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Abstract

In this paper we present a randomized algorithm to compute the bisection width
of cubic and 4-regular graphs. The analysis of the proposed algorithms on random
graphs provides asymptotic upper bounds for the bisection width of random cubic
and random 4-regular graphs with n vertices, giving upper bounds of 0.174039n for
random cubic, and of 0.333333n for random 4-regular. We also obtain asymptotic
lower bounds for the size of the maximum bisection, for random cubic and random
4-regular graphs with n vertices, of 1.32697n and 1.66667n, respectively. The ran-
domized algorithms are derived from initial greedy algorithm and their analysis is
based on the differential equation method.
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1 Introduction

Given a graph G = (V, E) with |V| even, a bisection of G is a partition of V'
into two parts with the same cardinality, and its size is the number of edges
crossing between the parts. A minimum bisection is a bisection of V with
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minimal size (to avoid parity problems, throughout this paper we assume that
n = |V is even). The size of a minimum bisection is called the bisection width
and the min bisection problem consists of finding a minimum bisection in a
given G. In the same manner, we can also consider a mazimum bisection, i.e.
a bisection that maximizes the number of crossing edges. A related problem
is that of finding the largest bipartite subgraph of a graph, i.e. a bipartite
subgraph with as many edges as possible. This problem is known as the maz
cut problem (see for example [GJ79]). Given a graph, the size of a maximum
bisection is clearly a lower bound on the size of a max cut in the graph.

The min bisection problem has received a lot of attention, as the bisection
width plays an important role in finding lower bounds to the routing perfor-
mance of a network. The decisional version of the problem is known to be
NP-complete [GJ79], even for cubic graphs [BCLS87]. In [AKK95] it is shown
that min bisection has a PTAS for everywhere dense graphs (graphs with
minimum degree €2(n)). Moreover, there exists an O(log®n) approximation
for the min bisection on general graphs and an O(logn) approximation for
planar graphs [FK00]. The min bisection problem can be solved in polyno-
mial time for bounded treewidth graphs [JKLSO01]. Several other exact and
heuristic positive results are known for particular cases of the problem (see
for example [DPS02]).

With respect to lower bounds, well known is the spectral lower bound of
Aon /4 for the bisection width of any graph, where )\ is the second eigenvalue
of the Laplacian of the graph [Fie74]. Bollobas provided a lower bound of
(d —2v/dIn2)n/4, for almost all d-regular graphs [Bol84]. In the same paper,
he gave a lower bound of 0.22n for the particular case of 4-regular graphs. In
[KM92] it is shown that almost all cubic graphs have bisection width greater
than 0.101n. Recently, using spectral techniques, Bezrukov et al. have given
lower bounds for of 0.082n for the bisection width of cubic Ramanujan graphs,
and of 0.176n for the case of 4-regular Ramanujan graphs [BEM*00].

Recently, Monien and Preis [MP01] gave upper bounds on the bisection width
of (1/6 + €)n for 3-regular graphs and of (0.4 4 ¢)n for 4-regular graphs, for
any € > 0 (n sufficiently large, depending on ).

The problem of finding the maximum bisection has also received a lot of at-
tention. This is again NP-hard even for planar graphs [JKLS01]. It is known to
be solvable in polynomial time for bounded treewidth graphs [JKLSO01]. There
exists several approximations algorithms for the problem; the max bisection
problem has a PTAS for planar graphs [KKLO0O]. In the case of regular graphs,
there is a 0.795 approximation algorithm for the max bisection [FKLO0O]. In the
same paper, the authors gave an 0.834 approximation algorithm for the special
case of max bisection on cubic graphs. The best approximation algorithm for
max bisection on general graphs has an approximation ratio of 0.7027 [FLO1].



We are not aware of any non-trivial lower bounds on the size of the maximum
bisection.

We will use standard notation and we refer the reader to [LJROO], for the
definitions of u.a.r. (uniformly at random) and a.a.s. (asymptotically almost
surely).

In this paper we present asymptotic results for the typical bisection width
and the expected maximum bisection of random cubic and random 4-regular
graphs, where our graphs have no loops or multiple edges. In particular we
prove the following theorems.

Theorem 1 For all € > 0, the bisection width of a random 4-regular graph
on n vertices is a.a.s. smaller than n/3 + en.

This upper bound improves the previously best known upper bound of 0.4n
which follows from the upper bound on the bisection width of all 4-regular
graphs by Monien and Preis. Recall that Bollobas’ lower bound for random
4-regular graphs is 0.22n.

Theorem 1 is proved by setting € sufficiently small in the simple randomized
algorithm in Figure 3. Doing the same (¢ < 107%) for the algorithm in Figure 4
gives the following.

Theorem 2 The algorithm in Figure 4 a.a.s. finds a bisection of width at
most 0.17404n wn a random cubic graph on n vertices.

This asymptotic upper bound is close to but weaker than the asymptotic upper
bound of 1/6+¢€ (any € > 0) for all cubic graphs, by Monien and Preis [MPO1].
We give this result here for two reasons: our algorithm is much simpler, and
our method also gives Theorem 3 below.

Slightly modifying the proposed algorithms and using the same analysis as for
the previous results, we can get the following lower bounds for the maximum
bisection of random cubic and random 4-regular graphs.

Theorem 3 The mazimum bisection of a random cubic graph with n vertices
1S a.a.s. greater than 1.32595n.

Theorem 4 For all € > 0, the maximum bisection of a random 4-regular
graph with n vertices is a.a.s. greater than 5n/3 + en.

As mentioned above, the size of the maximum bisection is a trivial lower bound
on the size of the maximum cut, but removing the balance constraint does not
permit our method to obtain any better result. We conjecture that the largest
balanced bipartite subgraph of a random d-regular graph is a.a.s. almost the



same size as the largest bipartite subgraph. For the particular example of
random cubic graphs, we can state this even more strongly and precisely, as
follows.

Conjecture 1 For every e > 0, a.a.s. the largest bipartite subgraph of a ran-
dom cubic graph has a 2-colouring with the difference in the numbers of vertices
of the two colours less than en.

The techniques in the present paper should extend in some fashion to reg-
ular graphs of higher degree. However, it then becomes unclear even what
algorithms should be used, so we do not pursue this question here.

2 Greedy algorithms for the minimum bisection of random cubic
and 4-regular graphs

In this section we give the basic randomized greedy procedures to find a bisec-
tion for random cubic and random 4-regular graphs. We also introduce some
notation to be used in the analysis.

Given a graph, and given a partial assignment of colours red (R) and blue
(B) to its vertices, we classify the non-coloured vertices according with the
number of their coloured neighbours:

A vertex is of Type (r,b) if it has r neighbours coloured R and
b neighbours coloured B.

We say that a pair of uncoloured vertices is (r, b)-symmetric if their types are
(r,b) and (b, 7).

The greedy procedures work by colouring vertices chosen randomly in sym-
metric pairs, to maintain balance, and repeatedly use one of the following two
operations: the magority operation (Maj), that colours each vertex with the
majority colour among its neighbours, and the random operation (Rand) that
randomly colours one vertex R and the other B.

The greedy procedure 4-min greedy for 4-regular graphs is given in Figure 1,
while the greedy procedure 3-min greedy for cubic graphs is given in Figure 2.

A major difference between the two algorithms is that while the algorithm
for 4-regular graphs consists of only one phase (followed by a “cleaning up”
operation), for cubic graphs the algorithm consists of three phases. This fact
makes the analysis of the 4-regular case simpler, so it is presented here first.

The algorithm 4-min greedy considers only (0,1)-, (0,2)- and (1,2)-symmetric



Initial step: select two non-adjacent vertices u.a.r., colour one with R and
the other with B
Phase 1: repeat
if there are vertices of both types (2,0) and (0,2)
or vertices of types (2,1) and (1,2)
then
select u.a.r. a (0,2)- or (1,2)-symmetric pair and perform Maj;
else if there are vertices of both types (1,0) and (0,1)
then
select w.a.r. a (0,1)-symmetric pair and perform Maj;
until no new vertex is coloured
Cleanup: colour any remaining uncoloured vertices, half of them R and half B,
in any manner, and output the bisection R, B.

Fig. 1. Algorithm 4-min greedy for obtaining a bisection of 4-regular graphs

pairs of uncoloured vertices and gives higher priority to the (0,2)- and (1,2)-
symmetric pairs than to the (0,1)-symmetric pairs. Note that the size of the
bisection is the number of bicoloured edges, with one vertex of each colour, so
only each Maj operation on a (1,2)-symmetric pair contributes, with 2, to the
bisection.

On the other hand, each phase of the algorithm 3-min greedy considers two
types of symmetric pairs and gives priority to one of them. Observe that in
the first phase there is no contribution to the bisection, while in the second
and third phases, every time a (1,1)- or (1,2)-symmetric pair is coloured, the
bisection is increased by 2.

One method of analyzing the performance of a randomized algorithm is to use
a system of differential equations to express the expected changes in the vari-
ables describing the state of the algorithm during its execution. An exposition
of this method can be found in [Wor99a|, which includes various examples of
graph-theoretic optimization problems. For purposes of exposition, we con-
tinue for the present to discuss the proposed algorithms, without giving full
justification. After this, in order to reduce the complexity of the justification,
it is in fact a different but related algorithm which we will analyse to yield our
claimed bounds. We call this variation of algorithm a deprioritized algorithm
as in [Wor03], where this technique was first used.

We use the pairing model to generate n-vertex d-regular graphs u.a.r. Briefly,
to generate such a random graph, it is enough to begin with dn pointsin n cells,
and choose a random perfect matching of the points, which we call a pairing.
The corresponding pseudograph (possibly with loops or multiple edges) has
the cells as vertices and the pairs as edges. Since d is fixed, any property a.a.s.
true of the random pseudograph is also a.a.s. true of the restriction to random
graphs, with no loops or multiple edges, and this restricted probability space
is uniform (see for example [Bol85,Wor99b| for a full description). Without



Initial step: select two non-adjacent vertices u.a.r., colour one with R
and the other with B
Phase 1: repeat
if there are vertices of both types (2,0) and (0,2)
then
select u.a.r. a (0,2)-symmetric pair and perform Maj;
else if there are vertices of both types (1,0) and (0,1)
then
select u.a.r. a (0,1)-symmetric pair and perform Maj;
until no new vertex is coloured
Phase 2: repeat
if there are vertices of both types (1,0) and (0,1)
then
select u.a.r. a (0,1)-symmetric pair and perform Maj;
else if there are at least two vertices of type (1,1)
then
select u.a.r. a (1,1)-symmetric pair and perform Rand;
until no new vertex is coloured
Phase 3: repeat
if there are vertices of both types (3,0) and (0,3)
then
select u.a.r. a (0,3)-symmetric pair and perform Maj;
else if there are vertices of both types (2,1) and (1,2)
then
select u.a.r. a (1,2)-symmetric pair and perform Maj;
until no new vertex is coloured
Cleanup: colour any remaining uncoloured vertices, half of them R and half B,
in any manner, and output the bisection R, B.

Fig. 2. Algorithm 3-min greedy for obtaining a bisection of cubic graphs

loss of generality, when stating such asymptotic results, we restrict n to being
even to avoid parity problems.

We consider the greedy algorithms applied directly to the random pairing. As
discussed in [Wor99a), the random pairing can be generated pair by pair, and
at each step a point p can be chosen by any rule whatsoever, as long as the
other point in the pair is chosen u.a.r. from the remaining unused points. We
call this step ezrposing the pair containing p.

At each point in the algorithm, let Z,, represent the number of uncoloured
vertices of type (r,b), and let W denote the number of points not yet involved
in exposed pairs. It follows that, for d-regular graphs,

W = j{: (d -T —-b)ZZb.

r+b<d

To analyse the algorithm, when a vertex is coloured we immediately expose
all pairs involved in that vertex. In this way, the numbers Z,, are always



determined. Furthermore, W points are available for the pairs that will be
exposed during the next step.

3 Analysis of an algorithm for random 4-regular graphs

When considering algorithm 4-min greedy run on a random pairing, at any
time step, the number of points not yet involved in exposed pairs is

W =4Zy + 3210 + 3201 + 2202 + 2290 + 2211 + Z12 + Zo1 + Zoz + Z3o-

Consider what happens when a vertex u is newly coloured R and one of the
pairs containing a point p in that cell is exposed. The other point will lie in
some vertex v. The probability that v has type (¢, j) will be (4—i—75)Z;; /(W —
1) (except for a correction due to the change in status of u). Let d,;, denote the
expected contribution to the increment A(Z,;) in Z,, due to the change in the
status of v. Up to terms O(1/W), this contribution is gains (4 —i — j)Z,;/W
from the case (i,7) = (r — 1,b), and (4 — (i + j)) Zi;/(W — 1) from the case
(1,7) = (r,b). The error term O(1/W) is due to the replacement of W — 1 by
W and an adjustment occurring when v happens to be the same as u. This
gives (ignoring O(1/W) terms)

47 3Z 27 Z
doo = — VV(')O do1 = — W/(v)l dog = — M/(')Q d03:—$ dos =0
g — 4700 — 3719 g — 320 — 271 doo — 2702 — Z12 doe — Zo3

wW=—-——dn=——7—dp=—— dig= —
w W w w
37210 — 272 271 — 2y AT
o=y = T A=y
2790 — Z V4
dyp = = dy =
VA
dyo = %

The corresponding equations when a vertex is coloured B form a symmetric
set with these: they are the same but with the index pair on all variables
swapped. Therefore, denoting by Jr,b the expected increments due to a dual
step, consisting of colouring two vertices R and B, we get (again ignoring

O(1/W) terms)



w
- —6Zy1 + 472y - 37201+ 3219 — 47713
do1 = —w dy = W
- —2203 + 2Zp2 < Zoz + 212
oy =~ e = T
- A

and symmetric equations for d,; when r > b. We now make the assumption
of having rb-symmetry: for all ¢ and j, Z;; = Z;;. Later we will see how to
remove it, but when it holds, the values of di; and dy, can be simplified, and
the equations are:

- 87,

doo = — W;)O

= —6Z01 +4Zy 6201 — 4211

doy = — =y

CZOQ _ —4Z02Mj- 37201 6212 _ 27209 — 25}12 + 2711 CZ22 _ 2719 (2)
7 —2Zp3 + 2202 5 Zo3 + Z12

oy = g s = g

- Z

dos = %

The rest of our discussion, until considering the deprioritized algorithm, is
nonrigorous, mainly for motivation, but also including the derivations of some
formulae used later. The difficulty of analysis is caused by the prioritization.
To proceed, define ¢; to be the probability of processing a (0, 1)-symmetric
pair, let ¢ be the probability of processing a (0, 2)-symmetric pair, and let
¢3 be the probability of processing a (1, 2)-symmetric pair, at a given step in
the algorithm. Then immediately

o1+ g2+ 3 =1. (3)

Moreover, every dual colouring of a (0, 1)-symmetric pair produces in expec-
tation 3dgy (0,2)-symmetric pairs and 3d;, (1,2)-symmetric pairs. Every dual
colouring of a (0, 2)-symmetric pair produces 2dg, (0,2)-symmetric pairs and
2d15 (1,2)-symmetric pairs; and every dual colouring of (1,2)-symmetric pair

produces dgy (0,2)-symmetric pairs and dj (1,2)-symmetric pairs. Therefore,



the expected number of (0, 2)-symmetric pairs produced in a given step is

(31 + 202 + ¢3)CZ02, (4)

and the expected number of (1, 2)-symmetric pairs is

(31 + 262 + ¢3)d1o. (5)

In a large number of consecutive steps, the prioritization ensures that virtually
all of the (0,2)- and (1, 2)-symmetric pairs are used up (unless ¢; has reached
0), implying that ¢, and ¢3 should be equated to the expressions in (4) and (5)
respectively. Solving these together with (3), we get

. 1— 26{02 - (ilg. 3(102 . 3CZ12

o1 = 1+ doy + 2d5o 92 = 1+ doy + 2dys’ 03 = 1+ doy + 2dy

Phase 1 will finish when Zyy = Zyp, = Z15 = 0. Continuing our non-rigorous
computation, we can find the expected increments of the random variables
Z;; in each iteration in phase 1 (assuming rb-symmetry). Using linearity of
expectation,

E[A(Z;)] = Jij(¢3 + 2¢2 + 3¢1) — o101 — o202 — 1203 (7)

for any 4,5 with ¢ < j and i + j < 3, where 0,, = 1 if (p,q) = (4,7), and 0
otherwise.

We may express the above expected increments as a set of differential equa-
tions, where each E[A(Z;;)] is expressed as the differential Z;; (as a function
of the number ¢ of iterations). We scale both time, ¢, and the variables by
dividing by n, and denote Z;;/n by z;, t/n by x and W/n = W(t)/n by
w = w(z). This yields

D
! !
Zog = —82p0— 201 = 42’00 —6201)— — 91
00 w ’ 01 ( ) w ’

Zil = (6201 — 4211);,

where

D= D(l’) = 93 + 202 + 301, w = ’(U(SE) = 42()0 + 6201 + 4202 + 2211 + 2,212 + 22’03

9)

and 0; = 0;(x), representing ¢(t/n), is defined as ¢; in (6) but with Z;; replaced
by z;;(z) in the definition of the variables d. For instance,

3(—4202 + 3201)
w + (—42’02 + 3201) + 2(2202 — 2212 + 2211) )

6y =



As long as 6; remains positive (which, as we see later, is the case in phase 1),
it will follow that the number of vertices of types (0, 2), (2,0), (1,2) and (2,1)
remain small and that there is regularly no symmetric pair of either of these
types (since it is the only time that (0, 1)-symmetric pairs are processed). This
implies that a negligible number of vertices of types (1,3) or (2,2) are ever
created. It follows that the z;; whose derivatives are not included in (8) should
remain constant at 0, and so for the present discussion we write

2; =0, j>2. (10)

It also follows that the size of the bisection in phase 1 is approximately equal
to the twice the total number of (1,2)-symmetric pairs of vertices which are
processed (since colouring a (0,2) or (0,1) vertex does not add to the bisec-
tion). Letting Y (¢) be a random variable keeping track of the number of times
a (1, 2)-symmetric pair is processed, we have the expected change in Y in one
step equal to dys. Let y(z) represent Y (¢)/n. Then the suggested equation for
y is

D(z)
w(z)

(11)

y'(x) = 211

Solving this together with (8), (9) and (10) with the initial conditions
200(0) = 1; 2;;(0) =0for 0 < i <j, i+j<4; y(0)=0, (12)
is equivalent to solving

' —24200 r 8200 - 18201 o 18201 - 12211 r 12y 13
0T TR T T o An T T o 0 YT (13)

where R = 4zy9 + 9291 + 6211, with the same initial conditions. We do not
know the explicit solution to these equations, but we can deduce all that we
need as follows.

Let x; be the infimum of those x > 0 for which either §; = 0 or z;;(z) = 0 for
ij = 00, 01 or 11. From (13) we have

(z00 + 2201 + 211) = —2
and hence
Zoo + 2201 + 211 = 1 — 2. (14)
Note that for small x > 0, all the variables zgg, 291 and z;; must be positive.

Can any be positive at 1?7 All are nonnegative, so if one of them is strictly
positive, this implies R(z;) > 0. But then from (13) it follows that zgo(z1) > 0,

10



and from this zo1(x1) > 0 and z11(z1) > 0 in turn. We also find that

. 4200 i 9201 _ 6211
01_ R ) 02_ R ) 03_ R . (15)

Thus 6 is then positive, and this contradicts the definition of ;. Hence

Zoo(xl) = ZOl(xl) = 211($1) =0 (16)
and hence R and 6, are 0 as well at z;. So from (13),

1

Furthermore, from (13),

—24200 — 54201 — 72211 32211

R = = —6— — —6— 6y
R R Y

and solving R’ + 6y’ = —6 with the given initial conditions, we have R(0) = 4

and R + 6y =4 — 6z. Since R(1/2) = R(z;) = 0, it follows that

y(1/2) = 1/6. (18)

So the solution of the differential equation system at the end of phase 1 rep-
resents the situation that all nodes are coloured, and indicates a bisection of
size asymptotically 2z11n = n/3.

Now we are in position to carry out the formal analysis. We wish to avoid
the complications created by the prioritization, which makes it difficult to
rigorously establish the meaining of the ¢;. For a given sufficiently small € > 0
(let us say € < 107% in order to derive Theorem 1), consider the deprioritized
algorithm given in Figure 4. Pre-phase 1, where a large number of vertices with
no coloured neighbours are coloured in pairs, is just to ensure a good supply
of symmetric pairs of vertices of types (0,1),(0,2) and (1,2) before entering
phase 1. Note that the way the deprioritization is carried out here differs
slightly from that in [Wor03], since in that paper the ¢; were precomputed
from the solution of the differential equations analogous to (8), whereas here,
they are computed dynamically in the algorithm. The net effect is the same,
and either version will work here, the only difference being some aspects of
the justification which determine which version may be preferred.

In pre-phase 1, we have a unique operation which colours two vertices of type
(0,0). Working as in the lead-up to (1), we find that the expected increment
of Z;; due to the vertex v is E [A(Z;;)] = 4d;; — 8- Each operation involves
four such vertices v (except for cases that one vertex is involved more than
once in the same operation, which happens with probability O(1/W) and

11



Pre-phase 1: do the following |en| times:
select u.a.r. a non-adjacent (0,0)-symmetric pair
and perform Rand;

Phase 1: while all of Zy, Z19, Zg2, Zog, Zo1 and Zq9 are non-zero
let ¢1 = H

1+ dos + 2d12’ 2= 1+ doo + 2d12’ ¢s = 1+ dos + 2d12”
with probability ¢;

select u.a.r. a (0, 1)-symmetric pair and perform Maj;
with probability ¢9
select u.a.r. a (0,2)-symmetric pair and perform Maj;
with probability ¢3
select u.a.r. a (1,2)-symmetric pair and perform Maj;
Cleanup: colour any remaining uncoloured vertices, half of them R and half B,
in any manner, and output the bisection R, B.

Fig. 3. Algorithm deprioritized 4-min greedy for bisection of random 4-regular graphs

is therefore ignored.) At this stage, we entirely avoid using the rb-symmetry
assumption (as a reminder of which we reinstate r and b as general subscripts).
Referring back to (1) and the ensuing derivation of (8), the suggested system
of differential equations is

S —8(4—r—=0)z +4(5 =7 = b)2(—1)0r>0 + 4(5 — 7 — ) 2r(b—1) >0
b ’U)(.’E)

- 5rb:00
(19)

where

’U)(LE) = 4200(.’13) + 3201 (.’E) —+ 3210(.’13) + 2202(.’L') + 2220(.’L') + 2211 (.’L') + Zg()(I) + Zog(l‘)
(20)

and for any statement S, 05 denotes 1 if S is true and 0 otherwise. These apply
for 0 < r 4 b < 4, together with the additional equation y'(z) = 0, with the
initial conditions (12). It follows from the symmetric nature of the equations
that the solution (which exists uniquely by standard theory of differential
equations) must be the symmetric one, satisfying z;;(xz) = z;i(x) for all 7, j
and z. We write Z;;(x) for the (unique) solutions of this initial value problem,
0<z<e

Let Z,.,(t) denote the value of Z,, after ¢ steps of the algorithm. Regarding
zrp(t/n) as Zpp(t)/n, the right hand side of give the expected one-step change
in the variables Z,, with error O(1/n). (This error is due to the changing
value of the variables between when one vertex of type (0,0) is chosen and
the next.) We may now apply the differential equation method (using, for
example, [Wor99a, Theorem 5.1] or the simplified version [Wor03, Theorem
3]) to deduce that during pre-phase 1, we have a.a.s.

Zp(t) = nZw(t/n) + o(n) (21)

12



for each r and b. This applies until either ¢ = |en| or one of the derivatives
approaches a singularity, which we can prevent by restricting to a domain
in which w > €, or the differential equations no longer apply for some other
reason, which in this case only occurs if Zy, reaches 0. Note that the derivatives
are all O(1), so Zyo(z) stays close to 1 for z < € (recall € > 0 is arbitrarily
small). We conclude that a.a.s.

Zyp(to) = nZwp(to/n) + o(n), to := |en]. (22)

We also note that z{; must be strictly positive, and so Zy, Zp2 and Z;, are
strictly positive on (0, €). Thus, in particular, for sufficiently small ¢, = €;(¢) >
0,

Zo1(€) > €1,  Zoa(e) > €1, Zia(e) > €. (23)

Now consider phase 1. Note that the values of the ¢; are defined in an asymmet-
ric way, but they in turn affect the expected changes symmetrically. Arguing as
in the lead-up to (8) (but with the discussion around the ¢; simplified because
they are prescribed), the expected changes in the Z,, can easily be computed
with error O(1/W). For (r,b) = (0,0), (0,1) and (1, 1), these expected changes
are given by the right hand sides of the equations in (8) (reading z,, as Z,),
with w = 4299 + 3201 + 3210 + 2202 + 2290 + 2211 + 212 + 221 + 230 + 2Zp3 and the
replacement equation

D
Zil = (32’01 + 3210 — 4211)5 (24)
to avoid the rb-symmetry assumption. At this point we do not try to argue

(as in the informal discussion) that the other variables can be ignored. Some
of the analogous equations for those variables are

D D
209 = (3201 — 4202) — — b2, 203 = (2200 — 2203) —, 204 = Z03—,
w w w
219 = (2200 + 2211 — 2210)— — 03, 213 = (203 + 212)97 2y = (219 + 221)—,
w w w

(25)

and the symmetrically reversed functions have symmetrically reversed equa-
tions (the 6; are defined without symmetric reversal in these equations, of
course, and w is defined in (20)). Continue the definition of the functions
Z;j(x) for z > € by the solution of these equations (%, and z{; given in (8),
the other variables in (24) and (25), together with the symmetrically reversed
versions) with initial conditions given by the values of these functions at = = €
as determined above.

Again applying the differential equation method, we deduce that (21) holds
a.a.s. as long as the solution set Z;; stays within a predefined closed domain
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which does not contain singularities of the derivatives, and also the variables
Zo1, Zoo and Z15 and their symmetrically reversed counterparts stay positive
(so that the operations can be carried out when required) and the ¢; remain
positive (so that the probability step in the algorithm is well defined). With
€, as before, we may select the domain L defined by z., > € for rb = 01,
10, 02, 20, 12 and 21, w > €1, and 6; > € for i = 1, 2 and 3. By (23) and
the symmetrically reversed versions, the first set of these inequalities hold
at x = €. On the other hand the constraints on 6; hold for ¢; sufficiently
small by a slightly deeper analysis which shows that Z, = ©(¢"**) (and then
considering (1)). Finally, w(0) = 1, and the derivative of w is clearly bounded
near 0. Thus, the solution at x = € lies within the domain L. We need to study
where the solution leaves L.

First, this is a convenient point to consider symmetry. It follows as before,
from the symmetry in the differential equations and the initial conditions,
that the unique solution is symmetric, with Z;; = Z;;. The symmetric solution
must satisfy the equations (8) and (25), with w as in (9). In discussing the
solution, we may therefore restrict our attention to the variables which appear
in these equations, ignoring z,, with r > b.

Arguing by continuity, zj; as given in (8) is strictly positive for z < d, where
d > 0 is an absolute constant independent of €. In view of the equations (4)
which was involved in the (circuitous) definition of 6; to represent ¢;, we see
that z{, is identical to 0. (The reader may find it easiest to refer to (7) in
verifying this.) Thus Zy, = Zp(€), and we obtain Z;5 = Zj5(€) in a similar
fashion. Hence, for e sufficiently small, the solution set Z;; stays inside L for
x < 0, and can only leave L when, for some x > 4,

Zo1 = €1, w = €1 or B; = €; for some 7 € {1,2,3}. (26)

Note that for € and €; sufficiently small, the initial conditions for z;; are ar-
bitrarily close to (12). Let us denote the solutions with initial conditions (12)
by Zz;;. By standard theory of first order systems of differential equations, it
follows that the functions Z;; can be made arbitrarily close to z;; in the domain
L, by taking € and ¢, sufficiently small. By (15) and the definition of z;, the
conditions corresponding to (26) for Z;; are not reached until x approaches the
z1 given in (17), at which point all Z;; reach 0 by (16). It follows that, as €
and €; tend towards 0, the value of z at the exit point of the Z;; from D also
tends towards z; = 1/2.

We also introduced the variable gy, to keep track of the number Y of times a
(1,2)-symmetric pair is processed. In phase 1, this is the only contributor to the
size of the bisection. The conclusion is that there is a deprioritized algorithm
in which the values of the variables Z;;(t) are a.a.s. nz;;(t/n) + o(n), and
Y (t) is a.a.s. ng(t/n) + o(n) where the functions z;; and g solve (8), (9), (10)
and (11), and moreover, that these functions can be made arbitrarily close to
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the solutions z;; and y with initial conditions (12). It follows that the size of
the bisection at the end of phase 1 is a.a.s.

2y(z1)n + O(0'n)
where &' — 0 as € and €; go to 0. By (16) the clean-up phase increases the

size of the bisection by a negligible amount. In view of (18), this completes
the proof of Theorem 1.

4 Analysis of the algorithm for random cubic graphs

Consider analyzing the algorithm 3-min greedy in the same way as we have
done for 4-min greedy. In the discussion leading up to (8) we obtain for a
vertex newly coloured R

3Z 27, 7
doo = — WEM do1 = — W;n doz——% do3 =0
3200 — 27 2701 — 7 7
d10=$d11=%d12=%
2710 — 2 7
dog = 10W 2 g I/11/'1
7

where W = 3Z0() + 2201 + 2210 + Z02 + Z20 + Z11, and consequently, in place
of (1)

- 67,
dop = =7
= 3200 —4Z01 5 220y + 2440 — 2414
do1 = W 1= W
(27)

b 220 — 220 doo = Zoa + Z11

02 W 12 = W

= Zy2
e — 202

03 = Ty

The difference in the analysis for algorithm 3-min greedy, given in Figure 2,
with respect to the analysis of the previous section is that we must analyse
each phase separatly, feeding to it the solutions to the differential equation in
the previous phase.
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For the non-rigorous discussion of phase 1, assume that a given iteration in
phase 1 colours a (0,1)-symmetric pair with probability ¢;, and (0,2) with
probability ¢o, where ¢ + ¢ = 1.

Analogous to (13), we find eventually (see [DDSWO02] for details of all but the
final step)

r_ —12200 r 6200 — 8201 r_ 8201 - 4211 ' 2211

Zoo = =, 2 = 2y =
00 01 11 12
R R ’ R ’ R

where R = 3zg9 + 6201 + 211, With initial conditions
200(0) = 1, 201 (0) = 211(0) = 212(0) = y(O) =0. (29)

Note that y has zero derivative because the two operations in this phase do
not add to the bisection size.

We are interested in the point that zy; first goes negative, which by numerical
solution (using an order 2 Runge Kutta algorithm) occurs when

x =z ~ 0.41178, 250 ~ 0.002405, z1; ~ 0.046633, z12 =~ 0.063700. (30)

The whole algorithm “takes off” at the start because the derivative of zy; is
strictly positive, so a.a.s. phase 1 does not quickly use up all vertices to be
processed.

At the point given by (30), since zo; and zpy are both 0, phase 2 is entered.
The situation is similar to phase 1, but with different operations. We pause to
highlight one difference. When colouring a (1,1)-symmetric pair, there is one
pair exposed from each of two vertices of type (1,1), and the expected number
of new vertices of type (0,1) arising from this is 2dy; = (474, —4Z3) /W, where
two vertices of type (1, 1) are used in this operation. The rest of the argument
is similar and the resulting differential equation is

' —6z00 , 0. o — 3200 — 8201 — 3211 — 2202, _ Zo2 t+ 2Zn
200 = TR 201 =Y, 21 = R y 19 = R

(31)

' 2201 — 2202 ' —62500 + 24201 -+ 4202 -+ 22}11
i 7

where R' = 8z¢1 + 2202 + 211, with initial conditions given by (30) and zq; =

202 = 0. (Again, see [DDSWO02] for details.) Note that the derivative of y

comes from the fact that the colouring of a (1,1)-symmetric pair increases de
bisection by two, and this is the only cause of increase of the bisection.

The point of interest is

xo =sup{z : 211 >0, w > 0}. (32)
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This corresponds to the beginning of phase 3. During phase 3 the number of
bicoloured edges created is 2 for every pair of vertices of types (1,2) and (2, 1)
(using rb-symmetry) and at most 6 for every other pair coloured except
types (0,3) and (3,0), which give none. Since zg; = 2g20 = 211 = 0 at zo,
our upper bound for the size of the bisection is thus (6zg¢ + 2212 + 2y + €)n
where the variables are evaluated at xo. Solving numerically, we find

As with the 4-regular case, we introduce a deprioritized algorithm, in Figure 3.

Pre-phase 1: do the following |en] times:
select u.a.r. a non-adjacent (0,0)-symmetric pair,
and perform Rand;
Phase 1: while all of Zy, Z19, Zp2 and Zyy are non-zero
let § = 220122202 and ¢ = 75;
with probability ¢
select a (2,0)-symmetric pair and perform Maj;
otherwise
select a (1,0)-symmetric pair and perform Maj;
Pre-phase 2: do |en] steps as in Pre-phase 1;
Phase 2: while Zy; > 0, Z1p >0 and Z71 > 1
let 0 = 320020701 and ¢y = L=202,
with probability ¢-
select a (1,0)-symmetric pair an perform Maj;
otherwise
select a (1,1)-symmetric pair an perform Rand;
Phase 3: as for Algorithm 3-min greedy.

Fig. 4. Algorithm deprioritized 3-min greedy for bisection

The formal analysis, completing the proof of Theorem 2, is essentially the
same as the previous section within each phase, so is omitted from this paper
(the interested reader may again consult [DDSW02]).

5 Maximum Bisection

Let us consider the variation of the alorithms 4-min greedy and 3-min greedy
(given in Figure 1 and 2 respectively) obtained by changing the meaning of
Maj, now we will colour a vertex with the minority colour among its coloured
neighbours.

Let us say that an edge is fully coloured when both its ends are finally coloured.
A fully coloured edge is monocoloured if both ends have the same colour and
bicoloured if both ends have different colour. So the monocoloured edges by
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min greedy get bicoloured by max greedy and vice versa, whenever the vertices
of the graph are treated in the same order (which happens with the same
probability, in both cases). That is, every edge that counts in the bisection for
one algorithm does not count in the other and vice versa. Therefore, taking
into account that the total number of edges in a 4-regular graph is 2n, and in
a cubic graph is 1.5n, we have proved Therorems 3 and 4.

6 Further remarks

We have given an application of the differential equation method to analyse the
bisection of random cubic and random 4-regular graphs, providing reasonable
bounds both for max and min bisection.

One natural problem remains open, to find the exact solution of the system of
differential equations for cubic graphs. By doing so, more accurate constants
will be obtained, up to know we have been only able to solve them numerically.
This may have also a bearing on extending the method to larger d.
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