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Abstract

The decycling number ¢(G) of a graph G is the smallest number
of vertices which can be removed from G so that the resultant graph
contains no cycles. In this paper, we study the decycling numbers of
random regular graphs. For a random cubic graph G of order n, we
prove that .

n
HG) = [4 * J

holds asymptotically almost surely. This is the result of executing a
greedy algorithm for decycling G making use of a randomly chosen
Hamilton cycle. As a consequence we settle a problem of Bau and
Beineke in the affirmative a.a.s. For a general random d-regular graph
G of order n, where d > 4, we prove that ¢(G)/n can be bounded below
and above asymptotically almost surely by certain constants b(d) and
B(d), depending solely on d, which are determined by solving respec-
tively an algebraic equation and a system of differential equations.
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1 Introduction

The problem of eliminating all cycles in a graph by removing a set of vertices goes
back at least to the work of Kirchhoff [15] on spanning trees. In the literature
such a set is called a feedback vertex set, or following [5] a decycling set, of the
graph. Formally, for a graph G, a subset S C V(G) is said to be a decycling
set of G if G — S is acyclic. The minimum cardinality of a decycling set of G is
defined to be the decycling number of G, denoted by ¢(G) in this paper. Unlike its
counterpart problem of destroying cycles by removing edges, the problem of deter-
mining the decycling number does not have a simple solution. The corresponding
decision problem has long been known to be N P-complete, as shown in [13]. (See
Problem 7 on the feedback node set in the main theorem of [13].) Moreover, the
same is true even we restrict to the families of planar graphs, bipartite graphs and
perfect graphs. On the other hand, the problem is known to be polynomial for
various other families, including cubic graphs [16, 24|, permutation graphs [17],
and interval and comparability graphs [18]. These results naturally suggest fur-
ther investigations for good bounds on the parameter and for exact results when
possible. Partial results on exact values or bounds on decycling number have been
obtained for cubes and grids in [4] and [5]. For a cubic graph G of order n, it
is not difficult to see that ¢(G) > [n/4 + 1/2], and this follows from a general
lower bound given in [5]. Indeed, if G is d-regular then since the decycling set is
incident with at most dé(G) edges, and its removal leaves a forest containing at
most n — ¢(G) — 1 edges, it follows that

¢(G) 2 (n(d/2 =1) +1)/(d - 1). (1)

The gap between this lower bound and the actual value of ¢(G) can be arbitrarily
large when n is large. In fact, Bondy, Hopkins and Staton [8] constructed a class
of cubic graphs with decycling number [3n/8 + 1/4|. This class contains graphs
obtained from taking cubic trees and replacing every vertex of degree 3 by a triangle
and attaching K, with one edge subdivided at each vertex of degree 1. Except
for K4, graphs in this class are not 2-connected. Yet there are 3-connected cubic
graphs with decycling number just one-third of their order — every cubic graph
constructed by replacing each vertex of any 3-connected cubic graph by a triangle
has this property. Note that these constructions make use of triangles. For a
connected cubic graph G of order n with no triangles, it was proved in [27] that
#(G) < [n/3], and this settled a conjecture of [8] in the affirmative. For more
results concerning the decycling number, the reader is referred to [3, 6].

In this paper we will study the decycling numbers of random regular graphs.
We first give a simple algorithm which greedily generates a decycling set of a
random cubic graph G, given a Hamilton cycle of G. Based on this we show that
asymptotically almost surely the decycling number of such a graph is roughly one
quarter of its order. (For a sequence of probability spaces €2,, n > 1, an event A,, of
), occurs asymptotically almost surely, or a.a.s. for brevity, if lim, ,, P{A,} = 1.
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Here and in the following we use P to denote the probability, and we will use E
to denote the expectation.) Our first main result is as follows.

TuaeoreM 1.1 For a random cubic graph G of order n, a.a.s.

6@ =[5 +3]. @)

This result will be proved in Section 3. As a consequence we have lim 6(G)/n =

1, and this settles a problem of [3] in the affirmative a.a.s. The result in this

theorem shows that the somewhat trivial lower bound [n/4 4+ 1/2] a.a.s. gives the
correct value of the decycling number in the random case. This is in stark contrast
with the deterministic bounds for cubic graphs mentioned above. The polynomial
time algorithm given in [16] for finding the decycling number of a cubic graph seems
to offer no help for analysing the decycling number in the random case, since it
makes use of complicated arguments involving relations with the maximum genus,
apart from other things.

While attempting to extend the algorithm for random cubic graphs to random
d-regular graphs for larger d, we found that it gives worse result than an algorithm
based on the uniform model when d > 4. We will give the latter algorithm in Sec-
tion 4, and by using the differential equation methods we will prove the following
theorem.

TuroreMm 1.2 Let d > 4. For a random d-reqular graph G of order n, a.a.s.

o) < 29 < B (3)

n

where b(d) and B(d) are constants given in Table 1 for small d.

The values of b(d) and B(d) can be obtained by solving an algebraic equation
for b(d) and a system of differential equations to find B(d); see Sections 5 and 4
for details. Table 1 lists values of b(d) and B(d) obtained by numerical solution
methods for the first a few integers d > 4. Note that the trivial bound b(d) >
(d —2)/2(d — 1), which follows from (1), is the best we have for d = 4.

d [b(d) |B(d)

4 [1/3  [0.3787
5 | 0.3786 | 0.4512
6 | 0.4232 | 0.5043
7 | 0.4610 | 0.5459
8 | 0.4932 | 0.5800
9 | 0.5210 | 0.6085
10 | 0.5453 | 0.6328




Table 1. Lower and upper bounds.

The graph-theoretic notation and terminology used in the paper will in general
follow that of [10]. For concepts and notation of random graph processes and
probabilistic methods, the reader is referred to the survey paper [26]; for the
differential equation method, see [25].

2 Preliminaries

In the following we will use G,, 4 to denote the uniform space of d-regular graphs
on the set [n] = {1,2,---,n} of n vertices, where of course dn is required to be
even. In particular, G, is the uniform space of perfect matchings on [n] when
n is even. A method of sampling from G, 4 is to use the following pairing model
introduced by Bollobas [7], or a related model of others (see [26, Section2.1] for
a brief history about this model). Suppose that dn is even and d > 1. Consider
a set of dn points partitioned into n cells vy, vs, ..., v, each containing d points.
A perfect matching of these dn points into dn/2 pairs is called a pairing. A
pairing P induces a multigraph G(P) in which the vertices are the cells and each
pair {z,y} € P gives rise to one edge joining the cell containing z and the cell
containing y. We may assume that the points are elements of [n] x [d] so that
G(P) is induced by a projection onto [n]|. Since each simple graph corresponds to
precisely (d!)" pairings, a regular graph can be chosen uniform at random (u.a.r.)
by choosing a pairing P u.a.r. and accepting G(P) if it has no loops or multiple
edges.

In order to achieve our main result for the case of cubic graphs, the pairing
model is not enough and we rely on more advanced theory. Let P, and Q, be
two discrete probability spaces over the same underlying set for each n > 1. The
sequences of spaces {P,} and {Q,} are said to be contiguous, denoted P,, = Q,,
if any sequence of events A,, (n > 1) occurs a.a.s. in {P,} if and only if it occurs
a.a.s. in {Q,}. In this case for simplicity we also say that the spaces P, and Q,, are
contiguous. For two probability spaces P, Q of random graphs on the same vertex
set, as in [26] define the sum P+ Q to be the space whose elements are determined
by the random multigraphs G U H (called the superposition of G and H), where
G € P and H € Q are generated independently. Define the graph-restricted sum
P & Q to be the space which is the restriction of P + Q to simple graphs. In order
to maintain identical underlying sets for spaces that are to be related, the sum
space P + Q is extended to include all d-regular multigraphs on the same vertex
set, with all multigraphs not already appearing given probability 0. Similarly,
P @ Q is extended to include the underlying set of G, 4. The operations + and
@ are clearly commutative and associative. Hence, for k£ spaces P; on the same
vertex set, the meaning of P; @ - - - @ Py is unambiguous. In particular, we will use
kP to denote the graph-restricted sum of £ copies of a random graph space P.



The proof of Theorem 1.1 will be based on an algorithm for finding a decycling
set in a random cubic graph. In turn this algorithm relies on a special case (namely
d = 3) of the fundamental result implicitly proved by Robinson and Wormald [22]
which asserts that for d > 3 a random d-regular graph with an even number of
vertices is contiguous to the superposition of a random Hamilton cycle and d — 2
random perfect matchings. See also [26]. Define H,, to be the uniform space of
random Hamilton cycles on the same vertex set as G, 4. The following result is a
special case of a general result which was implied by the proofs in [22] and stated
explicitly in [14] and [26, Corollary 4.17].

TureoreMm 2.1 Let d > 3 and n be even. Then
gn,d ~ Hn @ (d — 2)gn,1-

By definition, if S is a decycling set of a graph G, then the subgraph G — S of
G induced by V(G) \ S is a forest, and vice versa. So the problem of finding the
decycling number is equivalent to that of finding the maximum number of vertices
which induce a forest. The sum of these two numbers is equal to n.

3 Random cubic graphs

In this section we will study the decycling number of a random cubic graph.

Proof of Theorem 1.1. By Theorem 2.1, G € G, 3 is contiguous to the graph-
restricted superposition of a random Hamilton cycle H and a random perfect
matching M. We will work with this sum space. The edges in M will be called the
matching edges. We may suppose the vertices of G are labelled 1,2, ...,n around
H, so that H = (1,2,...,n,1). We first give a greedy algorithm for finding a
decycling set of G' based on the following very simple idea: start from 1, walk
along H and delete the vertex being visited if it creats a cycle when added to the
undeleted vertices. The algorithm is carried out simultaneously with generating
the perfect matching M. When a vertex ¢ is visited in the walk, the “direction”
of the incident matching edge is first revealed — whether it goes forwards to the
vertices {i + 1,...,n} or backwardssec:uniform to the vertices already visited —
by generating it at random with the correct probability. Only if it is a backward
edge is the other end of the edge then chosen; otherwise the next vertex along H
is visited. This is an instance of the “method of deferred decisions”: one aspect of
the random edge is determined (its direction) whilst the choice of the other end
of the edge is deferred. Consequently at any point, there is some number k& of
vertices which have already been visited but are still unmatched. The distribution
of the edges matching them is, at the point of the walk reaching vertex ¢, that
of a uniformly distributed perfect matching, subject to the condition that these &
vertices are precisely the ones in the set {1,...,7 — 1} which match to vertices in



the set {7,...,n}. The set of vertices matching them will consequently be a subset
of {i,...,n} chosen uniformly at random. Hence

the probability that the matching edge at ¢ goes backwards is k/(n —i +1). (4)

In the case that it is a backward edge, the other end of the matching edge is chosen
uniformly at random from the k& unmatched vertices in {1,...,7 — 1}. It is easy
to see that this process generates the final matching uniformly at random. (If
any matching edge corresponds to an edge of H, we can start the process again;
the probability that this never happens is asymptotic to a non-zero constant —
see [26].)

The algorithm which generates the random matching and simultaneously the
decycling set is as follows.

Algorithm CusIcC
Input An integer n > 3.

Output A random matching M and a decycling set S of the random cubic graph
G which is the union of M with the Hamilton cycle H = (1,2,...,n,1).

1. Set S; = M; = () and let G; be the empty graph with vertex set {1}. Set 1 = 2.

2. Decide whether the matching edge at ¢ goes backwards or forwards. The prob-
ability of the former is equal to the number of unmatched vertices in [i — 1]
divided by n — ¢ + 1.

2a. In the former case the vertex which matches 7 is chosen u.a.r. from those
available, and we add the corresponding matching edge to M;_; to form
M;. If adding this edge and the edge {i — 1,4} (plus {n,1} if i = n) to
G,i_1 creates no cycle, then let G; be the graph obtained this way and
set S; = S;_1; otherwise let G; = G;_; and S; = S, U {i}.

2b. In the latter case, leave the vertex i unmatched. Set M; = M; 1, S; =
S;_1, and let G; be the graph obtained by adding the edge {7 — 1,4} to
Gi_1.

3. If i« = n then stop and output S := S,, and M := M,; otherwise set 1 =17 + 1
and go to Step 2.

One can see that G; is the subgraph of G induced by [i] \ S;. Alternatively, it
consists of the subgraph of H induced by [i] \ S; and the matching edges at these
vertices. From the algorithm it is obvious that G; contains no cycles; in particular
this applies to G,, = G — S,, and hence S, is a decycling set of G. In Step 2a, a
cycle is created if and only if i — 1 ¢ S;_; and the vertex to be matched with i
lies in the latest component of G;_1, that is, the component containing 7 — 1. ( If
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i— 1€ S; 1 we regard the latest component as being empty.) It only remains to
show the less obvious fact that a.a.s. S, has cardinality no more than [n/4+1/2].

Each vertex i is included in S; only when the matching edge at 7 is joined to
a vertex in the latest component of G;_;. From this one can see that each S,
1 <14 < n, is an independent set of G. In particular, S = S, is an independent
set of G, and hence there are 3|S| edges between S and [n]\ S. The major part of
the proof is to show that a.a.s. the subgraph G, of G is connected (and hence is
a tree). Once this is achieved, then counting the total number of edges of G gives
3n/2 > 3|S|+ (n—|S|—1), implying |S| < n/4+1/2 and hence ¢(G) < n/4+1/2
holds a.a.s. But [n/4 + 1/2] is a lower bound for ¢(G), as mentioned earlier, so
Theorem 1.1 follows.

The algorithm is well defined when G is not necessarily a graph; i.e. we work
with multigraphs. It is sufficient to show that GG, is a.a.s. connected in the multi-
graph setting, since the probability that GG, is a graph is asymptotically constant
(see [26, Proof of Lemma 4.14]). The proof has similarities with the proof that
a random d-process a.a.s. results in a connected graph [23]. First fix an integer
K > 3. Define a vertex ¢ < n to be special if 7 € S and the latest component of
G,_1 has at most K vertices not yet matched. Let j = [nl/ 31. We first prove the
following.

Claim 1 The number of special vertices in [n — j] is a.a.s. O(log®n).

Proof. As in the derivation of (4), if the latest component of G;_; has at most K
unmatched vertices, the probability that one of them is chosen is at most K/(n —
i), and this is independent of the number of special vertices chosen previously.
Thus, for any integer £ with 0 < £ < glog2 n, each vertex ¢ in the interval
I, = {i : n— 215 < 4 < n — 2%j} has probability at most K/N of being
special (independently of the earlier ones), where N = 2¥j. Hence the probability
that some fixed set R C I, of vertices is special is at most (K/N)®. Since
\I,| = N, the probability of more than log®n such vertices being special is at

log
more than log”n special vertices. Since there are O(logn) such intervals which
altogether cover all vertices of [n — j], Claim 1 follows. &

most ( ]\;n> (K/N)°g’n = o(1/n). Hence a.a.s. none of the intervals Ij, has

Claim 2 A.a.s. no vertex in the interval n — j+1,...,n is matched with another
such verter.

Proof. This follows from the fact that the matching is chosen u.a.r. The prob-
ability that any particular vertex is matched with a vertex in this interval is at
most j/(n — 1), and so the expected number of such vertices from this interval is
at most j2/(n — 1) = o(1). Markov’s inequality completes the proof. 1§

Armed with the two claims above, we are now ready to prove that G, is a.a.s.
connected. We first show that a.a.s. there exists no ¢ < n — j such that s € S and
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all vertices in the latest component of G;_; are matched. For any such ¢ and each
component of (G; containing at most K unmatched vertices, if the last vertex in
this component is ¢, then ¢ + 1 is special. By Claim 1, there are at most O(log” n)
such special vertices. Hence there are at most O(log®n) such components in the
graphs G; 5 and G;_1. Recalling that K > 3, we see that ¢ cannot be as described
above (i.e., creating a component of G; with no unmatched vertices which remains
a separate component of Gy for i’ > i) unless both the edges of M incident with
¢ — 1 and 7 join to components with less than K unmatched vertices. There being
at most O(K log® n) unmatched vertices in such components, the probability of
hitting them twice is O(K?log® n/(n — i)?). Summing this over all i < n — j gives
O(K?log’n/j) = o(1), so the expected number of times that a component with no
unmatched vertices is created in this fashion is o(1). Again, by Markov’s inequality
we conclude that a.a.s. every component of G,,_; contains at least one unmatched
vertex.

We finally turn to the vertices n — j + 1,...,n. Probabilities are conditioned
on the occurrence of the events in Claims 1 and 2. Whether or not these hold is
determined as soon as the vertex n — j has been treated in the algorithm, since
the event in Claim 2 holds if and only if the number of unmatched vertices at this
point is j. We may then complete the perfect matching M on these vertices by
matching them u.a.r. with the j previously unmatched vertices. Continuing the
algorithm, it suffices to show that no subset R of the components of G,,_; remains
isolated from the rest when the process terminates. We prove this by showing
that the expected number of such subsets is o(1). Without loss of generality,
choose R so that it contains ¢ < j/2 unmatched vertices in total. Let u denote
the number of components of G,,_; having less than K unmatched vertices. Then
u = O(log® n) by Claim 1, and the number of ways of choosing the components
i i Jj/K +u
in Ris O(1) <t/K+u
coefficients are unimodal and symmetric about the centre, and even though ¢t/ K <
§/2K, it may be that t/K +u > (j/K + u)/2. However, u = O(log® n).

Now consider the rest of the algorithm, and colour the remaining vertices in
{n—j+1,...,n} red and blue, where a vertex is red if it matches to one in a
component in R, and blue otherwise. A red vertex connot be adjacent to blue
ones on both of its sides along the Hamilton cycle H, for then a component in R
would join to one outside R. So we can restrict the remaining part of the matching
M to one in which the components (paths) of the subgraph of H induced by red
vertices all have length at least 2. Call such components red strings, and denote

). The factor O(1) accounts for the fact that the binomial

by r the number of them. Then there are , T) ways to choose the sequence of

t+1

lengths of red strings, and (j B ’ ways to choose those of blue strings such

that each has length at least 2. For a bound on the number of matchings under



consideration, we multiply these two binomials together and divide by the number

of ways of choosing the ¢ red vertices, i.e. divide by . Finally, we must sum

J
t
over r. (We should also multiply by 2 to account for the two ways to interleave

the red and blue strings.)
J J
(1) = (a)

Now use
7o) () =) =i

J—t+1\ (t—r\ _ (7—-1t+1 t—r
T ro ] r t—2r
for r > t/4 and
for r < t/4. Use the estimates
J J \t/4
(sia) / (2) = @

J/K +u W (J/K Nt/ K
< <
(t/K+u> =7 (t/K < (/)
and multiply by ¢ to account for summing over r. The result is o(1). This completes
the proof of Theorem 1.1. 1

IN

and

4 Upper bounds for d > 4: pairing model

The idea of Algorithm CUBIC can be used to generate a decycling set of any
random regular graph: walk along the Hamilton cycle guaranteed by Theorem
2.1, and skip the vertex being visited when it creates a cycle with the unskipped
vertices so far. After all vertices have been visited, the set of skipped vertices
gives rise to a decycling set. As seen in the previous section for the special case
where d = 3, to analyse this algorithm we have to keep track the sizes of all
components of the forest induced by the unskipped vertices. However, this seems
to be an impossible task for larger d. Instead one might be tempted by using the
relaxed algorithm which skips the vertex w being visited if at least two matching
edges at w go backwards, or only one matching edge at w goes backwards but it
creates a cycle with the unskipped vertices so far, or at some earlier vertex there
was exactly one backward matching edge (but no cycle was created) and w is the
next vertex with backward matching edges. By using the standard differential
equation method [25], we have been able to work out asympototically the size of
the decycling set generated this way and thus obtain an asympototic upper bound
for ¢(G)/n. However, for d > 4, we found that this upper bound is worse than
the one obtained by using the pairing model. The purpose of this section is to
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prove the latter upper bound, which is the right hand side of (3). We will use the
terminology set at the beginning of Section 2.

Proof of Theorem 1.2. Recall that in the pairing model the vertices of a random
d-regular graph are cells each containing d points. We first give an algorithm which
outputs a decycling set and an induced forest (usually a tree) simultaneously with
generating a random pairing u.a.r. The method of deferred decisions will be used,
to the extent that when vertices are added to the decycling set, the pairs which
join back to the growing tree are determined, but the mates of the points paired
with untreated vertices are not determined.

Algorithm PAIRING
Input Integers n > 5 and d > 4 with dn even.

Output A random d-regular graph G' with n vertices, a decycling set S of G’ and
an induced forest 7" of G.

1. Set S; = () and let T} be the graph with one vertex. Set ¢t = 1.

2. Choose u.a.r. an unpaired point z in the vertices of 7;. (If there is no such point,
choose any vertex not in 7} or S; and just add it to 7; to form T3,1.) Select its
mate u.a.r. from the points in the vertices not in 7} or S;. We will call these
the untreated vertices. Let u denote the vertex containing this point. For each
other point in u, decide whether its mate is in the unpaired points of 7} or
not. (This must be done with the correct probability, given that the pairing
is uniform subject to all unpaired points in 7} being paired with untreated
points.) If any are, then set S;;; = S; U{u} and T;,; = T}, and such mates
are selected u.a.r. from the unpaired points of 7;; otherwise, set S;1 = St
and let Ty, be the forest obtained from 7; by adding u together with the
edge joining u and the vertex containing z. In the first possibility, the mates
of those points which lie in the untreated vertices are left undetermined.

3. If t + 1 = dn/2 then stop and output S = Sg,/2 and T' = Ty, /9; otherwise set
t=t+1 and go to Step 2.

The algorithm is similar to that [11] for generating an independent dominating
set of a random cubic graph, see [25] also. Let X (¢) denote the number of untreated
vertices at time t. Let Z(¢) be the number of vertices of 7}, and Y (¢) the number of
unpaired points in such vertices. During the algorithm the probability that one of
the points in the vertex u being treated is paired with an unpaired point of 7} is in
a general step — i.e. not one near the very end of the algorithm — asymptotically
Y (t)/dX (t). This is because the pairing is uniform subject to all Y (¢) unpaired
points in T} being paired with the dX (¢) points in the untreated vertices. During
the processing of the unpaired points in the vertex u, this probability does not

10



change significantly. Hence the probability that u is added to the growing forest
T; is asymptotically P(t)4~!, where
Y (t)
P(t)=1 X

Consequently the expected change in Z(t) in one step is asymptotically P(#)¢L.

We pause to argue that the growing forest will a.a.s. be a tree until such time
as Y (t) drops to 0 near the end of the process. In the first step, Y (1) becomes d.
Until Y (¢) drops to 0, the growing forest will be a tree. For very small € > 0, in the
first en steps, the probability that the new vertex chosen is not added to the forest
is O(e). A common large deviation argument shows that a.a.s. Y (¢) > t/2 during
this time. Then in the rest of the argument we condition upon Y (¢) remaining
non-zero.

Since the forest is a tree, of the dZ(t) points in its vertices, asymptotically
27 (t) are used by the edges within the forest 7;, and Y (¢) are unpaired. So (d —
2)Z(t)—Y (t) have been paired to vertices in S, which therefore has asymptotically

W(t) = dn—2Z(t) - X(t) - ((d-2)Z(t) - Y (1))
= dn—X(t)—2Z(t))+Y(t)+2Z(t)

unpaired points. When the vertex u is treated, one point counted by Y'(¢) is used
up, and each of the d—1 other points in u uses such a point with probability 1—P(t).
Hence the expected number of such points in u paired to T} is (d — 1)(1 — P(?)).
Thus in the event that u is added to S; (which happens with probability 1—P(¢)¢!)
the expected change in Y (¢) is asymptotic to

L=PH)*"H{-1-(d—1)(1 - PE)/Q-PH)" )}
=—-1+P@#)* ' —(d—-1)(1 - P(2).
On the other hand, in the event that u is added to 7T} (which happens with proba-
bility P(t)¢!), with probability (dX (¢)—Y (¢))/(dX (t)—Y (t)+W (¢)) each of these
d — 1 points is not paired with the W (¢) unpaired points in S;. (In other words,

with this probability each of them is contributed to Y (¢ 4+ 1).) So the expected
change in Y (¢) due to this event is

(- (v v )~ PO

Putting together the expected change in Y (¢) in one step is

@0 (et ) PO~ @00 ) -1

On the other hand, the expected change in X (¢) per step is exactly —1, since
each untreated vertex is used in every step. Recall that the expected change in
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Z per step was computed above. We use 7 = t/n to denote the “scaled time”
and, as usual for the differential equation method, we use z(7), y(7), 2(7) to model
X(t)/n,Y(t)/n, Z(t)/n respectively. Then P(t) and W (t)/n can be modelled by
p(r) =1 —y(r)/dz(7) and w(r) = d(1 — z(7) — 22(7)) + y(7) + 22(7), respec-
tively. The expected changes in X (¢),Y (¢) and Z(t) suggest the following system
of differential equations:

(dz

e |
i d
Y r—Y d—1 d—1
e R Y e —d=-1)(1=p)(1— 1

CE —a-n (G ) - - D0 -pa -
dz .

L ar P

with initial conditions z(0) = 1, y(0) = 2(0) = 0. By [25, Theorem 5.1], the
solutions z(7), y(7), 2(7) to these equations exist, and X(¢),Y(¢) and Z(t) are
a.a.s. approximated by nz(t/n), ny(t/n) and nz(t/n) respectively with error o(n),
until such time as Y (¢) drops to 0. By the approximation result, this cannot happen
until y(¢/n) = o(1). Note that Z(¢) is the number of vertices in the induced tree
T when Y (t) first becomes zero. Thus B(d) = 1 — z(t/n) — ¢, for any fixed € > 0,
is an asymptotic lower bound on the proportion of vertices in an induced tree, and
hence an upper bound on ¢(G)/n. Values of B(d) for 4 < d < 10 are listed in the
right column of Table 1 in the introduction, as computed by numerical solution
of the differential equations, which reveal that y first dips back to 0 only when z
reaches 0 (at least, to the precision of the numerical computations). This means
that there is a.a.s. an induced tree of the same size as the induced forest found (at
least, to the precision of the computations). &

5 Expected number of trees and forests

We consider first the expected number of induced trees of order k£ in the random
graph G, 4, and then modify the calculations for induced forests. We use the
pairing model described in Section 2, and thus consider a random pairing. Any
property obeyed a.a.s. by the random pairing then carries over to G, 4 (see [26]).
We calculate EX}, where X denotes the number of trees of order k in (the graph
corresponding to) the pairing.

Suppose that 7" is an induced tree on k vertices the graph corresponding to the
pairing. The vertices of 7" can be chosen in

(£

ways. If the degrees of the vertices are dy, ..., d; then T can be chosen in
k—2
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ways.

We pause here to justify this. It is well known in tree enumeration theory,
but we will have a need to extend the result to a bound for forests. The simple
explanation for (5) comes from the Priifer sequence for the labelled tree, which
comes from repeatedly deleting the lowest-labelled leaf and writing down the label
of its adjacent vertex. Stop when there are only two vertices left. This means
that all labels of non-leaves appear somewhere in the sequence, and hence the first
vertex is the lowest label not appearing. Thus the first step of the deletion process
can be reconstructed from the sequence, by attaching this leaf to the vertex whose
number is first in the sequence. By induction, the whole tree can be reconstructed,
so each sequence corresponds to at most one tree. Conversely, it is easy to see that
each sequence of length k£ — 2 from the £ labels corresponds to a tree. Thus the
number of trees on k vertices is k¥~2, but in particular, since the label of a vertex
of degree j appears exactly j — 1 times in the sequence, we obtain (5).

Once the tree T has been chosen, we may choose precisely which points in the
pairing are used for the pairs corresponding to its edges. The d; edges coming into a
vertex can be mapped to points in the vertex in d!/(d—d;)! ways. Hence, collecting
the factors above, the number of ways to choose all the pairs corresponding to edges
of T is (with square brackets denoting coefficient extraction)

n d!
(k)““‘”’ 2 @@=

)
— (Z)(kmux%fﬁ<§é<?>fﬁ>k
= (1) -2 o) ()
where

g(z) = zd(1 +2)"".

The standard way to estimate the coefficient in (6) is (see [20] for example) to
observe that it is bounded above by

a—2k+29(a)k (7)

for all & > 0. We may choose o so as to minimise this bound. Since all we
require ultimately is an upper bound on EX}, this suffices for our purposes. In
fact it can be shown that using this bound results in the correct value of Xj to
within a polynomial factor, and hence we are not losing anything by this when
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the final result is considered. Differentiation of the logarithm of (7) (noting that
the derivative of log g(z) is (zd + 1)/(z® + x)) shows that the best « is 1/(d — 2).
Thus (6) is bounded above by

n\ (k—2)! , _d(d-1*?
(k) (d_2)2p , Wherep—m. (8)

This is a bound on the number of ways to form the pairs which give the induced
tree. The rest of the pairing is formed by first pairing each unused point in the tree’s
vertices with points in vertices not used by the tree — in [dn — dk]q,_ok1o Ways,
where [r]; denotes the falling factorial — and then choosing a perfect matching of
all remaining points — in M (nd — 2kd + 2k — 2) ways, where M (2i) = (2i)!/(:!2%).
Multiplying these three factors together and dividing by M (nd), and using Stir-
ling’s formula for factorials, neglecting polynomial factors (so that for example
M (nd) ~ (nd)"¥?) gives

EX; < (f(d,s) +0o(1))" (9)
where k = k/n and

pnddfdn(l _ Kj)(dfl)(lfn)
(d — 2dk + 2k) /2~ drtrqd/2”

fld; k) =

For k = 3, (1) implies that EX, = 0 if K > 3/4. We find f(3,3/4)/2, so there
is no new information gained for d = 3. Similarly, for d = 4, f(4,2/3) ~ 1.1906,
which permits many induced trees of size 2n/3, corresponding to the upper bound
obtained from (1). For larger d, we obtain new upper bounds on the size of the
largest induced tree in G, 4 as shown in the middle column of Table 2, from the
point x at which f(d, k) dips below 1, since then EX} becomes exponentially small.

14



k for tree

k for forest

00 ~J O O

9
10
11
12
13
14
15
16
17
18
19
20

0.6214756457
0.5768963205
0.5390900048
0.5068847315
0.4790661409
0.4547283832
0.4332035162
0.4139905628
0.3967060215
0.3810506356
0.3667868661
0.3537233114
0.3417036974
0.3305989350
0.3203012819
0.3107199781

0.6215520592
0.5775223167
0.5402738418
0.5085196796
0.4810425927
0.4569554491
0.4356103248
0.4165230118
0.3993230883
0.3837212484
0.3694874682
0.3564360217
0.3444149357
0.3332983963
0.3229811686
0.3133744218

Table 2. Upper bounds on size of induced trees and forests, a.a.s.

However, the largest induced forest may be subtantially larger than the largest
induced tree. We next consider an upper bound on EY}, where Y} is the number
of induced forests of k vertices in G' € G, 4. The bounds we will obtain are shown
in the third column of Table 2.

Forests with given degree sequence and given number of vertices and edges
do not seem to have been counted in the literature, though Britikov [9] found
asymptotic formulae without regard to degree sequence. Without too much trouble
we can obtain quite useful upper bounds. First, for simplicity, consider forests with
no isolated vertices, with k vertices and j components. Consider constructing the
Priifer sequence for such a forest, as described above for a tree. This time, it is
possible that the lowest-labelled leaf is adjacent to another leaf. If it is, do not
write down the label of that leaf, but simply enter a special character (which we
may call 0) and delete the two adjacent leaves. Again, stop when there are two
(adjacent) vertices left. Then the length of the seqence is reduced by j — 1 as
compared to the Priifer sequence for a tree of k vertices, and so the number of
sequences is

(k—j—1)!

(7 = DI, (di = 1Y
Each sequence corresponds to at most [k — 1], forests, since the full identity of the

forest is not revealed unless the labels of the vertices adjacent to the ones which
entered “0”s are revealed. For these there are at most [k — 1]; possibilites, as the
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lowest labelled leaf in the forest cannot occur here. (This is quite an overcount,
and is the only source of error in our overestimate for EY}.)

Of course, if a forest has j, isolated vertices out of k, their labels can be chosen
in separately. Thus, since ), d; = 2k — 27, an upper bound on the ways to choose
pairs corresponding to a forest with k vertices, 7 components and with j, isolates

is, corresponding to (8),
(n) (k=1 s joms
k) Gol(j —1)! ’

with p as in (8). Following the argument as for trees, this results in

EY; < (h(d, K, X, Xg) + 0(1))" (10)
where k = k/n and
A dogdds (1 _ ) (d-1)(1-5)

h(d, &, A, Ao) = Aéo)\)‘(d — 2k + 2k — 2\ — 2)\0)d/2—dn+n—)\—>\odd/2'

Fixing A + Ao, the first and second derivatives show that the maximum occurs at
Ao = A. Making this substitution, we find the second partial derivative of logh
with respect to A is
2(—2k — d + 2dk)
Ad = 2dk 4 2k — 4))

The expression in the denominator occurs in the denominator of h(d, k) and has a
physical meaning as the cardinality of a set of points. Hence the second derivative
is negative, and putting 6%/%—’1 = 0 will reveal the unique maximum. Solving this
equation to yield A\; and solving h(d, k, A1, A1) = 1 for k (using Maple) gives the
results in the third column of Table 2.

We conclude this section with our opinion on the question of whether the
decycling number of random 4-regular graphs is a.a.s. equal to the bound given
in (1). Our calculation above shows that the expected number of induced trees of
the complementary size, (2n — 1)/3, is exponentially large.

Consecture 5.1 For G € G, 4, a.a.s.

5(G) = P%Hﬂ
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