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Abstract

We count labelled chordal graphs with no induced path of length 3,
both exactly and asymptotically. These graphs correspond to rooted trees
in which no vertex has exactly one child, and each vertex has been ex-
panded to a clique. Some properties of random graphs of this type are also
derived. The corresponding unlabelled graphs are in 1-1 correspondence
with unlabelled rooted trees on the same number of vertices.

1 Introduction

A graph is chordal, also known as triangulated, if it does not contain a chordless
cycle on more than three vertices as an induced subgraph. Equations which
effectively gave recurrence relations for counting labelled chordal graphs were
derived in [11]. A graph is a comparability graph if its set of edges admits a
transitive orientation. The class of graphs we enumerate in this paper corre-
sponds to a subclass of chordal comparability graphs, which was described by
Golumbic [4] in terms of forbidden subgraphs as follows.

Let P4 denote a graph formed by a path on four vertices. A graph is P4-free
if and only if it contains no induced subgraph isomorphic to P4. It is also shown
in [4] that a trivially perfect graph is characterized by being a P4-free chordal

∗Research carried out while this author was working at CWI and Utrecht University,
Netherlands.
†Research supported by the Australian Research Council.

1



         

graph, since its stability number (i.e. cardinality of the largest independent set)
equals the number of maximal cliques. In [3] the P4-free chordal graphs were
considered in relation to graphical Markov models.

In the next section we give the theorems we need on the structure of P4-
free chordal graphs. In Section 3 we find a generating function equation and
recursive formulae for the numbers of labelled connected graphs, counted by
vertices or by vertices and edges. We also obtain an asymptotic formula for
the numbers counted by vertices, and some properties relating to the number
of vertices of degree n − 1 in the graphs on n vertices. These vertices play a
central role in the structural results. The recurrences are all easy to compute,
so we give just a few small numbers in tables along the way. The last result
in that section shows that the unlabelled P4-free chordal graphs correspond to
unlabelled rooted trees, so that the numbers are the same.

2 Structure of P4-free chordal graphs

The first characterization of P4-free chordal graphs was by Wolk [9], who was
investigating necessary and sufficient conditions on a graph to admit a transitive
orientation. In this paper it is shown that a graph is P4-free and chordal if and
only if it is the comparability graph of a tree poset. A tree poset is one in
which x and y are comparable whenever x < z and y < z for some z, and the
comparability graph joins any two points of the poset which are comparable.
This characterization can be used to obtain the result we need, but we derive it
from the beginning for completeness and since the argument is almost as short.

For any graph G, define D(G) to be the set of vertices of degree |V (G)| − 1.

Proposition 1 Let G be a connected graph. Then G is P4-free and chordal if
and only if it is complete or G−D(G) is a disconnected P4-free chordal graph.

Proof We proceed by induction on n = |V (G)|. For n = 1 it is immediate.
The complete case is trivial, so assume that G is a connected P4-free chordal
non-complete graph. As was shown by Wolk [10], G must have at least one
vertex of degree |V (G)| − 1. (The argument goes like this: if not, let u be a
vertex of maximum degree, and let v be a neighbour of u and with a neighbour
w not adjacent to u. Then for any other neighbour x of u the fact that wvux
is not an induced P4 or 4-cycle implies that vx ∈ E(G). This implies that the
degree of v exceeds the degree of u, a contradiction.) Since G′ = G − v is an
induced subgraph of a P4-free chordal graph, it too is P4-free and chordal.

If G′ is disconnected, we are done. If G′ is connected, then by induction
G′ − D(G′) is a disconnected P4-free chordal graph. But clearly G − D(G) =
G′ −D(G′). The proposition follows.

3 Enumeration

We use Proposition 1. Exact counting is considered first. Then an asymptotic
formula is given in Theorem 1, which also gives asymptotics of the expected size
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of D(G) and number of components of G−D(G).
Let an be the number of labelled connected P4-free chordal graphs on n

vertices, and let f = f(x) =
∑∞
n=1 anx

n/n! = x+ 1
2x

2+· · · be the corresponding
exponential generating function. Then by standard arguments as in Harary and
Palmer [5] or Wilf [8], the graph G−D(G) is counted by ef −f , since ef counts
all P4-free chordal graphs including the empty graph and the connected ones.
(In this case we need to leave the empty graph as a possibility for G − D(G),
in case G is complete.) Thus

f = (ex − 1)(ef − f) (1)

where ex − 1 takes account of the deleted vertices D(G). By simple algebra,
this can be rewritten as

f = (1− e−x)ef . (2)

We can observe that that the same deletion operation recursively gives a
correspondence between these graphs and rooted labelled trees in which no
vertex has exactly one child — or, equivalently, rooted trees with no non-root
vertex of degree 2 and with root vertex of degree at least 2 — and in which
each vertex has been expanded to a clique. The root vertex expands to the
clique D(G), and the other expansions are defined recursively. If edges are
added from each vertex in a clique to all vertices “above” it in the tree, we
recover the graph G. Thus, we can count these graphs alternatively by counting
the corresponding trees: from the correspondence with these trees we have
f(x) = T (ex − 1) where T (x) is the exponential generating function for such
trees. These are strongly related to homeomorphically irreducible labelled trees.
Using the standard technique for counting trees of various types, it is easy to
establish that T satisfies the equation T = x(eT − T ). The resulting equation
is (1).

3.1 Exact numbers of labelled graphs

We can easily use the well known “x d
dx log” trick (see [8, Section 1.6] for exam-

ple) to get a recurrence relation for the coefficients of f from (2) say, in terms
of the coefficients of 1/(1− e−x), which can of course be pre-computed.

If An is the total number of (not necessarily connected) labelled P4-free
and chordal graphs on n vertices then the corresponding exponential generating
function is given by ef(x) using the standard exponential relationship expoused
in [5] or [8] (with A0 = 1 by convention). As in [5, p.9] this gives the recurrence

An = an + 1
n

(∑n−1
k=1 k

(
n
k

)
akAn−k

)
. One can alternatively argue, by directly

counting the results of deleting D(G), that

an = 1 +

n−2∑

k=1

(
n

k

)
(An−k − an−k)

which can be combined with the previous recurrence to compute an and An
recursively and simultaneously. The initial values of the recurrences are a1 =
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a2 = A1 = 1 and A2 = 2. There are also simple ways to compute the coeffi-
cients using recursive expansions with an algebraic manupulation package such
as Maple. Some numbers resulting from these recursions and computations are
given in Table 1.

Table 1: Numbers of labelled connected (an) and all (An) P4-free chordal graphs
with n vertices

an An n
1 1 1
1 2 2
4 8 3

23 49 4
181 402 5

1812 4144 6
22037 51515 7

315569 750348 8
5201602 12537204 9

97009833 236424087 10
2019669961 4967735896 11

46432870222 115102258660 12

We turn to computing the number an,q of labelled connected P4-free chordal
graphs on n vertices and q edges. A recurrence may be obtained by summing
over all different possibilities for the set D(G). For each of these sets D with k
vertices, one has for G − D(G) all the disconnected P4-free chordal graphs on
n − k vertices. If G has q edges, D(G) needs k(k − 1)/2, since it is a clique.
Also there are edges from D to each of the n− q vertices of G \D. Therefore,
the recurrence for an,q is

an,q =

n−2∑

k=1

(
n

k

)
(An−k,q−k(k−1)/2−k(n−k) − an−k,q−k(k−1)/2−k(n−k)) (3)

where An,q is the total number of labelled P4-free chordal graphs on n vertices
and q edges, with A0,0 = 1 by convention. Again by the exponential relationship,∑
n≥0,q≥0An,qx

nyq/n! = exp(
∑
n≥1,q≥0 an,qx

nyq/n!). This leads to

An,q = an,q +

q∑

l=0

(
1

n

(
n−1∑

k=1

k

(
n

k

)
ak,lAn−k,q−l

))
. (4)

Together, (3) and (4) determine the numbers an,q recursively, beginning with
a2,1 = 1. Table 2 gives the resulting values of an,q for small n.

3.2 Asymptotics for labelled graphs

Here we find asymptotic expressions for an and An. Building on this, it is routine
to obtain asymptotic properties of a random labelled P4-free chordal graph G on
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Table 2: Numbers of labelled connected P4-free chordal graphs with n vertices
and q edges

n q
2 3 4 5 6 7 8
1 0 0 0 0 0 0 1

3 0 0 0 0 0 2
1 4 0 0 0 0 3

12 5 0 0 0 4
6 30 6 0 0 5
1 75 60 7 0 6

30 270 105 8 7
30 360 735 168 8
10 435 1 925 1 680 9
1 270 2 940 7 280 10

255 3 591 16 800 11
80 4 165 25 536 12
60 2 310 38 108 13
15 2 520 42 420 14
1 1 925 35 700 15

882 39 060 16
630 28 728 17
175 28 784 18
105 20 860 19
21 11 340 20
1 9 240 21

5 726 22
2 268 23
1 330 24

336 25
168 26
28 27
1 28
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n vertices by way of the methods comonly used for tree enumeration problems.
As examples of this, we include some properties relating to D(G): its expected
size (i.e. number of vertices of degree n−1) and also the number of components
of G − D(G) (i.e. number of branches at the root vertex of the corresponding
rooted tree).

Theorem 1 (a) As n→∞

an ∼
√
r(e− 1)n−1

( n
er

)n

where r = 1− ln(e− 1) ≈ .4587, and An ∼ ean.

(b) Let G be a random labelled connected P4-free chordal graph with n vertices
and let D be the set of vertices of degree n− 1 in G. Then as n→∞ the
expected cardinality of D tends towards e(1− ln(e− 1)) ≈ 1.2468 and the
expected number of components in G−D tends towards 2e−1

e−1 ≈ 2.5820.

Proof For asymptotics, we can use (1) which determines f implicitly as a
function of x. We can more or less apply the theorem stated by Bender [1,
Theorem 5], though care has to be taken, as noticed by Canfield [2] due to the
possible multiple definition of f . This problem is that the correct singularity
has to be identified. This has been remedied for special cases such as in [2], and
in fact Meir and Moon [6, Theorem 1] give a result which applies immediately
to (1) (see also [7]). Writing (2) as f = F (x, f), this theorem guarantees that
there is a singularity of f(x) at the unique solution z = r, for positive real z, of
the equations w = F (z, w) and 1 = Fw(z, w), that is,

w = (1− e−z)ew = 1, (5)

and that there are no other singularities of f(z) for complex z with |z| ≤ r.
Thus Bender [1, Theorem 5] is valid, and gives the asymptotics, as follows.

Solving (5), we observe w = 1, and the solution for z is then

r = 1− ln(e− 1). (6)

For [1, Theorem 5] we need to check

Fz(r, 1) = e− 1, Fww(r, 1) = (1− e−r)e = 1

and the result, after multiplying the coefficient of xn in f(x) by n! and apply-
ing Stirling’s formula, is the expression for an in (a). We postpone An until
considering (b).

For the first part of (b) we have to find ân/an, where ân is the number of
P4-free chordal graphs weighted according to the number of vertices in the set
D. This can be deduced from [1, Theorem 2], but we prefer to give a standard
singularity argument which in some gives the same approach to both parts of
(b). Since D has exponential generating function ex − 1, for such a weighted D

we use x d
dx (ex − 1) = xex. So letting f̂ =

∑∞
n=1 ânx

n/n!, we have

f̂ = xex(ef − f). (7)
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Together with (1), this gives

f̂ =
xexf

ex − 1
. (8)

From (7) it is clear that all singularities of f̂ are also singularities of f . The

coefficients of f̂ are by definition greater than the corresponding coefficients of
f , so the radius of convergence of f̂ is at most that of f , i.e. r as given by (6).

Thus (by Pringsheim’s theorem), f̂ has a unique singularity on its radius of
convergence, at r. From the proof of [1, Theorem 5], we know that

f(z) = h(z) + c(z − r)1/2 +O((z − r)3/2) (9)

as z → r for a function h analytic at r. From (8), a similar statement is true of

f̂ , with h(z) replaced by ĥ(z) = zezh(z)
ez−1 . Hence by Darboux’s theorem (see [1,

Theorem 4]) ân/an ∼ rer

er−1 , which is re by (6).
For the second part of (b), we require ān/an, where ān is the number of

P4-free chordal graphs weighted according to the number of components when
D is removed. These components are counted in (1) by ef − f , so to give the
required weighting we replace this factor by f d

df (ef − f) = (ef − 1)f . Thus,

with f̄ =
∑∞
n=1 ānx

n/n!,

f̄ = (ex − 1)(ef − 1)f = exf2 − (ex − 1)f (10)

after a little manipulation using (1). From the form of this equation, f̄ can have
no singularity other than a singularity of f , and so no positive real singularity
other than r in (6). The solution to (5) found in the proof of (a) has w = 1, and
so f(r) = 1. Near r, the function f behaves as given in (9), and so we deduce
h(r) = 1 and f2 = h2(z) + 2ch(r)(z − r)1/2 +O((z − r)3/2). Thus from (10),

f̄(z) = ezh2(z)− (ez − 1)h(z) + (er + 1)c(z − r)1/2 +O((z − r)3/2)

as z → r, and so, by Darboux’s theorem and (9), ān = 2eran−(er−1)an+o(an).
The rest of part (b) follows, since er + 1 = 2e−1

e−1 by (6).
Finally it is easy to apply the same method as in (b) to obtain An ∼ ean.

One can note as above that the exponential generating function for An is ef(x)

and then use ef(z) = eh(z)(1 + c(z − r)1/2 + c2(z − r)/2 + O((z − r)3/2) near
z = r.

3.3 Unlabelled enumeration

The characterization of P4-free chordal graphs given in [10] suffices to show that
these unlabelled connected graphs correspond to unlabelled rooted trees. We
can also see this easily from Proposition 1: a connected P4-free chordal graph G
corresponds to a rooted tree T in which the length of the path P from the root
vertex to the nearest vertex of degree at least 3 is |D(G)|−1, and the components
of T − P are the rooted trees corresponding to G−D(G) (recursively defined).
The exact and asymptotic numbers of unlabelled rooted trees with n vertices
are given in [5].
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