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Abstract

We show that a random 4-regular graph asymptotically almost surely (a.a.s.)
has chromatic number 3. The proof uses an efficient algorithm which a.a.s. 3-
colours a random 4-regular graph. The analysis includes use of the differential
equation method, and exponential bounds on the tail of random variables asso-
ciated with branching processes. A substantial part of the analysis applies to
random d-regular graphs in general.

1 Introduction

We consider the uniform model G, 4 of random d-regular graphs on n labelled vertices.
Many properties of random regular graphs were given in [12], and a number of results
have been added since then. The chromatic number is one of the main topics in the
theory of random graphs (see [5, Chapter 7] for example). Probably the latest relevant
result is that of Achlioptas and Naor [2] which shows that the chromatic number of a
random graph with n vertices and edge probability d/n (with d fixed) is concentrated
on at most two integers, and on one value for d in some intervals.

For G, 4, the significant results on chromatic number up until now have been weak
in some sense. In particular, for any fixed d > 4, the upper and lower bounds on
the chromatic number x of G € G, 4 which were hitherto known to hold a.a.s. did not
determine a single value of x a.a.s. (We say that a property holds asymptotically almost
surely (a.a.s.) if it holds with probability tending to 1 as n — oo. In regard to the model
Gn.a, We restrict nd to the even integers in all such asymptotics for feasibility reasons.)
The case d = 4 is of particular interest since the situation for d < 3 is determined easily
by combining deterministic colouring results with simple known properties of G, 4, as
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outlined below. Achlioptas and Moore [1] showed that P(x = 3) for a random graph in
Gn.4 1s bounded below by a positive constant. In this paper, we obtain results on a class
of algorithms which colour d-regular graphs for general d and obtain in particular the
following “best possible” result for d = 4.

Theorem 1.1 A random 4-regular graph a.a.s. has chromatic number 3.

We also give a simple algorithm which a.a.s. colours a random 4-regular graph with three
colours, based on a greedy colouring scheme (as proved in Theorem 10.1). Our analysis,
expressed as it is in terms of k-colouring a random graph in G, 4 for arbitrary fixed
d, lays the groundwork for a more general result which will appear in a sequel to this
paper. This paper contains those portions of the analysis for which the generalisation
to arbitrary d is trivial.

For completeness, we point out that random 2-regular and 3-regular graphs are
a.a.s. not bipartite, as shown by the distribution of short odd cycles (see for example
Bollobés [3] or [12, Section 2]). Thus they a.a.s. have chromatic number 3. This is
immediate for the 2-regular case; random 3-regular graphs have no K, a.a.s., and so
Brooks’ theorem reduces the upper bound to 3.

Our starting point is an algorithm Colour(k) which greedily colours the vertices of
a graph, using colours 1, ..., k, in the following manner. At any point in the algorithm,
the type of a vertex v is the pair (4, j) where ¢ is the number of coloured neighbours and j
is the number of colours, of 1, ..., k, not available (i.e. already used on the neighbours of
v). The algorithm takes as input an ordering of the possible types, as a list of priorities,
and then repeatedly randomly chooses an uncoloured vertex of the highest priority type
and colours it with one of its available colours chosen at random. The algorithm fails
if it runs out of available colours, but in that case for convenience we demand that it
proceeds using a colour from one of the neighbours (so the resulting colouring is not
proper). This algorithm does succeed, on random regular graphs, if k is large enough.
However, we can improve upon this slightly. What we can do is eliminate the difficulty
caused near the end of the algorithm by the occurrence of short odd cycles formed by
the uncoloured vertices. If all vertices in such a cycle happen to have only the same two
colours available, the algorithm will fail. This type of failure prevented Achlioptas and
Moore [1], who analysed a related algorithm, from being able to show that a random
4-regular graph on n vertices is a.a.s. 3-colourable.

As it turns out, a simple remedy, algorithmically, is to colour first the vertices in
short cycles in the graph. Unfortunately, this simple idea complicates the analysis
significantly. Let g > 3. Define a short cycle to be one of length at most g. By standard
results, a random d-regular graph a.a.s. has at most logn short cycles, and a.a.s. no two
such cycles have a vertex in common. (Also, in order to understand our argument, it
may help to know that a.a.s. no vertex is adjacent to vertices from two of these short
cycles, but we will not use this fact directly.) We define an algorithm Short(g, k) as
follows. This takes as input a d-regular graph G. As above, it is understood that the
input also includes a priority list of types.



Algorithm Short(g, k)

1 properly 3-colour the vertices in the short cycles of G}
2 apply Colour(k).

We say this algorithm (and other colouring algorithms involving & colours) has failed
at any time that a vertex has k differently coloured neighbours. It succeeds if, up until
the time that all vertices of G have been coloured, it has not failed.

We claim that, for d = 4, the algorithm Short(g, 3) (with a suitable list of priorities)
succeeds with probability at least 1 —¢,+o0(1) when applied to a random 4-regular graph
on n vertices, as n — 0o0. Here ¢, is a function which tends to 0 as ¢ — oo. Theorem 1.1
is a consequence of this, using the following simple result.

Fact If for all fixed g > 0, f(n,g9) = o(1) as n — oo, then for some function g = g(n)
going to infinity (sufficiently slowly), f(n,g) = o(1).

This paper continues the approach of the second author, of analysing algorithms on
random structures using a differential equation method. The version of this method we
use for greedy algorithms was introduced in [10]. Extensions of the technique and of
related ones will be used in the sequel [7] to obtain some similar results for the chromatic
number of random d-regular graphs when d is small. Many of the results in the present
paper will be used for this.

In the next section we give more detail on some of the delicate parts of the argument,
intermingled with some useful definitions. Section 3 introduces a basic colouring process
on a model of random d-regular graphs. Section 4 studies the basic combinatorics of
the situation in order to derive the differential equations which explain the behaviour
of the colouring algorithms under consideration. Part of this discussion is nonrigorous
but it provides an intuitive understanding of the processes under consideration, and
additionally guides the later rigorous development.

We call a type (i,7) dangerous if j > k — 1 and i < d. In order to ensure that the
greedy algorithm does not colour itself into a corner, we need to know that it can usually
succeed with colouring dangerous types of vertices. These vertices are not nice to have
around, because they are uncoloured vertices with at most one colour not already used
on their neighbours. Colouring a vertex with a dangerous neighbour can leave that
neighbour with no available colours, so allowing dangerous vertices to proliferate would
cause problems. To show that the numbers of vertices of dangerous type do not build
up (with a suitable priority list), we use a branching process argument, the foundations
of which are in Section 5. This is then applied in Section 6 to achieve the desired result.

Section 7 shows that the process will usually get off to a good start without any
problems. However, it is hard to push the analysis of the random process to the very
end using differential equations. Instead we can stop when the remaining graph is sparse
enough, in a certain sense. Section 8.1 defines such a time, ¢;, and the rest of Section 8
shows that in the typical stages of the colouring process up to time ¢, the lack of short
cycles ensures that the vertices of dangerous type, which definitely can occur often
during the process, have low probability of being able to act in collusion (which could
cause a real problem). The probability of a problem is bounded as a function of the
(fixed) girth g, and this function is shown to go to 0 as g goes to infinity. Section 9
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shows that the likelihood of having a problem after ¢; is reached is negligible. Section 10
then amalgamates the conclusions of the earlier sections, and these results are finally
used in Section 11, for the case d = 4, to prove Theorem 1.1.

2 Definitions and outline

To analyse the performance of the algorithm Short(g, k) on G € G,, 4, we use the usual
pairing model of random regular graphs. A pairing is a perfect matching of dn/2 pairs
with dn points which are partitioned into n cells, each containing exactly d points. Such
a pairing P corresponds to a multigraph (with loops and multiple edges) G(P) in which
the cells are regarded as vertices and the pairs are edges; we often speak of the cells
as vertices. As used in [11] and many other places, a uniformly random pairing can be
generated by repeatedly choosing (using any rule whatsoever) a point x to be paired,
and then randomly choosing the point y to be paired with x from the remaining unpaired
points. We refer to this choice of y as exposing the pair containing x.

We define a process PColour(k), corresponding to Colour(k), as follows. It both
generates a pairing P and colours the vertices of G(P). At each step, a vertex v of G(P)
is selected and coloured using the same rule as Colour(k). (If applied to the empty
pairing, it chooses any vertex and colours it any colour.) Then the remaining points in
v are paired consecutively, each time choosing a random unpaired point to be paired
with. (A more detailed definition is given in Section 3.) By the observation above, if
this begins with the empty pairing, the result is a uniformly generated random pairing.

Let S be a specified set of pairs of a potential pairing which induce disjoint cycles
in G(P). It should cause no confusion to regard S alternatively as a set of edges, or as
the subgraph of G(P) it induces, and we permit ourselves a similar latitude in speaking
about pairs in the pairing in other respects as edges of the corresponding graph. We
define a process PComplete(k, S) as follows. It both generates a pairing P and colours
the vertices of G(P).

Process PComplete(k, S)

~

Begin with dn points and only the pairs in §;
2 Properly 3-colour the vertices containing points in & and expose
the remaining pairs containing their points;
3 Apply PColour(k) to this initial pairing to complete the generation
of a coloured pairing.

Roughly speaking (with modifications to be explained below), we will use this process
to analyse the algorithm Short applied to a random d-regular graph. To do this, we
use it to analyse a colouring of a random graph Gq such that GoUS is a d-regular graph
on n vertices, with no short cycles other than the cycles in S (with uniform probability
distribution subject to this constraint). The process PComplete(k, S) itself does not
ensure that the cycles S are exactly the short cycles of the graph G(P) which results;
this must be accounted for in the analysis. An unwanted cycle is a cycle created during



the execution of this process which is short but not contained in S. (In practice, loops,
or cycles of length 1, are always unwanted.)

An edge, or the corresponding pair, is called free if it is incident with at least one
uncoloured vertex. Let t; denote a time at which the graph induced by the free edges is
sparse (in a sense to be made precise). For certain d and k we will show (Lemma 8.2)
that, for a certain time t;(d, k), Process PComplete(k,S) does not fail before time
t1 (i.e. creates no vertex with k differently coloured neighbours until that time) with
probability at least 1 — ¢, + o(1) where ¢, — 0 as g — oo, conditional upon there being
no unwanted cycles up to time ¢;. We also show (Lemma 9.1) that, with probability
at least 1 — ¢, + o(1), given that the graph at time ¢; has no unwanted cycles, the
subgraph induced by the free edges, conditional upon no unwanted cycles, is going to
be a forest. We also show that, at a point near t{, every vertex has at least two colours
available. Since a forest is 2-chooseable, the rest of the graph can then be coloured
(and the process then succeeds, provided the vertices with only one colour available
have priority over others). Finally, recall that Gg is a random graph with a fized set of
short cycles. We will show how to deduce from this the conclusion we want about the
algorithm Short(g, k) provided that the algorithm on Gq succeeds with probability at
least 1 — ¢4, for any fixed S, where the function ¢, — 0 as g — oco. For any values of k
and d that this plan succeeds, it implies that G € G, 4 is a.a.s. k-colourable. To prove
Theorem 1.1 only requires verifying that this is the case for d = 4 and k = 3.

Lemma 8.2 is the heart of the combinatorial part of our proof, so it is worth sketching
in more detail how its proof goes. Considering the process PComplete(k,S), define a
bad edge (or pair) to be an edge (or the corresponding pair) which does not lie in a short
cycle and, when it is added during the process, joins two vertices which each have at
least k — 1 different colours on their neighbours (before the edge is added). Regarding
the pairing process, a bad pair is a pair corresponding to a bad edge. If there are no
bad pairs then the colouring clearly succeeds, conditioned upon no unwanted cycles. We
show that the probability of a bad edge occurring before time ¢; is small, and also that
it is not altered much without the extra conditioning on no unwanted cycles occurring.
(The fact that this is “more true” for larger g is very important.)

For reasons as explained in Section 1, it is crucial that we select t; so that the algo-
rithm has not before t;, typically, begun creating large numbers of vertices of dangerous
type. We proceed as follows at each step in the algorithm, we compute the expected
changes of the numbers of vertices with all different types, and use a system of differ-
ential equations to approximate the process. We add new variables for the differential
equation which keep track of the number of paths of all possible types of length less
than g which have been created. All these variables will be sharply concentrated, and
given these variables we know, at every step, the asymptotic probability that a cycle
of given length is created, and also a bound on the probability of a bad edge. These
bounds work even when conditioning on no unwanted cycles having occurred so far in
the process, because that event has probability bounded away from 0, and yet the vari-
ables are sharply concentrated. In this way, we have that a random pairing after t;
steps, conditioned on the event that S is the set of short cycles, expects a very small
number of bad edges, as required for Lemma 8.2.



3 The process PColour(k)

In this section, we describe in detail the process PColour(k), which is the pairing model
version of a procedure which simultaneously generates a random d-regular graph and
colours it with & colours.

Given a partial colouring of a partial pairing P — i.e., some of the vertices (cells) have
been coloured — we classify the uncoloured cells according to the number of coloured
neighbours: an uncoloured cell is of type (i, j), if it has i points which are paired and
exactly 7 colours which appear in its current neighbours. All types of vertices will be
assigned the priorities 0,1,2,... (a larger number denoting higher priority) according to a
function prio(i, j) (integer ¢ and j). The randomised greedy process PColour(k), which
properly k-colours the vertices of pairings, is as follows, taking as input a predetermined
function prio and a partially coloured partial pairing.

while there is at least one uncoloured vertex do
part (i):
let (i, 7) denote the highest priority type of an uncoloured vertex;
select u.a.r. a vertex v of type (i,7);
part (ii):
colour v with a colour chosen u.a.r. from the colours not appearing
on neighbours of v;
expose all pairs which contain a point in v;
end while

By the comments on random pairings in the previous section, the pairings produced
by this algorithm occur uniformly at random (conditional upon containing the initial
partial pairing). The repeated step is broken into two parts for later reference.

Note that the priority of pairs (i, j) with ¢ = d is immaterial since colouring vertices
of such type cannot affect the remainder of the algorithm. So for simplicity we assume
that all such vertices have negative priority, and only those with ¢ < d and j < k need
to be specified.

4 Derivation of differential equations for the algo-
rithm

In order to analyse the performance of the randomised algorithm, we use a system of
differential equations to approximate the expected changes in the variables describing
the state of the algorithm during its execution. An exposition of this method can be
found in [11], which includes various examples of graph-theoretic optimisation problems.

The analysis of the process PColour(k) we give here is similar to the preliminary
examination of the bisection width algorithm in [4]. Again, it is not fully rigorous but
prepares the way for the later rigorous arguments by supplying most of the explanation
for the relevance of the main differerential equations.



Informally speaking, in a typical part of the algorithm, there will be vertices of one
particular type, (4, j), which are plentiful in the pairing but are quite regularly chosen as
v in the algorithm. Vertices of types with higher priority may also be regularly chosen,
but will be rare and regularly be used up entirely (at which point another vertex of
type (i,7) again will be coloured.) In this situation, we say that (i,j) is the basic
type. The algorithm will typically pass through phases, determined by time at which,
roughly speaking, the basic type changes. A phase finishes when either vertices of higher
priorities than the current basic type become plentiful, or those with the current basic
type become very scarce. The boundaries of the phases are best defined precisely in
terms of the solution of a system of differential equations which we proceed to derive
now. Luckily, in the case d = 4 there will only be one phase, and we can postpone
coming fully to grips with this issue until the sequel [7].

We call each iteration of the while loop of the process PColour(k) a step. An
uncoloured cell is said to be of type (i,C), if it has i points which are paired and
C C{1,...,k} is the set of colours which appear in its neighbours. There should be no
ambiguity with type (i, j), already defined, since j is a number and C' is a set of colours.

At the start of some step, let Y; o denote the number of uncoloured vertices of type
(i,C), and let S denote the number of points not exposed in vertices yet. Then

S=Y > ([d-i)Yc. (4.1)

0<i<d CC{1,..,k}

We may assume for this discussion that S > 0.

Suppose that a vertex v has just been coloured ¢ by the greedy algorithm and an
unpaired point in v is being paired with a randomly chosen point, x. Let 7, denote the
expected contribution to AY; ¢, the change of Y; ¢, due to the change in status of the
vertex u containing x. The probability that u is of type (i,C) is (d —i)Y; /S (except
for a correction of size O(1/5) due to the change in status of v). Hence, ignoring terms
of size O(1/5),

o (d—=i+1)(Yicio\(ep +Yicr,0)/S — (d=1)Yic/S ifceC
iC T Z(d—i)Yio/S ifedC.

We will continue to ignore terms of size O(1/S) in the estimates in this section.

Now let r;’cc " denote the expected contribution to AY; ¢, the change in Y, due
to exposing the pair containing the point x of the vertex u of type (i/,C’). Noting
that for each colour ¢ ¢ C’, the probability that the vertex v was coloured c¢ is exactly
1/(k —|C"]), we obtain

i/ ! 1 ¢ Z,/ / .
N = Y o= —(d—iYie/S (4.2)
k=1 ce{L, k\C"
where )
ﬂ;bc = o i Z (d—i+1)(Yici,onfep + Yic1r,0)/S. (4.3)
ceC\C’



Thus the expected change in Y; ¢ given that one vertez v of type (¢, C") is coloured is

s/ !

E[AY; ¢ | v is of type (i',C")] = (d — z’)rzcc — 0(i,0)=(i".C")s (4.4)

where 64 is 1 if A is true and 0 otherwise.

At this point we begin to introduce nonrigorous components into the argument. We
assume (justified, for some applications, later) that the probability that a vertex of
type (7, C) is selected to be coloured basically depends on the cardinality of C' and not
what the particular colours are. With this in mind, we loosely define ¢;; to be the
probability of processing a vertex of type (i,C) for each |C| = j at some given step.
(This use of “probability” does not make sense in a rigorous discussion since calculations
such as above and below depend on the values of the Y; ¢, and due to prioritisation,
these influence the type (i,C) to be chosen at a given step. However, ¢;; can be
interpreted as the proportion of steps which process such a vertex over some period of
time which, although long, is nevertheless insignificant compared to n. In a later section,
this discussion will be revised and ¢ will be endowed with a rigorous interpretation.)

Let (ig, jo) be the basic type at some point in the algorithm. Assuming Z‘C‘:jo Yio.c
is “large”, no vertex of lower priority will be chosen as v and coloured, for many more
steps of the algorithm. Let B’ denote the set of types (i,7) of vertices with higher
priority than the basic, (ig,jo), and let B = B’ U {(ig,jo)}, i.e. the set of all types
of basic priority and higher. Note that in a large number of consecutive steps, the
prioritisation ensures that the vertices of high priority are created at the same rate as
being destroyed. This lets us estimate the values of the ¢’s. By computing the expected
changes of the numbers of vertices with high priorities, and also setting Y; o =Y p if
|C| = |D| (which will in some sense be justified in the later rigorous analysis, but for
now it suffices to guess that these variables will usually be approximately equal), we
obtain after a number of algebraic manipulations (which we do not provide here, as
similar equations will arise from the rigorous discussion in Section 6)

gbi,j = 57”1',]‘, (l,j) - B,, (45)
Diojo = <k)_1 -y ¢(k) (4.6)
" Jo (irj)EB’ i) )
where
Tij = (d —i+ 1)j(7,~_17j + 72'_17]'_1)/(/{55) — (d — Z)?%]/S, (47)
-1
V., - (’“) S Ve (4.8)
17 o
T = 1+ Y (z‘—z'o)(kf)n,j. (4.10)
(i,j)eB’ J

In this computation, ¢ represents the expected number of points in a vertex processed.



Assuming the validity of these equations and noting (4.4), the expected change AY;
in the random variable Y; ¢ in one step of PColour(k) is given by

EAYio)= Y. (A=) dvjen — dic)- (4.11)
(#,|C"))eB

The final subtracted term is due to the change in type of the vertex being coloured.

As usual [11], the above expected changes suggest a system of differential equations
whose solution describes the likely approximate behaviour of the variables Y; ¢ (again,
formal justification is in later sections). In the equations, each E(AY; ) appears as
the derivative Y/~ (as functions of the number ¢ of iterations). It is convenient to scale
both time and the variables by a factor 1/n, approximating Y; o/n by y; ¢ and t/n by
x. Since the scaling is by the same factor in both cases, each E(AY; o) approximates
the derivative y; o. Let y denote the vector (y;¢), 0 <i < d, C C {1,...,k}, and replace
S/n by s(y), Yij/n by 7,;(y), T by a(y), ri; by bi;(y), & by 0.5 (y), ¢ by ¢(y),
and ¢ by 6. Then (4.11) becomes

Z/g,c = Z (d— i/)bZ’cC/ (¥)0ir 1o (y) — b (¥)-
(i",|C')eB

where (4.1), (4.8), (4.7), (4.2), (4.10), (4.9), (4.5), and (4.6) give

s(y) = Z (d —1i)yic,

0<i<d; CC{1,...k}

Uiily) = (k)l Z Yi,Cs

J

|Cl=5
biJ(Y) = (d -1+ 1)](@—1,;’ + yi—l,j—l)/(ks(Y)) - (d - i)yi,j/s(Y)’
bz'cc’<y) - - i ; Z (d—i+ 1)(%1,0\{c}(+)?/z‘—1,0) —(d— Z)?/i,(}’ (4.12)
T cener S\
k

aly) = 1+ (i —do){ . )bij(y),
X =)

((y) = (d—io)/aly),

- 0 if (i,j) ¢ B
0i;(y) = {C(y)bm(y) if (i,5) € B,

boss) = (1) B (1 - % (’;)ay)bz-,j(y)).

The initial condition is yg¢(0) = 1, and y; ¢(0) = 0 otherwise.

A system of first order differential equations with given initial values has a unique
solution on any bounded domain in which the derivative functions satisfy a Lipschitz
condition (as these ones do if s(y) is bounded away from 0). By the symmetry of the
equations and the initial conditions, upon setting y; ¢ = v;; for all C' with |C| = j, and
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similarly for the other variables, we obtain a set of equations with a reduced number
of variables that determines the solutions. So we henceforth write y; ; for v;  when
|C| = j. We now have

S 3 1 3 (d—i+ D(gi1.0q +¥imr0) = (d = Dyic
IC"|=4" IC|=5" ceC\C’

(k) ((d — i+ DICWi-rjoi1 + Yirjo) (4 - i)%,IC)

5 B

ks(y) s(y)
= (j) bijc| (),

where the second equality follows from the fact that if the k — j” elements of the comple-
ment of C’ are randomly chosen, the probability that the i’th element is in C' is |C|/k,
and so by linearity of expectation

Yoo > 1= ) o\ = (f,)(k—j')\cy/k.

|C"|=5" ceC\C" |C'|=5"

We may also simplify by noting that

> @-0(5)ouw) = @i (1 - (*)etn <y>>

(3,7)€B

(i,7)EB
= d-io+ ) 3 o= )
(3,7)eB’
— @)+ X = (*)osty)
(i,5)eB’
= ((y)

With slight abuse of terminology, we still let y denote the vector (y;;), 0 < ¢ < d and
0 < j < k. The simplified equations then become

yé,j = C(Y)bi,j(}’) - 9i,j<)’)a (4.13)
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where

) = X @-0(})us

0<i<d; 0<5<k

bij(y) = (d—i+1)j(ir;+yi1;0)/(ks(y)) — (d—)yi;/5(y), (4.14)
k
aly) = 1+ (i —do)| . )bi(y), (4.15)
2 ()
((y) = (d—ig)/aly), (4.16)
0 if (i,7) ¢ B
0,,(y) = { C(¥)bi;(y) if (4,7) € B' (4.17)

k -1l ... . ..
(1= Swinen (B)C@bes)) ()i (0.5) = (o, o).
In order to further simplify the above differential equations, change variables from x

to z = (d — s)/2. Note that for each edge added, nz increases by 1. So

dz 1ds

c - 4.18

dx 2dz’ (4.18)
and clearly z(0) = 0. As noted earlier, ¢ represents the expected number of points in
a vertex when the colouring operation is performed, i.e. the expected number of edges
added per vertex processed. So we also write

dz
E-C(Y)-
Hence
dy;; B dr , _
= o =) — 0,(0)/C)
bis(y) ey
0 if (i,7) € B’

— b"’”y*(;(_yzo—(i, > (‘f,)buf(y)) (f) ) = o)

where, in terms of z,

(d—i+1)j d—1
bij(y) = m(yi—m +Yicr5-1) — 7 — o, i

To simplify further we use the following lemma, which will also be useful later.

Lemma 4.1 ForT >0 and a(y) > 0 we have

= (- S () ()
on = (1= o)) ()

11
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Proof. We show the equality for ¢. A similar argument applies for 6.

all) = e

(i,5)eB’
k
(i,5)eB’ J
k
= 1- Z (d - Z.())Ti,j( .)T_l by (49)
(i,5)eB’ J

— (T - (i’j%:B,(d — )T (f) ) 7!

k
= [1- (d—i)ri ,)T—l by (4.10). u
(1= 5 o)

With this lemma, (4.19) becomes

() it (i,)) ¢ B
dyg _ |7 i (1.j) € B
dZ bl,j(y) + ( 5] )EB 7 J lf (Z,j) f— <207]0)-

(d=)(})

Recall that s = d — 2z. Then every derivative is just a linear combination of the ratios
w;j = Yij/ S, except that in the case of (7, j) basic, there is an extra constant term.

Note that b (the vector of the b; ;) is of the form By where the rows of the matrix
B are indexed by (i, j), as are the columns. Hence the equations are of the form

y' = By/s+c

where s = d — 2z, B is a matrix and c is a constant vector with

) = (@=9() T (i,7) = (i0, Jo),
C(i,j5) { < )
0

otherwise.
Now put
dum
U5 = yz‘,j/S, S 1z = y;j — Ui ;S
(differentiation with respect to z). Then s’ = —2, and s = 2 is solved to find v =

—2log(d — 2z) (any solution will do). Hence the left side of the equation above becomes
i—;‘, and letting A = B + 2I where [ is the identity matrix, i.e. we have

d
£ — Au+ec, (4.21)
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a linear system of first order differential equations, which can be written explicitly as

bij(u) + 2ui it (6,5) ¢ B
du;; 0 k 106,4) € B
= —k 4 2 nep (d = 1) ()b jr(w)
b ;(a) + 2u; ; + N
k(d —1i) (J)

if (Za.]) - (Z.()?jO)a
(4.22)
where
b@j(ll) = (d —1 + 1)j(ui_17j + ui—l,j—l)/k — (d — i)ui,j'

At this point we may describe (without justification) what we expect to happen in
the case of applying PColour(k) beginning with the empty pairing, in the case d = 4.
The numbers of vertices with two coloured neighbours will initially remain small. At
least for d = 4, the process will proceed with the variables approximately following the
trajectories suggested by these differential equations. After some time the uncoloured
part of the graph will be so sparse that it can be coloured easily using three colours.
Thus, if there is no problem of a vertex requiring four colours during the earlier part
of the process, a 3-coloured random 4-regular graph will be produced. Unfortunately,
there will occasionally be vertices produced in the process which have three coloured
neighbours, and if two of them are adjacent, there can be trouble. This will happen
more often if the graph has short cycles. This is why we use PComplete(k, S).

To be able to interpret the solution of the differential equations as a reasonably
accurate representation of the greedy colouring process, we need to introduce either
deprioritisation or (as in some of the earlier papers) branching processes. For the present
argument, we need branching processes in any case to ensure that the numbers of vertices
of non-basic type remain extremely small (a.a.s.), and deprioritisation is not required.
So we deal with branching processes next.

5 Aside: general branching process results

We say that a nonnegative integer valued random variable X has a K, ¢ tail if for all

nonnegative integers s
P(X >s) < Ke ®.

If X has such a tail for some K,c > 0, we say that X has an exponentially small tail.
Cramer essentially proved the following (see [8]), where we call the size of a branching
process the random number of individuals born in the process before it extinguishes.

Theorem 5.1 Let K, c be positive reals. Let Z be a nonnegative integer valued random
variable with a K, ¢ tail and with E[Z] = < 1. Let T be the size of the Galton-Watson
branching process in which each node, independently, has Z children. Then there exist
positive K+, c¢t, dependent only on u, K and ¢, such that T has a K*,ct tail.

We consider multi-type branching processes, in which the individuals have different
types but those of each type have the same characteristics. For the algorithms in this
paper, the branching processes we need to look at have a particularly simple form.
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Let us define a reqular multi-type branching process to be a branching process with
k types of individuals, each individual u giving birth to some number of individuals of
each or any of the various types, with the following properties.

(i) Letting B(u) denote the random vector (Xi(u), ..., Xi(u)) where X;(u) is the num-
ber of children of u of type i, the random vectors B(u) and B(v) are independent
for different individuals v and v, and identically distributed for u and v of the
same type.

(ii) Suppose that the number of type j children of a vertex of type i is distributed as
Z;; (so this has the marginal distribution of Xj(u) for uw of type ). There exist
nonnegative reals o; and 3;, 1 < i < k, such that forall 1 <:i<kand 1<j <k,

There is no need that X;(u) and X;(u) be independent for a particular w, and in fact
we consider regular processes where dependence holds.

Note that the rank of the matrix («;(;) is 1 and so it has k£ — 1 eigenvalues equal to 0
and largest eigenvalue equal to Zle a;3;. The standard theory of multitype branching
processes gives that the process dies out a.a.s. if this largest eigenvalue is less than 1.
But we need more, as given in the following lemma.

Lemma 5.2 Suppose that, for a regular multi-type branching process P as defined above,

k
D <1 (5.1)
=1

and that for all i and j, Z;; has an exponentially small tail. Let P begin with one
indiwidual. Then the size of P has an exponentially small tail.

Proof. For s fixed, 1 < s < k, consider the process P(s) induced from the definition
of P by ignoring individuals of all types ¢ > s. This is defined for s types of individual,
and when u has type i, E[X;(u)] = o;5; for jin {1,...,s}. We show by induction on s
that the size of P(s) has an exponentially small tail.

First, P(1) is a Galton-Watson branching process with E[X(u)] = a6, < 1 for u
of type 1, and the X (u) has a K, ¢ component tail by assumption. So by Theorem 5.1,
P(1) has an exponentially small tail.

For the inductive step, consider P(s) for s > 1. For u of type s, let Q(u) denote all
descendents of u which are of type strictly less than s and have no ancestor of type s
which is a descendent of u. Then Q(u) is determined by a copy of P(s— 1) which begins
with the children of u of type less than s. So by the inductive hypothesis, |Q(u)| has
an exponentially small tail. Now consider the set Q'(u) of individuals in P(s) which are
s-type children of individuals in @Q(u) U {u}. Since each Z;; has an exponentially small
tail, it follows that |@Q'(u)|, being the sum of |Q(u)|+ 1 variables of the form Z;, also has
an exponentially small tail. (There are several ways to see this. One way would be to
consider the probability generating functions f(z) and g(z) for |Q(u)|+1 and a variable
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W that (just) stochastically dominates all of the Z;s. Since they have exponentially
small tails, so does W. Equivalently, the radius of convergence of g(z) is strictly greater
than 1. So is that of f(x). Since g(1) = 1, the composition f(g(z)) also has radius of
convergence strictly greater than 1.)

In P(s) there is an embedded Galton-Watson process P~ (s), for which the individ-
uals are the ones in P of type s, and the children of an individual u in P(s) are the
individuals in Q'(u). We claim that E[|Q'(u)|] < 1 (proof below). It then follows by
Theorem 5.1 and the observation above that the size of P~ (s) has an exponentially small
tail. The lemma follows from this statement and the fact that the size of P(s) is equal
to the sum of |Q(u)| 4 1 over all individuals w in P~ (s). This then has an exponentially
small tail, for the same reason as argued for |Q’'(u)| above.

The proof is finished by showing that E[|Q’'(u)|] < 1. We can generate Q(u) U Q' (u)
by running a branching process P’(s) which is like P(s), and begins with one s-type
individual u, but altering the rules so that no s-type individuals other than u may give
birth. Let r; be the expected number of individuals of type ¢ actually born (not counting
u) in P’(s). Then

ri= Y rjagb (5.2)
j=1

for all ¢, where rf = r; for i < s and % =1 (standing for u). Put

m = Z ria;
j=1
Then from (5.2),
ri=mpf;, 1<i<s. (5.3)
Thus

s—1
m = Oés‘i‘é i
=1

s—1
= a4+ Z mpBja;

j=1
< Qg + m(l - O‘sﬂs)

by (5.1). Hence by (5.3), ars < as and hence 7y < 1. But ry is exactly E[|Q’(u)|], and
the proof is complete. 1

6 Clutches

In Section 4 we derived differential equations using a heuristic argument for their validity
as representing the values of the variables during the course of Process PColour(k). In
this section, we avoid the assumption about the meaning of the ¢’s and provide estimates
of the approximation of the random variables by the differential equation solution.
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The prioritisation of types causes a non-smoothness in the process (the expected
changes in numbers of variables of different types in one step depends on what type of
vertex is chosen as v). We deal with this difficulty using the method introduced in [10]
for obtaining bounds on the largest size of an independent set in a random regular
graph. For any interval of steps of the process PColour(k) we are free to define one
type (io, jo) to be basic, and decompose the subsequent steps of the process into groups
called clutches (as in [11]), each clutch consisting of one step in which v is of basic type
together with all the steps before the next vertex of basic type is chosen as v. We will
only apply the rigorous conclusions of this section when the interval of steps starts at
time 0, though being aware that a similar analysis should apply when any given type is
first specified as basic should assist the reader in understanding our definitions of the
functions ¢ at a later stage.

We wish to consider the process as proceeding clutch by clutch rather than vertex
by vertex. This is equivalent to considering the sub-process which takes a shapshot of
PColour(k) at each point in time that a new vertex of basic type is about to be chosen.
Thus, we re-define the time variable ¢ to be the number of clutches which have been
processed in PColour(k), and refer to this as the clutch process and its steps as clutch
steps (as opposed to colouring steps for PColour(k)). We denote by G; the (partial)
pairing after t clutch steps. As before, (ig,jo) is the basic type, B denotes the set of
types (i, 7) with priority at least prio(ig,jo), and B’ denotes those of higher priority
than basic. We also set B~ = {(ig,jo)}. This notation will make our equations easier
to adapt to modifications in the sequel [7], when there are different types all with the
basic priority and chosen amongst with some probability.

For some fixed € > 0, we will consider vectors Y belonging to a domain D, ,, defined
to be the set of all nonnegative real vectors satisfying

S >en (6.1)
(where S is defined in (4.1)),
. 7}/70/ .
Z (@9 ,(@'/,Irg%}éB/ Bic <l—e (6.2)
(i,j)eB’ ICl=j

where ﬁf:’ccl is the function of Y defined in (4.3) and also
Yie >0 forall (i,|C|) € B~. (6.3)

Noting that Y is determined by a partial pairing G, consider G such that Y (G) lies in
D, ,,. Consider the event that for some ¢ and G, we have G; = G. We consider the very
next clutch, C, and all the discussion involving C is conditional on the event G; = G.
The size |C| of C is the number of steps of PColour(k) contained in C.

Lemma 6.1 For some constants K and ¢ depending only on €,
P(|C| > s) < Ke™®,

for all s < log®n.
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Proof. For the first |[log®n| colouring steps of the clutch (or for all of them, if the
clutch has smaller size), the values of Y; o can change by at most O(log?n). Similarly,
S/n remains bounded away from 0. So ﬁ;:bcl remains the same as its value at the start
of the clutch, to within error o(1). Hence we may assume that (6.2) remains true for
the first |log®n| colouring steps of the clutch.

Each vertex v when it is coloured can create other vertices of the possible types in B’
as the pairs are exposed and the neighbouring vertices change type. Vertices which turn
into types not in B’ we may ignore when investigating the clutch size. For (i,C) € B,
the probability that a vertex of type (i,C') is created due to a pair exposed in an (i'C")
vertex is ﬁf:’ccl as given in (4.3) (with error O(1/S)). Define 3;; to be the maximum
in (6.2), divided by 1 —e. Then

> (d—i)By <1 (6.4)

(i,5)eB’

For each vertex of type (i',C") coloured, the expected number of new vertices of type
(i,C') comes from d — ¢’ Bernoulli trials each with probability at most ﬁfj’ccl (1 —€) of
success (n sufficiently large). The number of successes is thus stochastically bounded
by the binomial random variable £(i',4,C)) = Bin(d — 7/, fj’cc/ (1 —€)). Summing over
|C'| = j, we conclude that the number of type (i, j) vertices produced is stochastically
bounded above by a random variable £(i', ¢, j) with expected value (d — i), ;.

The first colouring step in the clutch colours the first vertex, of basic type, but there-
after we may consider subprocesses, for each of the vertices of type in B’ created by that
first step. Now compare each of these subprocesses with a multitype branching process
P in which the types are (i, j), and the number of children of a type (¢, j') individual
is distributed as (7,4, j). The number of children is bounded above absolutely and so
has an exponentially small tail. We apply Lemma 5.2, letting ¢ in that lemma range
over all (7, C) and setting oy v = d —¢'. With (6.4), this implies that the size of P has
an exponentially small tail. It follows that the size of the clutch has an exponentially
small tail since the clutch size is stochastically bounded above by the size of P. 1

An immediate corollary of this lemma is that for some ¢ > 0
P(|C| < clogn) =1—o(n1). (6.5)

For each type (i, C), define p; ¢ to be the expected number of vertices of type (i, C)
chosen as v in the colouring steps inside the clutch C (given the partial pairing P; existing

at the start of the ¢-th clutch). Then by linearity of expectation and by the definition
of ng , the expected change of Y; ¢ during a clutch is

ElYic(t+1) =Yic(t) | B = Z (d— Z'/)/ii',c"f’:::’cC/ — [ic- (6.6)
(#/,C"eB
Now we need to find relations to determine p; ¢. Immediately,

(i,ICheB~
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as only one vertex of basic type is in each clutch.

Furthermore, for each type (¢, C"), let P denote a possible sequence of steps from
the beginning of the clutch C, up to part (i) of a colouring step in which a vertex of type
(¢/,C") is chosen as v. (Part (ii) of that step is left unspecified by P.) Call v the final
vertex of P. Let P(i’,C") be the set of all such sequences P of steps, taken as possible
initial subprocesses of the clutch C. For P € P(i,C"), define h(P,i,C) to be the random
variable counting the number of vertices u which become of type (i, C') when the points
in the final vertex v of P are paired with one of the points in u. (Note that h(P,i,C) is
not determined by P as it refers to the part (ii) of the final colouring step.)

Now let (i, C') € B’. Because of the priority rules, there can be no vertices of type
(i,C) at the start of any clutch, and so Y;¢(t) = 0 = Y, o(t + 1). Hence, p; ¢ must
exactly equal the number of vertices of type (i, C') which are born during the clutch.
This can be expressed as

Hi,c = Z Z PZ>O)|P]

(i',|C"|)eB PeP(i!,C")

where the probability refers to a random clutch (still conditional on Gy = G of course).

Note that
Z P(P) = pic
PeP(i,C)

and, by the definition of rfloc " just above (4.2),
E[h(P,i,C) | P] = (d—i)rl5 +O(log*n/S) it P € P(i,C"),

where the error term O(log®n/.S) is due to the changes in the variables during the clutch,
as the sequence P is traced out. Hence we have (ignoring the error term O(log®n/S))

pe= Y, preld=is (6.8)

(i",|C")eB

The solution of these equations for p will be discussed later. For later convenience,
we also examine the number Z of edges exposed in the process. Then Z = (dn — 5)/2.
Since the number of pairs exposed in processing a vertex of type (i,C) is d — i, the
expected change of Z during a clutch is

BIZ(t+1)-Z(#) | Pl= Y (d—iuc. (6.9)

(3,|C|)eB

Equation (6.6) for the expected changes leads us to a system of differential equations
for approximating variables, where each E[Y;c(t + 1) — Y;«(t) | P;] can be thought
of as the derivative Y/, (all as functions of the number ¢ of clutches). Now we scale
both the number ¢ of clutches and the variables by dividing by n, and approximate
Yic/n (in a sense to be made precise below) by a real continuous function y; ¢, and
t/n is represented by x. Since the scaling is by the same factor in both cases, each
E[Y;c(t +1) = Yic(t) | P] approximates the derivative y; ,. Let y denote the vector
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(yic), 0<i<d, C C{l,...,k}, and replace Z by z and u by v. Then (6.6) and (6.9)
become

vie = Y (A= wrobE (y) - viely), (6.10)
(#,|C"))eB

do= Y ([d-icly) (6.11)
(,|C))eB

where the functions bzlcc l (y) are defined by the equation (4.12), and the equations (6.7)
and (6.8) give

S vely) =1 (6.12)

(3,|C)eB~
viely) = D (d= e (y) for (i,|C)) € B (6.13)
(#,|C"))eB
The initial conditions are
Y00(0) =1, v;c(0) =0 otherwise (6.14)

since at the start of the algorithm, Y, 4(0) = n and Y; ¢(0) = 0 otherwise.
Note that (6.12) and (6.13) are linear in the v variables. If we denote the vector of
(v;,¢) by v we may write the equations as

My =c

for a suitable coefficent matrix M and a constant vector c. In view of this, and (6.1), (6.2)
and (6.3), we will consider for (z,y) the domain defined as

Deey = {(z,y) : s(y) > €, F(y)<l—eg, |yic| <2forall (i,C), v > —e¢, |det M| > €y}

where F'(y) is the function in the left side of (6.2) obtained on setting y(z) = Y (nx)/n.
Here € > 0 is fixed as before, and ¢ is any other positive constant.

We say that a type (7, ) is common in PColour(k) (with a given starting point )
if, for some € > 0,

P(Z Yio(to+1t) > 0forall1 <t < 6’77,) =1—0(1).
Cl=j

For our present concerns, it will be the type (1,1) which is common; in [7] the argument

will have to be widened to include other types.

Theorem 6.2 Let y be the solution to (6.10) and Z the solution to (6.11) with initial
conditions given by yo(0) = 1, y;¢(0) = 0 otherwise, and z(0) = 0. Assume that the
basic type is common with starting point to = 0. Let x¢ be the infimum of all x > 0 such
that either (z,¥(x)) & Deey, or Gic(x) =0 for all basic (i,C). Then there is a function
A =o(1) such that

PllY(t)/n—y(t/n)| > X for some 0 <t < n(xyg— \)] =o0(1) (6.15)
and

P[|Z(t)/n — Z(t/n)| > X for some 0 <t < n(xy— A)] = o(1).
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Proof. We start with the proof of (6.15) and then deal with Z. Define
D= {(:E,y) : x =0 or y; ¢ >0 for some (,|C|) € B~, y;c >0 for all (i,C’)}.

This makes the restriction that at least one of the variables corresponding to vertices of
basic type is strictly greater than 0 (after the first step). Also, define the stopping time
T5 to be the minimum ¢ > 0 such that (t/n, Y (t/n)/n) ¢ D. We apply [11, Theorem
6.1] with this definition of D, and with D = D, .,. The relevance of D to that theorem
is via its reference to [11, Theorem 5.1}, whose first two hypotheses are required to be
verified under the assumptions that ¢ < T5. The hypotheses themselves contain the
assumption that ¢ < Tp. For the first of these, the boundedness hypothesis, we may
define 3 = log® n and ~y the function which is o(n~") in the right hand side of (6.5). That
equation is valid because (6.3) follows from the fact that ¢ < T, and (6.1) and (6.2)
follow from T' < Tp (where T comes from [11, Theorem 6.1]). The second, the trend
hypothesis, we obtain from (6.6). The function A; (in the notation of that theorem)
is o(1) and the functions f (actually f; ) are the approximating functions of EAY; ¢
in terms of the scaled functions y; ¢ given in the right hand side of (6.6). We must
also verify the Lipschitz hypothesis, but this comes immediately from the fact that the
domain D, ., is bounded away from the singularities of the functions f;c, and so they
have bounded derivative on D, .,. One of the singularities of these functions is at s =0
and the only others come from the solutions of the v’s in (6.12) and (6.13). These points
do not occur arbitrarily close to D, ., because the determinant of M is bounded away
from 0 on this domain.

The conclusion of [11, Theorem 6.1] lets us deduce the statement (6.15) with the
extra restriction on the range of ¢, that ¢ < T5. We need to remove that condition.
The assumption that the basic type is common, together with noting that y; o > 0 is
always true during the process, lets us remove the condition that ¢ < T, and thus (6.15)
follows.

The argument about Z is similar, obtained by including the variable z in the defi-
nition of the domain D, ., and adjusting the definition of xy accordingly. The details of
this are entirely straightforward, so omitted. n

It is easy to see that in the solution of the differential equations (6.10) with the
given initial condition, we have by symmetry, v;c = v p, and v;¢c = v; p whenever

|C| = |D|. Hence we can simply write y; ; for y; ¢, and v; ; for v; ¢ when |C| = j. Then
the differential equations (6.10) and (6.11) are simplified to

vig = a¥)bigy) = vig(y), (6.16)

7= aly) (6.17)

where the definitions of b; ;(y) are in (4.14) and

[k
oly) = (g;‘B(d i) (j) vy ().
Noting (6.12) and (6.13), we have that
aly)=d—istaly) 3 (d—1) (k)b )
( ] 1,7 )

i,j)€B’
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which implies that

oly) = (d — i) (1 - @) (’;) bi,j<y>> . (6.18)

(i.)eB’

This is well defined because of the condition F(y) < 1 — € in the definition of D,
and similarly it is clearly positive. Now, noting (6.12) and (6.13), we can write v in the
following way.

vig(y) = { b i (1?7]())7 (6.19)

a(y)bi;(y) if (i,j) € B

This also shows that there are unique solutions on a neighbourhood of the point in
question, and since F' is Lipschitz, the condition |det M| > ¢, must hold for sufficiently
small €y > 0. Thus, for the symmetric solution we may redefine F' as

Fiy)= 3 (d—1) (’j) bis(y). (6.20)

(1,j)eB’
and we have the following.

Theorem 6.3 Let y be the solution to (6.16-6.19) with initial conditions given by
Y00(0) = 1 and y; ;(0) = 0 otherwise, and 2(0) = 0. Define §;,c = ¥y;; for all C
with |C| = j. Then the conclusion of Theorem 6.2 holds with zo defined as

zo=inf{x >0 : s(y) =€ or F(y) > 1 —¢€ or g, j(x) =0 for all basic (i,7)} (6.21)
where F' is defined in (6.20).

For later reference, the condition F(y) = 1 — € is loosely referred to as the explosion
condition: when it holds, the size of a clutch is in danger of having infinite expected size
if the process continues for a substantial number of steps (depending on ¢).

Theorem 6.3 has the following consequence, which we state for later use. Note that
the use of a.a.s. A, where A is a statement involving o(), is defined in [13].

Corollary 6.4 Assume that the basic type is common with starting point 0. Let'y
and Z be the solution to (6.16-6.19) with initial conditions yoo(0) = 1 and y; ;(0) =0
otherwise, and z(0) = 0. Define §; c = §;j for all C with |C| = j. If xy < x¢ as defined
in (6.21), then we have that in procedure PComplete(k,S) with |S| bounded, a.a.s.

Yic(t) = ngic(t/n) + o(n) uniformly for all i,j, and all 0 <t < xyn, (6.22)

and
Z(t) =nzZ(t/n) + o(n) uniformly for all 0 <t < zyn. (6.23)

Proof. Since the number |S| of edges in cycles in S is bounded, the initial conditions

for PColour(k), as called inside PComplete(k,S), satisfy Y00(0) = n — O(1) and
Y,;;(0) = O(1) otherwise. So the initial conditions for the corresponding differential
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equation (6.16) satisty yo0(0) = 1—0O(1/n) and y; ;(0) = O(1/n) otherwise. Asn — oo,
these conditions tend to yo0(0) = 1 and y; ;(0) = 0, so by a standard result in the theory
of ordinary differential equations, the solutions with these differing initial conditions will
tend towards each other provided the derivatives are Lipschitz on the domain in question.
Note that if |Y; ¢ — Y, p| < €, (— 0asn — oo) when |C| = |D|, then there is still a
unique solution for the v’s when n is sufficiently large. This follows from the fact that
they are determined by a linear system with nonzero determinant and changing the
entries of the matrix M by a small positive number ¢ (relying only on €, ), will not make
the determinant zero and so the condition |det M| > € still holds. For similar reasons,
the derivative functions on the right hand side of (6.16) are Lipschitz on the domain we
are using. Hence applying Theorem 6.3, the solution for PComplete(k,S) is arbitrarily
close to the solution for PColour(k) on the domain 0 < ¢ < xyn. The assertion of the
corollary is established. 1

In order to get the differential equations (6.16) into the same form as (4.20), we
change variables from z to z = (d — s)/2. Using (6.17) and the fact noted after (6.18)

that a > 0,
dy; ; dx v)/aly

Considering that

oo = ((Faw) = (1 - X a-i()) ”@‘J(”) (e-0(3))

i,j)EB’

by (6.18), we obtain (4.20). Note that, compared with the derivation of these equations
in Section 4, the derivation in the present section is rigorous. Finally recall that the
argument following (4.19) shows that it is equivalent to the system (4.21). It is the
latter which we will work with as far as solving the equations go, but the behaviour of
clutches will still require some more attention.

7 Type (1,1) is common

To apply the results of the previous section, we will define priorities so that after the
first step of PColour(k), the type (1,1) becomes basic (in the informal sense — see
the start of Section 4). We need to show that this type is common, i.e. the number
of vertices of type (1,1) a.a.s. stays positive until a significant number of steps of the
process have been taken.

Our object in this section is to prove the following guarantee.

Lemma 7.1 Asymptotically almost surely, when PColour (k) is applied starting with
the empty pairing (or with the pairs in S, as in PComplete(k,S)), the type (1,1) is
common.

We use two lemmas which apply for any fixed starting set S; the proof of the first is
immediate. Recall that P is the random pairing in the model of random d-regular graphs
discussed in Section 2, and G(P) is the corresponding multigraph.
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Lemma 7.2 If there are no vertices of type (1,1) in PColour (k) at some step, then
the set T of coloured vertices at that point is such that every neighbour of T in G(P) is
adjacent to at least two vertices of T

Supposing that 7" is such a set, let a = |T'U N(T")|. Note that |[N(T)| < d|T'|/2 (by
the adjacency condition on the neighbours). This implies that |T'| > 2a/(d + 2), and so
T U N(T) induces a subgraph of G(P) with at least

d|T|/2 + |N(T)| = (d — 2)|T|/2 + a > 2ad/(d + 2) > aa

edges where o > 4/3 (as d > 4). This can be shown not to occur (a.a.s.) using known
results such as [12, Lemma 2.14] or Bollobés [3, Theorem 32, Chapter 7], provided
d > 4. To cover the case d = 4 as well we provide the following which is essentially an
isoperimetric inequality.

Lemma 7.3 Let d > 3 and o > 1, and let P be the random pairing in the model of
random d-regular graphs. Then for sufficiently small fixed € > 0, it is a.a.s. true that
for all 1 < a < en, G(P) has no subgraph with a vertices and at least aa edges.

Proof. If it has such a subgraph then it has an induced one. We compute the expected
number of a-sets of vertices inducing such a subgraph. The number of a-sets is (Z) For
each such set A, the probability that A gives the desired subgraph can be computed
as follows. Pair the points in A randomly by picking the next unpaired point from A
each time. If this subgraph is to occur, then it is determined after at most da — aa
pairs. The probability that at least aa of these random events result in the second
point being chosen in A is at most the tail P(Z > aa) where Z is the binomial variable
Bin(da — aa,a/(n — a)) since each event has probability at most a/(n — a) of success.
We can assume o < d/2, and hence that e is so small that the tail probability is
O(P(Z = |aa])). Thus the expected number of vertex sets in question is at most some

constant times
n (d . a)a a aa ' a (d—2a)a
a aa n—a n—a ’

Ignoring the last factor and using the standard bound (%) < (en/i)!, this becomes
(O(1)*(a/n)*"1)*. For e sufficiently small, this is o(1) when summed over 1 < a < en.
|

Lemma 7.1 follows immediately by combining Lemmas 7.2 and 7.3.

8 Limiting dangerous types

Throughout this section we continue to examine the clutch process, which uses time ¢
to measure the number of clutches processed as in (6.22), rather than the number of
vertices coloured.
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8.1 Defining t;

In accordance with the definition in the Introduction, a type (i, C) is called dangerous
if |C| > k—1 and i < d. We begin with a rough description of the argument required to
show that PComplete(k, S) will succeed with probability close to 1. For this, we ensure
that the probability that a neighbour of a vertex of a dangerous type is coloured at any
time is small. To this end, we will need to analyse the algorithm with no dangerous
types having basic priority or lower. (Recall that in Section 6 we are free to designate
any type as basic.) We also need to condition upon no short cycles being created in
PColour(k), since a vertex of dangerous type can be joined to another one if a short
cycle is “traversed” while one clutch is being processed. Equation (6.5), which tells us
that the clutches are a.a.s. small, will then complete the argument.

Recall that the process PComplete(k,S) produces successive pairings Py, P, .. ..
We will be examining the process for ¢t < t;, where ¢, = |nx, | with x; < x¢ defined
in (6.21).

8.2 Path counting

First, we need to know that the numbers of paths of length up to g are well behaved
(a.a.s.) throughout the process until time ¢;. For any k-coloured path @) (with designated
orientation distinguishing the first vertex from the last) of length at most g, and 7, 5 < d,
let Zg.ic.iv.cr(t) denote the number of copies of @ in the graph G(F;)US in which the first
vertex has type (i, C') and the last vertex has type (i, C"). At each step in the process,
the expected increase in a particular Z variable can be computed to error O(1/S) as
a function of these variables. (Note that paths of length 0 are already counted by the
Y;c.) Hence, arguing as for the Y; ¢, we obtain the same kind of sharp concentration
result for the Zg ; ;. ;(t) (defined in the obvious way, by taking the symmetric solution)
as expressed in (6.22): with probability 1 — o(1/n), for t < t;

ZQ,i,j,i’,j’ (t) = an,i,j,i’,j’ (t/n) + O(TL), fOl" all ’i,j, i/,j/ (81)

(where the z variables satisfy a system of differential equations with a bounded solution
in the relevant domain). Obtaining this fact is much more straightforward than the
analysis of the Y variables, since the Z variables do not influence the choice of the next
operation. Note that we do not need to find the solution of these differential equations:
we only require knowledge of the sharp concentration of the Z variables.

8.3 Limiting bad pairs in the absence of short cycles

We remind the reader that in all the discussion about graphs of pairings, they are
actually pseudographs: loops and multiple edges are permitted. Of course, when con-
ditioning on no short cycles, we may assume g > 3 and hence that no loops or multiple
edges occur. It probably also assists to point out that the event that a short cycle is
created using at least one of the edges in S, but not contained in S, has probability o(1)
(since it would produce a small subgraph with more edges than vertices so is negligible
by Lemma 7.3).
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Recall that a bad edge is one which is added during the process PComplete(k, S)
and joins two vertices which each have k — 1 different colours on their neighbours (be-
fore the edge is added) and that does not create a short cycle. A bad pair is a pair
corresponding to a bad edge. The aim of this section is to prove Lemma 8.2 below.

Define the following events for PColour(k).

Uy: the event that there are no unwanted cycles in G(F;),
By: the event that there is no bad pair in G(F;),,

H;: the event that the approximations in (6.22) for Y;<(¢), and in (8.1) for the
Zg,ijiy(t), hold in P,

L;: the event that the number of cycles of length less than 2¢ at time ¢ is at most
log® n,

HLtZ Ht N Lt'

The event L; is needed in order to make sure that, when one pair is added, the probability
of creating many unwanted cycles is quite small.
We first consider the probability of the event U;.

Lemma 8.1 For fized g, there exists £ > 0 such that P(Uy) > £ + o(1) uniformly for
allt > 0.

Proof. The asymptotic distribution of cycles of lengths up to ¢ in the standard pairing
model is easily found by computing the joint factorial moments of the numbers of cycles
of the various lengths (see [12] for example). One conclusion from this is that the
probability that there are no cycles of length less than g + 1 is asympotically equal to
a positive constant. In the current setting, we can easily compute these same moments
for the numbers of unwanted cycles of lengths 1,...,¢ in the final graph. The only
difference is that in the present case, the pairing begins with the pairs in S as a starting
point. This makes no asymptotic difference to the factorial moments, and thus the same
conclusion holds. &

We now come to the major result of this section.

Lemma 8.2 Define t; as in Section 8.1, and assume that all dangerous types have
higher priority than basic. For fived g and S, in PComplete(k,S) we have

P<Bt1 | Ut1) >1- €g + 0(1)
for some constant €, such that e, — 0 as g — 00.

In proving Lemma 8.2 we may assume (6.22) and also (8.1) from the discussion
above. We also have from Lemma 6.1 that the size of a clutch has a K, ¢ tail for some
positive K and ¢é depending only on z .

The proof of Lemma 8.2 requires an intermediate result. For some time we will limit
the discussion to the event HL; and compute some probabilities conditional upon this.
The following lemma asserts that the probability of creating a short cycle in step t + 1
is essentially independent of the pairing P, up to error o(1/n), and that the probability
of a bad edge is small for large g.
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Lemma 8.3 There are bounded functions py(g,t) and constants €, for g > 3, where
eg — 0 as g — oo, such that the following holds. For fized g > 3 and any event Q C HL,
which is determined by P, (i.e. measurable with respect to the o-algebra generated by P;),

P(QN BN By) < (e5+0(1))n '"P(Q N By) (8.2)
for allt < ty, and

P(QNU.) =1 —pylg,t)n ' +on H)P(QNU,) (8.3)
for all t < ty, where the convergence in each o() is uniform over all such t and Q.

Proof. Let P be a pairing in HL, N U;. For most of this proof, we condition on the
event P, = P.

Note that the pairs in the clutch added to P, induce a connected subgraph T of
G(P,41). This is because only the first pair in the clutch is added to a vertex of non-
dangerous type, and there are no vertices of dangerous type in G(P,) US.

We consider (8.2) first. Note that a bad pair must form a cycle in 7' (since a bad pair
in P, that is not already present in P, must join vertices of types which can only exist
in 7', and the part of T already present when the bad pair is added must be connected).
This cycle must have length at least g + 1, by definition of “bad”. So T has at least
g 4 1 edges, but the number of edges |E(T)| in T has a K, ¢ tail by the choice of ¢;.
Conditioning on the pairing P, being compatible with the event () N By, the probability
that T grows sufficiently large and contains a cycle is at most

Z K exp(—és) Z O(i/n) < KZeXp(—és)O(sz/n),

s>g 1<s s>g

since the ith edge added to T has probability O(i/n) of forming a cycle in 7. Thus (8.2)
follows.

For (8.3), we must show that the probability that the next clutch of pairs forms no
short cycle, given P, = P, is 1 — py(g,t)n~' + o(n™!) where py(g,t) is independent of
the particular pairing P € HL,. The following discussion is conditional upon the event
P, = P for such a pairing P, and takes g as fixed. It is easiest to consider, instead
of cycles, nonbacktracking closed walks, by which we mean closed walks in the graph
of the pairing that never traverse the same edge in two successive steps in opposite
directions. Such a walk is short if it has length at most g. We classify these according
to the number of different times they enter and leave the edges of T'. (T creates no
short closed nonbacktracking walks iff it creates no short cycles. These closed walks are
easier to deal with because of the following reason. If the edges of a path P, are added
to the pairing, where P; joins the ends of an existing path P,, we know that a new
closed nonbacktracking walk is created but do not know if a cycle is created without
examining the internal vertices of P, and P, for “accidental” intersections.) Let X
denote the number of these closed walks contained entirely in the edges of T', X the
number entering (and hence leaving) exactly once, and X5 the number entering at least
twice. By Lemma 8.4, proved below,

P(X; >0)=o(n") (8.4)
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(recalling that g is fixed). Hence, we are done if we can show
P(Xo + X, > 0) = py(g, t)n~ ' +o(n™") (8.5)

for a suitable function py (g, t), since then upon summing over all pairings P in the event
Q, (8.3) follows.

First we show that EX, does not depend much on the pairing P (using the approx-
imation guaranteed by P € H;). To be precise, we show that it is asymptotic to vo/n
for some constant vy depending only on ¢ and g.

Let J, denote the number of new short closed nonbacktracking walks contained in T’
that are formed by adding the gth pair to 7' (defined to be 0 if 7" has less than ¢ pairs).

Then
Xo=Y J, (8.6)

q>1

While T' is being generated in the algorithm, the mate for any designated point in a
selected vertex v in the pairing algorithm is randomly chosen from all remaining unpaired
points. Recall that there are at least {2(n) unpaired points in P, (since t < t; < xyn,
and by the definition of ;). Also, there are at most d¢ walks of length at most g — 1
in the current graph starting from v. The end vertex of each of these has at most d
unpaired points. Hence, if ¢ = o(n), then (n) unpaired points still remain, and

EJ, = O(n " P(|E(T)| = q) (8.7)

where the constant implicit in O() is uniform over ¢ (recalling that d and g are fixed).
On the other hand, to take care of the case ¢ # o(n), for ¢ > log®n, we may use

EJ, = O(DP(|E(T)| = q) = o(n") (8.8)

since |FE(T)| has an exponentially small tail.
We first consider the contribution to (8.6) for moderately large ¢q. For any fixed
R >0, (8.7) and (8.8) imply that

SEJL, = Y o) +0m) Y P(ET) =q)

>R g>log?n R<q<log?n

= O(n Yer (8.9)

for some constant eg, where
er — 0as R — oo (8.10)

since |E(T")| has an exponentially small tail. (Do not let this observation fool you: R
is still fixed and we don’t want it moving yet!) Also, the constant implicit in O() is
uniform over R (and depends only on K and ¢, therefore only on t1).

We comment here that another version of the argument leading to (8.9) is used in
the proof of Lemma 8.4. Note that J, includes closed walks which use edges not in T,
so (8.9) will also be useful in analysing Xj.

The cases ¢ < R are analysed differently. Consider a fixed connected graph T™ of at
most R edges in which each vertex v is labelled with a type 7(v) = (4, ) for some i and
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j, and the edges uv of T™* are directed and labelled by some bijection ¢ to the numbers
1,2,...,|E(T*)|. Write J(T™) for the number of closed nonbacktracking walks of length
at most g contained in 7%. Then

Y EJ, =) JT)P(Tr=T") (8.11)
g<R T
where T is the graph induced by the first R pairs added to T" (or all of T" in the case
it has less than R pairs), and = denotes that there is an isomorphism 6 from 7% to Tx
taking each vertex v to one whose type in P, is 7(v), such that the labelling o of pairs in
T* is the order that the corresponding pairs in Tk are added by the algorithm, and such
that the edge is directed away from the vertex chosen as v in the step in PColour(k)
in which that pair is added.
Now P(Tr = T*) can be evaluated as follows. Let r denote the number of vertices
of T*. Using the approximation expressed by H,, there is a bounded function a(t,T*)
(recalling that T* defines 7) such that the number of ways to choose vertices of P; of
appropriate types for T* is (a+o(1))n". Then, given such a set of vertices, the probability
that they are indeed the vertices of Tk, and that the pairs of T are added by the
algorithm in the order specified by ¢ and in the manner specified by their orientations,
is (8 + o(1))n~1PTII=! for some bounded function (¢, T*). The determination of this
formula is a little subtle but straightforward. The —1 occurs in the exponent because
the first edge of T appears in the place it does with probability (c+ o(1))/n? for some
bounded ¢: first a vertex of the appropriate type is selected (with probability (c+o(1))/n,
where ¢ depends on its type, as specified by 7), and then for this to be paired with a
given vertex introduces a similar factor. On the other hand, for all subsequent edges of
Tg, the first vertex of the pair is already determined (or selected uniformly at random
from all vertices of T' currently of the appropriate type), and it is only the choice of a
mate which introduces the extra 1/n factor. The reason that § depends on 7 is basically
that the type of a given vertex determines the probability (asymptotically) that a point
in that vertex is the one chosen when the second point of a pair is selected at random
from all unpaired points.
It now follows that

P(Tr=T") = (a(t,T*)B(t,T") + o(1))n " FTII=L, (8.12)
For J(T*) > 1 we have r < |E(T™)|, and so (8.11) gives
ZEJ‘Y = (1(R,t) + o(1))n"".
<R

where (R, t) is the sum of all products a3 for graphs T* with r < |E(T*)| < R.
Combining with (8.9) and (8.6) and using linearity of expectation,

EXo = (70(R,t) + O(er))n "

where the constant implicit in O() depends only on ¢;. This statement, being true for
all R, implies by (8.10) that vo(R,t) has a limit 7o(¢) as R — oo (only here does R start
moving) and that

EXo = (90(t) + o(1))n~". (8.13)
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Moreover, there is an upper bound on 7y(R,t) that depends only on ¢;, and it follows
that 7o(t) is bounded by a function of ¢;.

The next aim is to show that EX; has roughly the same value 7, /n for all P under
consideration. Note that

EXl = Z Zauv puv (814)

u,veV(G) i<g

where a,, is the number of nonbacktracking (u,v)-walks of length ¢ in G(P,) US and
Pu,» denotes the expected number of nonbacktracking walks in 7" between u and v of
length at most g — 7. For such a walk to exist, u and v must be vertices of T', which for
any particular v and v will turn out to have probability O(n™!).

We now use a related approach as for Xy, fixing first an R. Since J; includes closed
walks which use edges not in 7" as well as those in 7, (8.9) can be used as before for the
short closed nonbacktracking walks created after the first R edges of T'. This applies to
all paths between u and v in T" which use any edge outside of the graph Tk defined above.
So consider the contribution to p,,(7) from nonbacktracking (u,v)-walks contained in
Tr. This can be written as

Z Z s o (1) p(u, ™, v, 0", TF)

T w*wxeV(T*)

where a denotes the number of nonbacktracking (u*, v*)-walks in T* of length at most
g — 1, and p(u,u*,v,v*, T*) is the probability that T = T™* (defined as for Xj) with
0(u*) = v and O(v*) = v. By the sharp concentration of the variables Z implied by H;,
and arguing as for (8.12),

plu,u,v,0%, T%) = ((t,u", 0", T%) + o(1))n = FTII=3

(The extra factor n=? comes from the probability that, of all vertices of the same types
as u and v, these are the particular vertices selected, is of the form (c+0(1))/n?.) Thus,
the cofactor of a, (i) in (8.14) depends essentially only on the types of u and v. On
the other hand, the sum of a, (i) over all v and v of given types is, by (8.1), equal to
(B'(t) + o(1))n for some function . Thus

EX; = (m(t) +o(1))n~" (8.15)

for a function ~;(t) which one can easily check is bounded by a function of ¢;.

Next, we observe that the expected number of ordered pairs of distinct short non-
backtracking closed walks created by T is o(n™') by Lemma 8.4 below. Hence, putting
X = Xy + X;, we have E[X(X — 1)] = o(n™') and so P(X > 0) = EX + o(n™!).
Thus (8.13) and (8.15) imply that

P(Xo+ X1 > 0) = (y0(t) + 7 (t) +o(1))n "

which gives (8.5) as required, with py = vo(t) + 71 (f). 1

In that proof we used the following.
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Lemma 8.4 Suppose P € HL;, and g is fited. Then the expected number of ordered
pairs of distinct short nonbacktracking closed walks created by T is o(n™').

Proof. Using the approach leading to (8.9), the number of ordered pairs in question is

Z Jq1Jq2 + ZJQ(‘]Q - 1)- (8-16)

q17q2 q

As with the derivation of (8.7) we find that
EJy Jg, = O(n™*)P(|B(T)| = max{qi, ¢2})-

(Note that J,, and J,, are not independent, but that does not affect the argument:
when adding a pair to T, the mate of a chosen point is selected u.a.r. from all remaining
unpaired points, conditional upon the pairs already added to T'.)

Putting ¢ = max{qi, ¢2} and rearranging gives

> 0(n)gP(E(T)| > q) = O0(n™*) > ¢P(E(T)| =q) = O(n™?)

q>1 q>1

(c.f. (8.9)). This takes care of the first summation in (8.16).
The summand in the second summation is 0 unless .JJ, > 2 and is bounded (by a
function of d and ¢) in any case, so it is enough to show that

Y P(J,>2)=o0(n"). (8.17)

Since |E(T)| has an exponentially small tail, P(.J, > 2) = o(n~2) for ¢ > log®n and

Y P(J,>2)=o(n). (8.18)

q>log?n

But J;, > 2 can only happen if the gth edge of T" joins two vertices in a nonbacktracking
closed walk of length at most 2g — 2. Since P € L,, there are O(log®n) such pairs of
vertices in the graph G(P) (recalling that g is fixed). After adding the first ¢ — 1 pairs
of T, the bound O(log®n) may increase to at most O(q +log*n). &

Proof of Lemma 8.2 Recalling that the function py in (8.3) depends only on g and
t, we compute (with all probabilities conditional upon HL;, which is suppressed for
clarity)

P(B, N ;)
P(B; | U B S 74
B0 = PE
P(B
= (1+ O<n_1))—(Pz[2it)H> applying (8.3) twice
= (1+ O(n_l))P(BtH NUi1) + P(Bi1 N BN U)

P<Ut+1)
= P(Bu1 | Up1) + O(ey/n)
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since

P(B; 1N B NUg) < P(B. 1N B NUy)

P(Uy1) N P(B; N U1)
< (o) Py (s3)
= Ole,/n)
by (8.2). Thus
P (B | Upi N Hy) = P(B, | Uy H,) — Oley/n). (8.19)

On the other hand, it is easy to see that this implies the same result without condi-
tioning on H L,, using the facts (shown below) that P(HL;) = 1—o(n~!) and that P(U;)
is bounded below by a positive constant. For then P(Q N HL;) = P(Q) + o(n™!) for all
events @, such as By N U;. With this new unconditional interpretation of (8.19), we
obtain by summing over all t < ¢;

P(B,, | U,) = P(Bo | Uo) — Ole,) = 1 - O(c,) (8.20)

as required. The properties of €, required in the lemma follow from its definition in
Lemma 8.3.

It remains to show the two facts used above. Of course, P(H;) = 1 — o(n™!) was
shown at (6.22). One can show P(L;) = 1 — o(n~!) by calculating the [log* n] factorial
moment of the number of cycles of length at most 2¢g in a random d-regular graph,
and finding that it is o(1/n). (See [12] for similar calculations). Finally, we know from
Lemma 8.1 that P(U;) is bounded below by a positive constant which depends only on
d. n

9 Succeeding after t;.

In this section, the aim is to show the following two lemmas concerning the process
after time ¢, (with ¢ still referring to the number of clutches). The first asserts that,
loosely speaking, the process succeeds with probability close to 1 provided there are no
unwanted cycles, and the second bounds the probability that unwanted cycles occur.
We extend the definition of U; to include U, the event that there are no unwanted
cycles in the final graph of the process.

Lemma 9.1 Suppose that k > 3, and all dangerous types have higher priority than ba-
sic, and choose a fized € > 0. Consider the graph Gy, at a time t; in PComplete (k,S ).
Assume that the process has not failed by time t1, and that G, has no unwanted cycle
and has v; vertices of degree d — i for each i. Assume furthermore that

>0 — Dy,
2 Wi
Then, conditional upon the event Us,, the process succeeds with probability at least 1 —
€, + o(1), where €, is constant for fized g and é, and moreover ¢, — 0 as g — oo.

<1-é (9.1)
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Proof. The graph G* induced by the pairs added after the formation of Gy, at time
t1 has v; vertices of degree 7. The expected number of cycles of length r in G* is given
asymptotically by [9, Theorem 4(ii) and the second equation after (4.10)] as (2a)"/(2r),
in which 2« is the expression on the left side of (9.1). So it is asymptotically at most
(1 —¢€)"/2r (as n — infty). This also remains true if one conditions on no unwanted
cycles occurring at all after ¢;. To see this, consider computing the joint factorial
moments of the numbers of unwanted cycles of lengths 1,..., ¢ and r. The calculations
are straightforward, a modification of what is required in the proof of Lemma 8.1,
with the extra twist that the moments depend (in a simple way) on the numbers of
paths in Gy, of given degree endvertices. The calculation shows that these variables are
asymptotically independent Poisson, from which the claim follows.

Thus, conditioning on G* having no unwanted cycles, the expected number of cycles
in G* is at most o(1) + >, (1 — €)"/2r. As long as ¢, is larger than this sum, we
have that G* is acyclic with probability at least 1 — €, + o(1). When G* is acyclic, it
can always be 2-list-coloured, and hence the required colouring of G* exists. Moreover,
the fact that dangerous types have higher priority than all other types ensures that the
process succeeds in all cases that an acyclic G* is produced. 1

The second lemma tells us that the probability of unwanted cycless is more or less
independent of whether the process has failed by time ¢;.

Lemma 9.2 Suppose k > 3. There is a function p, bounded away from 0, such that the
following holds. Consider a graph G such that Hy, N Uy, is satisfied if Gy, = G. Then
P(Ux | Gty = G) = p(t1/n) + o(1), uniformly over such G.

Proof. Let X;(G) denote the number of unwanted cycles of length i created in the
process by the edges added after time t;, given G;, = G. It is routine to compute the
joint factorial moments of X;(G), ..., X ;(G) as a function of the numbers of short paths
of G (a calculation similar to that referred to in the proof of the previous lemma). We
conclude using the usual moment method for Poisson approximation (again, see [12] for
a similar argument) that P(Uy, | Gy, = G) = e ®X + 0(1), where X = 9 X;. It is
also routine to check, using the sharp concentration implied by H,,, that EX = p+o0(1)
for a constant p depending only on ¢;/n. The asymptotics in o(1) in such a situation
is uniform over all graphs G provided their maximum degree is bounded. The lemma
follows. 1

10 Wrapping it up

In this section we put the results in the previous three sections together to distil the
main result to be used in conjunction with the differential equation solution. The result
is stated in a form convenient for use with d = 4 but easily modified for arbitrary d. The
use of x; < xg is just a convenient way to make it clear that the differential equations
do not need to be solved as far as z¢; finding such a value x, will suffice. In this section,
any mention of time refers to measurement in terms of the real scaled time for the clutch
differential equations.
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Theorem 10.1 Suppose that in PComplete(k,S), all dangerous types have higher
priorities than all other types. Let the type (1,1) be the only basic type for the purpose of
defining y; ; as the solution of (6.16) with initial conditions as in (6.3), and xo in (6.21).
Defining xy as in (6.21), suppose that

Zi,j(d —i)(d—i—1) (f)yw(l’a)
S d =) () yiy(a)
for some xy; < xo. Then for some function g = g(n) which goes to infinity sufficiently

slowly as n — oo, the algorithm Short (g, k) a.a.s. succeeds when applied to a random
G € G,.4. Consequently, such a graph is a.a.s. k-colourable.

<1 (10.1)

Proof. Let t = co to denote the final time. Consider the process PComplete(k, S)
for fixed g, k and S. We first wish to bound the probability that the algorithm fails,
conditional upon U, (a condition which we can remove later). We set t; = |nx, |. By
Lemma 8.2, P(By, | Uy,) < €, + o(1) where ¢, — 0 as g — oo.

Combining this with Lemma 8.1, we have that for sufficiently small £ > 0

P(UyNBy) = P(By | Uy)P(Uy) = (1-P(By | Uy))P(Us)
> (1—€,—0(1))(E+0(1)) > &—O(ey).

This shows that P(U;, N By, ) is asymptotically at least some fixed positive constant, for
sufficiently large g. Conditional upon U N By, the process does not fail by time ;.
It thus follows from (6.22) in Corollary 6.4 and Lemma 7.1 that Gy, also a.a.s. satisfies
the condition (9.1) for some é > 0. Hence, by Lemma 9.1, conditional upon U, as
well, PComplete(k, S) succeeds with probability at least 1 — ¢, + o(1) (for another
such function ;). Writing B for the event that the process succeeds, we thus have
P(B | Ux N By,) < €, + 0o(1) and thus

P(BN B;, NUy) - P(B N B;, NUy)

P(BNB,, | Uy) =
( n | Us) P(U.) P(Ux N By,)

=P(B | UsNBy,) < e,40(1).

(10.2)
We also know from Lemma 9.2 that the number of unwanted cycles created after
time ¢; is more or less independent of B; (or on any particular graph Gy,). Specifically,

PUs | ANH, NU,) = p(ti/n) + o(1).

for A = U,, and also for A = B;,. Noting by (6.22) that P(H,,) = 1 — o(1), this implies

P(U,NA) =p(ti/n)P(U;, NA) + o(1) since p is bounded below and Uy, contains U,..
Thus

P(Usx) = p(t1/n)P(Uy,) + o(1), (10.3)

P(Ux N By,) = p(t1/n)P(Uy, N By,) + o). (10.4)

We also have P(By, | U;,) < ¢, + o(1) from Lemma 8.2, which together with (10.4)
gives

P(Us N Bi) < plt1 /n)eP(Us,) < ¢P(Usc) + 0(1)
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by (10.3). As noted in the proof of Lemma 8.2, P(U,,) is bounded below by a positive
constant (depending only on d). So this last inequality gives

P(By, | Us) < €+ o(1).
Combining this with (10.2) produces
P(B | Uy) < 2¢, + o(1). (10.5)

Finally, we need to remove the conditioning on the set S and on the event U,,. Here
k and d are fixed, and ¢ is fixed in this argument until the very end. Let S(G) denote
the set of short cycles of G € G, 4, let k denote the event that Short(g, k) succeeds, and
let k(S) denote the event that PComplete(k,S) succeeds. Then

P(r) = Y P(CG € r(S)| S(@) = S)P(S(G) = S). (10.6)
S

By the known distribution of short cycles in G € G, 4, P(IS(G)] > s) < € + o(1)
where €, — 0 as s — oo and this denotes a different sequence of constants from e,.
Choosing s so large that ¢, < €;4, the terms in the summation above with |S| > s
sum to at most €, + o(1). For each of the other terms, the conditional probability
P(G € k(S) | S(G) = 8) is just P(B | Uy) for PComplete(k, S) as bounded in (10.5).
Thus (10.6) implies

P(k) >1—3¢, +0(1).

Up until this point, g has been fixed in all our arguments. It is finally time to consider
it as a function of n. Since the last inequality is true for all fixed g, but €, can be made
arbitrarily small by taking large g, the theorem follows. (This last step uses the Fact in
Section 1, applied with f(n,g) = max{l — 3¢, — P(x),0}.) 1

11 Solution for d =4, k=3

In this section we prove Theorem 1.1 using Theorem 10.1. For d = 4 and k = 3, we
assign the priorities as follows.

The reason for using these priorities should be self-evident, except for the priority of
(3,1), which is set below 0 since such vertices, if they appear, help to reduce the value
of the left hand side of the inequality (10.1) in Theorem 10.1. Thus, it is desirable not
to colour them. Under this list of priorities, in the informal discussion at the start of
Section 4, the type (1,1) is basic at the start of the process PComplete(k,S). Note
that in Theorem 10.1, (1, 1) is regarded as basic in order to define the function y.
Recall, as observed after the proof of Corollary 6.4, that the differential equa-

tion eqnsde is equivalent to (4.21), which is * = Au + c¢. By (4.22), the coefficient
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matrix is

—2 0 0 0
Ao | 43 3 a9 0
o 1 0 o0 |’
0 0 2/3 1

and the constant vector is ¢ = (0,—1/9,0,0). The standard solution method uses the

eigenvalues of the coefficient matrix A. In this case, these are -2, 1, a and b, where
a=(14+/17)/6 and b = (1 — +/17)/6. The initial condition is

u(0) =y(0)/s(y(0)) = y(0)/d = (1/4,0,0,0).
The solution of the differential equation is

upo(v) = 6_2”/4,

41

Ul 1(1)) = i — \/1_7 e —+ i + 41\/1_7 ebv — i672”,

: 38 1938 38 T 1938 19

7 2 7 2 |

ug1 (V) 9TV17 _5 e — OTVIT + 2 e’ + 36721) + -,

: 2584 152 2584 | 152 38 4

|

usa(v) = ((357 — 45VIT)e™ + (357 + 45V/17)et — 68e2 — 646) .

Letting vy be the first solution of u ;(v) = 0, we solve to obtain

vg = 2.1530,
upp = 0.0034,
U1 = 0,
uz; = 0.0860,
uz; = 0.1568.

It is straightforward to verify that, for this solution, F'(y) in condition (6.21) stays below
1 for v < vy, and hence z( corresponds to vy for € sufficiently small. If the algorithm is
permitted to run up to this point, the interpretation is that the vertices of type (1,1) will
disappear and some of the next priority down, type (2, 1), will be chosen as v. However,
noting that

Zi,j(d—i)(d—i—l)(l;)ym . N k N
ST D SR 1>(j)ym/
. . k
= ;(d—z)(d—z—l)(j)um
= 4x3x0.0034 +2 x 3 x 0.0860
= 0.5568 <1

and that both dangerous types (2,2) and (3,2) have higher priorities than all other
types, Theorem 10.1 implies that 4-regular graphs are a.a.s. 3-colourable. This proves
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Theorem 1.1, and moreover, Theorem 10.1 provides the simple algorithm which a.a.s.
successfully colours a random 4-regular graph with three colours.

We make the final observation that for d > 5 this argument does not suffice for the

particular values of k£ which are of interest. We are forced to use (1, 1) as the basic type,
and regardless of the priorities, the explosion condition (defined after Theorem 6.3) oc-
curs before the density condition (10.1) holds. We address this problem in the sequel [7].
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