
Bounds on the bisection width for random

d-regular graphs

J. Dı́az a,1,2 M.J. Serna a,∗,1,3 N.C. Wormald b,4

aDept. Llenguatges i Sistemes, Universitat Politecnica de Catalunya
Jordi Girona Salgado 1–3, 08034 Barcelona, Spain.

bDept. Combinatorics and Optimization, University of Waterloo
Canada N2L 3G1.

Abstract

In this paper we provide an explicit way to compute asymptotically almost sure
upper bounds on the bisection width of random d-regular graphs, for any value
of d. The upper bounds are obtained from the analysis of the performance of a
randomized greedy algorithm to find bisections of d-regular graphs. We provide
bounds for 5 ≤ d ≤ 12. We also give empirical values of the size of the bisection
found by the algorithm for some small values of d and compare it with numerical
approximations of our theoretical bounds. Our analysis also gives asymptotic lower
bounds for the size of the maximum bisection.

Key words: Bisection width, Random regular graphs

1 Introduction

Given a graph G = (V, E) with |V | = n and n even, a bisection of V is a
partition of V into two parts each of cardinality n/2, and its size is the number

∗ Corresponding author.
Email addresses: diaz@lsi.upc.es (J. Dı́az), mjserna@lsi.upc.es (M.J.

Serna), nwormald@uwaterloo.ca (N.C. Wormald).
1 Partially supported by the IST programme of the EU under contract IST-2001-
33116 (FLAGS) and by the Spanish CICYT project TIC 2001-4197-E.
2 Partially supported by the Distincio per a la Recerca 2002 of the Generalitat de
Catalunya.
3 Partially supported by the Spanish CICYT project TIC 2002-04498-C05-03.
4 Supported by the Canada Research Chairs Program and partially by the Aus-
tralian Research Council when this author was at the University of Melbourne.

Preprint submitted to Elsevier Science 15 April 2006

of edges crossing between the parts. A minimum bisection (min bisection) is a
bisection of V with minimal size. The decision problem associated to finding
a minimum bisection is known to be NP-complete [13], even for 3-regular
graphs [6]. The best approximation for min bisection on general graphs is a
O(log2 n) approximation ratio algorithm [10]. No better results are known in
particular for d-regular graphs. On the other hand, several exact polynomial-
time algorithms are known for particular graph instances (for a survey of
results see [8]) and several nice heuristics are known for the problem (see for
example [17,3]).

The size of a min bisection is called the bisection width and the min bisection
problem consists of finding a minimum bisection in a given G. In the present
paper, we give a family of randomized algorithms which give asymptotic upper
bounds as n →∞ on the bisection width of almost all d-regular graphs, where
d is fixed.

Plenty of results are known on bisection width. With respect to lower bounds,
in 1975 Fiedler gave a spectral lower bound of λ2n/4 applicable for any graph,
where λ2 is the second eigenvalue of the Laplacian of the graph [12]. In 1984,

Bollobás provided a lower bound of (d
4
−
√

d ln 2
2

)n, for almost all d-regular graphs
[4]. Later Kostochka and Melnikov proved that almost all cubic graphs have
bisection width greater than 0.101n [18]. Using spectral techniques, Bezrukov
et al. gave lower bounds of 0.082n for the bisection width of cubic Ramanujan
graphs, and of 0.176n for the case of 4-regular Ramanujan graphs [2].

Regarding upper bounds, Kostochka and Melnikov proved that asymptoti-
cally as n →∞, all d-regular graphs have bisection width of at most d−2

4
n +

O(d
√

n log n) [18]. Later, Alon proved that for n > 40d9, all d-regular graphs

have bisection width at most (d
4
− 3

√
d

32
√

2
)n [1]. More recently, Monien and Preis

[20] gave upper bounds on the bisection width of (1
6
+ ε)n for 3-regular graphs

and of (0.4 + ε)n for 4-regular graphs, for any ε > 0, when n is larger than
some function of the chosen ε. To the best of our knowledge, the most recent
result on bisection width was given in [7], where it was proved that the bisec-
tion width of a random 4-regular graph on n vertices is asymptotically smaller
than (1

3
+ ε)n, with probability tending to 1 (a.a.s.). This result was proved

by analysing a simple greedy algorithm, a variant of which yielded a bisection
of a cubic random graph on n vertices of width asymptotically almost surely
smaller than 0.174039n.

The problem of finding the maximum bisection size has also received con-
siderable attention. The max bisection problem is again NP-hard even for
planar graphs [16]. Exact polynomial-time algorithms are known for partic-
ular graphs (for instance bounded treewidth graphs [16]). There are known
constant approximation algorithms for the max bisection problem on general
graphs [15]. Moreover, there is an approximation algorithm with a 0.795 ratio

2

for d-regular graphs [11] and an approximation algorithm with a 0.9326 ratio
for the particular case of cubic graphs [14].

The max bisection size is a lower bound on the maximum size (number of
edges) of a bipartite subgraph. Locke [19] showed that a d-regular graph which
is not complete or a cycle has a bipartite subgraph with at least (nd/4)d/(d−1)
edges if d is even, and at least (nd/4)((d + 1)/d + 2/d2) edges if d is odd.
Shearer [21] improved this result to (nd/4)+n

√
d/8

√
2 for triangle-free graphs,

a property which a positive fraction of random regular graphs have. Our lower
bounds for maximum bisection in random d-regular graphs easily exceed these
bounds.

In Section 2 we present a basic randomized algorithm to find a (small) bisection
of a graph by 2-colouring its vertices in a greedy way. The next vertex to be
coloured is chosen according to a prioritisation scheme. The priority depends
on to the status of a vertex with respect to the number of neighbours it has of
either colour. Many different priority schemes were considered, each specified
by a list of the types of vertices (i.e. their possible status with respect to
colours of neighbours).

This prioritisation scheme is significant both as a simplification and as a gener-
alisation of the method in [7], where only 3-regular and 4-regular graphs were
considerd. It is a generalisation because, to each of the algorithms given there,
there are corresponding algorithms of the general type considered in this paper
which have equivalent asymptotic performance (although the algorithms do
not give identical results). It is a simplification, because the method in [7] was
to specify one or two main phases of the algorithm. In each main phase, two
types of vertex were coloured, with one of the specified types having priority.
Such detailed control of the algorithm is difficult to generalise to higher d
because of the difficulty of knowing which types of vertices might be available
when one phase ends and a new phase starts. The key idea in the present
paper is to specifiy which types of vertices should have priority over which
others, throughout the whole algorithm. The transitions between phases then
become automatic. It is hard to substantiate this claim without looking at the
algorithm in more detail, since even the definition of a phase becomes more
delicate with this approach. A similar effect occurred in the analysis of greedy
algorithms for finding independent sets in random regular graphs [23], but the
situation there was considerably simpler. In that case, the prioritisation was
merely according to the degree of a vertex during a deletion algorithm, whilst
in the present case, the best prioritisation list is much harder to determine.
Moreover, in the present case, the algorithm in some sense returns to phase
which it visited earlier, and this did not happen in [23].

In Section 3, we begin the analysis of the performance using the differential
equation method. Full justification is not included here, though we have no

3

doubt that the differential equations give a correct picture of these algorithms.
For any given d, we choose an appropriate priority list, set the equations and
solve them numerically to find the asymptotic bisection width for the random
d-regular graphs under consideration. In the same section, we produce em-
pirical evidence indicating that there are two types of optimal priority lists
of the vertices: one for even values of d and the other for odd values of d.
In Section 4, we define an associated deprioritised algorithm which we then
analyse and show that the results obtained in Section 3 correctly apply for
such algorithms. In Section 5, we give empirical results comparing the values
obtained numerically from the differential equations with the bisection width
obtained by the randomized greedy algorithm. In Section 6, we discuss the
maximum bisection results. It should be emphasised that the main contribu-
tion of this paper is to give better asymptotic bounds for the bisection width
of d-regular graphs (d > 4), and the algorithm produced in Section 2 is only
of methodological value.

2 The priority-greedy algorithm for random d-regular graphs

In this section, we describe a family of randomized greedy procedures to find
a bisection for d-regular graphs. We also introduce some generic notation to
be used later.

Given a graph, and given a partial assignment of colours red (R) and blue (B)
to its vertices, we classify the uncoloured vertices according to the colours of
their neighbours:

An uncoloured vertex is of Type (r, b), if it has r neighbours coloured R
and b neighbours coloured B.

For r ≤ b, we say that a pair of uncoloured vertices is a symmetric pair if their
types are (r, b) and (b, r) for some r and b. We then call this an (r, b)-symmetric
pair, or a symmetric pair of type (r, b).

The greedy procedure works by colouring vertices chosen randomly in symmet-
ric pairs, to maintain balancedness, and repeatedly uses the majority operation
(Maj), that colours each vertex of an (r, b)-symmetric pair, r < b, with the
majority colour among its neighbours, and, given an (r, b)-symmetric pair with
r = b, randomly colours one vertex of the pair R and the other B .

We assume that the symmetric pair types have the priorities 0, 1, 2, . . . associ-
ated with them (a larger number denotes higher priority). The priority-greedy
algorithm for random d-regular graphs is given in Figure 1.

4

Initial step: input prio(r, b) for all r ≤ b ≤ d;
select two non-adjacent vertices u.a.r.,
colour one with R and
the other with B.

Main iteration:
while there is at least one uncoloured symmetric pair

do
let (r, b) denote the highest priority type of

an uncoloured symmetric pair;
select u.a.r. an (r, b)-symmetric pair

and perform Maj;
end while

Clean up: colour any remaining uncoloured vertices,
half of them R and half B,
in any manner, and output the bisection R, B.

Fig. 1. Algorithm priority-greedy for obtaining a bisection of a d-regular graph

This algorithm takes as input a predetermined priority list assigning a dis-
tinct priority, prio(r, b), to each symmetric pair type (r, b). We impose the
conditions on all priority lists that prio(0, 0) = 0 < prio(r, b) whenever
(r, b) 6= (0, 0). Note that the priority of pairs (r, b) with r + b = d is immate-
rial since colouring vertices in such pairs cannot affect the remainder of the
algorithm. So for simplicity we assume that all such vertices have negative
priority, and only those with r + b < d need to be specified.

3 Analysis: The differential equation system derived from the priority-
greedy algorithm

We follow the description in [7], extending it to the d-regular setting for ar-
bitrary d. The algorithms considered there give equivalent results in special
cases of the priority-greedy algorithm, for particular priority lists and for d = 3
and 4. (Notice that the algorithms described in [7] for d = 3 and d = 4 are
different from the general algorithm presented in this paper)

One method of analysing the performance of a randomised algorithm is to
use a system of differential equations to express the expected changes in the
variables describing the state of the algorithm during its execution. An expo-
sition of this method can be found in [24], which includes various examples of
graph-theoretic optimisation problems.

We use the pairing model to generate n-vertex d-regular graphs u.a.r. Briefly,
to generate such a random graph, it is enough to begin with dn points in
n cells, and choose a random perfect matching of the points, which we call
a pairing. The corresponding pseudograph (possibly with loops or multiple

5

edges) has the cells as vertices and the pairs as edges. Any property a.a.s.
true of the random pseudograph is also a.a.s. true of the restriction to random
graphs, with no loops or multiple edges, and this restricted probability space
is uniform (see for example [5,25] for a full description).

We consider the priority-greedy algorithm applied directly to the random pair-
ing. As discussed in [24], the random pairing can be generated pair by pair,
and at each step a point p can be chosen by any rule whatsoever, as long as
the other point in the pair is chosen u.a.r. from the remaining unused points.
We call this step exposing the pair containing p. At each step of the priority-
greedy algorithm in which a vertex is coloured, we expose all pairs containing
points in that vertex.

Algorithms like this one typically pass through a number of phases which
cause some complications for analysis. Part of the complication is caused by
the prioritisation. There is a way of deprioritising the algorithm expounded
in [26] which makes analysis easier and does not alter the asymptotic result.
The following discussion serves both as an informal justification of the results
for the priority-greedy algorithm and also as a rigorous preparation for the
analysis of the corresponding deprioritised algorithm which we introduce later
in this section.

Informally speaking, in a typical part of the algorithm, there will be symmetric
pairs of one particular type, (r0, b0), which are plentiful in the graph and are
quite regularly chosen in the main iteration of the algorithm. Symmetric pairs
of types with higher priority may also be regularly chosen, but will be rare
and the number of such pairs in the graph will regularly drop to 0 (otherwise
those of type (r0, b0) would not be used regularly). In this situation, we say
that (r0, b0) is the basic type. The algorithm will typically pass through phases,
determined by points at which, roughly speaking, the basic type changes. A
phase finishes when either symmetric pairs with higher priorities than the cur-
rent basic type become plentiful, or those with the current basic type become
very scarce. The boundaries of the phases are best defined precisely in terms of
the solution of a set of differential equations which we now proceed to derive.

At each point in the algorithm, let Zr,b denote the number of uncoloured
vertices of type (r, b) (so that Zr,b = Zr,b(t) where t is the time, or the index
of the step in the algorithm), and let W denote the number of points not yet
involved in exposed pairs. Then

W =
∑

r+b<d

(d− r − b)Zr,b. (1)

From this point onwards, we assume the reader is familiar with the argument
in [7], and omit some of the elaborate justifications which are identical to

6

those appearing there. Let dr,b denote the expected contribution to ∆Zr,b, the
increment of Zr,b, due to exposing the pair containing a point in a vertex u
which has just been coloured red by the priority-greedy algorithm. Then the
probability that the other point chosen in the pair is in a vertex v of type (i, j)
is (d− i− j)Zi,j/(W − 1) (except for a correction of size O(1/W) due to the
change in status of u). Hence, ignoring terms of size O(1/W),

dr,b =
αd+1,r+bZr−1,b − αd,r+bZr,b

W

for r + b ≤ d, where

αx,y =

x− y if x > y,

0 otherwise.

In the following we continue to ignore terms of size O(1/W). The equations
due to the case that u is coloured blue are

dr,b =
αd+1,r+bZr,b−1 − αd,r+bZr,b

W

for r + b ≤ d. Letting d̄r,b be the sum of these two expected increments, from
the two vertices in the symmetric pair, we have

d̄r,b =
αd+1,r+b(Zr,b−1 + Zr−1,b)− 2αd,r+bZr,b

W
, (2)

for r + b ≤ d.

We now make a definition which is not rigorously stated for the priority-greedy
algorithm but becomes rigorous in the context of deprioritised algorithms (as
explained later). In fact, from here onwards, the discussion may be taken en-
tirely as motivation for the definition of the deprioritised algorithms, which
will be analysed separately. For r ≤ b, let φr,b denote the probability of pro-
cessing an (r, b)-symmetric pair at some step in a given phase. (This is not
a measurable probability for the priority-greedy algorithm since it depends
on the state of the algorithm at the time; however it will become part of the
definition of the deprioritised algorithm.) Assume that at the beginning of a
new phase, (r0, b0) is the basic type, and that symmetric pairs of this type are
plentiful. Thus, for a considerable part of the algorithm, no vertices of lower
priority will be chosen for Maj. We calculate the φ’s for the basic symmetric
pair type and all other types with higher priority.

Let B− denote the set of types of symmetric pairs with strictly greater priority
than the basic one, (r0, b0), and let B = B− ∪ {(r0, b0)}.

Given the assumption about the φ’s, the expected number of points in a blue

7

(or red) vertex when Maj is perfomed is

c =
∑

(r′,b′)∈B
(d− r′ − b′)φr′,b′ . (3)

Since the types in B− are used up as fast as they appear, we expect

φr,b = cβr,bd̄r,b, (r, b) ∈ B− (4)

where βr,b is 1 if r 6= b, and 1
2

if r = b. The function βr,b appears here because,
in the case that an (r, r)-symmetric pair is processed, there are two vertices
of that type being coloured, so the number of times the operation is required
to balance the other changes in the numbers of such vertices is halved. In
addition, we are assuming here that the vertices of both types in a given
symmetric pair are used up at approximately equal rates.

Of course there is an extra equation involving (r0, b0):∑
(r,b)∈B

φr,b = 1. (5)

Using this equation to eliminate φr0,b0 from (3), and then substituting out all
other φr,b using (4), we can easily solve for c to obtain

c =
d− r0 − b0

T
, T = 1 +

∑
(r′,b′)∈B−

(r′ + b′ − r0 − b0)βr′b′ d̄r′,b′ . (6)

Now φr,b is determined from (4) for (r, b) ∈ B−, and a little computation
produces from (5)

φr0,b0 =
1

T
+

1

T

∑
(r′,b′)∈B−

(r′ + b′ − d)βr′b′ d̄r′,b′ . (7)

Assuming validity of the equations for the φ’s, the expected increments of the
random variables Zr,b at each iteration are given for r ≤ b by

E [∆(Zr,b)] = cd̄r,b − (1 + δr,b)φr,b (8)

where δr,b is the Kronecker delta (1 if r = b, 0 otherwise). The terms subtracted
are due to the change in types of the symmetric pair of vertex being coloured;
in the case r = b, two vertices of type (r, r) are lost. Note that since (1 +
δr,b)βr,b = 1, this expected change is 0 whenever (r, b) ∈ B−, as required. For
r > b we have similarly

E [∆(Zr,b)] = cd̄r,b − (1 + δr,b)φb,r. (9)

8

As done in [7] for the case d = 4, we may express the above expected in-
crements as a set of differential equations for some approximating variables.
With z denoting the vector of zr,b, 0 ≤ r ≤ b ≤ d, we scale both time and the
variables by dividing by n, and approximate Zr,b/n by zr,b and t/n by x. Since
the scaling is by the same factor in both cases, each E [∆(Zr,b)] approximates
the differential z′r,b. Representing φ by θ, T by γ(z), d̄r,b by gr,b(z) and W/n
by w(z), the equations suggested by (8) are, in view of (6),

z′r,b =
d− r0 − b0

γ(z)
gr,b(z)− (1 + δr,b)θr,b (10)

for r ≤ b and r+ b ≤ d, where from (4) and (6), (7), (6), (2) and the definition
of W , respectively,

θr,b(z) =
(d− r0 − b0)βr,bgr,b(z)

γ(z)
, (r, b) ∈ B−,

θr0,b0(z) =
1

γ(z)
+

1

γ(z)

∑
(r′,b′)∈B−

(r′ + b′ − d)βr′b′gr′,b′(z),

θr,b(z) = 0, (r, b) /∈ B,

γ(z) = 1 +
∑

(r′,b′)∈B−
(r′ + b′ − r0 − b0)βr′b′gr′,b′(z),

gr,b(z) =
αd+1,r+b(zr,b−1 + zr−1,b)− 2αd,r+bzr,b

w(z)
,

w(z) =
∑

r+b≤d

αd,r+bzr,b.

Here, in the definition of gr,b and w, for r > b we define zr.b = zb,r. Since the
equations are symmetric when the indices are swapped over, there is no need
to keep track of the variables zr,b for r > b.

The increase in the size of the bisection due to a vertex of type (r, b) being
coloured blue is r (this always occurs in Maj if r < b, whilst if r = b it makes
no difference). The symmetric vertex being coloured red, and of type (b, r),
also increases the bisection by r. Thus, the expected increase per algorithm
step is 2

∑
(r,b)∈B r φr,b. Letting z denote the bisection size (divided by n), this

suggests the equation

z′ = 2
∑

(r,b)∈B
r θr,b. (11)

Equations (10,11) are the differential equations for a phase with (r0, b0) being
the basic type. The definition of phases is inductive in terms of the differential
equations. For phase 1, the basic type is (r0, b0) = (1, 0). Phase k will end
when either θr0,b0 = 0, in which case the basic type for phase k + 1 will have
priority prio(r0, b0) + 1, or when zr0,b0 begins to go negative, in which case,

9

the priority of the basic type (r, b) in the next phase will be initially set equal
to whichever type has highest priority among those with zr,b > 0. (If all z
are 0, the process ends.) If the end-of-phase criteria immediately apply to
the new basic type, then the next basic type is immediately redefined using
the same rule, so each phase has non-zero length unless these rules cause the
definition of basic type to be passed around in a cyclic fashion amongst basic
types each of which satisfies the criteria of the end of a phase. This seems
unlikely to happen much before the end of the process, but is not necessary
to rule out at this stage as it can be ruled out with numerical computations.
There is also the possibility that both criteria are met simultaneously; in this
case we somewhat arbitrarily choose to follow the θ test first; that is, increase
the priority of the basic variable. It seems reasonable that the priority-greedy
algorithm will spend time in a phase processing higher priority vertices if θr0,b0

becomes 0, but we do not offer a proof of this since we do not attempt here to
show that these differential equations describe the priority-greedy algorithm.
Instead, we merely use these rules and differential equations to define the
phases, and these will be used below in defining the deprioritised algorithm.

The variables’ initial conditions at the start of a phase are just their values at
the end of the previous phase. The whole calculation begins with all variables
equal to 0, except for z0,0 = 1. The size of the bisection is represented by the
value of z (scaled up by a factor n) when w(z) reaches 0, which must happen
when the values of all the zr,b reach 0 simultaneously. The last few phases are
(at least in the cases calculated below) those in which the basic type (r0, b0)
has r0 + b0 = d. Since the changes in the variables during these phases are
determinisitic, they can be skipped in practice if the appropriate quantity is
added to z. We believe that the value of z accurately represents the size of
the bisection obtained by the priority-greedy algorithm, although we prove
such a statement only for the deprioritised algorithm below. Before that, it is
interesting to look at the results.

After trying many different priority lists, solving the resulting system of differ-
ential equations using a Runge-Kutta method of order 2, we focussed on two
priority lists which appear to give the best results. The following determine
the order amongst those (r, b) with r + b < d:

List A: prio(i, j) > prio(k, l) iff j − i < l − k or (j − i = l − k and i > k).
List B: Same as List A but swapping prio(0, 2) with prio(bd/2c−1, bd/2c).

For example, with d = 5, List A places the types in the following order: (0,0),
(1,1), (2,2), (0,1), (1,2), (0,2), (1,3), (0,3), (0,4); List B puts (0,2) before (1,2)
but retains all other relative rankings.

List A appears, from the results of the calculations, to perform better for d odd
and List B performs better for d even. However, for larger d, this is not clearly

10

d 5 6 7 8 9 10 11 12

list A 0.5028 0.6675 0.8502 1.0391 1.2317 1.4278 1.624 1.823

list B 0.5247 0.6674 0.8590 1.0386 1.2318 1.4278 1.624 1.823

min(A,B) 0.5028 0.6674 0.8502 1.0386 1.2317 1.4278 1.624 1.823

Table 1
Results for lists A and B, rounded up

demonstrated to the accuracy with which we can confidently quote the results
(due to errors inherent in numerical solution of the differential equations).
The bounds obtained with Lists A and B for d ≤ 12 are given in Table 1. The
experiments were performed on a PC with a Pentium III processor. Machine
power was too limiting to go much further than this with sufficient accuracy,
but the further digits obtained, which we do not report here, suggested that
the ranking of Lists A and B according to the parity of d continues, at least
up to d = 12.

4 The deprioritised algorithm

In this section we use the approach in [26] to define and analyse the depri-
oritised algorithms which enable us to deduce the bounds on bisection width
described in Table 1.

A major complicating factor for analysis of prioritised algorithms, such as
priority-greedy, is that the rate of change of variables is not smooth: when a
vertex of one type is coloured, the effects are different from that of another type
being processed. To avoid this, we define a general deprioritised algorithm as
follows. Recall that Zr,b(t) is the number of uncoloured vertices of type (r, b) at
time t. Let Z(t) denote a vector containing all such variables. In the following,
φ(r, b, t,Z) is any predefined function such that for each fixed t and Z, the
values of φ(r, b, t,Z) define a probability function over the (r, b) which have
r ≤ b.

We also extend the definition to allow a period of time to be specified in which
the deprioritised algorithm does nothing. This is merely to simplify analysis,
and we refer to it as a static period.

The definition of the appropriate function φ, and the proof of the desired
approximation, is inductive. The inductive step is provided by the following
claim. Let z denote the solution to the differential equations described in the
previous section, and let xk denote the x value at the start of phase k (or, if
k − 1 is the final phase, xk is its end). Also let tk = bnxkc.

11

Initial step: input φ;
set t = 0;

Main iteration: repeat the following until “stop” is reached:
choose (r, b) according to probability φ(r, b, t,Z)
if no symmetric pair of type (r, b) exists, stop;
else select u.a.r. a symmetric pair of type (r, b)

and perform Maj;
Clean up: colour any remaining uncoloured vertices, half of them R

and half B, in any manner, and output the bisection R, B.

Fig. 2. General deprioritised greedy algorithm for bisection width of a d-regular graph

We say that Z(t) is δ-approximated by z(x) if for all r ≤ b we have |Zr,b(t)−
nzr,b(x)| < δn and |Zb,r(t) − nzr,b(x)| < δn. The following result refers to
the particular function z which solves (10) with initial conditions as discussed
above.

Lemma 1 For all ε > 0 there exists δ > 0 and a function φ such that for
the corresponding deprioritised algorithm, a.a.s. if Z(tk) is δ-approximated by
z(tk/n) then Z(tk+1) is ε-approximated by z(tk+1/n).

Proof We first make sure there is a plentiful supply of vertices of each type
(r, b) ∈ B− for which θr,b > 0 at some point during phase k. Let S denote the
set of such types. For (r, b) ∈ S, it must be that gr,b > 0 at some point in
the phase. This necessitates either zr,b−1 > 0 or zr−1,b > 0 at that point. If
zr′,b′ = 0 for all types (r′, b′) with r′ ≤ r and b′ ≤ b at the start of the phase
(i.e. at time tk), then gr′,b′ ≤ 0 for all these types and so the derivatives of
these variables must remain zero throughout this phase, a contradiction. So at
the start of the phase (i.e. x = xk) zr′,b′ > 0 for some type (r′, b′) with r′ ≤ r
and b′ ≤ b. Choose one such type (r′, b′) for each (r, b) ∈ S, and let S ′ denote
the set of types (r′, b′) so chosen. It is permissible for one type (r′, b′) to serve
two types (r, b).

Now we turn to defining a function φ for the initial stage of the deprioritised
algorithm, and we do this for some δ > 0 to be chosen later, along the way
noting some upper bounds on δ. Let ẑ denote the minimum value of zr′,b′(xk)
over all (r′, b′) ∈ S ′. At the beginning of the phase, the deprioritised algorithm
performs a prephase of bnẑδ′/(4d + 4)c steps with φ(r′, b′, t,Z) = 1/|S ′| for
each (r′, b′) ∈ S ′ and φ(r′, b′, t,Z) = 0 otherwise. We specify δ < ẑ/4, and
specify the constant δ′ later. By the hypothesis of the claim, there are sufficient
symmetric pairs of each type for the steps in the prephase to be carried out
without running into the stop condition in the main iteration, since at most
2d + 2 vertices change type in any one step.

We may apply [Theorem 3][26] (see [24] for a full description of the method),
to the random variables Zr,b whose expected changes in one step are given, as
in the argument above, by (8) and (9). We deduce from this result that the

12

variables Zr,b will a.a.s. follow, with error o(n), the trajectory of the differential
equations determined as given by (10) but with θr,b set equal to 0 apart from
θr′,b′ = 1/|S ′| for each (r′, b′) ∈ S ′. Again there is a symmetry in swapping the
indices. The initial conditions of the equations are given by Zr,b(tk)/n.

If we instead change the initial values to zr,b(xk) for all r and b, the error in-
troduced is by hypothesis at most δ. Standard theory of first order differential
equations implies that the error this produces at the end of the prephase is at
most h(δ) for some function h → 0 as δ → 0.

It follows that a.a.s. at the end of the prephase there are nfr,b+O(nh(δ))+o(n)
vertices of each type (r, b), for some function fr,b determined by the differential
equations. By taking δ and δ′ sufficiently small, it follows that for any desired
ε0 > 0, a.a.s. Z(tk + δ′) is ε0-approximated by z((tk + δ′)/n).

We need one more observation before leaving the prephase. It is easy to see
from the definition of S ′ that the derivatives of all variables zr,b for (r, b) ∈ S
are strictly positive after the beginning of the prephase. Thus fr,b > 0 for all
such types, and so by taking δ much smaller than δ′, we may ensure that a.a.s.
Zr,b ≥ nfr,b/2.

After the prephase, φ(r, b, t, z) is defined using equations (4), (6) and (7) (so
t does not enter its formula, but the zr,b do, however these must be viewed
for the purpose of defining φ as arbitrary indeterminates and not the solution
to the earlier differential equation). Then of course φ(r, b, t,Z) is used as the
probability in the main iteration in the algorithm. The expected changes in
the values of the Zi,j in one step can then be calculated (asymptotically),
given their values at the beginning of the step, and the result is (8) and (9)
(again ignoring the O(1/W) terms). All of the derivation of the differential
equation (10) is now valid, although the initial conditions are determined by
the (stochastic) values of the variables after the pre-phase.

Note that the definitions of φ, and through it the θr,b, ensure that z′r,b = 0
for all (r, b) ∈ B−. Arguing as for the prephase, the variables Zr,b will a.a.s.
follow, with error o(n), the trajectory of the differential equations determined
by (10), but with these new initial conditions, until either the end of the phase
is reached or one of the variables reaches 0. This a.a.s. does not happen with
Zr,b for (r, b) ∈ B− since it follows the solution, which remains a non-zero
constant, with error o(n). It may happen with (r0, b0), but not until within
o(n) of nx̂, where x̂ is the point at which the differential equation solution
for zr0,b0 reaches 0. By taking ε0 sufficiently small, x̂ can be made as close as
desired to xk+1. We may then define a static period until tk+1, and take ε0

small enough to ensure that a.a.s. Z(tk+1) is ε-approximated by z(tk+1/n).

The argument requires a minor variation for a phase in which w(x) is not
bounded away from 0. This must necessarily be the last phase, as all variables

13

must tend to 0. The derivatives given in the right hand side of (10) do not
then have bounded derivatives in the domain of interest. In this case we may
terminate our examination of the algorithm at time tk+1−nε0. The changes to
the variables Zr,b during a further nε0 steps are O(nε0). So the same conclusion
holds. Note that the denominator γ(z) cannot approach 0 since it represents
T in (6), and as seen from the formula for c, which has non-zero numerator,
T is bounded below because c is bounded above. The latter follows from (3)
since the sum of the φ’s is 1. This completes the proof of the lemma. 2

Using Lemma 1 and induction, we immediately obtain the following result.

Theorem 1 Let k0 be any fixed integer for which phase k0 exists and let δ > 0
be given. Then there is a φ(r, b, t, z) such that in the associated deprioritised
algorithm, a.a.s. Z(tk) is δ-approximated by z(tk/n) for k = 1, 2, . . . , k0.

The same argument also applies to the variable z with differential equa-
tion (11). Thus, nz(xk0) + o(n) is a.a.s. an upper bound on the size of the
bisection width of a random d-regular graph. The results on z(xk0) are de-
scribed above. Note that one does not need to prove that a phase k0, where
numerical computations are terminated, is the final phase. All that is needed
is to verify (largerly numerically) that the correct phases are computed, with
all variables staying in the appropriate domain, up to phase k0, which in all
cases considered here was a phase with r0 + b0 = d. As mentioned above, the
size of the final bisection can be computed by stopping at such a point.

An example of what could potentially cause a difficulty with this approach is
that the value of zr0,b0 could remain very close to 0 at the start of a phase. Then
the numerical evidence may not distinguish whether this phase continued or
another should begin, thereby introducing large uncertainties into the results.
Luckily, for all the results reported in this paper, each phase which lasted long
enough to affect the results was such that the results verified its validity: if
zr0,b0 and z′r0,b0

are both close to 0 at the start of a phase then z′′r0,b0
(which can

be computed from the differential equations) has a appreciable positive value,
so that even allowing for the numerical errors, it must be positive. Similarly,
at the start of each phase either φr0,b0 is appreciably greater than 0, or the
phase terminates immediately on the basis of the numerical calculation.

5 The experimental upper bounds

We have also generated a set of d-regular graphs for each d = 5 to 12, following
the method described in [22]. We repeated the algorithm 10 times on each of
the graphs, with priorities given by List A for d odd and List B for d even. The
results, for five graphs with 105 vertices and two graphs with 2× 105 vertices,

14

e5-1 e5-2 e5-3 e5-4 e5-5 av:e5 2e5-1 2e5-2 av:2e5

d=5 avg 0.5046 0.5087 0.5042 0.5046 0.5038 0.5052 0.5036 0.5040 0.5038

max 0.5060 0.5463 0.5060 0.5061 0.5060 0.5045 0.5052

0.5028 min 0.5026 0.5026 0.5019 0.5035 0.5025 0.5032 0.5031

d=6 avg 0.6692 0.6710 0.6695 0.6690 0.6689 0.6695 0.6687 0.6691 0.6689

max 0.6719 0.6849 0.6720 0.6724 0.6711 0.6692 0.6703

0.6674 min 0.6675 0.6682 0.6670 0.6672 0.6675 0.6677 0.6683

d=7 avg 0.8517 0.8515 0.8517 0.8522 0.8516 0.8517 0.8511 0.8516 0.8513

max 0.8536 0.8534 0.8541 0.8530 0.8545 0.8533 0.8524

0.8502 min 0.8443 0.8482 0.8502 0.8511 0.8498 0.8496 0.8509

d=8 avg 1.0410 1.0397 1.0403 1.0406 1.0404 1.0407 1.0407 1.0402 1.0404

max 1.0438 1.0420 1.0426 1.0427 1.0422 1.0432 1.0416

1.0386 min 1.0388 1.0378 1.0384 1.0379 1.0378 1.0392 1.0384

d=9 avg 1.2340 1.2339 1.2336 1.2333 1.2335 1.2336 1.2325 1.2342 1.2333

max 1.2374 1.2366 1.2353 1.2352 1.2357 1.2331 1.2364

1.2317 min 1.2312 1.2306 1.2313 1.2308 1.2309 1.2316 1.2326

d=10 avg 1.4292 1.4303 1.4289 1.4296 1.4300 1.4296 1.4291 1.4288 1.4289

max 1.4326 1.4327 1.4299 1.4315 1.4333 1.4300 1.4301

1.4278 min 1.4265 1.4293 1.4275 1.4280 1.4281 1.4283 1.4272

d=11 avg 1.6257 1.6256 1.6256 1.6256 1.6262 1.6258 1.6251 1.6254 1.6254

max 1.6276 1.6276 1.6286 1.6273 1.6288 1.6264 1.6270

1.624 min 1.6227 1.6234 1.6236 1.6240 1.6239 1.6243 1.6240

d=12 avg 1.8245 1.8248 1.8241 1.8241 1.8257 1.8246 1.8241 1.8244 1.8244

max 1.8264 1.8273 1.8270 1.8260 1.8273 1.8248 1.8254

1.823 min 1.8231 1.8214 1.8226 1.8226 1.8223 1.8237 1.8236

Table 2
Size of the bisection obtained by the greedy algorithm for five graphs with n = 105

(e5-*) and two graphs with n = 2× 105 (2e5-*). The asymptotic almost sure upper
bound from the differential equation analysis is given in the left column.

for each d = 5, . . . , 12 are summarized in Table 2. The left column of the table
includes the bound via the differential equations. The mean, max and min of
the bisection values obtained using Algorithm 1 are given for each graph, and
the means are also averaged over all graphs of each of the two sizes. 5

5 For any reader interested in checking the experiment, the graphs generated can
be found at:
http://www.lsi.upc.es/˜mjserna/dregraphs.html

15

6 Maximum Bisection

Let us consider the variation of the priority-greedy algorithm obtained replac-
ing the majority operation (Maj) with the minority operation, that asigns to
a vertex the colour minority among its coloured neighbors. Let us call this
variation max priority-greedy.

Define an edge to be fully coloured when both its ends are finally coloured.
A fully coloured edge is monocoloured if both ends have the same colour and
bicoloured if both ends have different colour. So the edges monocoloured by
priority-greedy get bicoloured by max priority-greedy and vice versa, whenever
the vertices of the graph are treated in the same order (which happens with
the same probability, in both cases) and the vertices that are not coloured by
a Maj/Min operation get opposite colors (which again happens with the same
probability). That is, every edge that counts in the bisection for one algorithm
does not count in the other and vice versa. So, taking into account that the
total number of edges in a d-regular graph is dn/2, we have the following
complementary bounds for the maximum bisection: the size of the maximum
bisection in a random d-regular graph is a.a.s. at least dn/2 − cdn, where cd

is the min value given in Table 1 in column d. (Note that cd greater than the
best possible constant, produced from our argument, in both cases.)

7 Conclusions

As mentioned above, in [7] there is an analytic expression for the bound ob-
tained on the bisection width of a random 4-regular graph, obtained from
differential equations corresponding to the priority-greedy algorithm. When
run for d = 4, Lists A and B give the same theoretical result, because the
types (0, 2) and (1, 2) never become basic: there is only one phase, with (0, 1)
basic (see [7], where the algorithm is expressed in a different way but gives
the same differential equations).

In this paper we have proposed a randomized greedy procedure which bounds
the bisection width of any d-regular graph, and analyzed its typical perfor-
mance on random d-regular graphs. The algorithm uses a predefined list of
priorities. Furthermore, a related algorithm shows complementary bounds for
the maximum bisection size. We give a proof that for any given list, and any
d ≥ 3, the values of the size of the bisection obtained by the related depriori-
tised algorithm are concentrated around the value determined by the solution
of a set of differential equations.

Experimentally, we notice that a good list of priorities is given by List A for

16

d ≥ 6 even and List B for d ≥ 5 odd. It remains an open problem to search for
other possible lists of priorities that improve the outcome of the algorithm. In
Table 1, we get the asymptotic bisection width as solution to the differential
equations (the tables reflect the constant to be multiplied by n). We may
compare with the asymptotic lower bound of Bollobás and the asymptotic
value of the upper bound of Alon, which is a deterministic one. For instance,
for d = 5, Bollobás’ lower bound yields 0.31917n, Alon’s upper bound yields
1.15118n, while our upper bound is 0.5028n. Furthermore, the complementary
lower bounds we get on max bisection are well above the known lower bounds
for all d-regular graphs, triangle-free or not.

Moreover, as can bee seen from Table 2, even for rather small values of n, the
size of the bisection obtained by the algorithm is close to the solution deter-
mined by the differential equations. As n grows, this phenomenon strengthens.

The main open problem is to improve the upper bound on the bisection width.
One way to do this may be to find better priority lists.

References

[1] N. Alon. On the edge-expansion of graphs. Combinatorics, Probability and
Computing, (6):145–152, 1997.

[2] S.L. Bezroukov, R. Elsasser, B. Monien, R. Preis, and J.P. Tillich. New spectral
lower bounds on the bisection width of graphs. In: U. Brandes and D. Wagner,
editors, 26th. Graph-Theoretic Concepts in Computer Science, volume 1928,
pages 23–34. Springer, Lecture Notes in Computer Science, 2000.

[3] S. Boettcher, and A. Percus. Extremal optimization for graph partitioning.
Physical Review, 64:26114-1–26114-13, 2001.

[4] B. Bollobás. The isoperimetric number of random regular graphs. European
Journal of combinatorics, 9:241–244, 1984.

[5] B. Bollobás. Random Graphs. Second Edition. Combridge University Press,
2001.

[6] T. Bui, S. Chaudhuri, T. Leighton, and M. Sipser. Graph bisection algorithms
with good average case behavior. Combinatorica, 7:171–191, 1987.

[7] J. Dı́az, N. Do, M.J. Serna, and N.C. Wormald. Bounds on the max and min
bisection of random cubic and random 4-regular graphs. Theoretical Computer
Science, 307:531–548, 2003.

[8] J. Dı́az, J. Petit, and M.J. Serna. A survey on graph layout problems. ACM
Computing Surveys, 34:313–356, 2002.

17

[9] W. Duckworth and N.C. Wormald Minimum independent dominating sets of
random cubic graphs. Random Structures and Algorithms, 21:147–161, 2002.

[10] U. Feige and R. Krauthgamer. A polylogarithmic approximation of the
minimum bisection. In: 41st. IEEE Annual Symposium on Foundation of
Computer Science, pages 23–26, 2000.

[11] U. Feige, M. Karpinski, and M. Langberg. A note on approximating Max
Bisection on regular graphs. Information Processing Letters, (79):181–188, 2001.

[12] M. Fiedler. A property of the eigenvectors of nonnegtive symetric matrices and
its application to graph theory. Czechoslovak Mathematical Journal, (25):619–
633, 1975.

[13] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman, San Francisco, 1979.

[14] E. Halpering, D. Livnat, and U. Zwick. Max Cut in cubic graphs. In: 13th.
Symposium on Discrete Algorithms, pages 506–513, 2001.

[15] E. Halpering, and U. Zwick. A unified framework for obtaining improved
approximation algorithms for maximum graph bisection problems. Random
Structures and Algorithms, (20):382–402, 2002.

[16] K. Jansen, M. Karpinski, A. Lingas, and E. Seidel. Polynomial time
approximation schemes for MAX-BISECTION on planar and geometric graphs.
In: A. Ferreira and H. Reichel, editors, 18th. Ann. Symposium on Theoretical
Aspects of Computer Science, volume 1938, pages 365–375. Springer, Lecture
Notes in Computer Science, 2001.

[17] M. Jerrum, and G. Sorkin. The Metropolis algorithm for graph bisection.
Discrete Applied Mathematics, 8:155–175, 1998.

[18] A.V. Kostochka and L.S. Melnikov. On bounds of the bisection width of
cubic graphs. In: J. Nesetril and M. Fiedler, editors, Fourth Czechoslovakian
Symposium on Combinatorics, Graphs and Complexity, pages 151–154. Elsevier
Science Publishers, 1992.

[19] S.C. Locke. Maximum k-colorable subgraphs. J. Graph Theory 6(2):123–132,
1982.

[20] B. Monien and R. Preis. Upper bounds on the bisection width of 3 and 4-regular
graphs. In: A. Pultr J. Sgall and P. Kolman, editors, Mathematical Foundations
of Computer Science, volume 2136, pages 524–536. Springer, Lecture Notes in
Computer Science, 2001.

[21] J.B. Shearer. A note on bipartite subgraphs of triangle-free graphs. Random
Structures Algorithms 3(2):223–226, 1992.

[22] A. Steger and N.C. Wormald. Generating random regular graphs quickly.
Combinatorics, Probabability and Computing, 8:377–396, 1999.

18

[23] N.C. Wormald. Differential equations for random processes and random graphs.
Annals of Applied Probability, 5:1217–1235, 1995.

[24] N.C. Wormald. The differential equation method for random graph processes
and greedy algorithms. In M. Karoński and H. Prömel, editors, Lectures on
Approximation and Randomized Algorithms, pages 73–155. PWN, Warsaw,
1999.

[25] N.C. Wormald. Models of random regular graphs. In Surveys in Combinatorics,
pages 239–298. Cambridge University Press, 1999.

[26] N.C. Wormald. Analysis of greedy algorithms on graphs with bounded degree.
EuroComb’01 (Barcelona). Discrete Mathematics, 273:235–260, 2003.

19

