
Colouring random regular graphs

Lingsheng Shi ∗

lshi@math.tsinghua.edu.cn
and Nicholas Wormald†

nwormald@uwaterloo.ca

Department of Combinatorics and Optimization
University of Waterloo

Waterloo ON
Canada N2L 3G1

Abstract

In a previous paper we showed that a random 4-regular graph asymptotically
almost surely (a.a.s.) has chromatic number 3. Here we extend the method to show
that a random 6-regular graph asymptotically almost surely (a.a.s.) has chromatic
number 4 and that the chromatic number of a random d-regular graph for other
d between 5 and 10 inclusive is a.a.s. restricted to a range of two integer values:
{3, 4} for d = 5, {4, 5} for d = 7, 8, 9, and {5, 6} for d = 10. The proof uses efficient
algorithms which a.a.s. colour these random graphs using the number of colours
specified by the upper bound. These algorithms are analysed using the differential
equation method, including an analysis of certain systems of differential equations
with discontinuous right hand sides.

1 Introduction

Random regular graphs are a commonly studied model of random graph. They have
some features that are strikingly different from other models, for instance the connec-
tivity is higher at lower densities. See Bollobás [4], or the more recent survey paper [20],
for more information.

We showed [17] that the chromatic number of random 4-regular graphs is 3, with
probability tending to 1 as the size of the graph tends to ∞. In this paper we extend
this investigation to the uniform model Gn,d of random d-regular graphs on n labelled
vertices. (We restrict nd to the even integers in all asymptotics.) We obtain significant
new upper bounds on χ(G), holding asymptotically almost surely (a.a.s.) for G ∈ Gn,d,
for small values of d. These imply in particular that a random 6-regular graph a.a.s.
has chromatic number 4. For other values of d ≤ 10, the bounds restrict χ to one of
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two possible values. Along with the upper bounds, we obtain algorithms which a.a.s.
colour these random graphs with the number of colours given by the upper bound. This
compares with a recent non-algorithmic result of Achlioptas and Naor [2] that for the
common random graph model G(n, d/n) (in which edges between the n vertices are
chosen independently at random with probability d/n), the chromatic number is, when
d is fixed, concentrated on at most two integers, and on one value for d in some intervals.

A number of results on the chromatic number of Gn,d have already appeared. Frieze
and  Luczak [11] showed that χ is a.a.s. asymptotic to d

2 log d
, in the sense that as d →∞

moderately slowly, there are functions of d asymptotic to d
2 log d

that are a.a.s. upper and

lower bounds on χ(G) for G ∈ Gn,d. This was extended by Cooper et al. [8] to d = o(n1−η)
for all fixed η > 0 (provided d → ∞), and, earlier than that, by Krivelevich et al. [14,
Theorem 2.5] to n6/7+η ≤ d ≤ 0.9n with the formula adjusted to (1 + o(1))n/(2 logb d)
where b = n/(n− d). However, these results say nothing about fixed d. It is known (see
Borodin and Kostochka [5], Catlin [7] and Lawrence [15]) that for all K4-free graphs G
with maximum degree d, χ(G) ≤ 3

4
(d + 2), which consequently gives a bound holding

a.a.s. for random d-regular graphs (d fixed), since they a.a.s. contain no K4. Also
Kostochka [13] showed that a d-regular graph (d ≥ 5 and fixed) with sufficiently large
girth has chromatic number at most 2 + bd/2c. By the known properties of Gn,d, this
implies that for a random graph in Gn,d, P(χ ≤ 2+bd/2c) is bounded below by a positive
constant. Thus, for instance, when d = 5, P(χ ≤ 4) is bounded below by a positive
constant.

On the other hand, Molloy and Reed [16] found lower bounds holding a.a.s. for d
fixed. These arise simply from finding values k and d for which the expected number of
k-colourings of a random d-regular graph tends to 0. Because it is not readily accessible,
we provide a proof of these lower bounds, along the lines of the argument in [16], at
the end of this section. They cannot be obtained by a simple direct evaluation of the
expected number of k-colourings.

While the present paper was being prepared, Achlioptas and Moore [1] announced a
proof of two things: firstly that the chromatic number of Gn,d is 2-point concentrated, so
is a.a.s. k or k + 1 for some k = k(d), and secondly that if k is the smallest integer such
that d < 2k log k then a.a.s. Gn,d has chromatic number k, k + 1, or k + 2. Additionally,
for roughly half of all d, the lowest value k is eliminated by the Molloy-Reed lower
bound.

Our upper bounds for small values of d, together with the known lower bounds, give
the following results. These cut one value, the uppermost, off the range of possible
values given in [1] for d ≤ 9. A much less explicit theorem for arbitrary fixed values of d
is given in Theorem 1.2 below. Note that d = 5 is the smallest unknown case (see [17]),
and, after the following results, d = 7 is next.

Theorem 1.1 Let G be a random d-regular graph and χ the chromatic number of G.
Then a.a.s. χ = 4 for d = 6. Moreover, a.a.s. χ = 3 or 4 for d = 5, χ = 4 or 5 for
7 ≤ d ≤ 9, and χ = 5 or 6 for d = 10.

We also give “simple” algorithms which a.a.s. colour a random d-regular graph with the
number of colours given by the upper bound, based on a greedy colouring scheme. To
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minimise repetition of material in [17], our proof refers heavily to it, so the reader will
need to consult that paper to make sense of the present paper from Section 4 onwards.

Our method extends to d > 10 in theory, as shown by the next theorem, but com-
putations were too difficult to carry out accurately enough to obtain useful results. To
obtain the results in Theorem 1.1, a program was used with floating point arithmetic
and precise bounding of the consequential errors in the calculations.

In [17] we defined the algorithm Colour(k) to colour the vertices of a graph, using
colours 1, . . . , k, in the following manner. First, define the type of a vertex v in a
partially coloured graph to be the pair (i, j) where i is the number of neighbours of
v which are already coloured, and j is the number of different colours appearing on
such neighbours (i.e. not available to legally colour v). The algorithm takes as input
an ordering of the possible types, as a list of priorities, and then repeatedly randomly
chooses an uncoloured vertex of the highest priority type and colours it with one of its
available colours chosen at random.

To reduce the number of colours required, we perform a preprocessing step of 3-
colouring the vertices in all short cycles in the graph. This results in the algorithm
Short(g, k) defined as follows. The input is a d-regular graph G and a priority list of
types. A short cycle is one of length at most g.

Algorithm Short(g, k)

1 properly 3-colour the vertices in the short cycles of G;
2 apply Colour(k).

We say this algorithm (and other colouring algorithms involving k colours) has failed
at any time that a vertex has k differently coloured neighbours. It succeeds if, up until
the time that all vertices of G have been coloured, it has not failed.

We claim that, for the values of d and k giving the upper bounds in Theorem 1.1,
the algorithm Short(g, k) (with a suitable list of priorities) succeeds with probability at
least 1− εg + o(1) when applied to a random d-regular graph on n vertices, as n →∞.
Here εg is, for each d and k, a function which tends to 0 as g → ∞. It follows that,
for these values of d and k, a random G ∈ Gn,d is a.a.s. k-colourable, where, as in all
asymptotic statements throughout this paper, d is constant.

For reasons we will discuss, analysis of Short(g, k) is slightly more complicated than
the algorithm we actually examine, which is a modification in which several types are
grouped together. The modified algorithm selects between the types in this group with
certain predetermined probabilities. By selecting these probabilities appropriately, this
algorithm mimics an instance of Short(g, k), and in this case we refer to the modification
loosely as a partial deprioritisation of Short(g, k). This leads to a general theorem which
requires some definitions before being stated.

We denote the priority of a type (i, j) by prio(i, j). For convenience, we assume that
the set of priorities is 0, . . . , `max, using ` to denote a particular priority prio(i, j), with
an ordering specified by `′ > ` if (i′, j′) has higher priority than (i, j). We introduce a
vector function of a variable z, y = (y0, . . . , y`max), where y` = y`(z). Define i(`) and
j(`) so that ` = prio(i(`), j(`)) for all priorities `, and we refer to y` for convenience
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also as yi,j if prio(i, j) = ` (i.e. y` is also known as yi(`),j(`)). Now define

R1 = R1(y) = max{` : y` > 0}, R2 = R2(y) = min{` : F`′(y) < 1 for all `′ ≥ `},
(1.1)

where, with i = i(`) and j = j(`),

F`(y) =
∑
`′>`

c(`′)b`′(y), c(`) =
(
d− i

)(k

j

)
, (1.2)

b`(y) =
(d− i + 1)j

(d− 2z)k
(yi−1,j + yi−1,j−1)−

d− i

d− 2z
yi,j. (1.3)

We will consider the differential equations

dy`

dz
=


b`(y) if ` < `0

0 if ` > `0

b`(y) + (F`(y)− 1)/c(`) if ` = `0,
(1.4)

where
`0 = prio(i0, j0) = max{R1, R2} (1.5)

is a function of y. The right hand sides of these equations are not always continuous,
so we have to be careful (see Section 3).

A type (i, j) is dangerous if j ≥ k − 1 and i < d, and we define B′ to be the set of
dangerous types. In the following theorem, simple modification of Short(g, k) means
that its second step, Colour(k), is partially deprioritised: when there are no dangerous
vertices, the type of the next vertex is chosen not according to priority but according
to a probability which can be specified in advance for all n and all steps of the process.
These probabilities can be calculated using solutions of equations equivalent to (1.4), as
will be evident from the proof.

Theorem 1.2 Suppose that all dangerous types have higher priority than every nondan-
gerous type. Suppose furthermore that for every function y whose right-hand derivative
satisfies the differential equations (1.4) with `0 defined in (1.5) and with initial condi-
tions

y0,0(0) = 1, yi,j(0) = 0 otherwise, (1.6)

there is a z1 > 0 such that

(i) for 0 < z < z1, y0,0 > 0 and∑
`′∈B′

(
d− i(`′)

)( k

j(`′)

)
b`′(y(z)) < 1

and

(ii) ∑
i,j(d− i)(d− i− 1)

(
k
j

)
yi,j(z1)∑

i,j(d− i)
(

k
j

)
yi,j(z1)

< 1. (1.7)
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Then a random G ∈ Gn,d is a.a.s. k-colourable. Moreover, a simple modification of
Short(g, k) a.a.s. succeeds when applied to a random G ∈ Gn,d.

This theorem’s proof is completed at the end of Section 4.
As with [17], this paper uses the differential equation method introduced in [18].

Unlike [17], some of the approach and terminology of [9] is used to deprioritise algorithms
which perform many types of operations with a given list of priorities. This type of
deprioritisation was introduced in [21] to avoid phase changes occurring such as when a
high priority type suddenly disappears. These phase changes cause difficulties: not only
does the associated system of differential equations change at these points, but also the
argument showing that the equations model the graph process becomes quite awkward.
In this paper, we extend the theory further, by working with systems of equations which
specify right hand derivatives only. The derivatives in the natural setting are sometimes
discontinuous at phase changes. In the past ([9], [18], [19] and [21] for example), the
associated solution functions were cut apart at the phase changes so that within each
phase the derivative is smooth. Due to the difficulty of identifying the phase changes
from the numerical solutions of differential equations, we introduce in this paper some
extra theory which enables us to avoid the need to identify phase changes precisely.

The biggest open problem in this area is to settle the question of d = 5: do random
5-regular graphs have chromatic number 3 a.a.s.? (Or is it 4, or a mixture?) At the
time of the final revisions of the present paper, the answer seems to be 3: Dı́az et al. [10]
showed that, assuming that the maximimum of a certain function occurs at the place
where it appears to, the probability the chromatic number is 3 is bounded away from 0
(they worked with multigraphs but a slight modification allows them to treat graphs).
Combining their arguments with those of Kemkes and the second author [12] shows
that, under the same assumption, the chromatic number of a random 5-regular graph is
indeed a.a.s. 3. However, the assumption has not yet been proved. Another question is
whether the ideas in this paper will improve the results for random graphs G(n, p).

For completeness, we include here what is essentially the proof of the Molloy-Reed
lower bound in [16]. For this and later work in the paper, we use the pairing model of
Gn,d. A pairing is a perfect matching of dn points which are partitioned into n cells,
each containing exactly d points. Such a pairing P corresponds to a multigraph G(P )
in which the cells are regarded as vertices and the dn/2 pairs are edges. A uniformly
random pairing can be generated by repeatedly choosing (using any rule whatsoever)
a point x to be paired, and then randomly choosing the point y to be paired with x
from the remaining unpaired points. We refer to this choice of y as exposing the pair
containing x. Conditional on G(P ) having no loop or multiple edge, it has the uniform
distribution and is thus identical to Gn,d. (See [4] or [20] for more details.)

Theorem 1.3 (Molloy-Reed) If k(1− 1/k)d/2 < 1, then a random G ∈ Gn,d is a.a.s.
not k-colourable.

Proof. The first moment method is used. To compute the expected number of proper
k-colourings of the vertices of a random pairing, we need to compute the number of
pairings with the k colour classes specified, and divide by the total number of pairings
which is known to be (dn− 1)!!.

5



It is straightforward to estimate this number within a polynomial factor, if one first
shows that the number of pairings respecting a given colour partition is maximised when
colour classes are almost equal. We omit some of the details justifying this.

Suppose V1 and V2 are two of the colour classes in a k-colouring and |V1| > |V2|. A
good pairing is one whose induced graph is properly coloured by the given k-colouring,
otherwise it is bad. Now let v ∈ V1 and move v to V2. This forms a new k-colouring
with V ′

1 = V1 \ {v} and V ′
2 = V2 ∪{v}. Let B be the set of formerly good pairings which

are bad with respect to the new colouring, and G the set of formerly bad pairings which
are now good.

Let M1 ∈ B, and let S be the set of edges in M1 from V ′
1 to V2. Choose a vertex w

not incident with S, let w′ be the matched neighbour of w. Then w′ /∈ V1 or V2. Let
v′ ∈ V2 be the vertex matched to v. Create an element of G by switching the edges vv′

and ww′ of M1 to vw and v′w′. This gives |V ′
1 | − |S| good pairings. Conversely, each

good pairing comes from |V2| − |S| bad pairings. Hence |B| ≤ |G|. So the maximum
number of good pairings occurs when the colour classes are roughly equal in size.

Now consider the number of pairings with k colour classes that are equal in size, and
for simplicity assume the size is dn/k. Let ai,j be the number of pairs with colours i
and j. Then for each i, ∑

1≤j≤k

ai,j = dn/k. (1.8)

Let A be the set of all possible sequences (ai,j) satisfying (1.8). Then the number of
pairings is at most∑

A

∏
i<j

(
dn/k

ai,j

)2

ai,j! ≤ nO(1)

(
dn/k

dn
k(k−1)

)2(k
2)( dn

k(k − 1)
!

)(k
2)

.

The inequality follows on taking the logorithm of the product in the left hand side (using
Stirling’s formula), and observing that each term then has negative second derivative.
The maximum, subject to (1.8), thus occurs when all ai,j = dn/(k(k − 1)) (again as-
suming divisibility for simplicity). Hence for a fixed k-colouring, the probability that a
random pairing is properly coloured is at most the value above divided by (dn − 1)!!,
giving nO(1)(k − 1)dn{dn/(k(k − 1))}dn/2/(dn)dn/2 = nO(1)(1 − 1/k)dn/2. Now let X
be the number of proper k-colourings of a random pairing. Since the total number of
k-colourings is at most kn, we have

P(X > 0) ≤ E(X) ≤ nO(1)kn(1− 1/k)dn/2.

Therefore if k(1− 1/k)d/2 < 1 we have P(X > 0) → 0 as n →∞, that is, there is a.a.s.
no proper k-colouring of the multigraph G(P ) of a random pairing. The well-known
relationship between the pairing model and Gn,d (see [4] or [20]) now implies the same
for G ∈ Gn,d.

2 Summary of the argument

In this section we give a summary of the argument for d = 4 in [17], and describe how
this will be modified for general d in the present paper. The main part of this, Section 4,
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will refer heavily to the argument in [17], to which the reader should also refer if extra
detail is sought regarding the following description.

In [17], the algorithm Short(g, k) was analysed on G ∈ Gn,d using the pairing model
described in Section 1. Almost all of that analysis was carried out for arbitrary fixed
d ≥ 4. A process PColour(k) was defined, corresponding to Colour(k), but colouring
the vertices of the graph G(P ) of the random pairing P simultaneously with generating
P at random. For a specified set S of pairs of a potential pairing, which induce disjoint
cycles in G(P ), the process PComplete(k,S) was defined. This begins with the pairs
in S, properly 3-colours the vertices in the induced cycles, and from there it proceeds as
PColour(k) would. This process was used to analyse Short(g, k) applied to a random
graph G0 such that G0 ∪S is a d-regular graph on n vertices, with no short cycles other
than the cycles in S (with uniform probability distribution subject to this constraint).
The process was restricted so that it avoided unwanted cycles, which are cycles created
during the execution of this process that are short but not contained in S. (In practice,
loops, or cycles of length 1, are always unwanted, since g ≥ 3.)

It was shown that, conditional upon there being no unwanted cycles up to a certain
time t1 = t1(n), defined below from the solution of a system of differential equations,
with probability at least 1− εg +o(1) the process PComplete(k,S) does not fail before
t1, where εg → 0 as g →∞. Here “time” refers to the number of vertices of basic type
which have been coloured, where “basic” is defined below.

The differential equations define functions whose values (at the appropriate points)
provide good approximations to the numbers of vertices of the various types (scaled, in
this case, by dividing by n). Before defining the equations, a set of types is specified as
“basic”. In the context of [17], only the type (1, 1) is basic, and B′ is the set of types of
higher priority than basic. (This is related to the B′ defined in Theorem 1.2, for which
the interpretation is that all nondangerous types are basic.) These equations were first
derived only by a heuristic argument resulting in [17, Equation (4.20)], which is easily
seen to be equivalent to (1.4) with `0 = prio(1, 1). The rigorous derivation of equations
came later, resulting in ones of a slightly different form (see [17, Equations (6.16–6.20)
and Theorem 10.1]; here y = (y0,0, . . .) as before and differentiation is with respect to a
new variable x):

y′i,j = α(y)bi,j(y)− νi,j(y), (2.1)

z′ = α(y) (2.2)

with initial conditions y0,0(0) = 1 and yi,j(0) = 0 otherwise, and z(0) = 0. Here

s(y) =
∑

0≤i<d; 0≤j<k

(d− i)

(
k

j

)
yi,j,

bi,j(y) = (d− i + 1)j(yi−1,j + yi−1,j−1)/
(
ks(y)

)
− (d− i)yi,j/s(y), (2.3)

α(y) = (d− i0)
(
1− F (y)

)−1
, (2.4)

νi,j(y) =

{
1/
(

k
j

)
if (i, j) = (i0, j0),

α(y)bi,j(y) if (i, j) ∈ B′,
(2.5)
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and

F (y) =
∑

(i,j)∈B′

(d− i)

(
k

j

)
bi,j(y). (2.6)

(The latter is the same as the quantity F` in (1.2) provided that ` is the highest priority
of a basic type. It may help to observe that F is a function of B′.) Then t1 is defined
to be bnx−0 c for some x−0 < x0, where (see [17, Equation (6.21)])

x0 = inf{x > 0 : s(y) = ε or F (y) ≥ 1− ε or yi,j(x) = 0 for all basic (i, j)}. (2.7)

Equations (2.1) and (2.2) were shown to be equivalent to (1.4) at the end of [17, Sec-
tion 6].

We return to the main thread of the argument. An edge, or the corresponding pair, is
called free if it is incident with at least one uncoloured vertex. If the condition (1.7) holds
we say that sparseness holds. It was also shown that if the sparseness holds at z = z(x−0 ),
and no unwanted cycle has occurred by time t1, then the process PComplete(k,S)
succeeds with probability at least 1− εg + o(1), provided the dangerous types of vertices
have priority over all others. This is because the graph induced by the free edges is
sufficiently sparse at time t1. It was also shown that the act of conditioning on unwanted
cycles does not cause a problem for the analysis.

Thus, provided the sparseness holds at z(x−0 ), the algorithm gives a proper k-
colouring, with fixed S, with probability at least 1 − εg + o(1). Letting g → ∞ and
summing over all suitable S then gave the result in [17]. The value of x0 arising when
d = 4 produces the required sparseness property (for a suitable set of priorities).

For d ≥ 5, it was clear that no set of priorities would do the job for the values of k
of interest (such as those upper bounds in Theorem 1.1). Regardless of the priorities,
vertices of type (1, 1) will grow in number. The condition F (y) ≥ 1 − ε in (2.7) occurs
long before the required sparseness condition holds, due simply to the growth in size
of the variable y1,1. (For some details when d = 5, see the start of Section 4.) When
F (y) = 1 we say that a change of phase has occurred, and what happens afterwards
was not addressed in [17]. Typically, some other type of vertex of higher priority than
(1, 1) will start to proliferate.

Changes of phase were addressed in earlier applications of the method, such as [18].
At any typical part of a prioritised greedy algorithm (i.e. one with several operations to
choose from according to a priority list) such as Colour(k), vertices of some particular
type (in this case, (i, j) say) will regularly be chosen as v in the algorithm and yet be
(or become) plentiful in number. Vertices of types with higher priority may also be
regularly chosen, but will be rare and regularly be used up entirely (at which point
another vertex of type (i, j) again will be coloured. In this situation, we say informally
that (i, j) is the basic type (which will correspond to the definition of basic type for the
above equations), and a phase change is a point at which the basic type changes. A phase
finishes when either the vertices of higher priorities than the current basic type become
plentiful, or those with the current basic type become very scarce. We sometimes define
the boundaries of the phases precisely in terms of the solution of systems of differential
equations.
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After a phase change, the same method of describing the algorithm in terms of the
solutions of the differential equations is still valid. The equations change when the
phase changes, since the equations, as given above, depend on the basic type. If the
sparseness condition mentioned above is satisfied before any dangerous type becomes
basic, the conclusion will be that the greedy colouring algorithm is a.a.s. successful.
This is the idea that eventually leads to Theorem 1.2.

When analysing a prioritised algorithm, we often deprioritise some of the choices,
meaning that we choose between those operations with specific probabilities (and these
probabilities in general will change through the course of the algorithm). The net result
achieved by the algorithm (on random input) is (we believe) essentially the same as
with prioritisation. The advantage of deprioritising is that the analysis becomes simpler
during changes of phase, which eventually makes it possible to state a theorem without
lots of conditions ensuring smooth phase transitions.

Unfortunately, in general the derivatives of the functions which model PColour(k)
are not Lipschitz, and not even continuous, since at points where the basic priority
changes, the derivatives of the old and new basic variables can jump. In related problems
(see [18] and [21]), arguments have been used to show that the system in question makes
a reasonably smooth transition at points where the derivative is discontinuous. However,
such arguments require dividing the domain up into pieces on which the derivatives are
continuous, together with verification of the value of derivatives or second derivatives at
the points of transition. This verification is normally done numerically. For the problem
at hand, the numerical work will be carried out to the limits of available accuracy. So
this is an appropriate and useful time, for this line of research, to examine the solution
of the systems arising in these problems without subdividing into separate systems with
continuous derivatives.

In this way, systems of right-hand derivatives arise naturally, and a class of equa-
tions of the type we need to consider are treated in Section 3. Phases are described
in more detail in Section 4, and then the resulting analysis is performed. We require
considerable effort in Sections 3 and 4 because we are introducing a quite new theoret-
ical method of examining the systems of differential equations that arise in problems
such as this, especially for random regular graphs. These systems exhibit changes of
phase, by which we mean points where the derivative is discontinuous. The analysis
in Section 4 is aimed at a smoothed version of the solutions of such systems that arise
by modifying the colouring process via partial deprioritisation. In Section 5 the final
numerical calculations are described.

3 A system with discontinuous derivatives

In this section we consider a slightly abstracted version of the system of differential
equations (1.4) for use in Section 4. The variables are w`, ` ∈ L = {1, . . . , `max}, and as
usual we write w = (w1, . . . , w`max). The equations are

dw`

dz
= f `0

` (w) =


g`(w) if ` < `0

0 if ` > `0

F`0−1(w)− 1 if ` = `0,
(3.1)
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where
F`(w) =

∑
`′>`

g`′(w) (3.2)

and
`0 = max{R1, R2} (3.3)

where

R1 = R1(w) = max{` : w` > 0}, R2 = R2(w) = min{` : F`′(w) < 1 for all `′ ≥ `}.
(3.4)

We will impose some conditions on the functions g`(w).
The correct interpretation of solution needs specifying. We take it to mean a contin-

uous function whose right-hand derivative at any point is given by the right hand side
of (3.1). General theorems treating discontinuous derivatives are known but do not seem
to apply to this situation; see Bressan [6] for example for some conditions on existence
of solutions almost everywhere. Nevertheless, we will prove an existence theorem, which
is not totally necessary for our later arguments, but reduces complications later besides
adding to the general understanding of the situation.

There are various systems involved in (3.1), one system resulting when each value
of `0 is held fixed. We call this system E`0 . Equations (3.3) and (3.4) specify which
system is active (i.e. defining the derivative of w) for any given value of w. When these
definitions are in force, we refer to it as the composite system to distinguish it from the
individual systems E`0 .

For the purposes of the present argument (and as is common when treating differen-
tial equations), a function f of y is Lipschitz on a given domain D if for some constant
L, we have |f(y1) − f(y2)| < L|y1 − y2|. If each derivative y′` is given by a Lipschitz
function f` then the system will have a unique solution.

We first note two simple results. These may comfort a reader who is not used to
interpretting systems of differential equations as right-hand derivatives. The first result
will be useful later. The second result, though not used explicitly, shows that wherever
it is not obviously impossible due to discontinuity of the derivative, the solution of the
system, as defined above, is differentiable.

Lemma 3.1 If a continuous function f has a right-hand derivative which is bounded
above by M on an interval [a, b] then f(b)− f(a) ≤ M(b− a).

Proof. If f(b)− f(a) > (M + c)(b− a) with c > 0, let S = {x ∈ [a, b] : f(x)− f(a) ≤
(M + c/2)(x − a)}. Since a is in the set but not b, the set S has a supremum, say x0.
Since f is continuous, x0 < b. Since the right derivative of f at x0 is at most M , we
find that there are points between x0 and b which are also in S, a contradiction.

Lemma 3.2 If f and g are continuous functions on an interval [a, b] and g is the right
hand derivative of f on [a, b] then f is differentiable on (a, b) and g is its derivative.

Proof. For δ > 0, let M+ = sup{g(x) : x ∈ [c − δ, c]}. By Lemma 3.1, (f(c) − f(c −
δ))/δ ≤ M+. Similarly (f(c) − f(c− δ))/δ ≥ M− := inf{g(x) : x ∈ [c− δ, c]}. Since g
is continuous, both M+ and M− tend to g(c) as δ → 0.
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It is interesting to compare these facts with the example given by Billingsley [3,
Example 31.3], which is a continuous probability distribution function strictly increas-
ing on the interval [0, 1] and yet with derivative equal to 0 almost everywhere. By
Lemma 3.1, this function cannot have a continuous right derivative. (In fact it is not
right differentiable everywhere.)

We may isolate the equation (3.1) with given fixed value of `0 as determining a system
of differential equations in its own right, and we refer to this as E`0 . Of course (3.3)
defines `0 as a function `0(w) for the system at hand. At any point, we call the variable
w`0 basic and those w` with ` > `0 super-basic (these have derivative specified to be 0).
It seems to be quite crucial, for the case we consider to be amenable to analysis, that,
at points where `0 can increase, the function specifying the derivative of the new basic
variable is 0.

For simplicity we take z = 0 as the initial point. The following theorem is ample for
our needs. We do not need to prove uniqueness of the solution; in general, systems with
non Lipschitz right hand sides do not have unique solutions.

Theorem 3.3 Let L be finite. Suppose a differential equation system (referred to as the
“composite” system) is defined by the system E`0 in variables w`, ` ∈ L, given in (3.1)
and (3.2) where `0 (determining the “active” system) is defined by (3.3) and (3.4).
Assume furthermore that each g` ≥ −O(w`) and is Lipschitz on an open domain D0 in
(z,w)-space, and that

∑
`∈L w` > 0 on D0. Then the composite system has a solution

w(0) given any nonnegative initial value (i.e. with wi ≥ 0 for all i) w(0)(0) = w0 in D0,
and continuing to a point on the boundary of D0.

Proof. We proceed by a method of successive approximations. The discontinuous na-
ture of the derivatives requires special treatment at points where w`0 approaches 0. For
this we judiciously alter the length of the intervals being used in the approximations.

Fix some δ > 0, which we can imagine to be small. We will define w(δ)(tδ), an
approximation to w(tδ), iteratively for t = 1, 2, . . .. The definition is given by the usual
one-step Euler approximation

E(w, `, z, h) = w`(z) + hf
`0(w(z))
` (w(z)). (3.5)

However, changes of phase require special alterations of the value of h, so we have defined
the Euler approximation for a general step size h to accommodate the full definition.

Suppose that w(δ) is given at some point z. It turns out that the derivative can
only be discontinuous near points where the derivative of w

(δ)
`0

is negative. So, to define

w
(δ)
` (z + δ), first put z0 = z and then for i ≥ 0

zi+1 =

{
z + δ if Q ≥ 0 or − w

(δ)
`0

(zi)/Q ≥ δ

z − w
(δ)
`0

(zi)/Q otherwise,
(3.6)

where Q = f
`0(w)
`0

(w) for w = w(δ)(zi). Then define

w
(δ)
` (zi+1) = E(w(δ), `, zi, zi+1 − zi). (3.7)

11



for each `. Note first that this is nonnegative for ` = `0, since it is equal to 0 if
zi+1 6= z+δ. Secondly, since g` > −O(w`), we have for sufficiently small δ that w

(δ)
` (zi+1)

is nonnegative for all ` < `0. The derivative is of course 0 for ` > `0. So we may assume
nonnegativity of w

(δ)
` henceforth. We also observe that the sequence z0, z1, . . . terminates

after a finite number of steps with zi = z + δ for some i. This is because zi+1 6= z + δ

implies that Q < 0 and w
(δ)
`0

(zi+1) = 0, and thus w
(δ)
`0

(zi) > 0. For zi+2 6= z + δ, these
conditions can only repeat themselves, with i replaced by i + 1, if `0 is smaller at zi+1

than at zi. It follows that the largest value, imax, of i, is bounded by the number |L| of

variables. Thus iterations of (3.7) define w
(δ)
` (z+δ) = w

(δ)
` (zimax) given w

(δ)
` (z) = w

(δ)
` (z0).

The definition of the vector function w(δ) is completed at all points between the zi in
this interval of length δ by linear interpolation.

The above defines w(δ) on the interval [z, z + δ] given its value at z. By iteration
using z = tδ, t = 0, 1, 2, . . ., we obtain the definition of w(δ) extending to the boundary
of D0.

We next fix δ and examine the difference between w(δ) and w(δ/2). Define a full node
of w(δ) to be any point zi in any of the intervals [z, z + δ] for z = tδ in the definition
of w(δ) (including the node z = tδ). Then between any two consecutive full nodes, the
function is linear and has derivative determined, at its previous full node, via (3.1). Also
define a seminode of w(δ) to be any full node of w(δ/2), and a node of w(δ) to be any of
its full nodes or seminodes.

Assume that z is a node of w(δ) and∑
`

|w(δ)
` (z)− w

(δ/2)
` (z)| ≤ ξ. (3.8)

Let z1 denote the greatest full node of w(δ) not greater than z, and similarly z2 the
greatest full node of w(δ/2) (or seminode of w(δ)) not greater than z. Let `1 denote
the value of `0(w

(δ)) at z1, and `2 similarly for `0(w
(δ/2)) at z2. Also define z′ to be

the node immediately following z. Then on the interval (z, z′), the derivative of w(δ)

is given by the system E`1 at z1, and similarly for w(δ/2), the system E`2 , and z2. By
the Lipschitz property of each system, it follows that these derivatives are only O(δ)
different from the derivatives given by E`1 and E`2 at z. Similarly, by the boundedness
of (right) derivatives, the functions w(δ) and w(δ/2) themselves change by O(δ) between
z1 or z2 and z. We will use these two observations repeatedly in the following, so call
them the δ-property.

We wish to bound
ξ′ =

∑
`

|w(δ)
` (z′)− w

(δ/2)
` (z′)|

in terms of
h = z′ − z

and ξ. We consider cases depending on the relationship between `1 and `2.

Case 1. `1 = `2. Since each system has Lipschitz right hand sides (and recalling
the δ-property), the difference between derivatives of w`0 at w(δ)(z) and at w(δ/2)(z) is
O(ξ + δ), thus the difference between the functions at z′ is∣∣∣w(δ)

`0
(z′)− w

(δ/2)
`0

(z′)
∣∣∣ =

∣∣∣w(δ)
`0

(z)− w
(δ/2)
`0

(z)
∣∣∣+ O(hξ + hδ).
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The details of this bound are quite routine. The corresponding result applies for the
same reason to the functions w` for ` < `0 since the basic variable does not change. For
` > `0 of course the derivative is 0. Thus ξ′ ≤ ξ + O

(
h(ξ + δ)

)
.

Case 2. `1 < `2. Write Dz(f) for the (right) derivative of a function f at z.
By the definition of `0 as the maximum of R1 and R2 in (3.4), and recalling that the

derivative of every super-basic variable is 0, we have for each `1 < ` ≤ `2

w
(δ)
` (z) = Dz

(
w

(δ)
` (z)

)
= 0. (3.9)

It then follows from the theorem hypotheses that for such `,

g`

(
w(δ)(z)

)
≥ 0, (3.10)

and we also have
w

(δ/2)
` (z) = O(ξ). (3.11)

Using (3.9), the δ-property and the nonnegativity of w
(δ/2)
` , and then later the defini-

tion (3.2) of F`,

Dz

(
`2∑

`=`1

|w(δ/2)
` − w

(δ)
` |

)
= Dz

(
|w(δ/2)

`1
− w

(δ)
`1
|+

`2∑
`=`1+1

w
(δ/2)
`

)
= |F`1−1

(
w(δ)(z)

)
− 1− g`1

(
w(δ/2)(z)

)
|

+

`2−1∑
`=`1+1

g`

(
w(δ/2)(z)

)
+ F`2−1

(
w(δ/2)(z)

)
− 1 + O(δ)

≤ |F`1

(
w(δ)(z)

)
− 1|

+|g`1

(
w(δ)(z)

)
− g`1(w

(δ/2)(z))|
+F`1

(
w(δ/2)(z)

)
− 1 + O(δ). (3.12)

The term F`1

(
w(δ)(z)

)
− 1 is negative by the definition of R2 and `1, and so finally the

bound (3.12) is O(δ + ξ). Hence this group of variables w` behaves collectively like a
single variable in Case 1, and the other variables individually behave likewise, and the
same conclusion is reached.

Case 3. `2 < `1. This is covered by exactly the same argument as in Case 2, switching
the roles of w(δ) and w(δ/2).

We have in all cases ξ′ ≤ ξ + O
(
h(ξ + δ)

)
= ξ exp

(
O(h)

)
+ O(hδ) since h ≤ δ. Thus

by induction on the nodes z beginning with z = 0, the error ξ given in (3.8) is O(δez).
The approximants w(δ) hence converge (uniformly) on the bounded domain D0, and so
there is a uniform limiting function which we may denote by w(0).

It is immediate that w(0) is continuous, by the uniform bound (irrespective of δ) on
the derivative of w(δ) (at its points of differentiability). All that remains is to verify the
claim that w(0) has right-hand derivative given by (3.1) at every point z0 interior to D0.

First, let `0 denote `0

(
w(0)(z0)

)
. Then w

(0)
` (z0) = 0 for ` > `0. By nonnegativity of

w
(δ)
` and the condition on g`, it follows that F`

(
w(0)(z0)

)
is monotonic nonincreasing,
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as a function of `, for ` ≥ `0, and we also have F`0

(
w(0)(z0)

)
< 1. For ` > `0, consider

the value of w
(0)
` (z0 + h) when h > 0 is arbitrarily small. Fixing h for the next part of

the discussion, first note that F`−1

(
w(δ)(z0)

)
− 1 is strictly less than

(
F`0(w

(0)(z0)) −
1
)
/2 < 0 for δ sufficiently small (h fixed) by the bound on variation of w(δ) and by the

approximability of w(0) by w(δ). It follows that for arbitrarily small ε > 0 (with ε fixed
in the following statement),

for δ sufficiently small, w
(δ)
` (z0 + εh) = 0 (` > `0) and `0

(
w(δ)(z0 + εh)

)
≤ `0. (3.13)

Further use of the bounded variation properties shows that w
(δ)
` remains 0 in the interval

[z0 + εh, z0 + h]. By the approximability properties, w
(0)
` (z0 + h) = 0, and so w

(0)
` has

right-hand derivative 0 at z0, as required to satisfy (3.1).

It only remains to examine the right derivative of w
(0)
` for ` ≤ `0, which we split into

two cases.

Case i. w
(0)
`0

(z0) > 0.
Here using arguments as just above, we see from (3.13) that for δ, h and ε > 0

sufficiently small, w
(δ)
`0

(z0 + εh) > 0, `0

(
w(δ)(z0 + εh)

)
= `0 and only one system E`0 is

active for w(δ)(z) for z ∈ [z0 + εh, z0 + h]. The claim then follows immediately from the
good approximation of w(0) by w(δ), since such w(δ) have well behaved gradient at their
differentiable points inside such a neighbourhood.

Case ii. w
(0)
`0

(z0) = 0.

Then by the definition of `0, we have F`0−1

(
w(0)(z0)

)
≥ 1. First suppose that

F`0−1

(
w(0)(z0)

)
> 1 or w

(0)
`0−1(z0) > 0. Recall by definition that F`0

(
w(0)(z0)

)
< 1. Then

arguing as for (3.13) and Case i, we have as in Case i, `0

(
w(δ)(z0 + εh)

)
= `0 for δ, ε

and h sufficiently small, and the argument is virtually the same as Case i so we omit
the further details. If on the other hand F`0−1

(
w(0)(z0)

)
= 1 and w

(0)
`0−1(z0) = 0, then

define `1 to be the maximum ` < `0 for which F`−1

(
w(0)(z0)

)
> 1 or w

(0)
`−1(z0) > 0. By

the theorem’s hypothesis that
∑

`∈L w` > 0 on D0, such ` exists.
Again by the bounded variation properites (and the arguments above which exclude

` > `0 becoming active), in the appropriately defined intervals [z0 + εh, z0 + h] (as
above), the only possible active systems are just E` for `1 ≤ ` ≤ `0. (Moreover, it seems
to be possible that the active system does indeed change on the trajectory of w(δ), in
arbitrarily small neighbourhoods of z0, even for arbitrarily small δ, due to F` dropping
below 1 for one of these values of `.) Note that by definition of F , it must be that
g` = 0 for `1 < ` < `0 (referring to w(0)(z0)). It is now easy to check that the gradients
specified by (3.1) are (on the same appropriate intervals as above) arbitrarily close to 0

for ` > `1 and g`0(w
(0)(z0)) for ` = `1, which shows using the ideas above that w

(0)
` has

the desired right hand derivative at z0. The case ` < `1 follows as before since for such `
the derivative specified in (3.1) does not depend on which of the systems is active.
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4 Phases and deprioritisation

For d > 4, we are not as lucky as with d = 4. With d = 5 and k = 4 we may
start with (1, 1) as the basic type, and it is sensible to allocate lower priority to (2,1),
(3,1) and (4,1), and higher priority to (2,2), (3,2) and (4,2). The resulting differential
equations (2.1) and (2.2) can be solved numerically, and the point x0 in (2.7) is reached
quite quickly (using ε ≈ 0), well before the sparseness condition arising from (1.7) can
hold. At x0, the expression on the left side of (1.7) is∑

i,j(d− i)(d− i− 1)
(

k
j

)
yi,j(x0)∑

i,j(d− i)
(

k
j

)
yi,j(x0)

≈ 3.916319 > 1.

At the point x0, F (y) basically reaches 1 (see (2.7)), which we loosely call the explosion
condition, as the time between processing vertices of basic type explodes. Now, another
phase will occur: the basic type is no longer processed and the lowest priority type that
is commonly processed should be renamed as basic. In general, which type becomes
basic depends on the priority list. Under the list to be defined in Section 5, in the
second phase, the type (2,2) becomes basic for (d, k) = (5, 4), whereas (3,2) becomes
basic for (d, k) = (6, 4) and (d− 2, 2) becomes basic for d > 6 and k > 4. We can then
use essentially the same argument as before except that there is a gap near the phase
changeover where F (y) exceeds 1 and so the conditions necessary for analysis of the
first phase do not occur. This causes some difficulty. In this section, we will deal with
these gaps and later phases all in one go by altering the algorithm, using the approach
from [21] (with a slight modification).

We henceforth assume that k ≥ 4. Even k ≥ 3 ensures that the type (1, 1) is not
dangerous. Where appropriate, the results will hypothesise that all dangerous types
have higher priority than all nondangerous types.

From this point onwards, we assume complete familiarity with [17], and refer to the
equations and other things from that paper concisely as, for example, (4.18):[17] and
Section 4:[17].

As described in Section 2, we are interested in the system (1.4), which arose as
first in the guise of (4.20):[17]. This equation, if we ignore (1.5), specifies a different
system for each `0; in the setting of (4.20):[17] this corresponds to different types (i0, j0)
being regarded as basic; as in Section 3, we call this system E`0 or Ei0,j0 . We give
a differential equation for the vector-valued function y by specifying which system is
active (i.e. defining the derivative of y) for any given value of y. Initially, y0,0(0) = 1,
and yi,j(0) = 0 for all other i and j. For z > 0, system Ei0,j0 will be active if and only if
(i0, j0) is the basic type, defined immediately below. This gives a composite system as
considered in Section 3.

For the purpose of defining the composite system, we require a precise theoretical
definition of the “basic type”. Recall from Section 1 that for convenience, we use y` to
denote that variable yi,j for which prio(i, j) = `, and use this to determine i and j as
functions i(`) and j(`) of `. In other contexts, ` and (i, j) or i, j are used interchangeably
to stand for types, for purposes of convenience, where it should cause no confusion.
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Recalling (1.1):

R1 = R1(y) = max{` : y` > 0}, R2 = R2(y) = min{` : F`′(y) < 1 for all `′ ≥ `},
(4.1)

where

F`(y) =
∑
`′>`

(
d− i(`′)

)( k

j(`′)

)
b`′(y).

(Note this is the same function F as defined in (2.6) provided that ` is the basic priority.)
Here R1 can be used to ensure that the basic type of vertex is available to be chosen as
the next vertex in the process, and R2 can be used to detect the explosion condition.
So the basic type (i0, j0) (or `0) is defined to be the one such that

`0 = prio(i0, j0) = max{R1, R2} (4.2)

in accordance with (3.3) and (1.5). Thus, the basic type is simply a function `0(y). It
is easy to see, though not required for our argument, that for any priority list with type
(1, 1) ranked above (0, 0), the basic type defined by (4.2) will initially be (1, 1). For,
letting ` = prio(1, 1), if ` > prio(0, 0), we have F`(y(0)) = 0 < 1 and F`−1(y(0)) =
d− 1 > 1.

We will need to consider the relationship between the systems E`. Note that all
these systems are well behaved on any bounded open domain D0 in (z,y)-space with s
bounded away from 0 (even including negative values of the y`). Of course, the “time”
variable, z, can be ignored in defining the domain since the systems are all autonomous.
We assume for the following discussion of the solution of the composite system that
a given point y is inside such a domain D0. Other domain-type restrictions will be
imposed on the process later.

Note that the equation in each system E` on D0 has a Lipschitz right hand side
because the specified derivative is given by a polynomial in the y`, with bounded co-
efficients. (The significant denominator is d − 2z, which is bounded away from 0 on
D0.)

The differential equation method as in [19] requires Lipschitz derivatives, so the
arguments in Section 6:[17] do not apply directly to (1.4). Thus, at this point the ap-
plicability of equations (1.4) with the auxiliary definition of `0 in (1.5) have no direct
rigorous interpretation for the process. To overcome this difficulty we use partial depri-
oritisation. To obtain a general deprioritised process, those types (i, j) which are not
dangerous but have basic, or higher, priority are treated in a different way: instead of
selecting such a type in PColour(k) according to priority, it is chosen with a specified
probability φ̂i,j(t). Defining these probabilities in any continuous manner gives what we
call a general deprioritised algorithm or process, not necessarily tuned to the original
one; the resulting differential equation determines what result is obtained. By using the
proportions φi,j(t) calculated in Section 4:[17] to define φ̂i,j(t) as below, we will obtain a
sequence of such general deprioritised processes whose behaviour approaches arbitrarily
closely to the behaviour indicated by the equations we derived (heuristically) relating
to the original process. We will call this sequence of processes the partially deprioritised
process PColour*(k). Note that it depends on the specified functions φ̂i,j(t).
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One difficulty with this general idea is that the selection of a vertex of the desired
type (at every step) may not be possible unless there is a good supply of such vertices
available. This might seem to contradict the idea that the ones above basic priority
always run out at the end of a clutch (in the original process). However, these vertices
can be maintained in numbers large enough to avoid the problem, but nevertheless small
enough so as not to affect the final results. Additionally, this deprioritisation should not
apply to the dangerous types, or they would build up in numbers and cause problems.
So dangerous types will continue to be prioritised. The whole plan requires an initial
phase called a preparatory phase, to build up the numbers of vertices of nondangerous
types. In the preparatory phase, the first step is to process a random vertex of type
(0, 0). After that, the nondangerous types (i, j) have the specified probability φ̂i,j = 0
except for (i, j) = (1, 1), and the dangerous types as usual are processed with (their
specified) high priority. Thus, after the initial step (and provided the vertices of type
(1, 1) do not become exhausted) this is equivalent to rearranging (for the duration of
this phase only) the priorities of the process PColour(k) so that (1, 1) has the highest
priority of the nondangerous types, and all dangerous types have priority higher than
that. We specify that, for some suitable small constant ε1, the preparatory phase runs
for t1 = bε1nc steps. Thus ε1 becomes a parameter which is input for PColour*(k).
Section 7:[17] shows that the number of vertices of type (1, 1) a.a.s. does not reach 0
before time t1, and thus it is irrelevant what is prescribed to cover this eventuality: for
instance we may stop the process.

The state of the process at the end of the preparatory phase is given in the following.

Lemma 4.1 Suppose that the preparatory phase of PColour*(k) is begun with an ini-
tial pairing either empty or containing just the pairs in S. For ε1 a sufficiently small
constant, a.a.s. Yi,C(t1) = q`n+o(n) for each (i, C), where each q` is a positive constant
depending on ε1, and ` denotes (i, |C|). Similarly, a.a.s. Z(t1) = ε̂1n + o(n) where ε̂1 is
a positive constant.

Proof. By Lemma 7.1:[17], the type (1, 1) is common. We can thus apply Corol-
lary 6.4:[17], for which we refer to the definition of the functions yi,j satisfying the
differential equation (6.16):[17]. We wish to find a lower bound for x0. At x = 0 we
have y0,0 = 1 and the other y are 0, so s(y) = d and in view of (4.14):[17] the only posi-
tive value of bi,j is b1,1 = 1/k. Thus with ` = (1, 1) we have F`−1 = (d−1)kb` = d−1 > 1,
and hence the derivative of y1,1 is strictly positive. From this it follows by induction
on type that y`′ has positive derivative for all other nondangerous types `′. The lemma
thus follows from Corollary 6.4:[17].

After the preparatory phase, all priorities now revert to their original definitions.
Define (with reference to Section 6:[17]) B− to be the set of nondangerous types. Thus,
all nondangerous types are lumped together into one super-type called expanded basic.
Each nondangerous type is now called basic. Regarding priorities, PColour*(k) op-
erates on the expanded basic type in the same way that PColour(k) operates on the
basic type, and we will apply this with all dangerous types, which are treated exactly
as before, having priority higher than the expanded basic. During the execution of
PColour*(k), when there is no vertex of type higher than basic, a vertex of expanded
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basic type is processed. The type of this vertex is first chosen randomly, type (i, j) being
chosen in proportion to some function φ̂i,j (which may be a function of Y), and this
type is then processed in the usual manner.

Before defining φ̂i,j, to ensure that it is Lipschitz, we introduce an extra smoothing
parameter η, which will also become part of the input to PColour*(k). Our main
difficulty is to show how to define φ̂i,j as a function of η so that the solution of the
resulting differential equations converges to a suitable function, as η → 0. The function
φ̂i,j is defined similarly to φi,j given in (4.5):[17] and (4.6):[17] (note that this gave rise
to the function θi,j(y) given in (4.17):[17], that implicitly appears in (4.20):[17]), apart
from the smoothing, which blurs the distinction between phases. It will use a function
λ to weight the types, defined recursively, from largest ` ∈ B− to smallest, by

λ(`) = max
{

0, min{Y `/(η`n)− 1, 1}
}(

1−
∑

`′>`, `′∈B−

λ(`′)

)

where η` = ηd−3i(`). Note that λ depends upon both Y and η.
We will impose some extra restrictions, (D1) and (D2), on the values of the vector

Y; if the process reaches a point where this is violated, its further steps are unspecified
(as we will show, this will happen rarely enough to be ignored). The first restriction is

(D1) Y0,∅ > 2ηn, Y ` >
1

2
η`n ∀` ∈ B−. (4.3)

From the first condition here and by scrutiny of the definition of λ,∑
`∈B−

λ(`) = 1, λ` ≥ 0 for all ` ∈ B−, (4.4)

(the first condition holding since the type ` = (0, 0) always takes up the slack if the sum
of λ(`) of the higher priority types is less than 1) and

for ` ∈ B−, λ(`) = 0 if ` < `′ for some `′ ∈ B− with Y `′ ≥ 2η`n. (4.5)

Before proceeding, we need the analogue of F`(y) defined as a function of Y. Recalling
that ri,j from (4.7):[17] is written in terms of Y and hence is a function of Y, define

F `(Y) =
∑
`′>`

c(`′)r`′(Y), (4.6)

with c(`′) defined as in (1.2).
The function φi,j(Y) as given in (4.5):[17] and (4.6):[17] actually depends on (i0, j0),

so we denote it now by φ
(`1)
i,j (Y) with `1 = (i0, j0). We do not use `0 here because that is

a special function determined by the current value of Y, whilst the definition of φ
(`1)
` (Y)

we are making now is applicable for all types `1 ≤ ` for every Y. At this point we extend
that definition by declaring that φ

(`1)
` (Y) = 0 if ` < `1. We will make no use of φ

(`1)
` for

those `1 such that F `1 ≥ 1 for the purpose of defining φ̂i,j, so the condition F `1 < 1 will
appear often in the following.
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We need to check that φ
(`1)
i,j (Y) is clearly nonnegative. Its definition uses the function

T defined in (4.10):[17]. For the context of this, along with (4.5):[17] and (4.6):[17], the
value of (i0, j0) determines B′; for any value `1 of (i0, j0) a function T (`1) results.

We require T (`1) to be nonzero, and we can note at this point that (for ε and η
sufficiently small)

for all `1, T (`1) > ε provided that F `1 < 1, S > εn and λ(`1) > 0 (4.7)

where S is defined in (4.1):[17]. This follows because, from (4.10):[17],

T (`1) = 1− F `1 +
∑

(i,j)>`1

(d− i0)

(
k

j

)
ri,j. (4.8)

By (4.5), if λ(`1) > 0, then for `1 < ` ∈ B−, Y ` < 2η`n and thus by (4.7):[17] and (4.3),
` cannot equal (0, 0) and furthermore r` > 0. Considering (4.6) and the fact that types
(i, j) with i = d have negative priority and can be ignored, F `1 is hence bounded above
by d times the value of the summation in (4.8). From this, (4.7) follows.

Given the conditions in (4.7), we have that T in (4.10):[17] is positive and so by
Lemma 4.1:[17],

φ
(`1)
`1

= (1− F `1)

(
T

(
k

j0

))−1

> 0. (4.9)

It remains to consider φ
(`1)
` for ` > `1, ` ∈ B−. Recall from just above that we can

assume r` > 0. Therefore (recalling that φ
(`1)
` = 0 for ` < `1)

φ
(`1)
` is well defined and nonnegative provided that F `1 < 1, S > εn and λ(`1) > 0.

(4.10)
Define R2 as R2 in (3.4) but with F replaced by F . We define φ̂i,j to be the following

convex combination of the φ
(`1)
i,j functions:

φ̂i,j(Y) =
∑

`1∈B−

λ(`1)φ
(m(`1))
i,j (Y) (4.11)

where
m(`) = max{`, R2}.

This is well defined by (4.10), since Fm(`) < 1 always by definition. We will need the
following result.

Lemma 4.2 Provided S > εn, φ̂i,j is Lipschitz.

Proof. In Section 6:[17] the functions µ were obtained by solving a linear system which
has determinant 0 when F is 1 (see (6.18):[17]), and this was transformed to the equa-
tions for φi,j obtained in Section 4:[17] which are well defined. (To avoid the singularity,

F is bounded away from 1 in (6.21):[17].) So it is not immediate that φ
(`1)
i,j is Lipschitz,

or even continuous. However, from the observations leading to (4.10) we deduce that

φ
(`1)
` is Lipschitz provided λ(`1) > 0 and F `1 < 1. The condition λ(`1) > 0 is irrelevant
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for φ̂i,j because φ
(m(`1))
i,j is bounded and multiplied by λ(`1) . Moreover, as already ob-

served, Fm(`) < 1 always. Thus, to complete the proof, we only need continuity of the

function φ
(m(`1))
i,j (where (i, j) and `1 are fixed), for which it suffices to show that

F `1 = 1 implies φ
(`1)
i,j = φ

(`1+1)
i,j . (4.12)

If F `1 = 1, we have from (4.10):[17] and (4.6), with `1 = (i0, j0), `1 + 1 = (i+0 , j+
0 ) and

`′ = (i′, j′),

T (`1) =
∑
`′>`1

c(`′)r`′ + (i′ − i0)r`′

(
k

j′

)
=

∑
`′>`1

(d− i0)

(
k

j′

)
r`′

T (`1+1) = c(`1 + 1)r`1+1 +
∑

`′>`1+1

c(`′)r`′ + (i′ − i+0 )r`′

(
k

j′

)
=

∑
`′>`1

(d− i+0 )

(
k

j′

)
r`′

and thus for (i, j) > `1 + 1,

φ
(`1)
i,j =

d− i0
T (`1)

ri,j =
d− i+0
T (`1+1)

ri,j = φ
(`1+1)
i,j .

From this we obtain (4.12) in all cases, given that φ
(`1)
`1

is always determined from the

other φ
(`1)
i,j via (4.6):[17].

To complete the definition of PColour*(k), for a step at which the type of every
vertex in the graph is expanded basic, the type (i, j) ∈ B− is chosen in proportion to(

k
j

)
φ̂i,j(Y), i.e. with probability

pi,j =

(
k
j

)
φ̂i,j(Y)∑

(i′,j′)∈B−

(
k
j′

)
φ̂i′,j′(Y)

. (4.13)

To ensure that this is a well defined probability, we first make the second domain re-
striction that

(D2) F `2(Y) < 1− ε (4.14)

where
`2 = max B−. (4.15)

Then, provided S > εn, (4.9) and (4.10) ensure that the numerator of (4.13) is nonnega-
tive (noting that only `1 with λ(`1) > 0 is relevant in (4.11), and for such `1, Fm(`1) < 1).
We also note that for sufficiently small ε2 > 0 we have∑

(i′,j′)∈B−

(
k

j′

)
φ̂i′,j′(Y) > ε2. (4.16)
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This is for similar reasons, with the additional observation that φ
(`2)
`2

is bounded below
by a positive function of ε using (4.14) and the fact that T is bounded above in (4.9).

Here is a rough informal description of what happens in PColour*(k). By (4.3),
all Y ` will remain positive. Those which drop below 2η`n for ` ≥ R2 will have a small
proportion of participation as an initial clutch step via the formula (4.13) and will
continue to drop close to η`n, provided F `1 < 1 for some `1 < `. For all other initial
clutch steps, the type chosen is the one of highest priority amongst those above 2η`n.

To analyse PColour*(k) precisely, we re-examine Section 6:[17], recalling the new
definition of B− as the set of all nondangerous types. The expanded basic type replaces
the basic type, and so a few modifications are required for definitions. Now B′ is the set
of dangerous types. For the approximation result we need to state the (symmetrical)
system of differential equations corresponding to (6.16):[17] and (6.17):[17] which will
be referred to in the following lemma. These have more or less the same definitions of
α(y) and bi,j(y), but require different νi,j(y) for (i, j) ∈ B− since the set of the basic
types B− is now expanded to all nondangerous types:

y′i,j = α(y)bi,j(y)− νi,j(y), (4.17)

z′ = α(y), (4.18)

where

α(y) =
∑

(i,j)∈B

(d− i)

(
k

j

)
νi,j(y), (4.19)

νi,j(y) = α(y)bi,j(y) if (i, j) ∈ B′, (4.20)

νi,j(y) = σ(y)θ̂i,j(y) if (i, j) ∈ B−, (4.21)

σ(y) =

( ∑
(i,j)∈B−

(
k

j

)
θ̂i,j(y)

)−1

and θ̂i,j(y) =
∑
`∈B−

λ̂(`)θ
(m(`))
i,j (y), (4.22)

λ̂(`) = max
{

0, min{y`/η` − 1, 1}
}(

1−
∑

`′>`, `′∈B−

λ̂(`′)

)
,

m(`) is defined (only a slight re-definition) as max{`, R2}, and the function θi,j(y) as
given in (4.17):[17] appears now with an extra index m(`) since its definition depends,
just as φ does, on the type m(`).

Analogous to Corollary 6.4:[17] we have the following. Define PComplete*(k,S)
from PColour*(k) as PComplete(k,S) was defined from PColour(k). Recall F`

from (1.2).

Lemma 4.3 Assume the hypotheses of Lemma 4.1, and let ε1 and ε be arbitrarily small
positive constants. Define ỹ and z̃ to be the solution to (4.17) and (4.18) above with
initial conditions y`(ε1) = q` for each `, and z(ε1) = ε̂1. Define ỹi,C = ỹi,j for all C with
|C| = j. Given η > 0 define

x0 = inf{x > 0 : ỹ0,0 ≤ ε or F`2(ỹ) ≥ 1− ε or ỹ`(x) = η`/2 for some ` ∈ B−} (4.23)
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where `2 is as in (4.15). If η is sufficiently small and x−0 < x0, then in procedure
PComplete*(k,S) with |S| bounded, a.a.s.

Yi,C(t) = nỹi,C(t/n) + o(n) uniformly for all i, C, and all ε1n ≤ t < x−0 n, (4.24)

and
Z(t) = nz̃(t/n) + o(n) uniformly for all ε1n ≤ t < x−0 n. (4.25)

Proof. We modify the argument in Section 6:[17], noting that Lemma 4.1 implies that
each of the basic types is common, and hence permits us to argue about the behaviour of
PComplete*(k,S) after the preparatory phase in the same way that Section 6:[17] con-
siders PColour(k) with the assumption that the basic type is common. Lemma 6.1:[17]
and its proof are still valid, since it relies on a clutch containing just one vertex of basic
type, in this case any of the expanded basic types. The discussion leading up to Theo-
rem 6.2:[17] still holds in the new context except that now a number of different variables
ν refer to basic types. Thus, equations (6.12):[17] and (6.13):[17], which are still valid,
determine νi,C only for the nonbasic types (i, C). Clearly we have from (6.7):[17] and
the definition of the rules of choosing between basic types,

∑
|C|=j µi,C = pi,j for every

basic type (i, j), and thus

µi,C =
pi,|C|Yi,C∑
|C|=j Yi,C

. (4.26)

We may observe that translating these equations and (4.13) to the ν variables, in the
symmetrical case of course (the possible asymmetry in the coordinates of Y will be dealt
with shortly) gives (4.21).

The definition of the domain Dε,ε0 is hereby altered (though, for convenience, we
do not change its name) to incorporate the condition on the determinant of the matrix
M for the new system of equations which arise for the variables νi,C by translating
equations (4.26) to the ν variables, together with (6.12):[17] and (6.13):[17]. We further
constrain Dε,ε0 for the current setting by adding the condition that (D1) and (D2),
given by (4.3) and (4.14), must hold for (x,Y/n) ∈ Dε,ε0 . The old condition concerning
F is deleted, since it only entered the argument to ensure the Lipschitz conditions.
By Lemma 4.2 and (4.16), pi,j is Lipschitz when viewed as a function of Y/n, for
Y/n ∈ Dε,ε0 , and hence by (D1) and (4.26), so is µi,C .

Hence the conclusion of Theorem 6.2:[17] also holds in the present setting, and the
proof is a direct translation to the present setting. There is one additional twist that
needs to be mentioned: the initial conditions for this application of [19, Theorem 6.1] are
only known asymptotically since they result from the conclusion of Lemma 4.1. However,
as with the observation in the proof of Corollary 6.4:[17], if the initial conditions are
asymptotically equal then the solutions will be asymptotically equal. It follows that we
may use the differential equations with initial conditions being exactly the constants q`

and ε̂1 referred to in Lemma 4.1.
We do not write the resulting differential equations explicitly, but move on to deduce

that, in PColour*(k), a.a.s. the approximation expressed in (4.24) and (4.25) holds at
least until the solution first leaves the domain given by the intersection of Dε,ε0 with the
conditions (4.3) and (4.14). Again it is straightforward to verify that the solution of
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the differential equations is symmetrical since the initial conditions are, and so we write
yi,j and νi,j. The resulting symetrical equations (corresponding to (6.16):[17]) are (4.17)
and (4.18), where the supporting equation (4.21) follows from (4.26) and (4.13).

The only nontrivial alterations required to adapt the argument in Section 6:[17] to the
present setting revolve around the relationship between the values of νi,j for (expanded)
basic types given in (4.21), and the values of νi,j in Section 6:[17], where the only basic
type is (1, 1). This relationship needs to be understood in order to establish the validity
of the conclusion of Theorem 6.3:[17] (which allows some conditions on the domain to
be ignored) in the present context.

In order to understand α(y) and later to simplify the above differential equations,
we will use the following fact. With the system E`, let B1 be the set of non-dangerous
types with higher priority than the type ` = (i0, j0). Then the set of the expanded basic
types B− contains B1 as a subset. The denominator in the following formula is bounded
away from 0 for y ∈ Dε,ε0 by (4.14). Note also that, by its definition, θ

(`)
i,j is zero if

(i, j) < `.

Proposition 4.4 For any ` ∈ B−, define ζ(`) by (4.16):[17] and (4.15):[17] in the
context of system E`. Then

ζ(`)(y) =
∑

(i,j)∈B−

(d− i)

(
k

j

)
θ

(`)
i,j (y)/(1− F`2(y)).

Proof. The expression on the right here is, using (4.17):[17] for the first step and (4.16):[17]
for the second-last, equal to

(d− i0)
(

k
j0

)
θ

(`)
i0,j0

(y) +
∑

(i,j)∈B1
(d− i)

(
k
j

)
θ

(`)
i,j (y)

1− F`2(y)

=

(d− i0)

(
1−

∑
(i,j)∈B1∪B′

(
k
j

)
θ

(`)
i,j (y)

)
+ ζ(`)(y)

∑
(i,j)∈B1

(d− i)
(

k
j

)
bi,j(y)

1− F`2(y)

=

(d− i0)− ζ(`)(y)

(
(d− i0)

∑
(i,j)∈B′

(
k
j

)
bi,j(y)−

∑
(i,j)∈B1

(d− i)
(

k
j

)
bi,j(y)

)
1− F`2(y)

=

ζ(`)(y)a(y)− ζ(`)(y)

(
(i− i0)

∑
(i,j)∈B1

(
k
j

)
bi,j(y) + (d− i0)

∑
(i,j)∈B′

(
k
j

)
bi,j(y)

)
1− F`2(y)

= ζ(`)(y) by (4.15):[17].

Now we are ready to re-express α(y). First note that by (4.19–4.21),

α(y) =
∑

(i,j)∈B−

(d− i)

(
k

j

)
σ(y)θ̂i,j(y) + α(y)

∑
(i,j)∈B′

(d− i)

(
k

j

)
bi,j(y)

=
∑

(i,j)∈B−

(d− i)

(
k

j

)
σ(y)θ̂i,j(y) + α(y)F`2(y).
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This gives, using Proposition 4.4 for the last step,

α(y) =
∑

(i,j)∈B−

(d− i)

(
k

j

)
σ(y)θ̂i,j(y)/

(
1− F`2(y)

)
=

∑
(i,j)∈B−

(d− i)

(
k

j

)
σ(y)

∑
`∈B−

λ̂(`)θ
(m(`))
i,j (y)/

(
1− F`2(y)

)
= σ(y)

∑
`∈B−

λ̂(`)
∑

(i,j)∈B−

(d− i)

(
k

j

)
θ

(m(`))
i,j (y)/

(
1− F`2(y)

)
= σ(y)

∑
`∈B−

λ̂(`)ζ(m(`))(y). (4.27)

In view of this, equations (4.20–4.22) give a unique solution for ν, showing that | det M |
is also nonzero in the current setting, and as in Section 6:[17], this implies that it
is bounded away from 0 in a neighbourhood of the symmetrical solution. Thus the
conclusion of Lemma 6.3:[17] also holds in the present setting, provided only that we
alter the definition of x0 to (4.23). (The condition s(y) > ε and the first condition in (4.3)
are both superseded by a stronger lower bound on y0,0.) Recalling the first observations
in this proof, this actually provides us with the analogue of Corollary 6.4:[17], thereby
completing the proof of Lemma 4.3.

For manipulating the differential equations (4.17), we can clearly assume that the
values of y under consideration lie inside Dε,ε0 as (re)defined in the proof of Lemma 4.3.
Hence, the equations derived there can be applied. By (4.21) and (4.27), (4.17) becomes
for ` ∈ B−

y′` = σ(y)
∑

`′∈B−

λ̂(`′)
(
ζ(m(`′))(y)b`(y)− θ

(m(`′))
` (y)

)
(4.28)

and of course for ` /∈ B−, y′` = 0. By (4.18), the definition of θ̂i,j in (4.22), Lemma 4.1:[17]

and (4.16):[17], it then follows (with λ̂(`) = 0 if ` /∈ B−) that

y′` = σ(y)b`(y)
∑

m(`′)≥`

λ̂(`′)ζ(m(`′))(y) + σ(y)
F`(y)− 1

c(`)

∑
m(`′)=`

λ̂(`′)ζ(m(`′))(y) (4.29)

and so by (4.27) and (4.18)

dy`

dz
= b`(y)

∑
m(`′)≥`

λ∗(`′) +
F`(y)− 1

c(`)

∑
m(`′)=`

λ∗(`′) (4.30)

where

λ∗(`′) =
λ̂(`′)ζ(m(`′))(y)∑

`′∈B− λ̂(`′)ζ(m(`′))(y)
.

Note that ζ(`) is bounded above and below by positive constants for ` satisfying the
conditions in (4.7), by its formula (4.9):[17]. Hence,

ζ(m(`′))(y) is bounded above and below by positive constants. (4.31)
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So the λ∗ are all nonnegative and their sum is 1.
For application of Lemma 4.3, and also to examine the behaviour of the solutions,

it is important to know that the lower bound on ỹ in the definition (4.23) of x0 is never
achieved before reaching x0.

Lemma 4.5 Define the functions ỹ and z̃ of x as in Lemma 4.3. Then for η sufficiently
small, ỹ`(x) ≥ η` for all ` ∈ B−, ε1 ≤ x ≤ x0.

Proof. Assume the contrary. For η sufficiently small, the strict versions of the required
inequalities are satisfied at x = ε1, so let x1 be the infimum of those x for which one of
them fails. Then ỹ`(x2) < η` for some ` and some x2 arbitrarily close to x1, and we may
assume ε1 < x1 < x0. By the Mean Value Theorem, the derivative of ỹ` is negative at
some x3 arbitrarily close to x1 for which ỹ`(x3) < η`.

Note that the derivative α of z is always positive, by (4.27) and (4.31) and the
positivity of σ and the fact that the λ̂ are nonnegative and sum to 1. Thus dy`

dz
is

negative at z3 = z(x3). (For simplicity, let y denote ỹ as a function of z.)
However, we may rewrite (4.30) using (1.2) as

dy`

dz
= b`(y)

∑
m(`′)>`

λ∗(`′) +
F`−1(y)− 1

c(`)

∑
m(`′)=`

λ∗(`′),

where the two summations are nonnegative. We will show that the other factors are
both nonnegative at z3 when the cofactor summations are positive. It follows that the
derivative is nonnegative at z3, a contradiction which proves the lemma.

Consider the second term first. There are two cases. If R2 = ` then either F`−1(y)−
1 ≥ 0 as required, or ` must be the minimum type in B−. However, we claim that its
cofactor summation is then zero. For otherwise, the definition of λ∗ (and λ) implies
that y`′ ≤ 2η for all `′ > `, yet we also have y` < 2η at z2, contradicting (for sufficiently
small η) the fact that y0,0 ≥ ε, which follows from the definition of x0. In the second

case, R2 < `. Then the coefficient of F`−1(y) − 1 is just λ∗(`), a multiple of λ̂(`). This
is 0 by definition of λ since y`(z3) < η`.

We now turn to b`, as defined just after (4.19):[17], and recall that ` denotes (i, j).
There are two cases. The first is that i ≥ 1. Then one of the types (i − 1, j) and
(i − 1, j − 1) is a member of B− (If one of these is not, its corresponding variable y is
treated as 0 by definition.) So by the choice of x1, yi−1,j +yi−1,j−1 ≥ η`−1 = d3η` ≥ d3yi,j

at x1. For x3 sufficiently close to x1, continuity therefore ensures that b` > 0 at z3. The
second case for b` is that i = 0, so ` = (0, 0). But the definition of x0 ensures that
ỹ0,0 ≥ ε, so this is not a relevant case for η sufficiently small.

Before proceeding, we transform the problem to one which has a slightly more con-
venient form. With ` = prio(i, j), define c(i, j) = c(`),

wi,j(z) = w` = c(`)y`(z)

and

b`(w) =
(d− i + 1)j

(d− 2z)k

(
wi−1,j

c(i− 1, j)
+

wi−1,j−1

c(i− 1, j − 1)

)
− d− i

d− 2z

(
wi,j

c(i, j)

)
(4.32)

25



so that the value of b` at a given point in w-space is actually b`(y(w)) in terms of the
previous function b`. (This abuse of notation should cause no problem because the two
functions can easily be distinguished by the argument: w or y.) The (invertible) linear
transformation w`(z) = c(`)y`(z) also results in the differential equations for w-space
corresponding to (4.30). Since the notation λ̂(`) hides the fact that this depends on y,
we need new functions

λ̃(`) = max
{

0, min{w`/(η`c(`))− 1, 1}
}(

1−
∑

`′>`, `′∈B−

λ̃(`′)

)
, (4.33)

λ̃∗(`) =
λ̃(`)ζ(m(`))(y(w))∑

`∈B− λ̃(`)ζ(m(`))(y(w))
(4.34)

which compute the same things as before, but as functions of w. The differential equa-
tion system (4.30) thus becomes

dw`

dz
= c(`)b`(w)

∑
m(`′)≥`

λ̃∗(`′) +
(
F`(w)− 1

) ∑
m(`′)=`

λ̃∗(`′) (4.35)

where, as in (1.2) (c.f. (3.2)),

F`(w) =
∑
`′>`

c(`′)b`′(w)

is the relevant symmetric version of F `. This derivative is a convex combination of
functions (renaming `′ as `1):

dw`

dz
=
∑

`1∈B−

λ̃∗(`1)f
`1
` (4.36)

where, since c(`)b`(y) + F`(y) = F`−1(y),

f `1
` (w) =


c(`)b`(w) if ` < m(`1)
0 if ` > m(`1)
F`1−1(w)− 1 if ` = m(`1).

(4.37)

We refer to the solution of these differential equations as w〈η〉.
Our next task is to show that w〈η〉 converges to some limiting function (in the

appropriate domain) as η → 0. The linear transformation w`(z) = c(`)y`(z) results in
differential equations for w-space corresponding to the equations (1.4) for y which arise
from the original prioritised process. These are

dw`

dz
= f `0

` (w) (4.38)

where (4.2) defines `0 as a function `0(w) (c.f. `1 occurring in (4.36)), and (recalling
from Section 3)

R1 = R1(w) = max{` : w` > 0}, R2 = R2(w) = min{` : F`′(w) < 1 for all `′ ≥ `}.
(4.39)
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Define w(0) to be the solution of (4.38) obtained in the proof of Theorem 3.3 with
initial conditions defined at ε̂1 = z(ε1) corresponding to the initial conditions for ỹ in
Lemma 4.3 relating to the end of the prephase: w`(ε̂1) = c(`)q` for each `. Also define
z for x > ε1 as the solution of (4.18) with the initial condition z(ε1) = ε̂1.

We may take the point of view that there are different systems each playing a partial
role: (4.37) gives the derivative in each individual system. This observation is unfortu-
nately not easily used because the L1-norm of a vector is not differentiable when one
of the coordinates is 0. Points where this occurs play a special role in the proof of the
following.

Note that x0 is a function of η, so we now denote it by x
(η)
0 .

Lemma 4.6 Define z
(η)
0 to be z(x

(η)
0 ) Then, as η → 0,

sup
ε̂1≤z≤z

(η)
0

|w〈η〉(z)−w(0)(z)| → 0.

Proof. We use precisely the full nodes of w(δ) in an iterative scheme as in the proof
of Theorem 3.3, and show that the difference between w(δ) and w〈η〉 is a function of δ
and η which tends to zero as both δ and η go to zero in a certain manner. In fact we
specify now that η = O(δ2). Before proceeding, note that the δ-property, as in the proof
of Theorem 3.3, is still valid, in that both for w(δ) and its derivative are Lipschitz. We
extend the notion of δ-property also to include the Lipschitz property of w〈η〉, which
holds because it has a bounded derivative, though its derivative does not have a Lipschitz
property independent of η.

Assume that z1 is a full node of w(δ) and that for some ξ (which, if necessary could
be specified to be O(δ) in the induction)∑

`∈B−

J`(z1) ≤ ξ (4.40)

where
J`(z) = |w(δ)

` (z)− w
〈η〉
` (z)|.

Let z2 be the next full node of w(δ) after z1. We are interested in the increase in the
error of approximation of w(δ) by w〈η〉 in the interval I = [z1, z2], that is, in

J =
∑
`∈B−

J`(z2)− J`(z1). (4.41)

In this proof, it is the behaviour of w〈η〉 on I which determines the nature of the
inductive step. For simplicity, let `0 denote `0(w

(δ)(z1)). The analogous function we
require for w〈η〉 is

ˆ̀(z) = max
(
R̂1(w

〈η〉(z)), R2(w
〈η〉(z))

)
where R̂1(w

〈η〉) is the greatest ` such that w
〈η〉
` ≥ 2c(`)η`, and R2 as before takes the

least value ` such that F`′ < 1 for all `′ ≥ `.
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First we observe that m(`′) ≥ ˆ̀(z) for all `′ with λ̃∗(`′) > 0. Thus, if ` < ˆ̀(z) for all
z ∈ I, then it follows from (4.35) that on the interval I,

dw
〈η〉
`

dz
= c(`)b`(w

〈η〉).

If, in addition, ` < `0, then by the δ-property, the Lipshchitz property of b`, and (4.40),

this is equal to c(`)b`(w
(δ)) +O(δ + ξ) =

dw
(δ)
`

dz
+ O(δ + ξ). It then follows, by integrating

the two derivatives on the interval I, that

J`(z2)− J`(z1) = O(δξ + δ2) (if ` < min{ˆ̀(z), `0} for all z ∈ I). (4.42)

We next proceed to consider the terms in (4.41) with ` ≥ min{`0, minz∈I
ˆ̀(z)}. First

note that, from (4.35), for any `1 ∈ B−,

∑
`≥`1

dw
〈η〉
`

dz
=

∑
`′ : m(`′)≥`1

λ̃∗(`′)
((

Fm(`′)(w
〈η〉)− 1

)
+

∑
`1≤`≤m(`′)

c(`)b`(w
〈η〉)
)

=
(
F`1−1(w

〈η〉)− 1
) ∑

`′ : m(`′)≥`1

λ̃∗(`′). (4.43)

Case 1. ˆ̀(z) ≥ `0 for all z ∈ I.
Then λ̃∗(`) = 0 for m(`) < `0 and so using (4.4)∑

m(`)≥`0

λ̃∗(`) = 1. (4.44)

By (4.42) we only need to consider terms with ` ≥ `0 in (4.41). By the δ-property
and the approximation (3.8), we have

F`0−1

(
w〈η〉(z)

)
− 1 = F`0−1

(
w(δ)(z1)

)
− 1 + O(ξ + δ)

for z ∈ I. Hence from (4.43) and (4.44)∑
`≥`0

w
〈η〉
` (z2)− w

〈η〉
` (z1) = (z2 − z1)

(
F`0−1(w

(δ)(z1))− 1
)

+ O(δξ + δ2)

= w
(δ)
`0

(z2)− w
(δ)
`0

(z1) + O(δξ + δ2). (4.45)

We may now apply the same observations to
∑

`>`0
w
〈η〉
` (z2) − w

〈η〉
` (z1). Note that, by

the definition of `0, F`0(w
(δ)(z1)) − 1 < 0. Hence this summation is, if not negative, at

most O(δξ + δ2). We may thus proceed first from (4.45) to

w
(δ)
`0

(z2)− w
〈η〉
`0

(z2) = w
(δ)
`0

(z1)− w
〈η〉
`0

(z1) +
∑
`>`0

w
〈η〉
` (z2)− w

〈η〉
` (z1) + O(δξ + δ2)

and then to

|w(δ)
`0

(z2)−w
〈η〉
`0

(z2)| ≤ |w(δ)
`0

(z1)−w
〈η〉
`0

(z1)|−
∑
`>`0

w
〈η〉
` (z2)−w

〈η〉
` (z1)+O(δξ + δ2). (4.46)
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The definition of `0 implies that w
(δ)
` = 0 for ` > `0. Hence by the nonnegativity of the

functions w(δ) (by definition) and w〈η〉 (by definition of z
(η)
0 through x0),∑

`0≤`∈B−

J`(z2)− J`(z1)

≤ |w(δ)
`0

(z2)− w
(η)
`0

(z2)| − |w(δ)
`0

(z1)− w
(η)
`0

(z1)|+
∑
`>`0

w
〈η〉
` (z2)− w

〈η〉
` (z1)

= O(δξ + δ2)

by (4.46). So, by (4.42), J = O(δξ + δ2).

Case 2. ˆ̀(z) < `0 for some z ∈ I.
Let z3 be a point in I which minimises the value of ˆ̀ and write ˆ̀ = ˆ̀(z3) for short.

By definition
w
〈η〉
` (z3) = O(η) (4.47)

for all ` > ˆ̀. Since Fˆ̀(w〈η〉(z3)) < 1, it follows (by the δ-property) that Fˆ̀

(
w〈η〉(z)

)
<

1 + O(δ + ξ) for z ∈ I. By (4.47), on the same interval

F`−1

(
w〈η〉(z)

)
< 1 + O(δ + ξ + η) (4.48)

for all ` > ˆ̀, including ` = `0. Hence, focussing on the fact from (4.47) that each such

function w
〈η〉
` is small somewhere on I,

w
〈η〉
` (z2) = O

(
δ(δ + ξ + η)

)
= O(δ2 + δξ), `0 ≤ ` ∈ B−. (4.49)

Using this together with (4.43),∑
`≥`0

w
〈η〉
` (z1) =

∑
`≥`0

(
w
〈η〉
` (z1)− w

〈η〉
` (z2)

)
+ O(δ2 + δξ)

= −(z2 − z1)
(
F`0−1(w

〈η〉(z1))− 1
) ∑

m(`)≥`0

λ̃∗(`) + O(δ2 + δξ)

≤ −(z2 − z1)
(
F`0−1(w

〈η〉(z1))− 1
)

+ O(δ2 + δξ) (4.50)

using the fact that the λ̃∗ are nonnegative and sum to 1, and also (4.48) for ` = `0.

Hence using (4.40) and the δ-property, and then the derivative of w
(δ)
`0

,∑
`≥`0

w
〈η〉
` (z1) ≤ −(z2 − z1)

(
F`0−1(w

(δ)(z1))− 1
)

+ O(δ2 + δξ)

≤ w
(δ)
`0

(z1)− w
(δ)
`0

(z2) + O(δ2 + δξ). (4.51)

Now note that∑
`0≤`∈B−

J`(z2)− J`(z1)

=
∑

`0≤`∈B−

(
|w(δ)

` (z2)− w
〈η〉
` (z2)| − |w(δ)

` (z1)− w
〈η〉
` (z1)|

)
= w

(δ)
`0

(z2)− |w(δ)
`0

(z1)− w
〈η〉
`0

(z1)| −
∑

`0<`∈B−

w
〈η〉
` (z1) + O(δ2 + δξ)
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by (4.49) and the fact that w
(δ)
` (z1) = 0 for ` > `0. By (4.51) and the nonnegativity of

w(δ) and w〈η〉 as noted above, we have

w
〈η〉
`0

(z1) ≤ w
(δ)
`0

(z1) + O(δ2 + δξ),

and so the term −|w(δ)
`0

(z1) − w
〈η〉
`0

(z1)| is at most −
(
w

(δ)
`0

(z1) − w
〈η〉
`0

(z1)
)

+ O(δ2 + δξ).
Hence, again using (4.49) and reversing the negative sign in the summation,∑

`0≤`∈B−

J`(z2)− J`(z1) ≤ w
(δ)
`0

(z2)− w
(δ)
`0

(z1) +
∑
`≥`0

(
w
〈η〉
` (z1)− w

〈η〉
` (z2)

)
+ O(δ2 + δξ).

Noting that λ̃∗ is continuous and so integrable, this gives∑
`0≤`∈B−

J`(z2)− J`(z1)

≤ (z2 − z1)
(
F`0−1(w

(δ))− 1
)
−
(
F`0−1(w

〈η〉)− 1
) ∫ z2

z1

∑
m(`)≥`0

λ̃∗(`) dz + O(δ2 + δξ)

=
(
F`0−1(w

〈η〉)− 1
) ∫ z2

z1

∑
m(`)<`0

λ̃∗(`) dz + O(δ2 + δξ). (4.52)

It only remains to consider terms in (4.41) with ˆ̀ ≤ ` < `0, for which it will be
important to recall that ˆ̀ = ˆ̀(z3). What is lost (in terms of approximation) from such
` will be compensated for by the negative value of (4.52) (apart from the error term).

From (4.35), for ` ∈ B− the derivative of w
〈η〉
` is c(`)b`(w

〈η〉)−G(`) where (by (4.4))

G(`) = c(`)b`(w
〈η〉)

∑
m(`′)<`

λ̃∗(`′) +
(
1− F`(w

〈η〉)
) ∑

m(`′)=`

λ̃∗(`′), (4.53)

whilst for ` < `0 the derivative of w
(δ)
` on the interval I is (by the δ-property)

c(`)b`(w
(δ)) = c(`)b`(w

〈η〉) + O(δ + ξ).

Thus for ` < `0

|J`(z2)− J`(z1)| ≤
∫ z2

z1

|G(`)| dz + O(δ2 + δξ). (4.54)

We examine the sign of terms in the definition (4.53) of G(`). The two summations are
of course nonnegative. For those ` such that the first summation is nonzero, λ̃∗(`′) 6= 0
for some `′ < ` and so the minimum in the definition (4.33) of λ̃(`) must be less than 1.

Thus w
〈η〉
` = O(η) and so, by the definition (4.32) of b` (and the nonnegativity of w〈η〉),

the first term of G(`) is at least −O(η). The second term is also either positive or O(δ)
since for sufficiently small δ, using ` ≥ ˆ̀ and the δ-property,

F`(w
〈η〉)− 1 ≤ Fˆ̀(w

〈η〉)− 1 + O(δ) < O(δ).
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Thus G(`) ≥ −O(δ + η) = −O(δ) and consequently we may replace |G(`)| in (4.54) by
G(`). Hence ∑

ˆ̀≤`<`0

|J`(z2)− J`(z1)| =

∫ z2

z1

∑
ˆ̀≤`<`0

G(`)dz + O(δ2 + δξ).

We find by the definition of F , and using the fact that m(`′) ≥ R2 ≥ ˆ̀ for all `′, that∑
ˆ̀≤`<`0

G(`) =
(
1− F`0−1(w

〈η〉)
) ∑

l : m(`)<`0

λ̃∗(`).

Thus, using (4.52),∑
ˆ̀≤`≤`∈B−

J`(z2)− J`(z1) ≤
∑

ˆ̀≤`<`0

|J`(z2)− J`(z1)|+
∑

`0≤`∈B−

J`(z2)− J`(z1) = O(δ2 + δξ).

We conclude that in Case 2, as in Case 1, J = O(δ2 + δξ). The usual inductive
argument on errors now shows that w〈η〉 and w(δ) differ by at most O(δ) on the interval
in question. The proof of Theorem 3.3 shows that w(δ) approximates w(0) to the same
accuracy, which gives the lemma.

We also modify the discussion in Section 10:[17] here, in order to complete the proof
of Theorem 1.2.

Proof of Theorem 1.2 Assume that the hypotheses of the theorem hold. Then
with PColour*(k) specified as in Lemma 4.1, the conclusions of Lemma 4.3 hold for
PComplete*(k,S). This is for all ε and η > 0. Taking η sufficiently small, Lemma 4.5
ensures that the definition (4.23) of x0 is equivalent to

x0 = inf{x > 0 : ỹ0,0 ≤ ε or F`2(ỹ) ≥ 1− ε}. (4.55)

As we saw, the equation (4.17) determining ỹ is equivalent to (4.30) in (z,y)-space,
which is then equivalent to the equation (4.36) for w〈η〉 by a simple linear transformation.
Lemma 4.6 shows that this w〈η〉 is approximated arbitrarily closely by w(0), by taking
η sufficiently small, on the interval [ε̂1, z(x

(η)
0 )]. The initial conditions of w(0) are a

function of ε̂1 as determined by the analysis of the end of the preparatory phase, and as
ε̂1 → 0 they must tend to

w0,0(0) = d, wi,j(0) = 0 otherwise, (4.56)

which correspond to (1.6). The successive approximation method of proof of Theo-
rem 3.3 shows that, as with ordinary differential equations, a small perturbation of the
initial conditions produces a small perturbation in the right hand derivative solutions
obtained. Hence as ε̂1 → 0, the function w(0) tends towards its value with initial con-
ditions (4.56). Back in (z,y)-space, this implies the solutions of (4.30) converge to the
function y defined in the statement of the present theorem. We now conclude in view
of (4.55) that z(x0) ≥ z1 for ε sufficiently small (in addition to the smallness already
imposed on ε̂1 and η). At this point we may finally fix such ε, and we conclude that
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for such ε, there are functions ε̂1(n) and η(n) tending to 0 as n →∞, such that for the
corresponding process PComplete*(k,S)

Yi,C(t) = nyi,|C|(Z(t)/n) + o(n) uniformly for all i, C, and all Z(t) ≤ z1n. (4.57)

Note that this is also uniform over all sets S of bounded size.
To use the argument in Section 8:[17], we note that the analogous equation holds

back in (x,y)-space because of the equivalence of the differential equations, i.e. (4.24)
and (4.25) are now valid with the range of t altered to 0 ≤ t ≤ x(z1)n and with ỹi,C(t/n)
redefined as yi,j(z(t/n)).

As noted in the proof of Lemma 4.3, we have that Lemma 6.1:[17] is valid for the
expanded basic type, as well as the analogue of Theorem 6.2:[17]. Hence the whole
argument of Section 8:[17] is valid in the present context. Lemmas 9.1:[17] and 9.2:[17]
are proved without relying on the priorities other than the fact that dangerous types
have higher priorities than others, so these are also valid in the present context. The
argument proving Theorem 10.1:[17] also applies without change (making the appro-
priate translation: the analogue of (6.22):[17] follows from (4.57)). We conclude that
Short*(g, k) a.a.s. succeeds when applied to a random G ∈ Gn,d, where Short*(g, k)
is defined by modifying Colour(k) so that, when a vertex of expanded basic priority is
called for, its type is chosen according to the probability φ̂i,j(t) just as in the definition
of process PColour*(k). The theorem follows.

5 Numerical and rigorous results for small d ≥ 5

In this section, we finish the proof of Theorem 1.1 for 5 ≤ d ≤ 10. We will use the
following priority list for d > 4, defined inductively.

prio(0, 0) = 1, prio(d− 2, k − 2) = 0,

prio(i, j) =


prio(i + 1, j) + 1 if j 6= k − 2, j ≤ i < j + d− k

or j = k − 2, j ≤ i < d− 3,
prio(j − 1, j − 1) + 1 if j 6= k − 2, i = j + d− k

or (i, j) = (d− 3, k − 2),
−1 otherwise.

This list is generated by taking the approach that a vertex of type (i, j) should have
higher priority than one of type (i, j − 1) because it has more different colours on
neighbours, and higher priority than one of type (i+1, j) because it has more neighbours
yet to be coloured. If i > j + d − k, then a vertex v of type (i, j) has k − j colours
available for d − i (which is less than k − j) uncoloured neighbours and thus we can
properly colour the vertex v no matter how its uncoloured neighbours are coloured. So
this type is given the lowest priority, which is −1. The type (d−2, k−2) is given priority
0 since vertices of this type do not increase the value of the left hand side of (1.7) as
yd−2,k−2 increases and this tactic will help the stability of the differential equations,
regarding phases, when computing numerically.
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We “solved” the system (1.4) as called for in Theorem 1.2 numerically, using a
Runge-Kutta method of order 2. This was without using careful error bounds but just
apparent good convergence of the numerical solution as the stepsize was made smaller.
This gave, to a high degree of confidence, the upper bounds in Theorem 1.1 for d up
to 10, as well as the upper bound 6 for d = 11, 12 and 13, and the upper bound 7 for
d = 14. These last four are all just one above the Molloy-Reed lower bound. The rest
of this section describes an algorithm used to obtain the rigorous bounds reported in
Theorem 1.1.

It is desirable to obtain analytic results for all d, as for d = 4 in Section 11:[17]. The
end of phase condition, when the basic variable changes, can be detected analytically
and this provides the starting point for the next phase.

Unfortunately, however, for large d (even d = 5) the analytic solutions become
messy from the fact that the initial conditions for later phases are rational functions of
exponentials. This is especially daunting when the number of phases to be considered
becomes large. (For example, for d = 10 it appears that more than 20 phases are
necessary.)

Theorem 1.2 refers to the solution of (1.4), which, as noted early in Section 4:[17],
is equivalent to (4.20):[17], or, as noted in Section 4:[17], we may use (4.22):[17]. So
for d > 4 we solve the system of differential equations (4.22):[17] numerically. These
equations are

dui,j

dv
=


bi,j(u) + 2ui,j if (i, j) /∈ B
0 if (i, j) ∈ B′

bi,j(u) + 2ui,j +
−k +

∑
(i′,j′)∈B′(d− i′)

(
k
j′

)
bi′,j′(u)

k(d− i)
(

k
j

) if (i, j) = (i0, j0),

(5.1)
where

bi,j(u) = (d− i + 1)j(ui−1,j + ui−1,j−1)/k − (d− i)ui,j.

We need to show why this is equivalent to solving (1.4), given (1.5). For u-space, we
can also define the basic type `0(u) by taking the maximum of R1(u) and R2(u) where
the definition of Ri is similar to (4.1) upon substitution of the variable y by u. Then
in (4.22):[17], the active system depends on which type `0 is basic. Also note that
u` > 0 if and only if y` > 0, and b`(u) = b`(y) implies R2(u) = R2(y). This implies that
`0(u) = `0(y) and thus the system active at a point in u-space corresponds to the system
active at the corresponding point in y-space, and a phase change in u-space corresponds
to a phase change in y-space. In each system, the right derivatives of variables are given
by the right hand side of (5.1) and changes of variable for right derivatives work in the
same way as for ordinary differential equations. Thus (1.4) and (5.1) are equivalent.

To obtain rigorous results from the numerical solutions, we need to bound the errors.
In order to do more work with integers (rather than floating point calculations), we use

βi,j = (d− i + 1)j(ui−1,j + ui−1,j−1)− k(d− i)ui,j

and
dui,j

dv
= fi,j(u) (5.2)
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where

fi,j(u) =


(βi,j + 2ui,j)/k if (i, j) /∈ B
0 if (i, j) ∈ B′

(d− i)
(

k
j

)
(βi,j + 2kui,j)− k +

∑
(i′,j′)∈B′(d− i′)

(
k
j′

)
βi′,j′

k(d− i)
(

k
j

) if (i, j) = (i0, j0)

and write
f(u) = (fi,j(u)).

Here the coefficients of the ui,j in the case (i, j) = (i0, j0) are integers which can be
precomputed.

In a C program, we store upper and lower bounds u+ and u− on the variables,
beginning with the initial conditions at v = 0, u0,0(0) = 1/d and ui,j(0) = 0 otherwise,
and repeatedly step through increasing values of v, updating the bounds for each new
value of v, based on upper and lower bounds f+ and f− on the right hand derivative of
u in the interval between the old and new values of v. In each floating point calculation,
the bounds are widened to allow for the maximum possible error due to floating point
arithmetic. The basic method of calculation used is as follows. Note that for these
calculations, what we call phase changes, i.e. places where a different system is active,
do not need to be found exactly: just closely enough that the required upper and lower
bounds remain valid until the terminating condition is reached.

At the start of any interval [v, v+h], we first compute rough upper and lower bounds
on all variables in this interval. We can assume j ≤ k − 2 since we are considering
nondangerous types. We also have j ≥ 1 unless the type is (0, 0). Hence for all variables
u` under consideration, we have c(`) ≥ k (the worst case being type (d−1, 1)). We have
the bound u` ≤ 1/c(`) by definition of s just before (4.14):[17], and hence

u` ≤ 1/k. (5.3)

Now, suppose that
dyi,j

ds
>
(

k
j

)−1
at some point inside the domain where the approx-

imations in the proof of Theorem 1.2 in Section 4:[17] are valid. Then in the process,

the rate of change of Yi,C with respect to S is a.a.s. greater than
(

k
j

)−1
for some period

of time, for each of the
(

k
j

)
variables Yi,C . But each edge added decreases S by 2 and

decreases
∑

|C|=j Yi,C by at most 2. So this is impossible. Hence
dyi,j

ds
≤
(

k
j

)−1
, and a

similar argument shows that
dyi,j

ds
≥ −1

2

(
k
j

)−1
, the extra factor 2 coming from the fact

that the vertex whose points are all matched in one step does not create a new vertex
of relevant type (i, j). We now have (noting s = dz

dv
and ds

dz
= −2)

dui,j

dv
=

dui,j

ds

ds

dz

dz

dv

=

(
1

s

dyi,j

ds
− yi,j

s2

)
(−2s)

= −2

(
dyi,j

ds
− ui,j

)
.
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Finally, note that
(

k
j

)
≥ k for j ≥ 1 (since we only consider j < k), and for j = 0 we only

consider type (0, 0) for which dy0,0

ds
is never negative (as this variable can only decrease

as x increases, i.e. s decreases), we have the lower bound on du
dv

of −2 and the upper
bound 3/k (for convenience, we take this as 1). Thus u+

` (v) + h is an upper bound on
the value of u` on the interval, and u−` (v)− 2h is a lower bound. Moreover, since these
bounds are valid up to the point, if any, that the solution leaves the domain, it is easy
to verify in practice that the solution must remain in the domain inside the interval, by
checking that no points satisfying these bounds on the interval are at the boundary of
the domain.

Then we compute a range of ` which contains, for certain, the basic type defined
by (3.3) throughout the entire interval [v, v + h], by using the rough bounds on u for
the whole interval. This can be done as follows. Let

`−0 = max{R−
1 , R−

2 }

where
R−

1 = max{` : u−` > 0}, R−
2 = max{` : F`−1(u

−) ≥ 1}. (5.4)

Similarly, set
`+
0 = max{R+

1 , R+
2 }

where
R+

1 = min{` : u+
`+1 = 0}, R+

2 = min{` : F`′(u
+) < 1 ∀`′ ≥ `}. (5.5)

Then it follows that

`0(w) = prio(i0, j0) ∈ [`−0 , `+
0 ] ∀w ∈ [v, v + h].

Having the basic type `0 bounded roughly by this, and the rough bounds u+ and u−

on u for the interval [v, v + h], we can refine the bounds for the right derivatives f given
by the formula (5.2) for the whole interval [v, v + h]. For a given possible active system,
let f+(u(w)) denote the maximum possible right derivative in the interval [v, v +h] thus
obtained, and similarly f−(u(w)) for the lower bound. Then again using Lemma 3.1 we
may use the Euler formula:

u±(v + h) = u±(v) + hf±(u±(κ))

where κ ∈ (v, v + h), and update the upper bound u+ for the interval [v, v + h] to be
the maximum of u+(v) and u+(v + h), maximised over all possible active sytems (and
similarly for the lower bound). This maximum value will be an upper bound on u for
the whole interval since u+(v + h) is an upper bound for the whole interval if f+ > 0,
and u+(v) otherwise. The symmetric statements hold for lower bounds.

Note that for all variables ` < `−0 , each system (5.2) which is possibly active on the
interval [v, v +h] specifies the derivative of u` to be β`/k, and thus u` is differentiable on
this interval. Furthermore, β` (` = prio(i, j)) is differentiable provided ui−1,j, ui−1,j−1

and ui,j are differentiable. Hence if we define

L =
{
` = prio(i, j) | ` < `−0 and {prio(i− 1, j − 1), prio(i− 1, j)} ∩ [`−0 , `+

0 ] = ∅
}
,
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then for ` ∈ L, u` has a second derivative on (v, v + h). So we may use Taylor’ theorem
for ` ∈ L:

u`(v + h) = u`(v) + hu′`(v) +
1

2
h2u′′` (κ) (5.6)

where κ ∈ (v, v + h). Based on the bounds on u′`, we compute the bounds on their
second derivatives and hence update the bounds for u using (5.6).

Note that any system (i, j) with prio(i, j) ∈ [`−0 , `+
0 ] might be active. In this case,

we update all variables u for prio(i, j) ≤ `+
0 by letting u+ be the maximal upper bound

over all active systems, and u− be the minimal lower bound over all active systems.
Based on the updated bounds on u for the interval [v, v + h], we can update the range
of the basic type [`−0 , `+

0 ] for the whole interval [v, v + h].
The program iterates the whole process to narrow down the interval [`−0 , `+

0 ] until it
cannot be improved further. The resulting improved bounds on all variables are used.

Also in the program if `−0 < `+
0 , then we halve the length of step h := h/2 in the

iteration for narrowing down the range for the basic type. This halving is repeated until
either `−0 = `+

0 or some predetermined fraction of the original h is reached.
The program tests in each iteration, the condition∑

i,j

(d− i)(d− i− 1)

(
k

j

)
u+

i,j < 1, (5.7)

which implies the condition (ii) in Theorem 1.2 since u = y/s and
∑

i,j(d−i)
(

k
j

)
ui,j = 1.

The main inequality in Theorem 1.2 (i) is also checked at every step. The lower bound
on y0,0 does not need to be checked at every step since this variable has a positive
derivative unless it becomes “basic”. Therefore, to verify this condition holds, it suffices
to check that the range of possible basic variables never contains the type (0, 0).

The first point at which both this and (5.7) are seen to hold is denoted by v0. If the
condition in Theorem 1.2(i) is violated before (5.7) holds, no result is obtained for this
value of d and k, and we set v0 = ∞.

The program gives the following rigorous results. The largest priority of all the types
is shown first. The next column shows the basic type or range of basic types [`−0 , `+

0 ] that
was obtained at the point v0. We define the density to be the left hand side of (5.7), and
the density column shows an upper bound on the density at the point v0. These results,
together with the check (which is easily made) that type (0, 0) was not contained in the
basic range at any point in time, complete the proof of Theorem 1.1.
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d, k largest priority last basic type v0 density

5,4 prio(3, 3) = 6 (1,1) 1.533897 0.999958

6,4 prio(3, 3) = 9 (3,2) 1.841634 0.999928

7,5 prio(4, 4) = 12 (4,2) 1.773288 0.999981

8,5 prio(4, 4) = 16 [(4,2),(3,2)] 1.955822 0.999997

9,5 prio(4, 4) = 20 (6,3) 2.189075 0.999999

10,6 prio(5, 5) = 25 (7,3) 2.128767 0.999992
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