Sharp concentration of the number of submaps
in random planar triangulations

Zhicheng Gao*
Department of Mathematics and Statistics
Carleton University
Ottawa CANADA K1S 5B6
zgaoQmath.carleton.ca

Nicholas C. Wormald'
Department of Mathematics and Statistics
University of Melbourne VIC 3010
AUSTRALIA

nick@ms.unimelb.edu.au

Abstract

We show that the maximum vertex degree in a random 3-connected planar triangulation is
concentrated in an interval of almost constant width. This is a slightly weaker type of result
than our earlier determination of the limiting distribution of the maximum vertex degree in
random planar maps and in random triangulations of a (convex) polygon. We also derive
sharp concentration results on the number of vertices of given degree in random planar maps
of all three types. Some sharp concentration results about general submaps in 3-connected

triangulations are also given.
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1 Introduction

For a random graph, the distribution of the number of vertices of given degree is fairly well
understood (see Barbour et al. [1], for example). For random maps, or graphs embedded on a
surface such as the plane, not much is known. The main results concerning degrees of vertices
involve enumeration of maps with given vertex degrees permitted as in [3, 7, 9]. On the other
hand, our main result in [8] is that in both random planar maps and random triangulations
of a (convex) polygon, the numbers of vertices of given degree close to the maximum behave
asymptotically as independent Poisson variables. As a result of this, we obtained the limiting
distribution of the maximum vertex degree for both classes of maps, which is concentrated
in an interval of width Q,, for any €, — oo. This improved the result of Devroye et al. [6,
Theorem 1], who used different methods.

To obtain analogous results for other classes of planar maps is not at all straightforward.
Our method is to obtain generating function equations for the finite moments of the random
variable which counts vertices of a given degree, and then perform asymptotic analysis of the
results. There are two basic steps: formation of generating function equations that do not
become excessively complicated for higher moments, and the basic asymptotic analysis. These
were achieved for both classes of maps considered in [8]. The present paper concentrates on
one class of maps, planar triangulations, for which we have solved the asymptotic analysis
problem, but only for the lower moments. This is due to the lack of a simple way to deal
with the higher moments as in [8]. As a result, we do not obtain the limiting distribution
of the number of vertices of given degree, or maximum degree. However, we do obtain sharp
concentration results by the second moment method.

Throughout this paper, a map is a connected graph G embedded in the plane with no
edge crossings. Loops and multiple edges are allowed in G. A map is rooted if an edge is
distinguished together with a vertex on the edge and a side of the edge. The distinguished
vertex and edge are called the root vertex and the root edge of the map. The face on the
distinguished side of the root edge is called the root face. A rooted near-triangulation is a
rooted 2-connected map, with no loops or multiple edges, so that all nonroot faces are triangles.
A rooted triangulation of an n-gon is a rooted near-triangulation which has n vertices, all on
the root face. A rooted triangulation is a rooted near-triangulation whose root face is also a
triangle. T'wo rooted maps are considered the same if there is a homeomorphism from the plane
to itself which transforms one rooted map to the other and preserves the rooting. Throughout
this paper, all probability distributions are uniform over a given family of rooted maps. P,
E, and V are used to denote the probability, expectation, and variance of a random variable,
respectively. A, denotes the maximum vertex degree of a random map, and ( = (j, denotes
the number of vertices of degree k in a random map. We use €2, to denote a function which
goes to infinity arbitrarily slowly. We consider rooted maps for accessibility by generating
function techniques. By the results in [13], any almost sure property of one of the classes
of rooted maps in this paper is also an almost sure property of the corresponding unrooted
versions.

It is clear that for triangulations, ¢, = 0 when £ < 2 and n > 2. So we assume k > 2 in
the rest of the section. Our main sharp concentration results are as follows.

Theorem 1 For a random rooted triangulation with n + 2 vertices,
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_ logn —(1/2)loglogn

log(4/3)

P(‘An ‘<Qn) :1—0(1/1ogn+(3/4)9n),

for any function §,, — oo.
Theorem 2 Let
8(k —2) ( 3)’f —3/2
Be= 775~ |77 .
(4k? — 1) 4 k
Then for a random rooted triangulation with n + 2 vertices,

(i)

20 20
E(Ck) = nug (1 +0 <10gn n)) . V(&) = npg + (npg)?0 (10gn n) :
uniformly for all k = O(logn).
(ii)
P (¢ =nur(1+0(1))) =1—0(1)
uniformly for k < (logn — (1/2)loglogn)/log(4/3) — Q.

P (¢ =0)=1-o0(1)
uniformly for k > (logn — (1/2)loglogn)/log(4/3) + Q.

The theory of submaps of a random map was begun in [11] and [12] and extended in a
general way in [4], where it is shown that a random rooted map with n edges almost surely
contains at least ¢n copies of any given planar submap for some positive constant c¢. Let W
denote the wheel with k£ spokes, and let

_ logn —(1/2)loglogn
- log(4/3) '

Since triangulations have no loops or multiple edges, a vertex of degree k in a planar triangu-
lation corresponds to a copy of Wj. Hence, Theorem 2(ii) implies that when

f(n)

k< f(n)—Qp,

the number of copies of W} in a random rooted planar triangulation with n + 2 vertices is
sharply concentrated around nug. For such k, nui — co. On the other hand, when

k> f(n)+ Qyp,

a random triangulation with n 4+ 2 vertices almost surely contains no copy of Wjy. So it
may be said that the function f(n) serves as the threshold function on the variable k for the
property that a random triangulation with n + 2 vertices contains a copy of Wy, although this
usage of the term ‘threshold’ is not standard. It seems reasonable to presume that for many
other families of planar submaps, there are similar sharp concentration results and threshold
functions for the size of the submap in the family. The following lemma allows us to study
general submaps in triangulations.



Lemma 1 For each n, let M = M(n) be a planar near-triangulation with external face of
degree k and with j internal vertices such that k > 4 and k + j = o(n). Let n,(M) be the
number of copies of M in a random rooted triangulation with n+ 2 vertices. Suppose there are
r distinct ways to root the external face of M.

(i) If M is 3-connected, then

i—1
Bn(M) =7 (55) BlGknsios)(1L+0(),

and furthermore for k+ j = O(1), we have

27

2j—2
ﬁ) E(Cknt2-25(Chnt2—25 — 1))(1 +0(1)).

(M) (1 (M) ~ 1) = *

(ii) If M is 2-connected, then

27

j—1
%> E(Ck,n-f—l—j)(l +o(1)),

ktj—1
<%> J E(Gnt1-k-3)(1 +0(1)) < E(na(M)) <7 (

and furthermore for k + j = O(1), we have

27

2j—2
o) ElGhra-aGhnsa-ay — D)1+ o(1).

E(m(M) (1(00) ~ 1)) < 7%
Proof: Let D, (M) be the number of rooted triangulations with n + 2 vertices and with a
copy of M distinguished. Define D,,(W}) similarly for the wheel Wj. Take a triangulation
counted by D, (M), and replace M by a distinguished W}. The result is clearly 3-connected
and has n+ 3 — j vertices. When M is 3-connected, i.e., there is no internal edge in M joining
two external vertices of M, we can reverse this process by removing W}, and insert M back in
r different ways. This gives an r to 1 mapping when M is 3-connected and the root face is
not in the distiguished M. However, since k + j = o(n), the probability that the root face is
in the distinguished copy is trivially o(1). Hence when M is 3-connected

Dn(M) Drp1—j(Wi) Trg1—j ( 27
= (1 +0(1 —r (s
T, o)== = s

7j—1
B(a(M)) = ) B+ o)
When M is 2-connected, the above argument gives the right hand inequality stated in (ii).
The left hand inequality of (ii) is obtained by embedding M in a single triangle to obtain a
new triangulation M. Since M is 3-connected and has 3 external vertices and k + j internal
vertices, we obtain the desired inequality by observing E(n,(M)) > E(n,(M)).

Similarly we can consider triangulations with two distinguished copies of M. When k+j =
O(1), the number of copies of M is almost surely at least a constant times n by the results
in [12] and [4]. Hence, the probability that the two distinguished copies of M overlap is o(1),
and the above argument also gives the desired estimates for E (1, (M)(n,(M) —1)). 1

From Theorem 2, Lemma 1 and Chebyshev’s inequality we immediately have the following.

Theorem 3 Let M be a 3-connected near-triangulation with external face of degree k and with
J internal vertices such that there are r distinct ways to root the external face. Let n, (M) be
defined as in Lemma 1. Then, for k >4 and k + j = O(1),

j—1 _ k [_
P (nn(M) — (%) % (—%) ( ?;/2>(1+0(1))> —1—o(1). 1



The case kK = 3 deserves a separate treatment, since no two copies of M can overlap when
the external face of M has degree 3. The first part of the following result arises from this
observation and Lemma 1. The second part comes from applying Chebyshev’s inequality in
the first case and Markov’s in the second.

Theorem 4 Let M be a 3-connected triangulation with j + 3 vertices such that j = o(n) and
there are r distinct ways to root M. Let n,(M) be defined as in Lemma 1. We have

(i)

E(n.(M))

2rm (22576>j (1+o(1)),

.
EOn(M)m () - 1) = 2 (20) (1 +0(1),

(ii) Let ¢ < rj=B < C for some constants ¢, C >0 and 3 > 0. Then

p (nn(M) —om (22576>j (1+ 0(1))> — 1= o(1)

for j < (logn + Bloglogn)/log(256/27) — 2, and
P (nn(M) = 0) =1 —o(1)
for j > (logn + Bloglogn)/log(256/27) + ,. I

Madras [10] studied the number of occurrences of a given pattern in large lattice clusters,
and he proved a general pattern theorem similar to the general submap density theorem in [4].
He suggested that there should be some kind of law of large numbers for pattern occurrence.
That is, given a proper pattern P, there should exist a number o« > 0, such that almost all
clusters of size n contain between (o — €)n and (a + €)n copies of P. Our Theorem 4(ii) shows
that there is such a law of large numbers for the subtriangulation occurrence in large planar
triangulations.

2 Some basic equations

Let T, . be the number of rooted triangulations with n + 2 vertices and root vertex degree k,
and let 7;, ;. ; be the number of rooted triangulations with n + 2 vertices, root vertex degree
k, and with another distinguished vertex of degree I. Then T, = >, T}, . is the number of all
rooted triangulations with n + 2 vertices. Define generating functions

T(x,y) = ZTn,kx”yk and T(z,y,2) = Z Tn,k,lx”ykzl.
n,k 'I'L,k,l

Note that

T(x,1)=> Tpa".
Deleting a root vertex of degree k of a triangulation gives a near-triangulation with root face
degree k (including by convention the one which is just a single edge). A rooting of the near-

triangulation can be canonically selected using a suitable convention, to obtain a bijection
between rooted triangulations and rooted near-triangulations.



Hence T'(z,y) is also the generating function for rooted near-triangulations with x marking
the number of nonroot vertices and y marking the root face degree, and T'(z,, z) is also the
generating function for those rooted near-triangulations which have a distinguished vertex with
z marking the distinguished vertex degree. Note that the distinguished vertex in the near-
triangulation may coincide with its root vertex. Noting that T'(x,y) = 2?y3D(x,zy) + zy?,
where D(z,y) is defined in [5], we obtain from [5, (4.1)—(4.4)] that

T(e,y) = WZOUE20 2L 220 g gyy - a2, )

where

14 -2)
u-j%;}(j_1>w (2)
satisfies

z=u(l—u). (3)

Hence
T(x,1) = u(l—2u), (4)
W17 (x,y) = w?(1-u)’(l - 2u). (5)

To derive an expression for T(x,, z), it is convenient to introduce the generating function
Ti(x,y,2) for those near-triangulations counted by T'(z,y, z) whose distinguished vertex is on
the root face. Then Ty(z,y,2) = T(x,y,z) — Ti(z,y, z) is the generating function for those
near-triangulations whose distinguished vertex is not on the root face. It is also convenient
to define the generating function ¢(z,y, z) for those near-triangulations whose distinguished
vertex is the same as the root vertex. Throughout this paper, we use ¢, to denote the partial
derivative of t(z,y, z) with respect to y, etc.

Theorem 5 Let u = u(z) be as given in (3), and

Az,y) = y—1-2T(z,y)+2 'y [°]T(z,y)

= (y(1—u) = 1)(1 —du(l —u)y)"?. (6)
We have
_ ry*z(y — 2)
_t(:n, v.2) = y—z+yl(z,2) — 2T (x,y)’ ()
Tl(wayvz) = yty(a:,y,z), (8)
[313]1;2(3:7 Y, z) = Mt(x, 1/(1—u),2z) —z(1— u)22 — 2T (x, z), (9)

Az, ) Th(z,y, 2) = t(z,y, 2) — xy’z — yT(x,y)T(x, 2) — 2 yT(z, ) [y | Te(z,y, 2).  (10)

Proof: We first derive the following equations for ¢(z,y, ) and Ty (x, vy, 2):

tr,y,2) = xy?z+y 2T(z,y)t(z,y,2)
+y 2 (Hay,2) — oy’ — oty ey, 2) W, Y, 2)) (11)
T2(‘T7y72) = 2y71T($7y)T2(x7y7 Z) (12)

+y7! (Ha,p.2) — ay?z — 2 YT (@)l y, 2))
+y (Tg(az, y,2) —x YT (z,y)[y’ | Ta(z,y, 2) — 2~ 'yTa(z,y, Z)[y?)]T(rc,y)) :
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Proof of (11) and (12): The argument is standard in map enumerations. The first term on
the right side of (11) corresponds to the case where the near-triangulation consists of just a
single edge. Let NT' be a rooted near-triangulation with root vertex a and root edge ab. Let
abc be the triangular face, different from the root face, containing ab. If vertex c is on the root
face, then deleting edge ab decomposes T' into two near-triangulations. The one containing
ac is counted by t(z,y, z), and the one containing be is counted by T'(x,y). If ¢ is not on the
root face, then deleting ab gives one near-triangulation N7’ in which there is no edge joining
a and b. This gives the third term on the right side of (11), where xy?z inside the parenthesis
corresponds to the singe edge case, and the last term corresponds to the case that there is an
edge joining a and b in NT” ( which can be further decomposed into a near-triangulation NT”
and a triangulation 7).

The proof of (12) is similar. By the definition of Th(x, ¥, 2), a near-triangulation T counted
by T5(x,y, z) contains a distinguished vertex d not on the root face, and hence the single edge
case does not occur here. The first term on the right side of (12) corresponds to the case where
c is on the root face. The coefficient 2 is from the fact that the distinguished vertex may be in
either one of the two near-triangulations after the decomposition. When ¢ is not on the root
face, we consider two subcases. First ¢ = d. In this subcase we choose ¢ to be the root vertex
of the new near-triangulation 7", and this gives the second term on the right side of (12). The
second subcase ¢ # d gives the last term on the right side of (12), where the second term inside
the parenthesis corresponds to the case that the distinguished vertex d is in 7", and the third
term inside the parenthesis corresponds to the case that d is in NT”. This completes the proof
of (11) and (12).

Noting that [y3]t(x,y, 2) is the generating function for rooted triangulations with 2 marking
the number of nonroot vertices, and z marking the root vertex degree, we have

[v’]t(z,y, 2) = 2T (x, 2).

Substituting the above equation into (11) and solving for t(x,y, z), we obtain (7). Collecting
the coefficients of Th(z,y, 2) in (12), we obtain (10). Setting y = 1/(1 — u) in (10) and using
(1), we obtain (9). For each rooted near-triangulation with root face degree k, there are k
ways to distinguish a vertex on the root face. Therefore

.’L’ Y,z Zk .7}‘ y U, 2 k:yty($7yvz)'
k>2

This completes the proof. 1

3 Asymptotic expansions for T(z,y) and T(x,y, z)

We need to use some analytic results from [8]. In the present case the situation is a little simpler
because we only need to use up to three variables. In the following, € will denote a sufficiently
small positive constant, ¢ is a constant satisfying 0 < ¢ < 7/2, and y = (y1, 92, - .-, Y4), where
d is the dimension of y which will be either 1 or 2 in this paper. In what follows, y denotes y
when the dimension is 1, and y denotes (y, z) when the dimension is 2. As in [8], define

Ap(e,9) = {x: [z|<1+e x#1, |Arg(z —1)] > ¢},
Re,¢) = {(z,y): |yl <1, 1<j<d,x € As(e, )}



Definition 1. We write

d
flz,y)=0 (1—1‘ I -9~ j)
7=1

if there are € > 0 and 0 < ¢ < 7/2 such that in R(e, ¢)
(i) f(z,y) is analytic, and

d
J@,y) =0 (’1 —o J]0 - \yj\)‘ﬁj)

j=1
as (1 —z)(1—y;)? — 0, for 1 <j <d, and some p > 0.

(ii)

d
flz,y) =0 (|1 — x| H(l — \yj])q> for some ¢ > 0 and some real number «’'.
j=1

We also use [:L‘”yk] f(x,y) to denote the coefficient of z™y* in the power series expansion of
f(z,y). We first derive some asymptotic estimates for T,  and T, k.

Lemma 2 (i)
T = O ((4/3)75(1 + €)Fn="/2(256/27)" )

uniformly for all n, k, and constant € > 0;

(ii) Define
X = (1-2562/27)Y2, Y = (1-3y/4)Y2, Z=(1-3z/4)"2

Then

3
o
I

(V6/72)[z"y*](1 — Y?)(1 = 3Y2 + 2y 3y 3 X3
+0 (772 (10g n)?(3/4)"(256/27)" ),
Tokr = (V6/12)[2"y"2"(1 —Y*)(1-3Y* +2Y3)Y (2 -1)°Z7'X
+0 (n7??(1og n)*(3/4)* (256/27)" ),
uniformly for 1 < k = O(logn).
Proof: For convenience, we rescale the variables x,y, and define

Al(e,0) = {x: |x] <27/256(1+¢€), z # 27/256, |Arg(z — 27/256)| > ¢},
R'(e.d) = {(z,y): Iyl <4/3, 1<j<d,xe ()}

We also define
d
f(z,y) =0 ((1 — 2562/27) H (1—3y;/4)~ )

accordingly. Since u satisfies (3) and has positive coefﬁc1ents, it is easy to see that 27/256 is
the unique singularity of u(z) on its circle of convergence, and 27/256 is a branch point of

8



order 2. Hence u(z) is analytic in A/ (¢, ¢) (recalling that € > 0 can be made arbitrarily small),
and has a power series expansion in X near x = 1. Substituting

u(x) = ZciXi, x=27(1— X?)/256

i>0

into (3) and equating the coefficients, we obtain

u(x) =1/4 — (V6/8)X + (1/12) X2 — (31V6/1728) X> + O(X*). (13)

Hence
u(l—u) = (3/16) — (V6/16)X — (5/96) X2 + (41v6/3456) X + O(X*), (14)
T(z,1) = Q(z)+ (vV6/24)X* + O(X?), (15)

where @ is a quadratic polynomial in x.
From (2) and (5), we know that u and u(1 —u) = u*+T(z, 1) have nonnegative coefficients
in z. It follows from [8, Lemma 4] (after appropriate scaling of the value of the function) that

lul < 1/4, |u(l —u)| <3/16, for z € Al (e, ). (16)

Hence
1 —4u(l —u)y| > 1 —4u(l —u)y| > 1-3y|/4, for z € Al(e, d), (17)

and A(x,y) and T'(z,y) are analytic in R/ (¢, ¢).
We now claim

Alw,y) = —Y*4(1/12) (3- 972 +6v") Y !X (18)
~(V6/36) (1-4v2 4+ 3y Y 5X3 4+ O (XY ), (19)
and
T(wy) = 1/4- @Y+ 1/2)Y3 - (1/8) (1-3v2+ 2y 4V - ¥*) X2y !
+(V6/72) (1= v2) (1-3Y2 4 2v*) X3y 5 4+ O (x'V ). (20)

We first verify condition (i) in Definition 1 for (19). Using (6), (13), (14), z = 27(1 — X?) /256,
and y = 4(1 — Y?)/3, we obtain

_V?2 2 3
Alzy) — (4(131/)@1 \/68X_)1(2+311\§§(+0(X4)>_1>

2 3
«v 1+ \/6X+5X _41\/6)(
4 24 864

1/2
- O(X4)> (1-— Y2)Y2> .
When XY 2 — 0 in R/(¢, ¢), we can expand the square root by the binomial theorem, and
(with the help of Maple) obtain

Alz,y) = —-Y3+(1/12)(3-9Y* +6YHy X2
~(V6/36)(1 - 472 + 3y HY x3 4 0 (XY R)



for (x,y) € R'(e,#) and XY 2 — 0. Hence the error term
E(z,y) = Az,y) — (—Y3 +(1/12)(3-9Y2 + 6V Y 1 X2 — (v6/36)(1 — 4Y2 + 3Y4)Y—3X3)
in the expansion of A(x,y) satisfies
E(z,y) =0 (X4Y_8) , for (z,y) € R/(e,¢) and XY 2 — 0.
It is clear that in R'(e, ¢), E(z,y) is analytic and
E(x,y) =0 ((1 - [3y/4)~*) |
which establishes (19). The expansion (20) follows immediately by observing

y(1 —u)(1+2u) —1

Jxm’y):: 2

— A(z,y)/2.

Now the asymptotics for T, ; stated in Lemma 2 follow from (20) and [8, Lemma 2], with a
rescaling of the variables.

In order to derive asymptotics for T(z,y, z), we first verify that t(z,y, z) is analytic in
R'(e,¢). By (7), we have

xyz
1= (yT(z, 2) — 2T(z, )/ (z —y)°

It suffices to show that the denominator in the above expression is never zero for (z,y,z) €

R'(e, ¢). Note
T(xy) =Y 2" > Ty
n>1 2<k<n+1

where T1 9 =1, and T}, ;, = Dyp—g41,4-3 > 0 with Dy, p, defined in [5, (4.7)]. Hence

t(z,y,2)

T — 2T 3 3 Rl il
Yy (x7 Z) z (x7 y) _ 2" sznJc z Y ’ (21)
2=y 2=y
n>1 2<k<n+1

which is clearly a power series in x,y and z with nonnegative coefficients. Therefore, for
ly] <4/3, |2| <4/3 and |z| < 27/256,

yT'(x,z) — 2T (x,y) < lim yT'(27/256, z) — 2T(27/256,y)
z—y = y—4/3,2—4/3 z—y

=1/2.

In view of (21), (yT'(z, z) — 2T (z,y))/(z —y) is continuous in R/ (e, ¢), and so its absolute value
is strictly less than 1 in R/(e, ¢) (choosing e sufficiently small). Hence ¢(x,y, z) is analytic in
R'(e,¢). By (16), we have

/(=) <Y ful® < Y (1/4)" = 4/3,

k>0 k>0

for x € Ay(e,¢), and hence t(z,1/(1 — u), 2) is analytic in R'(¢, ¢). It follows from (9) and

(10) that [y%]Ta(z,y, 2) and Ty(x,vy,2) are analytic in R'(e, ¢). (It is important to note that
y =1/(1 — u) does not cause a singularity in T5(z,y, z).)

10



Next we note from (7) and (9) that t(z,y, z) and [y3|Ts(x,y, 2) are bounded in R'(e, ¢),
and

Ty (2, y) = O ((1 = 3lyl/9)7/?).

ty(2,y,2)| = O (1 = 3Jyl/4)7/2).
It follows from (10) that

To(w,y,2) = O((1=3[yl/9) Ity (w,y,2) + Ty(x,y)|)
= O((1=3lyl/4)7") for (z,y,2) € R'(c, 9).

Now we can use Maple to obtain asymptotic expansions for t(z, y, 2), t(z,1/(1-u), 2), (3] T (2, y, 2),
and Ty(z,y, z) in the same way as we did for A(z,y) and T'(z,y). For

(z,y,2) € R'(e,¢), and XY % - 0and XZ7% — 0,
we obtain, using (7)-(10), (13), (19), and (20),

Hz,y.2) = p,Y,2)+0 (X027,

|
—_

= (27V6/1024)(Z — 1°Z7'X + p(=,Y, 2) + O (X327F),
= (V6/12)1-Y?)(1 -3Y2+2v3) Yy 3(Z - 1)3Z27'Xx
+p(2,Y,Z) + O (X3y—9z—6)

)

(x,y,2) = px,Y,Z)+ O (XSY_SZ_G) ,
[yS] 2(1’, Y, )
)

z
Tg(x,y,z

where p(z,Y, Z) denotes an expression in x,Y, Z which is linear in z (not necessarily the same
at each occurrence). Hence

T(CE, Y, Z) = Tl(x’ yz) + TQ(CL‘v Y, Z)
(V6/12)(1 - Y1 - 3Y2 +2Y3)Y 3(Z - 1)’ Z7'X
+p(,Y, Z) + O (X*v=27°). (22)

Now the asymptotics for T;, j 1 stated in Lemma 2 follows from [8, Lemma 2]. This completes
the proof of Lemma 2. 1

4 Proof of Theorems 1 and 2

The following lemma relates the first two moments of (; with T, , and T;, x x; its proof is the
same as that of [8, Lemma 1 (ii)].

Lemma 3 For k > 1, we have

6n T,
E(C) = = T
6n T,
E(G(G—1) = ?%
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Lemma 4 Let € be any constant satisfying 0 < € < 4/3, and let k > 2. For a random rooted
triangulation with n + 2 vertices, we have

(i)
E((x) =0 (n(4/3 - e’)_k) uniformly for all k, n;

mn — ko 02071
pro) - D () () (1 o ()

_ %nk_l/z(ll/i%)_k(l+O(1/k)),

20
E(u(CG—1)) = (E(G))? (1 ) <1Og n))

(ii)

n
uniformly for all k = O(logn).
Proof: Applying Darboux’s Theorem (see [2]), we obtain from (15)
T, = (V6/(32¢/7))n~>/2(256/27)"(1 + O(1/n)). (23)

Now Lemma 4(i) follows from Lemma 2(i) and Lemma 3. Using binomial formula and some
algebra, we obtain, for k > 2,

[F11 = Y21 = 3Y2 +2Y3)Y 3 = [JF](2—-2Y? +3Y —4y 1 + V73
_ 4k(k—2)(-3/2 3\F
T4k —1 k (7) ’
and
Kz -1327 = [M(-32-271)
_2(2-k)[-3/2 3\ ¥
T4k -1 ( k ) <_4> ‘
Using
") X3 = %n5/2(256/27)"(1 +0(1/n),
@](—X) = %M/?(zsta/zm"(l +0(1/n)),

and Lemma 2(ii), we obtain

V6 k(k—2)(-3/2 3\*
Tng = 24\/7 4k:2—1< k )(7)

1 20
xn5/2(256/27)" (1 +0 ( o8 n)) :

kB [ k—2\2(—3/2\"/ 3\
fokt = WE(W—l) ( k ) (_Z>
wn~312(256/27)" (1 i) <1°g20 n)) :

n

12



uniformly for £ = O(logn). Using (23), we obtain
Tor 4k (k—2) (=3/2) [/ 3\* L4+ 0 log? n
T, — 34k2—-1\ k 4 n ’
Tokk 32k:n< k-2 )2 —3/2 2<_§>2’<f Lo (1o
T, 3 \4k*-1 k 4 n ’

uniformly for £ = O(logn). Now Lemma 4 follows from Lemma 3 and the simple fact

~3/2 2
—1) = -—k"2(1+0(1/k)). 1
( ><k) TR0+ 0(1/1)

Theorem 1 follows from Lemma 4 and [8, Lemma 7]. Theorem 2(i) follows from Lemma 4,
Theorem 2(ii) follows from Theorem 1 and Chebyshev’s inequality by observing nu; — oo
when 2 < k < (logn — (1/2)loglogn)/log(4/3) — Q.

5 Triangulations of polygons and all maps

In this final section, we discuss similar sharp concentration results for degree counts in tri-
angulations of polygons and in all maps. The main analyses were done in [8], except that
the emphasis was on A, and hence k was assumed near logn in that paper. Let P(z,y)
and P(z,y,z) be the generating functions defined in [8] for rooted triangulations of polygons,
and M (x,y) and M(z,y, z) for all rooted maps. As before, let p(z,y, z) (p(x,y)) denote an
expression which is linear in z. A close look at [8, Section 3] gives

_ 2
Pla/a,2y) = %aﬁ—yp(l—x)l/2
+p(a,y) + 0 ((1-2)*(1—y) ™),
_ 1 222
Plx/4,2y,22) = — 4 (1 — 4z)"1/2

16 (1 —y)2(1 — 2)2

+p(,y,2) + 0 (1 =)' 2(1—9) (1= 2)?),
M(@/12,59/6) = 1201+ 3y/5) 21 —9) (1 - )P

+p(wy) + 0 (1 —2)”2(1—y) ™),

and

M(x/12,5y/6,52/6) = %3(1 + 3y/5) 721 — y) /2 ((1 +32/5)2(1 — 2)"V/2 1)

x(1—=2)"% 4 p(a,y,2) + 0 (1 —2)**(1 - y) (1 = 2)7").

Therefore by [8, Lemma 2],

Poy = [a"yF1P(a,y) = ii;\/%n_S/Q(l/Q)kél” <1 +0 <1°g;0”>> , (24)
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Pogr = [2"y*2F|P(x,y,2) = %n_1/2(1/2)2k4” <1 +0 <log:)n>> ,  (25)
M _ n, k _ b_k —5/2 kqon logQOn
ke = 2"y IM(z,y) = 5\/En (5/6)12" [1+ O - , (26)
_ n, k_ki7; _ak_bk —3/2 2k1on log* n
My = [2"Y°2"|M(z,y,2) = QOﬁn (5/6)°"12" [1+ O - , (27)
where
a = [{(1+32/5)!2(01 - )71} (28)
be = [ {y(1+3y/5) 20— y)"¥2} (29)
Since (see [8])
1
P, = P, = —— 32414+ 0(1/n , and
SR = gy 00)
_ _ ln—S/Q n n
it follows from [8, Lemma 1] that
E(G) = @ = (k —1)(1/2)kn (1 +0 <1°g:)”>> , and (30)
B(G(G-1) = "R = (121202 (1+o (ﬁ”)) (31)

for triangulations of polygons, and

2nM, b log? n
E(¢) = T ok _ 5—2(5/6)% <1+O< gn )) . and

2nMn b lo 20

for all rooted maps.
It is clear that for triangulations of an n-gon with n > 3, (; = 0 when k£ < 1. So we assume
k > 1 in the following theorem which is implied immediately from (30) and (31).

Theorem 6 Let k> 1 and
e = (k= 1)(1/2)%.
Then, for a random rooted triangulation of an n-gon,

(1)

2 2
E(Ck) = npu (1 +0 <10g n)) , V(G) =k + (npx)*O <log n) :

n n

uniformly for all k = O(logn).
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(ii)
P (G = (1 +0(1))) =1—o(1)
uniformly for k < (logn + loglogn)/log2 — .

P (¢ =0)=1-0(1)
uniformly for k > (logn + loglogn)/log2 + Q.

Noting
d 1/2 —12) _ 4 —1/2 _3/2
E{(1+3z/5) (1-2)712} = 2(1432/5) 7121272,

we obtain, by (28) and (29), by, = (5/4)kas, and hence
e ()
20k \5k/)

20
B(G(G — 1)) = (B(G))’ (1 +0 <logn n>>

for random rooted maps. Hence we obtain the following result.

This implies that

Theorem 7 Let k > 0 and

b= 1 {1+ 30/5) 21— )} and e = 25 (5/6)"

Then, for a random rooted map with n edges,

(i)

n n

20 ”
E(Ck) = npu (1 +0 <log n)) , V(G) = np + (npx)*O <log n) ,

uniformly for all k = O(logn).

(ii)
P (G = pr(1+0(1))) = 1 - o(1)
uniformly for k < (logn — (1/2)loglogn)/log(6/5) — €2,.

P (¢p = 0) = 1 - o(1)

uniformly for k > (logn — (1/2)loglogn)/log(6/5) + .

In conclusion, the major part of the present paper was involved in finding the first two
moments of (i in the case of rooted triangulations. This led to sharp concentration of the
maximum vertex degree and of the number of vertices of degree k. The requisite moment
calculations were already in [8] for triangulations of polygons and for rooted maps. Other
classes of maps could be considered, if the moment calculations can be carried out; we have
now covered some of the most interesting classes of maps. In another paper yet to appear,
we use a different technique to show that the number of copies of a fixed triangulation in a
random triangulation is asymptotically normal. It would be of interest to do the same for the

number of copies of an arbitrary submap.
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