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Abstract

We show that the maximum vertex degree in a random 3-connected planar triangulation is
concentrated in an interval of almost constant width. This is a slightly weaker type of result
than our earlier determination of the limiting distribution of the maximum vertex degree in
random planar maps and in random triangulations of a (convex) polygon. We also derive
sharp concentration results on the number of vertices of given degree in random planar maps
of all three types. Some sharp concentration results about general submaps in 3-connected
triangulations are also given.
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1 Introduction

For a random graph, the distribution of the number of vertices of given degree is fairly well
understood (see Barbour et al. [1], for example). For random maps, or graphs embedded on a
surface such as the plane, not much is known. The main results concerning degrees of vertices
involve enumeration of maps with given vertex degrees permitted as in [3, 7, 9]. On the other
hand, our main result in [8] is that in both random planar maps and random triangulations
of a (convex) polygon, the numbers of vertices of given degree close to the maximum behave
asymptotically as independent Poisson variables. As a result of this, we obtained the limiting
distribution of the maximum vertex degree for both classes of maps, which is concentrated
in an interval of width Ωn for any Ωn → ∞. This improved the result of Devroye et al. [6,
Theorem 1], who used different methods.

To obtain analogous results for other classes of planar maps is not at all straightforward.
Our method is to obtain generating function equations for the finite moments of the random
variable which counts vertices of a given degree, and then perform asymptotic analysis of the
results. There are two basic steps: formation of generating function equations that do not
become excessively complicated for higher moments, and the basic asymptotic analysis. These
were achieved for both classes of maps considered in [8]. The present paper concentrates on
one class of maps, planar triangulations, for which we have solved the asymptotic analysis
problem, but only for the lower moments. This is due to the lack of a simple way to deal
with the higher moments as in [8]. As a result, we do not obtain the limiting distribution
of the number of vertices of given degree, or maximum degree. However, we do obtain sharp
concentration results by the second moment method.

Throughout this paper, a map is a connected graph G embedded in the plane with no
edge crossings. Loops and multiple edges are allowed in G. A map is rooted if an edge is
distinguished together with a vertex on the edge and a side of the edge. The distinguished
vertex and edge are called the root vertex and the root edge of the map. The face on the
distinguished side of the root edge is called the root face. A rooted near-triangulation is a
rooted 2-connected map, with no loops or multiple edges, so that all nonroot faces are triangles.
A rooted triangulation of an n-gon is a rooted near-triangulation which has n vertices, all on
the root face. A rooted triangulation is a rooted near-triangulation whose root face is also a
triangle. Two rooted maps are considered the same if there is a homeomorphism from the plane
to itself which transforms one rooted map to the other and preserves the rooting. Throughout
this paper, all probability distributions are uniform over a given family of rooted maps. P,
E, and V are used to denote the probability, expectation, and variance of a random variable,
respectively. ∆n denotes the maximum vertex degree of a random map, and ζk = ζk,n denotes
the number of vertices of degree k in a random map. We use Ωn to denote a function which
goes to infinity arbitrarily slowly. We consider rooted maps for accessibility by generating
function techniques. By the results in [13], any almost sure property of one of the classes
of rooted maps in this paper is also an almost sure property of the corresponding unrooted
versions.

It is clear that for triangulations, ζk,n = 0 when k ≤ 2 and n ≥ 2. So we assume k > 2 in
the rest of the section. Our main sharp concentration results are as follows.

Theorem 1 For a random rooted triangulation with n+ 2 vertices,

E(∆n) =
log n− (1/2) log log n

log(4/3)
+O(1), V(∆n) = O(log n),
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and

P

(∣∣∣∣∆n −
log n− (1/2) log log n

log(4/3)

∣∣∣∣ < Ωn

)
= 1−O

(
1/ log n+ (3/4)Ωn

)
,

for any function Ωn →∞.

Theorem 2 Let

µk =
8(k − 2)

(4k2 − 1)

(
−3

4

)k (−3/2

k

)
.

Then for a random rooted triangulation with n+ 2 vertices,

(i)

E(ζk) = nµk

(
1 +O

(
log20 n

n

))
, V(ζk) = nµk + (nµk)

2O

(
log20 n

n

)
,

uniformly for all k = O(log n).

(ii)
P (ζk = nµk(1 + o(1))) = 1− o(1)

uniformly for k < (log n− (1/2) log log n)/ log(4/3)− Ωn.

P (ζk = 0) = 1− o(1)

uniformly for k > (log n− (1/2) log log n)/ log(4/3) + Ωn.

The theory of submaps of a random map was begun in [11] and [12] and extended in a
general way in [4], where it is shown that a random rooted map with n edges almost surely
contains at least cn copies of any given planar submap for some positive constant c. Let Wk

denote the wheel with k spokes, and let

f(n) =
log n− (1/2) log log n

log(4/3)
.

Since triangulations have no loops or multiple edges, a vertex of degree k in a planar triangu-
lation corresponds to a copy of Wk. Hence, Theorem 2(ii) implies that when

k < f(n)− Ωn,

the number of copies of Wk in a random rooted planar triangulation with n + 2 vertices is
sharply concentrated around nµk. For such k, nµk →∞. On the other hand, when

k > f(n) + Ωn,

a random triangulation with n + 2 vertices almost surely contains no copy of Wk. So it
may be said that the function f(n) serves as the threshold function on the variable k for the
property that a random triangulation with n+ 2 vertices contains a copy of Wk, although this
usage of the term ‘threshold’ is not standard. It seems reasonable to presume that for many
other families of planar submaps, there are similar sharp concentration results and threshold
functions for the size of the submap in the family. The following lemma allows us to study
general submaps in triangulations.
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Lemma 1 For each n, let M = M(n) be a planar near-triangulation with external face of
degree k and with j internal vertices such that k ≥ 4 and k + j = o(n). Let ηn(M) be the
number of copies of M in a random rooted triangulation with n+ 2 vertices. Suppose there are
r distinct ways to root the external face of M .

(i) If M is 3-connected, then

E(ηn(M)) = r

(
27

256

)j−1

E(ζk,n+1−j)(1 + o(1)),

and furthermore for k + j = O(1), we have

E(ηn(M)(ηn(M)− 1)) = r2
(

27

256

)2j−2

E(ζk,n+2−2j(ζk,n+2−2j − 1))(1 + o(1)).

(ii) If M is 2-connected, then

(
27

256

)k+j−1

E(ζ3,n+1−k−j)(1 + o(1)) ≤ E(ηn(M)) ≤ r
(

27

256

)j−1

E(ζk,n+1−j)(1 + o(1)),

and furthermore for k + j = O(1), we have

E(ηn(M)(ηn(M)− 1)) ≤ r2
(

27

256

)2j−2

E(ζk,n+2−2j(ζk,n+2−2j − 1))(1 + o(1)).

Proof: Let Dn(M) be the number of rooted triangulations with n + 2 vertices and with a
copy of M distinguished. Define Dn(Wk) similarly for the wheel Wk. Take a triangulation
counted by Dn(M), and replace M by a distinguished Wk. The result is clearly 3-connected
and has n+ 3− j vertices. When M is 3-connected, i.e., there is no internal edge in M joining
two external vertices of M , we can reverse this process by removing Wk and insert M back in
r different ways. This gives an r to 1 mapping when M is 3-connected and the root face is
not in the distiguished M . However, since k + j = o(n), the probability that the root face is
in the distinguished copy is trivially o(1). Hence when M is 3-connected

E(ηn(M)) =
Dn(M)

Tn
= r(1 + o(1))

Dn+1−j(Wk)

Tn+1−j

Tn+1−j
Tn

= r

(
27

256

)j−1

E(ζk,n+1−j)(1 + o(1)).

When M is 2-connected, the above argument gives the right hand inequality stated in (ii).
The left hand inequality of (ii) is obtained by embedding M in a single triangle to obtain a
new triangulation M̄ . Since M̄ is 3-connected and has 3 external vertices and k + j internal
vertices, we obtain the desired inequality by observing E(ηn(M)) ≥ E(ηn(M̄)).

Similarly we can consider triangulations with two distinguished copies of M . When k+j =
O(1), the number of copies of M is almost surely at least a constant times n by the results
in [12] and [4]. Hence, the probability that the two distinguished copies of M overlap is o(1),
and the above argument also gives the desired estimates for E (ηn(M)(ηn(M)− 1)) .

From Theorem 2, Lemma 1 and Chebyshev’s inequality we immediately have the following.

Theorem 3 Let M be a 3-connected near-triangulation with external face of degree k and with
j internal vertices such that there are r distinct ways to root the external face. Let ηn(M) be
defined as in Lemma 1. Then, for k ≥ 4 and k + j = O(1),

P

(
ηn(M) = rn

(
27

256

)j−1 8(k − 2)

(4k2 − 1)

(
−3

4

)k (−3/2

k

)
(1 + o(1))

)
= 1− o(1).
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The case k = 3 deserves a separate treatment, since no two copies of M can overlap when
the external face of M has degree 3. The first part of the following result arises from this
observation and Lemma 1. The second part comes from applying Chebyshev’s inequality in
the first case and Markov’s in the second.

Theorem 4 Let M be a 3-connected triangulation with j + 3 vertices such that j = o(n) and
there are r distinct ways to root M . Let ηn(M) be defined as in Lemma 1. We have

(i)

E(ηn(M)) = 2rn

(
27

256

)j
(1 + o(1)),

E(ηn(M)(ηn(M)− 1)) = 4r2n2
(

27

256

)2j

(1 + o(1)).

(ii) Let c ≤ rj−β ≤ C for some constants c, C > 0 and β ≥ 0. Then

P

(
ηn(M) = 2rn

(
27

256

)j
(1 + o(1))

)
= 1− o(1)

for j < (log n+ β log log n)/ log(256/27)− Ωn, and

P (ηn(M) = 0) = 1− o(1)

for j > (log n+ β log log n)/ log(256/27) + Ωn.

Madras [10] studied the number of occurrences of a given pattern in large lattice clusters,
and he proved a general pattern theorem similar to the general submap density theorem in [4].
He suggested that there should be some kind of law of large numbers for pattern occurrence.
That is, given a proper pattern P , there should exist a number α > 0, such that almost all
clusters of size n contain between (α− ε)n and (α+ ε)n copies of P . Our Theorem 4(ii) shows
that there is such a law of large numbers for the subtriangulation occurrence in large planar
triangulations.

2 Some basic equations

Let Tn,k be the number of rooted triangulations with n+ 2 vertices and root vertex degree k,
and let Tn,k,l be the number of rooted triangulations with n + 2 vertices, root vertex degree
k, and with another distinguished vertex of degree l. Then Tn =

∑
k Tn,k is the number of all

rooted triangulations with n+ 2 vertices. Define generating functions

T (x, y) =
∑

n,k

Tn,kx
nyk and T̄ (x, y, z) =

∑

n,k,l

Tn,k,lx
nykzl.

Note that
T (x, 1) =

∑
Tnx

n.

Deleting a root vertex of degree k of a triangulation gives a near-triangulation with root face
degree k (including by convention the one which is just a single edge). A rooting of the near-
triangulation can be canonically selected using a suitable convention, to obtain a bijection
between rooted triangulations and rooted near-triangulations.
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Hence T (x, y) is also the generating function for rooted near-triangulations with x marking
the number of nonroot vertices and y marking the root face degree, and T̄ (x, y, z) is also the
generating function for those rooted near-triangulations which have a distinguished vertex with
z marking the distinguished vertex degree. Note that the distinguished vertex in the near-
triangulation may coincide with its root vertex. Noting that T (x, y) = x2y3D(x, xy) + xy2,
where D(x, y) is defined in [5], we obtain from [5, (4.1)–(4.4)] that

T (x, y) =
y(1− u)(1 + 2u)− 1

2
+

1− y(1− u)

2
(1− 4u(1− u)y)1/2, (1)

where

u =
∑

j≥1

1

j

(
4j − 2

j − 1

)
xj (2)

satisfies
x = u(1− u)3. (3)

Hence

T (x, 1) = u(1− 2u), (4)

[y3]T (x, y) = u2(1− u)3(1− 2u). (5)

To derive an expression for T̄ (x, y, z), it is convenient to introduce the generating function
T̄1(x, y, z) for those near-triangulations counted by T̄ (x, y, z) whose distinguished vertex is on
the root face. Then T̄2(x, y, z) = T̄ (x, y, z) − T̄1(x, y, z) is the generating function for those
near-triangulations whose distinguished vertex is not on the root face. It is also convenient
to define the generating function t(x, y, z) for those near-triangulations whose distinguished
vertex is the same as the root vertex. Throughout this paper, we use ty to denote the partial
derivative of t(x, y, z) with respect to y, etc.

Theorem 5 Let u = u(x) be as given in (3), and

A(x, y) = y − 1− 2T (x, y) + x−1y [y3]T (x, y)

= (y(1− u)− 1)(1− 4u(1− u)y)1/2. (6)

We have

t(x, y, z) =
xy2z(y − z)

y − z + yT (x, z)− zT (x, y)
, (7)

T̄1(x, y, z) = yty(x, y, z), (8)

[y3]T̄2(x, y, z) =
x(1− u)

u
t(x, 1/(1− u), z)− x(1− u)2z − xT (x, z), (9)

A(x, y)T̄2(x, y, z) = t(x, y, z)− xy2z − yT (x, y)T (x, z)− x−1yT (x, y)[y3]T̄2(x, y, z). (10)

Proof: We first derive the following equations for t(x, y, z) and T̄2(x, y, z):

t(x, y, z) = xy2z + y−1zT (x, y)t(x, y, z)

+y−1z
(
t(x, y, z)− xy2z − x−1yz−1t(x, y, z)[y3]t(x, y, z)

)
, (11)

T̄2(x, y, z) = 2y−1T (x, y)T̄2(x, y, z) (12)

+y−1
(
t(x, y, z)− xy2z − x−1yT (x, y)[y3]t(x, y, z)

)

+y−1
(
T̄2(x, y, z)− x−1yT (x, y)[y3]T̄2(x, y, z)− x−1yT̄2(x, y, z)[y3]T (x, y)

)
.
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Proof of (11) and (12): The argument is standard in map enumerations. The first term on
the right side of (11) corresponds to the case where the near-triangulation consists of just a
single edge. Let NT be a rooted near-triangulation with root vertex a and root edge ab. Let
abc be the triangular face, different from the root face, containing ab. If vertex c is on the root
face, then deleting edge ab decomposes T into two near-triangulations. The one containing
ac is counted by t(x, y, z), and the one containing bc is counted by T (x, y). If c is not on the
root face, then deleting ab gives one near-triangulation NT ′ in which there is no edge joining
a and b. This gives the third term on the right side of (11), where xy2z inside the parenthesis
corresponds to the singe edge case, and the last term corresponds to the case that there is an
edge joining a and b in NT ′ ( which can be further decomposed into a near-triangulation NT ′′

and a triangulation T ′′).
The proof of (12) is similar. By the definition of T̄2(x, y, z), a near-triangulation T counted

by T̄2(x, y, z) contains a distinguished vertex d not on the root face, and hence the single edge
case does not occur here. The first term on the right side of (12) corresponds to the case where
c is on the root face. The coefficient 2 is from the fact that the distinguished vertex may be in
either one of the two near-triangulations after the decomposition. When c is not on the root
face, we consider two subcases. First c = d. In this subcase we choose c to be the root vertex
of the new near-triangulation T ′, and this gives the second term on the right side of (12). The
second subcase c 6= d gives the last term on the right side of (12), where the second term inside
the parenthesis corresponds to the case that the distinguished vertex d is in T ′′, and the third
term inside the parenthesis corresponds to the case that d is in NT ′′. This completes the proof
of (11) and (12).

Noting that [y3]t(x, y, z) is the generating function for rooted triangulations with x marking
the number of nonroot vertices, and z marking the root vertex degree, we have

[y3]t(x, y, z) = xT (x, z).

Substituting the above equation into (11) and solving for t(x, y, z), we obtain (7). Collecting
the coefficients of T̄2(x, y, z) in (12), we obtain (10). Setting y = 1/(1 − u) in (10) and using
(1), we obtain (9). For each rooted near-triangulation with root face degree k, there are k
ways to distinguish a vertex on the root face. Therefore

T̄1(x, y, z) =
∑

k≥2

k[yk]t(x, y, z)yk = yty(x, y, z).

This completes the proof.

3 Asymptotic expansions for T (x, y) and T (x, y, z)

We need to use some analytic results from [8]. In the present case the situation is a little simpler
because we only need to use up to three variables. In the following, ε will denote a sufficiently
small positive constant, φ is a constant satisfying 0 < φ < π/2, and y = (y1, y2, . . . , yd), where
d is the dimension of y which will be either 1 or 2 in this paper. In what follows, y denotes y
when the dimension is 1, and y denotes (y, z) when the dimension is 2. As in [8], define

∆x(ε, φ) = {x : |x| ≤ 1 + ε, x 6= 1, |Arg(x− 1)| ≥ φ},
R(ε, φ) = {(x,y) : |yj | < 1, 1 ≤ j ≤ d, x ∈ ∆x(ε, φ)}.
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Definition 1. We write

f(x,y) = Õ


(1− x)−α

d∏

j=1

(1− yj)−βj



if there are ε > 0 and 0 < φ < π/2 such that in R(ε, φ)

(i) f(x,y) is analytic, and

f(x,y) = O


|1− x|−α

d∏

j=1

(1− |yj |)−βj



as (1− x)(1− yj)−p → 0, for 1 ≤ j ≤ d, and some p ≥ 0.

(ii)

f(x,y) = O


|1− x|−α′

d∏

j=1

(1− |yj |)−q

 for some q ≥ 0 and some real number α′.

We also use [xnyk]f(x,y) to denote the coefficient of xnyk in the power series expansion of
f(x,y). We first derive some asymptotic estimates for Tn,k and Tn,k,k.

Lemma 2 (i)

Tn,k = O
(
(4/3)−k(1 + ε′)kn−5/2(256/27)n

)

uniformly for all n, k, and constant ε′ > 0;

(ii) Define
X = (1− 256x/27)1/2, Y = (1− 3y/4)1/2, Z = (1− 3z/4)1/2.

Then

Tn,k = (
√

6/72)[xnyk](1− Y 2)(1− 3Y 2 + 2Y 3)Y −3X3

+O
(
n−7/2(log n)20(3/4)k(256/27)n

)
,

Tn,k,k = (
√

6/12)[xnykzk](1− Y 2)(1− 3Y 2 + 2Y 3)Y −3(Z − 1)3Z−1X

+O
(
n−5/2(log n)20(3/4)2k(256/27)n

)
,

uniformly for 1 < k = O(log n).

Proof: For convenience, we rescale the variables x,y, and define

∆′x(ε, φ) = {x : |x| ≤ 27/256(1 + ε), x 6= 27/256, |Arg(x− 27/256)| ≥ φ},
R′(ε, φ) = {(x,y) : |yj | < 4/3, 1 ≤ j ≤ d, x ∈ ∆′x(ε, φ)}.

We also define

f(x,y) = Õ


(1− 256x/27)−α

d∏

j=1

(1− 3yj/4)−βj




accordingly. Since u satisfies (3) and has positive coefficients, it is easy to see that 27/256 is
the unique singularity of u(x) on its circle of convergence, and 27/256 is a branch point of
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order 2. Hence u(x) is analytic in ∆′x(ε, φ) (recalling that ε > 0 can be made arbitrarily small),
and has a power series expansion in X near x = 1. Substituting

u(x) =
∑

i≥0

ciX
i, x = 27(1−X2)/256

into (3) and equating the coefficients, we obtain

u(x) = 1/4− (
√

6/8)X + (1/12)X2 − (31
√

6/1728)X3 +O(X4). (13)

Hence

u(1− u) = (3/16)− (
√

6/16)X − (5/96)X2 + (41
√

6/3456)X3 +O(X4), (14)

T (x, 1) = Q(x) + (
√

6/24)X3 +O(X5), (15)

where Q is a quadratic polynomial in x.
From (2) and (5), we know that u and u(1−u) = u2 +T (x, 1) have nonnegative coefficients

in x. It follows from [8, Lemma 4] (after appropriate scaling of the value of the function) that

|u| < 1/4, |u(1− u)| < 3/16, for x ∈ ∆′x(ε, φ). (16)

Hence
|1− 4u(1− u)y| ≥ 1− 4|u(1− u)y| ≥ 1− 3|y|/4, for x ∈ ∆′x(ε, φ), (17)

and A(x, y) and T (x, y) are analytic in R′(ε, φ).
We now claim

A(x, y) = −Y 3 + (1/12)
(
3− 9Y 2 + 6Y 4

)
Y −1X2 (18)

−(
√

6/36)
(
1− 4Y 2 + 3Y 4

)
Y −3X3 + Õ

(
X4Y −8

)
, (19)

and

T (x, y) = 1/4− (3/4)Y 2 + (1/2)Y 3 − (1/8)
(
1− 3Y 2 + 2Y 4 + Y − Y 3

)
X2Y −1

+(
√

6/72)
(
1− Y 2

) (
1− 3Y 2 + 2Y 3

)
X3Y −3 + Õ

(
X4Y −8

)
. (20)

We first verify condition (i) in Definition 1 for (19). Using (6), (13), (14), x = 27(1−X2)/256,
and y = 4(1− Y 2)/3, we obtain

A(x, y) =

(
4(1− Y 2)

3

(
3

4
+

√
6X

8
− X2

12
+

31
√

6X3

1728
+O(X4)

)
− 1

)

×Y
(

1 +

(√
6X

4
+

5X2

24
− 41

√
6X3

864
+O(X4)

)
(1− Y 2)Y −2

)1/2

.

When XY −2 → 0 in R′(ε, φ), we can expand the square root by the binomial theorem, and
(with the help of Maple) obtain

A(x, y) = −Y 3 + (1/12)(3− 9Y 2 + 6Y 4)Y −1X2

−(
√

6/36)(1− 4Y 2 + 3Y 4)Y −3X3 +O
(
X4Y −8

)
,
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for (x, y) ∈ R′(ε, φ) and XY −2 → 0. Hence the error term

E(x, y) = A(x, y)−
(
−Y 3 + (1/12)(3− 9Y 2 + 6Y 4)Y −1X2− (

√
6/36)(1− 4Y 2 + 3Y 4)Y −3X3

)

in the expansion of A(x, y) satisfies

E(x, y) = Õ
(
X4Y −8

)
, for (x, y) ∈ R′(ε, φ) and XY −2 → 0.

It is clear that in R′(ε, φ), E(x, y) is analytic and

E(x, y) = O
(
(1− |3y/4|)−3

)
,

which establishes (19). The expansion (20) follows immediately by observing

T (x, y) =
y(1− u)(1 + 2u)− 1

2
−A(x, y)/2.

Now the asymptotics for Tn,k stated in Lemma 2 follow from (20) and [8, Lemma 2], with a
rescaling of the variables.

In order to derive asymptotics for T̄ (x, y, z), we first verify that t(x, y, z) is analytic in
R′(ε, φ). By (7), we have

t(x, y, z) =
xy2z

1− (yT (x, z)− zT (x, y))/(z − y)
.

It suffices to show that the denominator in the above expression is never zero for (x, y, z) ∈
R′(ε, φ). Note

T (x, y) =
∑

n≥1

xn
∑

2≤k≤n+1

Tn,ky
k,

where T1,2 = 1, and Tn,k = Dn−k+1,k−3 > 0 with Dn,m defined in [5, (4.7)]. Hence

yT (x, z)− zT (x, y)

z − y =
∑

n≥1

xn
∑

2≤k≤n+1

yzTn,k
zk−1 − yk−1

z − y , (21)

which is clearly a power series in x, y and z with nonnegative coefficients. Therefore, for
|y| ≤ 4/3, |z| ≤ 4/3 and |x| ≤ 27/256,

∣∣∣∣
yT (x, z)− zT (x, y)

z − y

∣∣∣∣ ≤ lim
y→4/3,z→4/3

yT (27/256, z)− zT (27/256, y)

z − y = 1/2.

In view of (21), (yT (x, z)−zT (x, y))/(z−y) is continuous in R′(ε, φ), and so its absolute value
is strictly less than 1 in R′(ε, φ) (choosing ε sufficiently small). Hence t(x, y, z) is analytic in
R′(ε, φ). By (16), we have

|1/(1− u)| ≤
∑

k≥0

|u|k <
∑

k≥0

(1/4)k = 4/3,

for x ∈ ∆′x(ε, φ), and hence t(x, 1/(1 − u), z) is analytic in R′(ε, φ). It follows from (9) and
(10) that [y3]T̄2(x, y, z) and T̄2(x, y, z) are analytic in R′(ε, φ). (It is important to note that
y = 1/(1− u) does not cause a singularity in T̄2(x, y, z).)
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Next we note from (7) and (9) that t(x, y, z) and [y3]T̄2(x, y, z) are bounded in R′(ε, φ),
and

|Ty(x, y)| = O
(
(1− 3|y|/4)−1/2

)
,

|ty(x, y, z)| = O
(
(1− 3|y|/4)−1/2

)
.

It follows from (10) that

T̄2(x, y, z) = O
(
(1− 3|y|/4)−1/2|ty(x, y, z) + Ty(x, y)|

)

= O
(
(1− 3|y|/4)−1

)
for (x, y, z) ∈ R′(ε, φ).

Now we can use Maple to obtain asymptotic expansions for t(x, y, z), t(x, 1/(1−u), z), [y3]T̄2(x, y, z),
and T̄2(x, y, z) in the same way as we did for A(x, y) and T (x, y). For

(x, y, z) ∈ R′(ε, φ), and XY −6 → 0 and XZ−6 → 0,

we obtain, using (7)–(10), (13), (19), and (20),

t(x, y, z) = p(x, Y, Z) + Õ
(
X3Y −6Z−6

)
,

T̄1(x, y, z) = p(x, Y, Z) + Õ
(
X3Y −8Z−6

)
,

[y3]T̄2(x, y, z) = (27
√

6/1024)(Z − 1)3Z−1X + p(x, Y, Z) + Õ
(
X3Z−6

)
,

T̄2(x, y, z) = (
√

6/12)(1− Y 2)(1− 3Y 2 + 2Y 3)Y −3(Z − 1)3Z−1X

+p(x, Y, Z) + Õ
(
X3Y −9Z−6

)

where p(x, Y, Z) denotes an expression in x, Y, Z which is linear in x (not necessarily the same
at each occurrence). Hence

T̄ (x, y, z) = T̄1(x, yz) + T̄2(x, y, z)

= (
√

6/12)(1− Y 2)(1− 3Y 2 + 2Y 3)Y −3(Z − 1)3Z−1X

+p(x, Y, Z) + Õ
(
X3Y −9Z−6

)
. (22)

Now the asymptotics for Tn,k,k stated in Lemma 2 follows from [8, Lemma 2]. This completes
the proof of Lemma 2.

4 Proof of Theorems 1 and 2

The following lemma relates the first two moments of ζk with Tn,k and Tn,k,k; its proof is the
same as that of [8, Lemma 1 (ii)].

Lemma 3 For k ≥ 1, we have

E(ζk) =
6n

k

Tn,k
Tn

,

E(ζk(ζk − 1)) =
6n

k

Tn,k,k
Tn

.

11



          

Lemma 4 Let ε′ be any constant satisfying 0 < ε′ < 4/3, and let k > 2. For a random rooted
triangulation with n+ 2 vertices, we have

(i)

E(ζk) = O
(
n(4/3− ε′)−k

)
uniformly for all k, n;

(ii)

E(ζk) =
8n(k − 2)

4k2 − 1

(
−3

4

)k (−3/2

k

)(
1 +O

(
log20 n

n

))

=
4√
π
nk−1/2(4/3)−k(1 +O(1/k)),

E(ζk(ζk − 1)) = (E(ζk))
2

(
1 +O

(
log20 n

n

))

uniformly for all k = O(log n).

Proof: Applying Darboux’s Theorem (see [2]), we obtain from (15)

Tn = (
√

6/(32
√
π))n−5/2(256/27)n(1 +O(1/n)). (23)

Now Lemma 4(i) follows from Lemma 2(i) and Lemma 3. Using binomial formula and some
algebra, we obtain, for k ≥ 2,

[yk](1− Y 2)(1− 3Y 2 + 2Y 3)Y −3 = [yk](2− 2Y 2 + 3Y − 4Y −1 + Y −3)

=
4k(k − 2)

4k2 − 1

(
−3/2

k

)(
−3

4

)k
,

and

[zk](Z − 1)3Z−1 = [zk](−3Z − Z−1)

=
2(2− k)

4k2 − 1

(
−3/2

k

)(
−3

4

)k
.

Using

[xn]X3 =
3

4
√
π
n−5/2(256/27)n(1 +O(1/n)),

[xn](−X) =
1

2
√
π
n−5/2(256/27)n(1 +O(1/n)),

and Lemma 2(ii), we obtain

Tn,k =

√
6

24
√
π

k(k − 2)

4k2 − 1

(
−3/2

k

)(
−3

4

)k

×n−5/2(256/27)n
(

1 +O

(
log20 n

n

))
,

Tn,k,k =
k
√

6

3
√
π

(
k − 2

4k2 − 1

)2
(
−3/2

k

)2 (
−3

4

)2k

×n−3/2(256/27)n
(

1 +O

(
log20 n

n

))
,

12



         

uniformly for k = O(log n). Using (23), we obtain

Tn,k
Tn

=
4k

3

(k − 2)

4k2 − 1

(
−3/2

k

)(
−3

4

)k (
1 +O

(
log20 n

n

))
,

Tn,k,k
Tn

=
32kn

3

(
k − 2

4k2 − 1

)2
(
−3/2

k

)2 (
−3

4

)2k
(

1 +O

(
log20 n

n

))
,

uniformly for k = O(log n). Now Lemma 4 follows from Lemma 3 and the simple fact

(−1)k
(
−3/2

k

)
=

2√
π
k1/2(1 +O(1/k)).

Theorem 1 follows from Lemma 4 and [8, Lemma 7]. Theorem 2(i) follows from Lemma 4,
Theorem 2(ii) follows from Theorem 1 and Chebyshev’s inequality by observing nµk → ∞
when 2 < k < (log n− (1/2) log log n)/ log(4/3)− Ωn.

5 Triangulations of polygons and all maps

In this final section, we discuss similar sharp concentration results for degree counts in tri-
angulations of polygons and in all maps. The main analyses were done in [8], except that
the emphasis was on ∆n and hence k was assumed near log n in that paper. Let P (x, y)
and P̄ (x, y, z) be the generating functions defined in [8] for rooted triangulations of polygons,
and M(x, y) and M̄(x, y, z) for all rooted maps. As before, let p(x, y, z) (p(x, y)) denote an
expression which is linear in x. A close look at [8, Section 3] gives

P (x/4, 2y) =
−1

8

y2

(1− y)2
(1− x)1/2

+p(x, y) + Õ
(
(1− x)3/2(1− y)−4

)
,

P̄ (x/4, 2y, 2z) =
1

16

y2z2

(1− y)2(1− z)2
(1− 4x)−1/2

+p(x, y, z) + Õ
(
(1− x)1/2(1− y)−2(1− z)−2

)
,

M(x/12, 5y/6) =
4y

15
(1 + 3y/5)−1/2(1− y)−3/2(1− x)3/2

+p(x, y) + Õ
(
(1− x)5/2(1− y)−4

)
,

and

M̄(x/12, 5y/6, 5z/6) =
−y
10

(1 + 3y/5)−1/2(1− y)−3/2
(
(1 + 3z/5)1/2(1− z)−1/2 − 1

)

×(1− x)1/2 + p(x, y, z) + Õ
(
(1− x)3/2(1− y)−4(1− z)−4

)
.

Therefore by [8, Lemma 2],

Pn,k = [xnyk]P (x, y) =
k − 1

16
√
π
n−3/2(1/2)k4n

(
1 +O

(
log20 n

n

))
, (24)
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Pn,k,k = [xnykzk]P̄ (x, y, z) =
(k − 1)2

16
√
π
n−1/2(1/2)2k4n

(
1 +O

(
log20 n

n

))
, (25)

Mn,k = [xnyk]M(x, y) =
bk

5
√
π
n−5/2(5/6)k12n

(
1 +O

(
log20 n

n

))
, (26)

Mn,k,k = [xnykzk]M̄(x, y, z) =
akbk
20
√
π
n−3/2(5/6)2k12n

(
1 +O

(
log20 n

n

))
, (27)

where

ak = [zk]
{

(1 + 3z/5)1/2(1− z)−1/2
}
, (28)

bk = [yk]
{
y(1 + 3y/5)−1/2(1− y)−3/2

}
. (29)

Since (see [8])

Pn =
∑

k

Pn,k =
1

16
√
π
n−3/24n(1 +O(1/n)), and

Mn =
∑

k

Mn,k =
2√
π
n−5/212n(1 +O(1/n)),

it follows from [8, Lemma 1] that

E(ζk) =
nPn,k
Pn

= (k − 1)(1/2)kn

(
1 +O

(
log20 n

n

))
, and (30)

E(ζk(ζk − 1)) =
nPn,k,k
Pn

= (k − 1)2(1/2)2kn2

(
1 +O

(
log20 n

n

))
, (31)

for triangulations of polygons, and

E(ζk) =
2nMn,k

kMn
=
bk
5k

(5/6)kn

(
1 +O

(
log20 n

n

))
, and

E(ζk(ζk − 1)) =
2nMn,k,k

kMn
=
akbk
20k

(5/6)2kn2

(
1 +O

(
log20 n

n

))
,

for all rooted maps.
It is clear that for triangulations of an n-gon with n ≥ 3, ζk = 0 when k ≤ 1. So we assume

k > 1 in the following theorem which is implied immediately from (30) and (31).

Theorem 6 Let k > 1 and
µk = (k − 1)(1/2)k.

Then, for a random rooted triangulation of an n-gon,

(i)

E(ζk) = nµk

(
1 +O

(
log20 n

n

))
, V(ζk) = nµk + (nµk)

2O

(
log20 n

n

)
,

uniformly for all k = O(log n).
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(ii)
P (ζk = µk(1 + o(1))) = 1− o(1)

uniformly for k < (log n+ log log n)/ log 2− Ωn.

P (ζk = 0) = 1− o(1)

uniformly for k > (log n+ log log n)/ log 2 + Ωn.

Noting
d

dz

{
(1 + 3z/5)1/2(1− z)−1/2

}
=

4

5
(1 + 3z/5)−1/2(1− z)−3/2,

we obtain, by (28) and (29), bk = (5/4)kak, and hence

akbk
20k

=

(
bk
5k

)2

.

This implies that

E(ζk(ζk − 1)) = (E(ζk))
2

(
1 +O

(
log20 n

n

))

for random rooted maps. Hence we obtain the following result.

Theorem 7 Let k > 0 and

bk = [yk]
{
y(1 + 3y/5)−1/2(1− y)−3/2

}
, and µk =

bk
5k

(5/6)k.

Then, for a random rooted map with n edges,

(i)

E(ζk) = nµk

(
1 +O

(
log20 n

n

))
, V(ζk) = nµk + (nµk)

2O

(
log20 n

n

)
,

uniformly for all k = O(log n).

(ii)
P (ζk = µk(1 + o(1))) = 1− o(1)

uniformly for k < (log n− (1/2) log log n)/ log(6/5)− Ωn.

P (ζk = 0) = 1− o(1)

uniformly for k > (log n− (1/2) log log n)/ log(6/5) + Ωn.

In conclusion, the major part of the present paper was involved in finding the first two
moments of ζk in the case of rooted triangulations. This led to sharp concentration of the
maximum vertex degree and of the number of vertices of degree k. The requisite moment
calculations were already in [8] for triangulations of polygons and for rooted maps. Other
classes of maps could be considered, if the moment calculations can be carried out; we have
now covered some of the most interesting classes of maps. In another paper yet to appear,
we use a different technique to show that the number of copies of a fixed triangulation in a
random triangulation is asymptotically normal. It would be of interest to do the same for the
number of copies of an arbitrary submap.
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