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Abstract

We derive an asymptotic formula for the number of graphs with n ver-
tices all of degree at least k, and m edges, with k fixed. This is done by
summing the asymptotic formula for the number of graphs with a given de-
gree sequence, all degrees at least k. This approach requires analysis of a set
of independent truncated Poisson variables, which approximate the degree
sequence of a random graph chosen uniformly at random among all graphs
with n vertices, m edges, and a minimum degree at least k. Our main result
generalizes a result of Bender, Canfield and McKay and of Korshunov, who
treated the case k = 1 using different methods.

1 Introduction

It is a quite fundamental question to ask for the number of graphs with n vertices,
all of degree at least k. We call such a graph a k-core. This is only a slight abuse
of the usual convention, in which a k-core is defined for a particular graph as the
maximal subgraph which has minimum degree at least k. For the purposes which
motivate us, we require an asymptotic formula for the number Ck(n, m) of k-cores
with n vertices and m edges, with k fixed. The only interesting range of m is
O(n log n), since for larger m it is well known that the proportion of graphs with
any vertices of degree less than k is exceedingly small.
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We do not consider the trivial case k = 0. The 1-cores are precisely the
graphs with no isolated vertices. For this case, such asymptotic formulae were
found independently by Korshunov [8] and Bender et al. [5], the latter obtaining
bounds on the remainder term. The approach in [5] was based on a recurrence
equation for the number of such graphs. Extending this appealing idea to k > 1
is quite problematic. There were several approaches in [8], one of which studied
this problem by considering the distribution of the number of isolated vertices
in a random graph with n vertices and m edges. Another, which applied for
m < n/2 + n2/3/ log n, was to show that such a graph is with high probability a
forest with maximum tree size at most 4. Again, these methods look very difficult
to extend beyond k = 1.

In [13, Proposition 2] (see also [14, Proof of Theorem 3.1]), an entirely different
method was used which is much simpler to implement than either of these, and
the results apply to the more general problem of arbitrary k. This method is
to sum the well known asymptotic formula for the number of graphs with given
degree sequence, over the appropriate degree sequences. The result in [13] permits
an additional number of vertices to have specified degrees less than k. However,
it does not cover the cases that m/n → ∞ or 2m − kn = o(n). The latter is
more delicate computationally than 2m−kn = cn, but is especially interesting for
transitional effects, since when 2m − kn = 0 the graphs are k-regular. Our aim
here is to use this method to give a formula for the complete interesting range of
m.

Our main result is Theorem 2, the desired asymptotic formula for the number
of k-cores with a given number of vertices and edges, stated below. After this, we
make some observations which indicate the flavor of our proof, and provide some
upper bounds on the numbers which is useful in work to appear later. Our later
work will include asymptotic enumeration of 2-connected graphs by vertices and
edges (particularly in the interesting case when the graphs are quite sparse). It
will also include (again in the sparse case) results on the distribution of random
variables relating to the 2-cores of random graphs, properties of random connected
graphs (such as the distribution of short cycles), and a simpler derivation of the
asymptotic formula given by Bender et al. [4] for the number of connected graphs
with n vertices and m edges. The same method also forms the basis for results on
directed graphs.

 Luczak [9] showed that a random graph with given degree sequence, with all
degrees between 3 and n0.02, has connectivity equal to its minimum degree with
probability asymptotic to 1. It follows that for k ≥ 3, a random k-core with n
vertices and m edges is k-connected with probability tending to 1 as n → ∞.
Hence, our main result gives, for k ≥ 3, an asymptotic formula for the number of
k-connected graphs with a given number of vertices and edges. (We have a cutoff
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m = O(n log n), but it is well known that above this range, almost all graphs are
k-connected; see Erdős and Rényi [7].)

For a sequence ~d = (d1, . . . , dn), put 2m =
∑n

j=1 dj and dmax = maxi{di}. Let

G(~d) be the set of graphs with degree sequence ~d (which is only nonempty m is an

integer), and put g(~d) = |G(~d)|. The formula we require is the following, shown
first by Bender and Canfield [3] for dmax bounded, and later by McKay [10] in the
generality we require.

Theorem 1 Let ~d be a function of n such that m = m(n) → ∞ and dmax =
o(m1/4) as n →∞, and m is an integer for all n. Then

g(~d) =
(2m− 1)!!

n∏
j=1

dj!
exp

(
−η(~d)

2
− η2(~d)

4
+ O

(
d4

max

m

))
(1)

where

η(~d) :=
1

2m

n∑
j=1

dj(dj − 1). (2)

In this theorem, as with all our asymptotic statements in which the setting is
not explicitly stated, we follow the convention that the implicit error function is
uniform over all possibilities for ~d, and any variables defined directly from them,
subject to whatever constraints have been explicitly imposed to be in force at the
time, provided n →∞.

In fact, there is a sharper formula by McKay and Wormald [11], under the
weaker condition dmax = o(m1/3). The proofs use the pairing model, which is a

probabilistic space valid for any nonnegative integer sequence ~d with even sum.
(See Bollobás [6] or Wormald [15] for more details.) The basic element is a random
pairing, and, by the multivariate analogue of [15, equation (2)],

U(~d) =

g(~d)
n∏

j=1

dj!

(2m− 1)!!
(3)

is the probability that this random pairing corresponds to a simple graph. As it
is a probability, we may immediately conclude the useful bound

g(~d) ≤ (2m− 1)!!
n∏

j=1

dj!
(4)
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for all ~d. For dmax = o(m1/4), U(~d) is evaluated asymptotically by the exponential
factor in (1).

Stating our main result requires some preliminaries. We begin with introducing
a family of random variables basic for this work. Denote by Y = Y (k, λ) a random
variable which has a k-truncated Poisson distribution with a parameter λ, that is

P(Y = j) = P(Y (k, λ) = j) =


λj

j!fk(λ)
, j ≥ k

0, j < k

(5)

where

fa(λ) = eλ −
a−1∑
i=0

λi

i!
=
∑
i≥a

λi

i!
.

In particular, f0(λ) = eλ, and we will find it convenient to define f`(λ) = eλ for all
` ≤ 0. Let

c =
2m

n

and let λc denote the root of the equation

λfk−1(λ)

fk(λ)
= c, (6)

or equivalently
EY = c. (7)

It is easily seen that λc minimizes fk(λ)n/λ2m. It follows (see the comments after
the statement of Theorem 2) that λc maximizes P(

∑n
j=1 Yj = 2m) as well, where

Y1, . . . , Yn are independent copies of Y . Also define

η̄c = λcfk−2(λc)/fk−1(λc), (8)

and for convenience define

r = (c− k)n = 2m− kn.

These definitions apply throughout this paper.

We now state our asymptotic formula for the number of k-cores. For the
statement of this theorem, write λ = λc and η̄ = η̄c.

Theorem 2 Let k ≥ 1 be fixed. Suppose n, m →∞ in such a way that r ≥ 0 and
m = O(n log n).
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(a) If r →∞

Ck(n, m) = (1 + O(r−1 + r1/2n−1+ε))
(2m− 1)!!fk(λ)n

λ2meη̄/2+η̄2/4
√

2πnc(1 + η̄ − c)

for any ε > 0;

(b) for r = O(n2/5)

Ck(n, m) = (1 + O(r5/2n−1 + β))
(2m− 1)!!fk(λ)nrr

λ2meη̄/2+η̄2/4+rr!

where, for any ε > 0,

β =

{
min{e−rε

, n−1/2+ε}, k = 1,
min{e−rε

, r1/2n−2/3}, k ≥ 2.

Note 1 The factor (2m − 1)!! can be replaced by
√

2(2m/e)m since the error
O(m−1) in Stirling’s formula for m! is subsumed by the other error terms.

Note 2 We can compare to the result in [5] for the case k = 1, which was treated
there. For this case, the leading term of our estimates agrees with that in [5],
as our λc is equal to 2xy in [5]. Our error bound improves that in [5] for all
n1/2+ε < r = O(n log n). It is suggested in [5] that the true correction term to the
leading term in the form given in [5] (k = 1) is actually O(1/m). Not contradicting
this, we believe that the error bound for our result in (a) cannot be lower than
O(r−1) for any k (see (22)).

To explain the appearance of truncated Poisson variables in presenting the
formulae, note that the right hand side of the bound (4) (see (1) too) leads us to
consider

Qk(n, m) =
∑

d1,...,dn≥k
d1+···+dn=2m

n∏
j=1

1

dj!
. (9)

With Y1, . . . , Yn defined as independent copies of Y (k, λ) as in (5),

P

(
n∑

j=1

Yj = 2m

)
=

∑
d1,...,dn≥k

d1+···+dn=2m

n∏
j=1

λdj

dj!fk(λ)
=

λ2m

fk(λ)n

∑
d1,...,dn≥k

d1+···+dn=2m

n∏
j=1

1

dj!

and thus

Qk(n,m) =
f(λ)n

λ2m
P

(
n∑

j=1

Yj = 2m

)
. (10)

We may take this as an alternative definition of Qk(n, m). Although it is in terms
of the local probability in the sum of independent copies of Y (k, λ), by its original
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definition (9), it does not depend on λ. Since by (4), (2m − 1)!! Qk(n,m) is an

upper bound for
∑

~d g(~d), it is natural to choose λ = λc, the minimum point of this
fraction. Of course, that same λc must be the maximum point for P(

∑
j Yj = 2m).

The fact that for the minimum point λc we must have E(Y (k, λc)) = 2m/n, as
determined by (6) and (7), makes this “coincidence” even less mysterious.

The next result is a more precise version of Theorem 2.

Theorem 3 Let ε > 0. For any r ≥ 0,

Ck(n, m) = (1 + O(ξ))
(2m− 1)!! Qk(n, m)

eη̄/2+η̄2/4
, (11)

where

ξ =

{
min{e−rε

+ r1/2n−1+ε, n−1/2+ε}, k ≤ 1,
min{e−rε

+ r1/2n−1+ε, r1/2n−2/3}, k ≥ 2.

Note For Qk(n,m) one can use (10) with λ = λc. Then the local probability
in (10) is estimated in Theorem 4(a).

Theorem 3 enables one to estimate Ck(n, m)/Ck(n′, m′), with n′ and m′ close
to n and m, with high accuracy. Using (11), for both numerator and denominator,
leads to estimating the ratio of local probabilities, which can lead to a considerably
more accurate result than by use of Theorem 2.

Some preliminary investigation will reveal the relevance of a conditional expec-
tation examined in the next section. With x as a formal variable, (3) gives

∑
2m≥kn

x2m
∑

d1,...,dn≥k
d1+···+dn=2m

g(~d)

(2m− 1)!!
=

∑
d1,...,dn≥k

U(~d)
n∏

j=1

xdj

dj!
,

so that

Ck(n, m) =
∑

d1,...,dn≥k
d1+···+dn=2m

g(~d)

= (2m− 1)!! · [x2m]
∑

d1,...,dn≥k

U(~d)
n∏

j=1

xdj

dj!
. (12)

Picking λ > 0, the probability generating function of Y (k, λ) is

E(xY (k,λ)) =
1

fk(λ)

∑
d≥k

xdλd

d!
=

fk(λx)

fk(λ)
.
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So, considering the independent copies Y1, . . . , Yn of Y (k, λ), (12) is (“magically”)
transformed into

Ck(n, m) = (2m− 1)!!
fk(λ)n

λ2m
· [x2m]

∑
d1,...,dn≥k

U(~d) ·
n∏

j=1

(λx)dj/dj!

fk(λ)

= (2m− 1)!!
fk(λ)n

λ2m
E
(
U(~Y )I{P

j Yj=2m}

)
= (2m− 1)!!

fk(λ)n

λ2m
E

(
U(~Y )

∣∣∣∣∣
n∑

j=1

Yj = 2m

)
P

(
n∑

j=1

Yj = 2m

)

Ck(n, m) = (2m− 1)!! Qk(n, m) E

(
U(~Y )

∣∣∣∣∣
n∑

j=1

Yj = 2m

)
(13)

by (10). The last factor denotes the expected value of U(~Y ), conditional on the
indicated event. This is studied in Theorem 4.

We close this section with two upper bounds. First, combining (10) with (4)
gives an upper (Chernoff-type) bound

Ck(n, m) ≤ (2m− 1)!!
fk(λ)n

λ2m
, ∀λ > 0. (14)

Of course, to get the most out of this bound one would want to use λ = λc, since
this is the minimum point of the function in question. Comparing this bound
with (11), we see that the main difference is absence of the square root factors
in (14). Their total product is of order

√
nλc. With a bit of extra work, based on

the Cauchy integral formula and an inequaliy

|fk(z)| ≤ fk(|z|) exp

(
−|z| − Re z

k + 1

)
,

(see [12]), the bound (14) can be improved to

Ck(n, m) ≤ a(2m− 1)!!
fk(λ)n

λ2m
√

nλ
, ∀λ > 0, (15)

where a is an absolute constant.

The next section gives the required properties of the joint distribution of the
Yj, and the third section then proves Theorem 2.

2 Properties of truncated Poisson variables

For later use we compute here

E(Y (Y − 1)) =
1

fk(λc)

∑
j≥k

j(j − 1)
λj

c

j!
=

λ2
cfk−2(λc)

fk(λc)
= cη̄c (16)
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and, using (6), (7),

Var(Y ) = E[(Y )2] + E(Y )− E2(Y )

=
λ2

cfk−2(λc)

fk(λc)
+

λcfk−1(λc)

fk(λc)
−
(

λcfk−1(λc)

fk(λc)

)2

(17)

= c(1 + η̄c − c). (18)

Lemma 1 The root λc of (6) exists uniquely, and

(a) if 2m/n → k then λc = (k + 1)(c− k) + O((c− k)2),

(b) λc ≤ 2m/n always,

(c) if m/n →∞ then λc ∼ 2m/n.

Proof. We first observe that EY (k, λ) is monotonically increasing in λ. Perhaps
the simplest way to see this is to note that, by (6), (17), and f ′

`(λ) = f`−1(λ),

dE(Y (k, λ))

dλ
=

d

dλ

λfk−1(λ)

fk(λ)
=

1

λ
Var(Y (k, λ)) > 0,

a relation used substantially by Pittel et al. [13] and Aronson et al. [1].

Note that for λ → 0,

λfk−1(λ)/fk(λ) = k + λ/(k + 1) + O(λ2) ∼ k, (19)

and for λ → ∞, fk−1(λ) ∼ fk(λ). These facts together with the monotonicity
mentioned above show that (6) has a unique root. Then (a) and (c) follow also
from the equality in (19). Finally, from (6), λc ≤ c, which gives (b).

We also note in the following lemma that Var(Y ) (see (18)) is of exact order
λ, just like the usual Poisson(λ), whose variance simply equals λ.

Lemma 2 Uniformly for all λ ∈ (0,∞),

Var(Y (k, λc)) = c(1 + η̄c − c) = Θ(λc) = Θ(c− k).

Proof. The first equality is (18). If c → k then by Lemma 1(a), λc → 0. Ap-
ply (19) to (8) with k replaced by k − 1 (unless k = 1, in which case use η̄c = λc),
to obtain

c(1 + η̄c − c) = c

(
λc

k
− (c− k) + O(λ2

c)

)
∼ c(c− k)/k ∼ c− k (20)
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by Lemma 1(a). The lemma follows in this case.

On the other hand, suppose that c is bounded away from k. Then by (19), λ is
bounded away from 0. Lemma 1(b) and (c) then give λc = Θ(c − k). Also, since
Y has a the distribution of Poisson(λ) with a few values omitted, it follows that
Var(Y (k, λc)) is at least a positive constant times λ. Finally, Var(Y (k, λc)) =
O(λ) since

η̄c =
(k − 2)λk−1

c /(k − 1)! + cfk(λc)

λk−1
c /(k − 1)! + fk(λc)

≤ c, (21)

and so the expression in (18) is O(c) = O(λ).

We require some facts involving the event that the sum of a set of independent
truncated Poisson variables has a given sum. In the rest of this section, we drop
the subscripts c on λ and η̄, so λ is the root of (6) and η̄ is the quantity η̄c in (8).
Recall that k is fixed, and recall η defined in (2).

Theorem 4 Let k ≥ 0 be fixed. Suppose n, m → ∞ in such a way that m =
O(n log n). Let Y1, . . . , Yn be independent copies of Y (k, λ) as in (5). Then

(a) for r →∞

P

(
n∑

j=1

Yj = 2m

)
=

1 + O(r−1)√
2πnc(1 + η̄ − c)

, (22)

whilst for r = O(n2/5)

P

(
n∑

j=1

Yj = 2m

)
= (1 + O(r5/2n−1))e−r rr

r!
; (23)

(b)

E

(
e−η(~Y )/2−η2(~Y )/4

∣∣∣∣∣
n∑

j=1

Yj = 2m

)
= (1 + τ)e−η̄/2−η̄2/4,

where for all r and k and any ε > 0

τ = O(n−1/2+ε), (24)

for r = O(n1−ε) and any k and ε > 0

τ = O(e−rε

+ r1/2+εn−1), (25)

whilst for r = o(n) and k ≥ 2

τ = O
(
r1/2n−2/3

)
. (26)
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Note 1 The approximate size of the expression in the square root in (22) can be
obtained from Lemma 2, and more precisely from (20) in the case λ → 0.

Note 2 The estimate (22) blends with (23) since, by (20), Var(Y (k, λ)) ∼ r/n
for r → ∞, r = o(n). The domains r → ∞ and r = O(n2/5) overlap, and the
approximation (23) becomes sharper than (22) once r falls below n2/7.

Proof of Theorem 4 For (a), first let r →∞. One can easily obtain the main
term in (22) (i.e. without the specific bound on the rate of convergence of the error
term) as follows. The Berry-Esseen inequality establishes asymptotic normality of∑

Yj, and then [2, Lemma 2] implies a local limit theorem (since the truncated
Poisson distribution is log-concave, and the convolution of log-concave sequences
is log-concave). The usual way to express the main term is 1/

√
2πnVarY (k, λ),

which by (18) is equal to the stated term. The more precise statement in (22), with
the error term, was proved in [1] for k = 2, under the condition nVar(Y ) → ∞,
which is satisfied by Lemma 2. The argument used there extends with virtually
no changes to any k ≥ 0.

Suppose now that r = O(n5/2). Consider r > 0, as the case r = 0 is obvious.
As r = o(n), we have

λ ∼ (k + 1)r

n
= O(r/n),

see Lemma 1(a). Introducing Y ′
j = Yj − k, we can write

P

(∑
j

Yj = 2m

)
= P

(∑
j

Y ′
j = r

)
.

Now

P(Y ′
j = 1) =

λk+1/(k + 1)!

fk(λ)
=

λ

k + 1
(1 + O(λ)),

and P(Y ′
j ≥ 2) = O(λ2), so by Lemma 1(a)

p := P(Y ′
j ≥ 1) = r/n + O(r2n−2)

and ∑
j

P(Y ′
j ≥ 2) = O(nλ2) = O(r2n−1) → 0.

Therefore, introducing Y ′
j = min{Y ′

j , 1},

P

(∑
j

Y ′
j 6=

∑
j

Y ′
j

)
= O(r2n−1).

10



Consequently

P

(
n∑

j=1

Yj = 2m

)
= O(r2n−1) +

(
n

r

)
pr(1− p)n−r

= O(r2n−1) + e−r rr

r!
(1 + O(r2n−1)),

which gives (23), as the explicit term in the last expression is of order r−1/2.

We will have occasion to use a very rough bound on the upper tail probability
for Y :

P(Y ≥ j0) =
∑
j≥j0

λj

j!fk(λ)
= O(exp(−j0/2)) for j0 > 2eλ. (27)

This follows because the ratio of consecutive terms is at most 1/e for j > j0/2,
and also because each term is a probability (so at most 1).

We now turn to part (b). We will show that for the purpose of estimating

η = η(~Y ) by its expected value, the concentration of its distribution is sufficiently
strong to overpower conditioning on the relatively “thin” event {

∑
j Yj = 2m} as

in (37). Set

S = η(~Y )/2 =
1

4m

n∑
j=1

Yi(Yi − 1). (28)

Then, using (16),

ES =
n

4m
E(Y (Y − 1)) = η̄/2 = O(log n) (29)

by (21), and therefore

S + S2 − ES − (ES)2 = (S − ES)2 + (S − ES)(1 + 2ES)

= O(|S − ES|2 + |S − ES| log n). (30)

Let Zi = Yi(Yi − 1)− E(Yi(Yi − 1)), and put z = log6 n. Then (for n large)

P(|Zi| ≥ z) ≤ P(Y 2 ≥ z) = P(Y ≥
√

z) ≤ exp(−Θ(log3 n))

by (27) and Lemma 1(b). Virtually the same argument, using an obvious analogue
of (27), gives

|E(Zi I|Zi|≥z)| ≤ exp(−Θ(log3 n)). (31)

Now set Z∗
i = Zi I|Zi|<z, so that |Z∗

i | < z. By the Azuma-Hoeffding inequality

P(|
∑

i(Z
∗
i − EZ∗

i )| ≥ α) ≤ 2 exp(−α2/8z2n) (32)
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for all α > 0. Since EZi = 0,

|
∑

i EZ∗
i | = | −

∑
i E(Zi I|Zi|≥z)| ≤ exp(−Θ(log3 n))

by (31). So (32) implies that for t = n1/2 log8 n

P(|
∑

i Zi| ≥ t) ≤
∑

i P(|Zi| ≥ z)

+P(|
∑

i(Z
∗
i − EZ∗

i )| ≥ t/2) +
∑

i |EZ∗
i |

≤ exp(−Θ(log3 n)) + 2 exp(−n(log4 n)/32n)

≤ exp(−Θ(log3 n)).

Consequently

P
(
|S − ES| ≥ n1/2m−1 log8 n

)
≤ exp(−Θ(log3 n)). (33)

Notice also that on the event {|S − ES| ≤ m−1/2 log8 n},∣∣S + S2 − ES − (ES)2
∣∣ = O(m−1/2 log9 n)

by (30), and the fact that S ≥ 0 always. So (33) implies

E

(
exp

(
−S − S2

) ∣∣∣∣∣
n∑

j=1

Yj = 2m

)

= exp(−ES − (ES)2 + O(m−1/2 log9 n)) +
exp(−Θ(log3 n))

P
(∑n

j=1 Yj = 2m
)

= exp(−η̄/2− η̄2/4 + O(m−1/2 log9 n)) + exp(−Θ(log3 n)) (34)

by (22), (29) and Lemma 2. This implies (b) with ξ given in (24) since m ≥ n.

For (25) we have that r = O(n1−ε), and hence λ = O(n−ε) by Lemma 1(a). Put
T = d1/εe, so that n−4Tε = O(n−4), and put z = (4T + k)2 (noting that z is now
bounded). Define Zi as above, and note that P(Y >

√
z) = O(n−4Tε) = O(n−4)

using (5). Hence the argument leading to (31) now produces

|E(Zi I|Zi|≥z)| = O(n−4). (35)

Define Z∗
i = Zi I|Zi|<z as before, and set

Wi = Z∗
i − EZ∗

i .

For sharp concentration of the sum of Wi, we use a common approach for
large deviation inequalities. In this case, Wi takes on only a finite set of values

12



{u0, . . . , u`} where u0 = k(k − 1)−E(Y (Y − 1))−EZ∗
i , and uj − u0 is a positive

integer less than z for all 0 < j ≤ `. Letting pj = P(Wi = uj), we have

p0 = 1−O(λ), hence
∑
j>0

pj = O(λ), and u0 = O(λ). (36)

From these equations and Taylor’s theorem, it follows that for h = o(1) (to be
chosen shortly)

E(ehWi) =
∑

j

pje
huj = 1 + h

∑
j

pjuj +
1

2
h2
∑

j

pju
2
j + O(h3λ).

The first summation is EWi = 0. Letting V denote the second summation (which
happens to be EW 2

i ), we have V = Θ(λ), and so

log E(ehWi) = h2V/2 + O(h3λ).

Thus for any α > 0, using Markov’s inequality for the second step,

P

(
n∑

i=1

Wi ≥ α

)
= P

(
eh

Pn
i=1 Wi ≥ ehα

)
≤ e−hαE(eh

Pn
i=1 Wi)

= e−hα
(
E(ehWi)

)n
= exp(−hα + nh2V/2 + O(nh3λ)).

Selecting h = α/V n to minimize the quadratic, this bound becomes

exp(−α2/2V n + O(nh3λ)) = exp(−α2/2V n + O(α3/r2))

since h = Θ(α/r) and λ = Θ(r/n). To satisfy the requirement h = o(1), we shall
restrict α to o(r). For such α we now have

P

(
n∑

i=1

Wi ≥ α

)
≤ exp(−Θ(α2/r)).

The same argument clearly bounds P (
∑n

i=1 Wi ≤ −α) by an identical quantity,
since it applies when all the values uj are negated. Applying this with α = r1/2+ε

say, gives
P(|

∑
i(Z

∗
i − EZ∗

i )| ≥ r1/2+ε) = O(exp(−r3ε/2))

for any fixed ε > 0. Using this in place of (32), and (35) in place of (31), the earlier
argument now yields, instead of (33),

P
(
|S − ES| ≥ 2m−1r1/2+ε

)
≤ exp(−Θ(log3 n)) + O(exp(−r3ε/2)).

13



Since in this case ES = O(1), in place of (30) we use S + S2 − ES − (ES)2 =
O(|S − ES|2 + |S − ES|). The right-hand side of (34) becomes

exp(−η̄/2− η̄2/4 + O(m−1r1/2+ε)) + O(exp(−rε))

and we have (b) with the form of ξ in (25). Note that other bounds are obtained
with different choices of α; our choice here is motivated by the type of bound which
will eventuate in Theorem 2.

For (26), consider r = o(n) and assume k ≥ 2. As λ → 0 we may calculate

η̄ = k − 1 + λ/k + O(λ2), c = k + λ/(k + 1) + O(λ2)

so that by (16)

E(Y (Y − 1)) = cη̄ = k(k − 1) + 2λk/(k + 1) + O(λ2)

and

Var(Y (Y − 1)) =
1

fk(λ)

∑
j≥k

(j(j − 1)− k(k − 1) + O(λ))2λj

j!
= Θ(λ).

Thus from the definition (2) of η,

Var η(~Y )

(E η(~Y ))2
=

Var
(∑n

j=1 Yj(Yj − 1)
)

(
E
∑n

j=1 Yj(Yj − 1)
)2 = O(λ/n).

By Chebyshev’s inequality and Lemma 1(c), this implies uniformly for n, m, and
ε > 0,

P
(
|η(~Y )− E(η(~Y ))| ≥ ε

)
= O

(
λ

nε2

)
.

Therefore by (22)

E

(
exp

(
−η(~Y )

2
− η2(~Y )

4

)∣∣∣∣∣
n∑

j=1

Yj = 2m

)

=
O(λ/nε2)

P
(∑n

j=1 Yj = 2m
) + (1 + O(ε)) exp

(
− η̄

2
− η̄2

4

)

= (1 + O(λ1/2n−1/6)) exp

(
− η̄

2
− η̄2

4

)
,

upon setting ε = λ1/2n−1/6. This gives the form of ξ in (26), recalling λ = O(r/n).
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3 Proof of Theorems 2 and 3

We only need to attend to Theorem 3, since Theorem 2 then follows immediately
by Theorem 4(a).

Let a < 1/4 be fixed. By definition Un(~Y ), defined in (3), is always at most 1,
whilst for max Yj ≤ ma, Theorem 1 gives

log Un = −η(~Y )

2
− η2(~Y )

4
+ O(m−1+4a).

Since m = O(n log n), Lemma 1(b) implies λ = O(log n). Thus by (27)

P

(
max

j
Yj ≥ ma

)
≤ nP(Y ≥ ma) ≤ e−na′

for any a′ < a. So, choosing a = ε/4, the conditional expectation in (13) is

O(e−na′

) + (1 + O(n−1+ε))E

(
exp

(
−η(~Y )

2
− η2(~Y )

4

)∣∣∣∣∣
n∑

j=1

Yj = 2m

)
. (37)

Theorem 3 now follows from Theorem 4(b) and (21).
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