(y) hold disjointly. Then Lemma 4.5 applies, and the
conditional probability that the explorations do not meet within t2 + 2ε−1 log log Λ further
steps is exp

(
−(1 + o(1))(log Λ)2+o(1)

)
+O(Λ−10) = O(Λ−10). Summing over choices for x and

y, we see that the expected number of regular far pairs with d(x, y) ≥ tω/ε(x) + tω/ε(y) + t2 +
2ε−1 log log Λ is O(n2Λ2ε6Λ−10) = O(Λ−6) = o(1). Hence, whp there are no such pairs.

Set
t− = t0 + t1 − 2ε−1 log log Λ,

noting that whp every vertex x in a regular far pair satisfies

tω/ε(x) ≥ d0 +K − (t2 + 2ε−1 log log Λ) − t+ ≥ t0 + t1 − 2ε−1 log log Λ = t−. (4.62)

This value is large enough that Lemma 4.27 applies.
(Let us remark that if Λ ≥ (log n)20, say, then the argument above simplifies: we may

replace 2ε−1 log log Λ by 2ε−1 log log n, and the error probability given by Lemma 4.5 is then
o(n−100) (using the middle expression in (4.13)), so there is no need to check acceptability to
conclude the equivalent of (4.62). In particular, there is no need for Lemma 4.29 in this case
at all.)

For distinct vertices x and y and integers t− ≤ t, t′ ≤ t+, let

Ex,y,t,t′ = A[t](x) ∩ {tω/ε(x) = t} ∩A[t′](y) ∩ {tω/ε(y) = t′} ∩ {d(x, y) ≥ d0 +K},

where [t] denotes the largest multiple of ⌊1/ε⌋ that is strictly smaller than t. From the
comments above, to prove that diam(G) ≤ d0 + K holds whp it suffices to prove that whp
none of the events Ex,y,t,t′ holds. (Here we may impose whatever acceptability conditions we
like: the reason for choosing exactly A[t](x) will become clear in a moment.)

Using Lemma 4.8 as above, the probability that E1 = A[t](x) ∩ {tω/ε(x) = t} and E2 =
A[t′](y) ∩ {tω/ε(y) = t′} hold with disjoint witnesses is asymptotically P(E1)P(E2). Noting
that d0 +K − t− t′ − t2 is within 5ε−1 log log Λ = o(t2) of 0 and is hence at least −t2/2, given
that E1 and E2 hold disjointly, Lemma 4.5 tells us that the probability that d(x, y) ≥ d0 +K
is exp(−(1 + o(1))λd0+K−t−t′−t2) +O(Λ−10).

Let U =
⋃
x 6=y, t−≤t,t′≤t+ Ex,y,t,t′. Then, writing A . B for A ≤ (1 + o(1))B,

P(U) . n2

t+∑

t=t−

t+∑

t′=t−

P
(
A[t](x) ∩ {tω/ε(x) = t}

)
P
(
A[t′](x) ∩ {tω/ε(x) = t′}

)

(
exp
(
−(1 + o(1))λd0+K−t−t′−t2)+O(Λ−10)

)
.
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Grouping the sums into blocks of size k = ⌊1/ε⌋, and noting that if r is a multiple of k
then

r+k∑

t=r+1

P
(
A[t](x) ∩ {tω/ε(x) = t}

)
= P

(
Ar(x) ∩ {r < tω/ε(x) ≤ r + k}

)
≤ P(Ar(x) ∩Br(x)),

we have

P(U) . n2
′∑

t−−k≤t≤t+

′∑

t−−k≤t′≤t+
P(At(x) ∩ Bt(x))P(At′(x) ∩ Bt′(x))

(
exp
(
−(1 + o(1))λd0+K−t−t′−t2−2k

)
+O(Λ−10)

)
,

where primes denote sums that run over multiples of k. From Lemma 4.27 we thus have

P(U) . n2

′∑

t, t′

16γ2
0ε

6λt+t
′−2t1

⋆

(
exp
(
−(1 + o(1))λd0+K−t−t′−t2−2k

)
+O(Λ−10)

)
,

= o(1) + n2
′∑

t, t′

16γ2
0ε

6λt+t
′−2t1

⋆ exp
(
−(1 + o(1))λd0+K−t−t′−t2−2k

)
,

since there are at most (εt+)2 = O((log Λ)2) terms in the double sum (which has the same lim-
its as before), so the contribution of theO(Λ−10) term can be bounded by 16n2γ2

0ε
6(log Λ)2O(Λ−10) =

O(Λ−8(log Λ)2) = o(1).
Taking the final term in the sums above, we have t and t′ at least t+ − k, so the exponent

of λ above is at least d0 +K − 2t+ − t2 − 4k = K/3 − 4k, which is at least K/4 if n is large.
Hence the exponential term above is always at most exp(−λK/4/2), say. Taking the final term
in the sum, the corresponding λ···⋆ term is at most

λ2t+−2k−2t1
⋆ = λ2t0+2K/3−2k

⋆ ≤ λ2t0
⋆ = ε−6n−2.

As t + t′ decreases from its maximum possible value in steps of k, the exponent of λ in the
exponential increases by k ∼ 1/ε ∼ 1/ logλ, so the λ··· term increases by a factor that is
asymptotically e and certainly at least 2. The λ···⋆ term increases by a factor of λ−k⋆ which is
asymptotically e and certainly at most 3. Also, after r steps, there are at most r + 1 ways of
realizing a given sum t + t′. It follows that

P(U) ≤ o(1) +
∞∑

r=0

16γ2
0(r + 1)3r exp(−λK/42r−1),

say. Since λK/4 → ∞, the exponential term in the final sum decreases extremely rapidly,
and the whole sum is dominated by its first term, which is o(1). This completes the proof of
Theorem 1.3, assuming Lemmas 4.27 and 4.29.
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Let us note for later, when we come to consider the distribution of the diameter, that if
we modify the definition of Ex,y,t,t′ by replacing d(x, y) ≥ d0 + K by d(x, y) ≥ d0 −K, then
we obtain

P(U) ≤
∞∑

r=0

16γ2
0(r + 1)3r exp(−λK/4−2K2r−1).

Indeed, everything is as before except that the exponent of λ has decreased by 2K. Now this
new sum is large, but the contribution from terms with r ≥ log(λ3K)/ log 2 ∼ 3Kε/ log 2 is
still small. Hence, the sum from terms in which one of t, t′ is smaller than t+ by more than
3⌊1/ε⌋Kε/ log 2 ∼ 3K/ log 2 ≤ 5K is small. Since diam(G) ≥ d0 − K whp, it follows that
whp the diameter is realized by vertices x and y which form a regular far pair in which each
vertex z has t0 + t1 − 5K ≤ tω/ε(z) ≤ t+ = t0 + t1 + K/3. Since Kε may be taken to tend
to infinity arbitrarily slowly, this says that for a given error probability, it suffices to consider
regular far pairs in which the vertices satisfy

tω/ε(z) = t0 + t1 +O(1/ε). (4.63)

It remains to prove Lemmas 4.27 and 4.29.

Proof of Lemma 4.27. Recall that t1 + 3h ≤ t ≤ 10ε−1 log Λ, and h = ε−1 log log Λ < t/2.
Let A = A(x) denote the event that x is (h, t)-acceptable, and Bt = Bt(x) the event that
0 < |Γr(x)| < ω/ε holds for 0 ≤ r ≤ t. Our aim is to bound the probability of A ∩ Bt; note
that this event depends only on G≤t(x).

To avoid dependence, we’d like to work with the branching process rather than the graph,
but we cannot assume that the relevant neighbourhoods of x are trees. So let us model the pair
(G0

≤t(x), G≤t(x)) by a pair (T ⋆, G⋆) as follows: first construct the branching process (Xr)0≤r≤t,
keeping track of the order in which the particles are born, as in the proof of Lemma 4.7. Let T ⋆

be the corresponding labelled rooted tree of height at most t. Given T ⋆, i.e., given (Xr), form
G⋆ by starting with T ⋆ and adding each of the following ‘potential extra edges’ independently
with probability λ/n: all possible edges within Xr and, for each v ∈ Xr, all possible edges from
v to children (in Xr+1) of earlier particles v′ ∈ Xr. The potential extra edges correspond to
edges that would not have been tested in the graph exploration, so the conditional distribution
of G⋆ given T ⋆ is the same as that of G≤t(x) given G0

≤t(x) (with an order on the vertices). If
(T0, G0) is any possible value of (G0

≤t(x), G≤t(x)) consistent with A∩Bt, then since Bt holds,
T0 is a tree to which Lemma 4.7 applies. So P(G0

≤t(x) ∼= T0) ∼ P(T ⋆ ∼= T0). It follows that
P(G≤t(x) ∼= G0) ∼ P(G⋆ ∼= G0). Hence, P((T ⋆, G⋆) ∈ A ∩ Bt) is asymptotically equal to the
probability that (G0

≤t(x), G≤t(x)) ∈ A ∩ Bt. From now on we consider the model (T ⋆, G⋆),
forgetting about the graph G(n, λ/n).

For technical reasons we modify G⋆ slightly as follows: recalling that each set Xr comes
with an order, we only test for possible extra edges vw when both endvertices are among the
first ω/ε vertices in the relevant set(s) Xr. This does not affect the probability of A∩Bt, since
when Bt holds (which is determined by T ⋆), the distribution of G⋆ given T ⋆ is unchanged.

Let S be the set of particles in Xh with descendants in Xt. To achieve independence
between A and Bt, let us weaken B = Bt to B′ = B′

t, the condition that for every v ∈ S,
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the number of descendants of v in each Xr, h ≤ r ≤ t, is at most ω/ε. Our aim is to bound
P(A ∩B) by P(A ∩ B′); to evaluate the latter we estimate P(B′) and P(A | B′).

Our first aim is to show that

P(B′) ∼ P(B) = p0 ∼ 4ελt−t1⋆ , (4.64)

where the final estimate is from (4.60). Note that P(B′ | |S| = s) = ps, where p is the
(unconditional) probability that 0 < |Xr| < ω/ε holds for 0 ≤ r ≤ t−h. From Theorem 4.19,
we have p ∼ 4ελt−h−t1⋆ ∼ p0λ

−h
⋆ . Also, since t ≥ t1 + 3h, we have p ≤ (1 + o(1))λ2h

⋆ . Since
εh→ ∞ it follows that p2 ≤ (1 + o(1))λh⋆p0 = o(p0).

Since B ⊂ B′, we have

P
(
B ∩ {|S| ≥ 2}

)
≤ P

(
B′ ∩ {|S| ≥ 2}

)
≤ P

(
B′ | {|S| ≥ 2}

)
≤ p2 = o(P(B)).

Recalling that if B or B′ holds then |S| ≥ 1, to show that P(B′) ∼ P(B) it suffices to show that
P(B ∩ {|S| = 1}) ∼ P(B′ ∩ {|S| = 1}) = p. Let B′′ be a strengthened version of B′, where we
replace the upper bound ω/ε by ω′/ε, with ω′ = (1−1/ log Λ)ω ∼ ω. Applying Theorem 4.19
again with this new value of ω′, we find that P(B′′ | |S| = 1) ∼ p. But given that |S| = 1
and B′′ holds, B certainly holds as long as the tree T formed by the descendants of the root
that are not descendants of the unique particle in S contains at most ω/(ε log Λ) > Λ1/10/ε
particles in each generation.

The distribution of T is dominated by that of the tree T ′ formed by starting one copy of
Xλ⋆ in each generation 0 ≤ t < h. (In T these copies are conditioned to die by a specific
time.) The first h − 1 generations of T ′ have exactly the distribution of the process (Dt)
studied in Lemma 4.22. Hence, by the second part of that lemma, the probability that one of
the first h generations of T exceeds size Λ1/20/ε is O(εhe−Ω(Λ1/20)) = o(1). From generation h
onwards, the tree T evolves as a subcritical branching process, and from a standard martingale
argument the probability that any later generation exceeds the size of generation h by a factor
of Λ1/20 is at most 1/Λ1/20 = o(1). Thus we do indeed have P(B | B′′ ∩ {|S| = 1}) ∼ 1, and
it follows that P(B′) ∼ P(B), as claimed.

Recalling that p2 = o(P(B)) and hence p2 = o(P(B′)), for r ≥ 2 we have

P(|S| = r | B′) ≤ P(B′ | |S| = r)/P(B′) = o(pr−2).

Summing, it follows that
E(|S| | B′) ∼ 1. (4.65)

We claim that (in the modified G⋆ model)

P(A | B′ ∩ {|S| = N}) ≤ (1 + o(1))γ0Nε
2. (4.66)

Using P(A | B′) =
∑

N≥1 P(|S| = N | B′)P(A | B′ ∩ {|S| = N}), and (4.65) and (4.64), the
required bound (4.59) on P(A ∩B) ≤ P(A ∩ B′) then follows.

It remains only to prove (4.66). Recall that we are working with the model (T ⋆, G⋆). Let
us construct T ⋆ (which is simply the first t generations of Xλ) by decomposing it into the
trunk and side branches exactly as in the graph. Thus the trunk consists of the subtree T ′ of
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T ⋆ consisting of all particles with descendants in Xt. Then T ⋆ may be formed by adding for
each v in generation r, 0 ≤ r < t, of T ′ a copy Wv of the process (Xt′)0≤t′≤t−r conditioned on
Xt−r being empty. We may think of Wv as the subcritical process Xλ⋆ conditioned on dying
out by time t− r.

Now whether B′ holds is determined by T ′ together with the trees Wv for vertices v in
sets Xr, r ≥ h. Let us condition on T ′ and these trees Wv; the only remaining randomness is
in the Wv for v ∈ Xr, r < h.

Let v be one of the N = |S| vertices in S, and let x = v0v1 · · · vh = v be the path to v.
Let Wi = Wvi

, for 0 ≤ i ≤ h− 1. Let Av be the event that every Wi is either short or, when
we come to G⋆, reattached. Note that A holds if and only if one of the events Av holds, so it
suffices to prove that the conditional probability of Av is (1 + o(1))γ0ε

2. Since the different
Ww are independent given T ′, the conditional distribution of each Wi (given T ′ and the Ww,
w ∈ Xr, r ≥ h) is just the unconditioned distribution. Writing, as before, si = P(|X−

i | ≥ 0)
and di = 1 − si, the probability that Wi is tall (not short) is just

pi = P
(
|Xi+1| > 0

∣∣ |Xt−i| = 0
)

= P
(
|X−

i+1| > 0
∣∣ |X−

t−i| = 0
)

=
dt−i − di+1

dt−i
=
si+1 − st−i

1 − st−i
= si+1 − O(st−i) = si+1 − O(sh), (4.67)

since t ≥ 2h and i ≤ h.
Now h ≥ 1/ε, so (by Lemma 4.21) sh = O(ελh⋆). Let w be the number of tall Wi. Then

from the estimate above and Lemma 4.21,

P(w = 0) =
h−1∏

i=0

(1 − pi) = exp(O(hελh⋆))
h∏

i=1

(1 − si) ∼
∞∏

i=1

(1 − si) ∼ γ0ε
2,

since λh⋆ = exp(−(1 + o(1))εh) and εh → ∞, so hελh⋆ = o(1). It thus suffices to show that
P(Av) ≤ (1+o(1))P(w = 0); then (4.66) follows by the union bound. In other words, we must
show that Av ∩ {w > 0} is much less likely than w = 0.

Let I be any subset of {0, 1, 2, . . . , h−1} with |I| ≥ 1, and let us condition on precisely the
corresponding trees Wi : i ∈ I being tall. Let Mi, i ∈ I, be the number of vertices in each tall
tree Wi, noting that these numbers are conditionally independent. Given that a particular
Wi is tall, its average size is at most that of Xλ⋆ conditioned to survive to height i + 1 (we
also condition on dying out by height t− i). By Lemma 4.23 this is at most (i+ 2)/ε.

Let us now go through the tall trees in order, checking to see whether each is reattached.
(We will be forced to skip some; see below.) Due to the way we modified G⋆, when checking if
Wi is reattached, for each vertex u of Wi with u ∈ Xr we need only check for edges of G⋆ \T ⋆
between u and up to ω/ε vertices in each of Xr−1, Xr and Xr+1. For each u, the probability
of finding such an edge is at most p = 3(ω/ε)λ/n ≤ 4ωε−1n−1. The probability that the tall
tree Wi reattaches is thus at most E(Mip) = E(Mi)p ≤ (i+ 2)ε−1p ≤ 4(i+ 2)ωε−2n−1.

When testing whether the first tall tree does reattach, we stop if we find one edge witnessing
this. This edge may ‘spoil’ a later tall Wj by going to a vertex of that Wj. For J ⊂ I, let
EJ be the event that the tall trees Wj : j ∈ J are reattached by |J | edges each with one end
in the appropriate Wj and the other outside

⋃
i∈J Wi. Given all the trees, the conditional
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probability of EJ is at most
∏

j∈JMjp. Since, conditioning only on which trees are tall but
not their sizes, the Mj are independent, it follows that

P(EJ | I) ≤
∏

j∈J

4(j + 2)ω

ε2n
.

If all Wi : i ∈ I are reattached, then the testing algorithm above shows that EJ must hold for
some J containing at least half of the first k elements of I for every k ≤ |I|, corresponding to
the fact that we test trees in order, and each spoils at most one later one. Hence,

P(Av | I) ≤
∑

J

∏

j∈J

4(j + 2)ω

ε2n
,

with the sum restricted as above.
Suppose that |I| = 2k − 1 or |I| = 2k, and list the elements of I as i1, i2, . . . in order.

There are at most 4k terms in the sum, and the largest has J = {i1, i3, i5, . . . , i2k−1}, so given
I, the probability of reattachment is at most

16(i1 + 2)ω

ε2n

16(i3 + 2)ω

ε2n
· · · 16(i2k−1 + 2)ω

ε2n
.

Now the probability that the tall trees are exactly those indexed by I is

P(w = 0)
∏

i∈I

pi
1 − pi

≤ P(w = 0)
∏

i∈I
3pi ≤ P(w = 0)

∏

i∈I

10

i + 2
,

say, noting that pi ≤ si+1 and using the crude upper bound 3/(i+ 2) for si+1. Summing over
I with |I| ≥ 1 we find that

P(Av ∩ {w > 0})

≤ P(w = 0)
∑

r≥1

∑

0≤i1<i2<···<ir<h

10

i1 + 2

10

i2 + 2
· · · 16(i1 + 2)ω

ε2n

16(i3 + 2)ω

ε2n
· · · .

The sum over even r, say r = 2k, may be crudely bounded by
∑∞

k=1 S
k, where

S =
∑

0≤a<b<h

10

a + 2

10

b+ 2

16(a+ 2)ω

ε2n
≤
∑

b<h

b
1600

b+ 2

ω

ε2n
≤ 1600hωε−2n−1.

Since h ≤ ε−1 log log Λ, we have S = o(1). Bounding the sum over odd r similarly, it follows
that P(Av ∩ {w > 0}) = o(P(w = 0)), as required.

Finally, we prove Lemma 4.29.

Proof of Lemma 4.29. Throughout this proof, let K = ⌈log(1/ε)⌉ and, for 1 ≤ k ≤ K, let
tk = ε−1/(kψ). (We ignore the irrelevant rounding to integers, noting that tK → ∞.)
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For 2 ≤ k ≤ K let Ek(x) denote the event that tk < tω/ε(x) ≤ tk−1, the neighbourhoods
of x to distance tω/ε(x) form a tree, and x is (tk/2, tk)-acceptable. Let E1(x) denote the event
that Bt1 holds (i.e., 0 < |Γt(x)| < ω/ε for 0 ≤ t ≤ t1), that G≤t1(x) is a tree, and x is
(t1/2, t1)-acceptable. Finally, let E∞(x) denote the event that tω/ε(x) ≤ tK . Splitting into
cases according to the value of tω/ε(x), we see that if A∗(x) holds, then so does one of the
events E1(x), E∞(x) or Ek(x), 2 ≤ k ≤ K.

Let us start with a simple branching process observation related to that in Lemma 4.22,
writing tω/ε for min{t : |Xt| ≥ ω/ε}, as before, whenever this is defined. Suppose we have
chosen some t ≥ 1 in advance. If we explore the branching process step by step and find
a generation Xr, r ≤ t, with size at least ω/ε, then it is easy to see that the conditional
probability that |Xt| ≥ ω/ε is at least 1/10, say. Thus P(|Xt| ≥ ω/ε) ≥ P(tω/ε ≤ t)/10, and
hence

P(tω/ε ≤ t) ≤ 10P(|Xt| ≥ ω/ε). (4.68)

Using this observation and Lemma 4.20, we see that

P(tω/ε ≤ tK) ≤ 10t−1
K e−ωε

−1t−1
K /20 = 10t−1

K e−ωψK/20 = o(ε3),

since ωψ → ∞ while K ≥ log(1/ε). Comparing the graph and branching process as usual, it
follows that P(E∞(x)) = o(ε3).

Turning to Ek(x) for 1 ≤ k ≤ K, note that we may test whether this event holds by
exploring at most t1 = O(1/ε) steps from x, stopping if we reach a neighbourhood of size
ω/ε, and then checking that the neighbourhoods so far form a tree, and satisfy the relevant
acceptability conditions. Arguing as above (4.61), Lemma 4.7 thus gives P(Ek(x)) = (1 +
o(1))P(Ek) + O(n−100), where Ek is the branching process event corresponding to Ek(x). It
thus suffices to show that

K∑

k=1

P(Ek) = O(ε3ψ8). (4.69)

This statement involves only the branching process Xλ, so from now on we work with this
rather than the graph.

Let Ak be the event that the branching process satisfies the condition corresponding to
(tk/2, tk)-acceptability. To simplify the arguments, for 2 ≤ k ≤ K let E ′

k be the event that
Ak holds and |Xtk−1

| ≥ ω/ε. Only the second condition involves generations beyond tk, so
arguing as for (4.68) we have P(E ′

k | Ek) ≥ 1/10, and hence P(Ek) ≤ 10P(E ′
k). Also, let E ′

1

be the event that A1 holds and |Xt1 | > 0. Then E ′
1 ⊃ E1. Hence

P(Ek) ≤ 10P(E ′
k) (4.70)

for all 1 ≤ k ≤ K.
For k ≤ 2 let Lk be the event that |Xtk−1

| ≥ ω/ε; let L1 be the event that |Xt1 | > 0,
so E ′

k = Ak ∩ Lk. As before, let T be the trunk of Xλ defined up to generation tk, so T is
the random tree consisting of all particles with descendants in Xtk . If we condition on the
first tk generations of Xλ, then the conditional probability of Lk depends only on |Xtk |. Since
knowing the trunk T determines |Xtk |, we thus have

P(E ′
k) = P(Ak ∩ Lk) =

∑

T ′

P(T = T ′)P(Ak | T = T ′)P(Lk | T = T ′),
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where the sum runs over all possible trunks T ′. Note that we may assume T ′ is non-empty,
i.e., |Xtk | > 0, as otherwise Lk cannot hold.

As before, given the trunk, we may reconstruct X≤tk by adding independent random
branches to each trunk vertex, with each branch a copy of Xλ⋆ conditioned to die by (absolute,
not relative) time tk. Let S be the set of trunk vertices in generation tk/2, and N = |S| the
number of such vertices, so N is random but depends only on T . Since we are considering the
branching process, which is by definition a tree, the acceptability condition Ak holds if and
only if some v ∈ S has the property that the side branch started at each vi has height at most
i for all 0 ≤ i ≤ tk/2, where v0v1v2 · · · vtk/2 = v is the chain of ancestors of v. For a given v,

the probability of this event is exactly
∏tk/2

i=0 (1 − pi), where pi is given by (4.67) with t = tk
and h replaced by tk/2. (The argument is as for (4.67).) It follows easily from the estimates
in Lemma 4.21 that stk/2 = O(t−1

k ) and that

tk/2∏

i=0

(1 − pi) = Θ(1)

tk/2∏

i=1

(1 − si) = O(t−2
k ).

So far we considered a single v ∈ S; by the union bound it follows that P(Ak | T = T ′) ≤
Ct−2

k N(T ′) for some absolute constant C. Hence,

P(E ′
k) ≤ Ct−2

k

∑

T ′

P(T = T ′)N(T ′)P(Lk | T = T ′). (4.71)

Let n0 = n0(k) = (kψ)5. Let µ−
k and µ+

k denote respectively the contributions to the sum
in (4.71) from trunks T ′ with N(T ′) ≤ n0 and N(T ′) > n0, so P(E ′

k) ≤ µ−
k + µ+

k . Trivially,
we have

µ−
k ≤ Ct−2

k n0

∑

T ′

P(T = T ′)P(Lk | T = T ′) = Ct−2
k n0P(Lk). (4.72)

For k = 1 we have P(L1) = P(|Xt1 | > 0). Writing S for the event that the whole process
survives, we have

P(|Xt| > 0) = s+ (1 − s)P(|Xt| > 0 | Sc) = s+ (1 − s)P(|X−
t | > 0).

By Lemma 4.21, it follows that for t = o(1/ε) we have

P(|Xt| > 0) ∼ 2/t. (4.73)

In particular, P(L1) = O(1/t1), so from (4.72)

µ−
1 = O(t−3

1 n0) = O(ε3ψ3ψ5) = O(ε3ψ8).

For k ≥ 2, from Lemma 4.20 we have

P(Lk) = P
(
|Xtk−1

| ≥ ω/ε
)
≤ t−1

k−1e
−ωψ(k−1)/20,
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so, from (4.72), µ−
k ≤ 10Ct−2

k n0t
−1
k−1e

−ψω(k−1)/20. Recalling that tk = ε−1/(ψk) and n0 =
n0(k) = k5ψ5, it follows that

K∑

k=2

µ−
k ≤

∑

k≥2

10Cε3k8ψ8e−ψω(k−1)/20.

Since ω and ψ are large for n large, the first term dominates, and this sum is o(ε3). Together
with the bound for µ−

1 above this gives

K∑

k=1

µ−
k = O(ε3ψ8). (4.74)

It remains to bound µ+
k . Noting that N(N − 1) ≥ n0N whenever N > n0, and that

P(Lk | T = T ′) ≤ 1, from (4.71) we have

µ+
k ≤ Ct−2

k

∑

T ′

P(T = T ′)n−1
0 N(T ′)(N(T ′) − 1) = Ct−2

k n−1
0 E

(
N(N − 1)

)
,

where the final expectation is unconditional. Given Xtk/2, each particle in this generation
survives to generation tk independently with probability p = P(|Xtk/2| > 0) = O(t−1

k ), from
(4.73). Hence

E
(
N(N − 1)

)
= p2

E
(
|Xtk/2|(|Xtk/2| − 1)

)
= O(t−2

k ) E
(
|Xtk/2|(|Xtk/2| − 1)

)
.

A simple inductive formula, or a tree counting argument, gives E
(
|Xt|(|Xt| − 1)

)
= λt(λ +

λ2 + · · · + λt) ≤ tλ2t. With t = tk/2 ≤ 1/ε, this is O(tk), so E
(
N(N − 1)

)
= O(t−1

k ). Hence,

µ+
k = O(t−3

k n−1
0 ) = O

(
ε3ψ3k3(kψ)−5

)
= O(ε3k−2).

Thus
∑K

k=1 µ
+
k = O(ε3). Recalling that P(E ′

k) ≤ µ−
k + µ+

k , and using (4.74) and (4.70), this
establishes (4.69). As noted earlier, the lemma follows.

Remark. As noted earlier, in the first draft of this paper we needed the condition Λ ≥
e(log

∗ n)4 . The changes that allowed us to eliminate this are the introduction of Lemma 4.28
(making checking for acceptability in the case when tω/ε(x) = o(1/ε) much simpler), the
modification of Lemma 4.29 to include the tree condition, and the new proof of Lemma 4.29
above.

5 The distribution of the correction term

In this section we shall describe the limiting distribution of the correction term in Theorem 1.3
and, very briefly, that in Theorem 1.1. Surprisingly, although Theorem 1.3 is much harder to
prove than Theorem 1.1, the study of the correction term is much easier in the former case.
Indeed, with p = λ/n and λ constant, even the description of the correction term is rather
complicated. Let us start with the simpler case, assuming that λ = 1 + ε with ε = ε(n) → 0.
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It turns out that given the results of the previous section, not much extra work is needed to
obtain the distribution. Essentially, only one natural extra idea is needed. Since the formal
details would take some time to write out, we shall only sketch the arguments.

In Subsection 4.6, we obtained a lower bound on the diameter by considering vertices x
with a certain property F = Fq, q = q0, depending on the t = t0 + t1 + q neighbourhoods,
where |qε| ≤ M was essentially bounded. (We shall repeatedly use the observation that if
some probability is o(1) uniformly in |qε| ≤ M for any constant M , then it is o(1) uniformly
in |qε| ≤M if M = M(n) tends to infinity slowly enough. It is often easier to think of M as
constant, although in the end we need M → ∞.)

One aspect of this property Fq, or rather of the related property F̃q, was that in the tree
Tx containing x and attached to the 2-core, x is the unique vertex at maximal distance from
the 2-core. It turns out that a positive fraction of the trees attached to the 2-core have more
than one vertex at maximal distance, and to obtain a precise result we must also consider
such trees. But we must only count each tree once. The solution is very natural: we consider
an auxiliary random order ≺ on V (G), and consider only vertices x such that, writing Sx for
the set of vertices of Tx at maximal distance from the 2-core, x is the first vertex of Sx in the
order ≺.

More precisely, we modify the definition of the branching process events Eq and Fq, by
weakening the ‘strong wedge condition’ B(i) on page 65: instead of insisting that the ‘side
branch’ starting at generation i dies within i generations, we insist that it dies within i + 1
generations (this is the weak wedge condition), and also, writing Si for the set of particles in
the ith generation of the ith side branch, letting S be the union of the sets Si together with
the initial particle, and taking a random order on S, we insist that the initial particle comes
first in this order; we call this the medium wedge condition.

We showed that the probability of the strong wedge condition was asymptotically
d1

∏∞
i=1 di ∼ d1γ0ε

2 ∼ e−1γ0ε
2, where di = P(|X−

i | = 0) = 1 − si is the probability that
the subcritical process dies by time i. Similarly, the probability of the weak wedge condition
is asymptotically

∏∞
i=1 di ∼ γ0ε

2.
If we condition on the weak wedge condition, then the distribution of S depends on ε.

However, the conditional probability that Si is non-empty is bounded by

P
(
|X−

i | > 0
∣∣ |X−

i+1| = 0
)

= 1 − P
(
|X−

i | = 0
∣∣ |X−

i+1| = 0
)

= 1 − di
di+1

=
si − si+1

1 − si+1
∼ si − si+1.

From (4.29) we have si < 2/i for all i ≥ 1, so
∑

i P(Si 6= ∅) converges uniformly as ε → 0.
Hence, for any M(n) → ∞, the probability that any Si, i > M , is non-empty tends to 0.
For fixed i, the distribution of Si converges as ε → 0, in fact, to the distribution of the size
of the ith generation of the exactly critical process X1 given that the (i + 1)st generation is
empty. It follows that, in the branching process, |S| converges in distribution to some random
variable R not depending on ε. Modifying the arguments in Subsection 4.6, we find that when
we replace the strong wedge condition by the medium wedge condition, in place of (4.47) we
obtain the estimate

P(Fq(x)) ∼ P(Fq) ∼ 4γ1n
−1λq⋆ (5.1)
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uniformly in |q| ≤M/ε, where γ1 = E(1/R)γ0, and γ0 is the constant in Lemma 4.21.
Turning to the upper bound, after much work mostly involving ruling out pathological

cases, we showed in Subsection 4.7 that for any function M(n) tending to infinity, whp any
vertex x that is part of a pair (x, y) at maximal distance satisfies the property B∗(x), that
|tω/ε(x) − t0 − t1| ≤M/ε, (see (4.63)) together with a certain unpleasant ‘acceptability’ con-
dition A∗(x). Moreover, Lemma 4.27 shows that the expected number of such vertices is
bounded by some function of M . Thinking of M as constant for the moment, this expec-
tation is bounded. Now given that a vertex has property B∗, it is likely that its relevant
neighbourhood (up to tω/ε) is a tree. (The expected number of edges within sets Γt(x) is

bounded by δ = λn−1tω/ε
(
ω/ε
2

)
= O(ω2(log Λ)ε−3n−1) = O(Λ−2/3 log Λ) = o(1); a similar

bound holds for the expected number of ‘redundant’ edges between consecutive Γt(x).) We
had to consider the non-tree case, because δ may go to zero only slowly, but after reducing to
vertices satisfying B∗, it is easy to check from the proof of Lemma 4.27 that the probability
that A∗ ∩ B∗ holds and the neighbourhood is not a tree is o(P(A∗ ∩ B∗)). It follows that (if
M increases slowly enough), the expected number of vertices with A∗ ∩ B∗ holding and the
neighbourhood not a tree is o(1).

When considering tree neighbourhoods, acceptability becomes a much simpler condition,
closely related to the weak wedge condition. So far we considered any vertex x in a pair
(x, y) at maximal distance. Since we are only interested in the existence of a pair at a
certain distance, we may restrict our attention to those x that are first in their tree Tx in
our auxiliary random order. For vertices satisfying A∗ ∩ B∗, the conditional probability of
this extra condition is asymptotically E(1/R), as above. Putting the pieces together, we find
that whp the diameter is realized by some pair of vertices each of which satisfies a certain
condition F ′

q depending on its t = t0 + t1 + q neighbourhood, where again |qε| ≤ M . This
condition is that G≤t(x) is a tree, and the event At ∩ Bt considered in Lemma 4.27 modified
to the medium wedge condition holds. Also, modifying the proof of this lemma as indicated
above, the probability that a vertex satisfies this condition is

P(F ′
q(x)) ∼ E(1/R)4γ0ε

3λt−t1⋆ ∼ 4γ1λ
q
⋆n

−1.

Now the precise details of Fq(x) and F ′
q(x) are rather different. However, the definitions are

such that Fq(x) implies F ′
q(x). (Firstly, in defining Fq(x) we insisted that G≤t(x) is a tree.

Secondly, via the condition D = D1 ∩D′
1 ∩D2, we ensured that |Γt′(x)| < ω/ε for 0 ≤ t′ ≤ t.

Thirdly, via A we ensured that for all t′ up to t0−r ≥ t0−2M/ε, which is much larger than h,
there is a unique particle in each generation t′ with descendants in Γt(x). Finally, we imposed
the (there strong, but now medium) wedge condition on all the side branches starting up to
time (at least) t0 − 2M/ε. This implies the (modified) form of (h, t)-acceptability in F ′

q.)
Since P(F ′

q(x)) ∼ P(Fq(x)), and the expected number of vertices with Fq(x) is (for M
fixed) Θ(1), it follows that for each q, whp every vertex with property F ′

q(x) also has Fq(x).
We shall essentially consider only a bounded number of values of q (again, a number that
tends to infinity arbitrarily slowly), so this holds whp for all such values. Thus, whp, the
diameter is equal to the maximum distance between vertices with property Fq(x) for suitable
q. This also applies if M → ∞ slowly enough. We may thus forget about F ′

q(x).
Now the condition Fq(x) says that the (medium) wedge condition holds, that t(x) =

tω/ε(x) > t0 + t1 + q, and that certain other technical conditions hold. We shall need to know
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a little more, namely roughly how large t(x) is. From the remarks above, we may ignore
x with t(x) ≥ t0 + t1 + M/ε. For −M2 ≤ i ≤ M2, let qi = i/(Mε). Let us say that x
is of type i if Fqi(x) \ Fqi+1

(x) holds; this corresponds roughly to the wedge condition plus
qi < t(x)−t0−t1 ≤ qi+1. Let Ni be the number of type i vertices. With M constant, applying
(5.1) twice shows that ENi is asymptotically what it should be, and as usual this extends to
M → ∞ slowly enough, in which case

ENi ∼ 4γ1e
−qiε/M,

since λq⋆ = (1 − ε+O(ε2))q ∼ e−qε if qε does not grow too fast.
Let us say that x is plausible if it is of type i for some −M2 ≤ i ≤M2. From the comments

above, whp the diameter is realized by a pair of plausible vertices.
Now, the precise technical conditions in the definition of type i vertices are as in Sub-

section 4.6; as there, these allow us to calculate 2nd moments, and indeed rth moments for
any fixed r. More precisely, given a sequence i = (i1, . . . , ir), let us say that a sequence
(x1, . . . , xr) of distinct vertices is an r-tuple of type i if each xj is of type ij . Such an r-tuple
is good if the relevant trees witnessing this are disjoint, and bad otherwise. Arguing as in
Subsection 4.6, the expected number of good r-tuples of type i is what it should be, namely
(1 + o(1))

∏r
j=1 ENij (which is Θ(1) if M is fixed), and the expected number of bad r-tuples

is o(1). This shows that all fixed mixed moments of the sequence (N−M2, . . . , NM2) converge
to what we expect, and thus that (for M fixed) the sequence (Ni) converges in distribution
to a sequence of independent Poisson random variables.

Turning to the diameter, let P be the number of unordered pairs (x, y) of plausible vertices
with d(x, y) ≥ d = d0 + cε−1, where c is constant. We aim to understand P(P > 0) by
evaluating the factorial moments Ek(P ) = E(P (P − 1) . . . (P − k + 1)). Now Ek(P ) is the
expected number of k-tuples of distinct pairs with the relevant property. It may be that
several pairs involve the same vertex; in general we can write Ek(P ) as a sum over integers
r ≤ 2k and graphs H on {1, 2, . . . , r} with k edges of the expectation of the number of r-tuples
of plausible vertices in which certain specified pairs are at distance at least d and the others
are not. We evaluate this by summing over the types of the relevant vertices. Thus we must
evaluate the expected number of r-tuples (x1, . . . , xr) of type i in which k specified pairs are
at distance at least d and the others are not.

Since there are o(1) bad r-tuples, we consider only good r-tuples. Finally, we test whether
a particular sequence (x1, . . . , xr) has the required property by exploring the neighbourhoods
of each xj out to the relevant distance (t0 + t1 + qij ). By Lemma 4.8, the probability that the
explorations are disjoint and each xj is of the right type is ‘what it should be’, namely n−r

times the expected number of good r-tuples of type i. Suppose this happens. Then we have
not so far tested any edges outside these neighbourhoods.

Continuing to explore, the neighbourhoods grow at the expected rate whp. We explore
t2/2 − O(1/ε) further steps, by which time the neighbourhoods have size Θ(

√
εn). (Recall

that this is the size at which they typically meet.) By this time, there are very few (in
expectation O(1)) vertices in two or more neighbourhoods, and whp none in three or more.
It follows that the times at which different pairs of neighbourhoods meet are essentially
independent, with distribution given by Lemma 4.5. This allows us to calculate Ek(P ), and
hence P(diam(G(n, λ/n)) ≥ d) ∼ P(P > 0).
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Rather than give any further details, let us describe the limiting distribution we obtain.
It should then be clear that all expectations being ‘what they should be’ corresponds to
convergence to the corresponding values for this limiting distribution.

Let P be a Poisson process on R with density function f(x) = 4γ1e
−x. Note that∫

x′≥x f(x′) dx′ = f(x) < ∞ for any x, so with probability 1 we may list the points of P
as z1, z2, . . . in decreasing order. For each 1 ≤ i < j, let Tij be a random variable with
P(Tij > x) = exp(−ex), with these variables independent of each other and of P. Finally, let
D = sup{zi + zj + Tij}. It is not hard to check that with probability 1 D is finite, and the
supremum is attained. Indeed, as M → ∞, the probability that it is attained by some i, j
with zi, zj ≥ −M tends to 1.

Theorem 5.1. Let ε = ε(n) > 0 satisfy ε → 0 and ε3n → ∞, and let λ = 1 + ε. For any
constant c we have

P

(
diam(G(n, λ/n)) ≥ log(ε3n)

log λ
+ 2

log(ε3n)

log(1/λ⋆)
+ c/ε

)
→ P(D ≥ c)

as n→ ∞. �

In other words, the Op(1/ε) correction term in (1.6) converges in distribution to D (after
multiplication by ε).

We have proved Theorem 5.1 in outline above. There are a few further technical details
(such as checking that the relevant sequences of moments do not grow too fast, so convergence
of all fixed moments gives convergence in distribution), but we shall not describe these any
further.

The description of the random variable D is somewhat complicated; however, it seems
rather unlikely that this random variable will have a simpler description. Given this de-
scription, the branching process approach taken here seems with hindsight very natural: the
description of D more or less forces us to consider the (exponentially distributed) times that
the vertices take for their neighbourhoods to reach certain very large sizes, and then the time
they take to meet after this.

Finally, let us comment very briefly on the case p = λ/n, λ constant. It is not that the
proof is any harder in this case (it is much easier), but the result is much harder to describe.
Again we consider vertices satisfying the medium wedge condition (which now has probability
bounded away from 0), and, taking ω = (logn)6, say, we study the distribution of tω(x) for
such x, in the range where P(tω(x) ≥ t0) is of order 1/n. From Lemma 2.1 it is very easy to
check that when tω(x) is very large, this is almost always because for many generations there
is only one neighbour whose descendants do not die quickly, and we easily find asymptotic
independence of the event {tω(x) > t0} and the wedge condition.

Approximating by a branching process, it is easy to prove an equivalent of Theorem 4.19,
showing that the distribution of tω(x) may be described (as in the λ→ 1 case) by the tail of
Y = Yλ near 0. But now the first complication appears: this random variable no longer has
a nice power-law tail, but asymptotically follows a power law multiplied by a function that
oscillates periodically within a constant factor. Also, when we explore neighbourhoods and
reach size ω, the current neighbourhood may have any size between ω and λω; this constant
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factor affects the probability of joining up with another neighbourhood within a certain time.
In the end it turns out that the distribution depends on the fractional parts of both log n/ log λ
and log n/ log λ⋆, as indeed it must from the form of (1.4). We omit the details, as a precise
statement of the result would be rather lengthy.
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