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Abstract

We give a new lower bound on the length of the minimal Steiner tree with a given
topology joining given terminals in Euclidean space, in terms of toroidal images. The
lower bound is equal to the length when the topology is full. We use the lower bound
to prove bounds on the “error” e in the length of an approximate Steiner tree, in terms
of the maximum deviation d of an interior angle of the tree from 120◦. Such bounds are
useful for validating algorithms computing minimal Steiner trees. In addition we give a
number of examples illustrating features of the relationship between e and d, and make
a conjecture which, if true, would somewhat strengthen our bounds on the error.
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1 Introduction

We consider Steiner trees in 3-dimensional Euclidean space E3. Given a set of points in E3

which we call terminals, a Steiner tree is an embedding of a tree containing the terminals
in which each edge is a straight line segment, and each nonterminal vertex, called a Steiner
point, has degree 3 and the three incident edges make three 120◦ angles. Basically everything
we deal with applies also to Ed where d ≥ 3, but for simplicity we restrict the discussion to
the case d = 3. A Steiner tree is called full if all the terminals are leaves, i.e. vertices of degree
1. Otherwise, as commonly done in [5], any Steiner tree can be decomposed at the terminals
of degree > 1 into full components.

The minimum length network joining a set of terminals is a Steiner tree [5], and we
refer to the problem of finding a minimum length network as the Steiner tree problem. The
performance ratio of an approximation algorithm for the Steiner tree problem is the largest
ratio (over all sets of terminals) of the length of the tree found by the algorithm to the
length of the minimum Steiner tree, which is the minimum length network. Zelikovsky [8]
and others have designed a number of approximation algorithms for the Steiner tree problem
for which performance ratios have been given. In particular, Arora [1] finds a polynomial-time
approximation for the Steiner tree problem whose result can be guaranteed (regardless of the
dimension) to be within a factor 1 + ε of the optimum for any fixed ε > 0. However, Arora’s
approach has not yet led to a practical algorithm for reasonably small ε (even ε = 0.1 say).

It is easy to give an upper bound on the length of a minimum Steiner tree, since the
length of any network, in particular any tree, connecting the terminals provides such a bound.
However, finding lower bounds is not so easy. In this paper we generalise an observation of
Smith [7] for four terminals, to give a general lower bound for arbitrary sets of terminals, in
terms of toroidal images. We then use this to give more specific lower bounds based on angles
created by the edges of an approximating tree.

After we obtained the results on toroidal images in this paper (in particular Theorems 3.1
and 3.2), they were communicated to the authors of [3], who made some use of them (though
our priority might not otherwise be clear, because [3] happened to appear first).

Minimum networks connecting terminals in Euclidean space have a significant feature,
which was observed from the very beginning: not only (as observed above) do all angles at
Steiner points equal 120◦ (and every Steiner point has degree exactly 3), but, moreover, this
angle condition uniquely characterises the minimum tree connecting the terminals with any
given topology (provided all terminals are leaves of the tree). This property has been used
to design approximations, e.g. see Chang [4] and Beasley [2]. In particular, Smith [7] gave an
approximation algorithm for minimum Steiner trees in d-dimensional Euclidean space which
is practical for small sets of terminals and small d. However, no guaranteed performance ratio
at all has been published for such algorithms.

Specifically, in d-dimensional Euclidean space the following criterion was used in [7] for
when a full tree T is a close enough approximation to a Steiner tree with the same topology:
for some predetermined ε > 0, all angles formed by the edges at the Steiner points of T are
at least 120◦ − ε. (Note that some angle formed by three edges meeting at a point must be
at most 120◦.)

In this paper we address, in particular, the unresolved question of bounding the error in
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an approximate Steiner tree (with a given topology) in terms of the maximum deviation ε
from 120◦ at the angles formed by edges. We conjecture that, for ε sufficiently small, the
performance ratio is at most 1 + Cε for some absolute constant C, uniformly over all sets of
terminals and all numbers of terminals. This statement is made precise in Section 2. Failing
to prove this, we are interested in bounding the performance ratio, ρ, as a function of ε and
n. For given n, it is desirable to find the behaviour of ρ − 1 as ε → 0, since an algorithm
designer may decrease ε in order to improve the ratio. Our best result essentially achieves the
bound ρ − 1 = O(ε log n) for sufficiently small ε (see Corollary 2.1). This problem concerns
an arbitrary number of angles and so we do not attempt to replace the constant implicit in
O(·) by an explicit constant, as the best possible result would be complicated. Our results
resemble one of the main tools of Lin and Han [6], who characterise an approximate solution
to another geometric problem (of finding the distance between two ellipsoids) in terms of just
two angles between vectors.

A key feature of our approach is useful in other ways. We determine, for any set T of
terminals and given topology of a Steiner tree on those terminals, a set ST of points in E3

(which can be specified as a toroidal image) such that the length of the minimum Steiner tree
with the given terminals and topology is equal to the maximum distance between a specified
terminal and all the points in the set.

Smith [7] gave a proof of this result in the case of four terminals. One can also construct
two toroidal images and obtain the length of the minimum Steiner tree as the maximum
distance between points in the two image sets. One immediate corollary of our results is that
one can compute a lower bound on the length of a Steiner tree (with given terminals and
topology) by computing the distance between the specified terminal and any point in ST .
In the case of two toroidal images, one can similarly obtain a lower bound as the distance
between any two points in the two images. On the other hand, one easily gets an upper bound
by computing the length of any tree containing all the terminals (with, presumably but not
necessarily, angles close to 120◦).

Our results on angles suggest a very convenient way of calculating a lower bound which
could be used in conjunction with Smith’s algorithm, simply by obtaining an upper bound on
the constant implicit in O(·) mentioned above. Our results on toroidal images also suggest
that other direct approaches may be possible, similar to that in [6].

2 Preliminary results on angles

We start with some definitions and notation. We will use T to denote a tree, which can be
full or non full. The terminals of T will be denoted by N and |N | will denote the number of
terminals. The topology of T will be denoted by T and L(T ) will denote the length of T .

Define an ε-approximate Steiner tree for a given set of terminals to be a tree whose vertices
include the terminals, possibly as well as other vertices of degree 3, whose edges are straight
line segments, and such that all angles between edges meeting at a vertex are within ε◦ of
120◦. The non-terminal vertices are called pseudo-Steiner points. A cherry of such a tree is a
pair of terminals incident with a common pseudo-Steiner point. Note that every full tree with
at least four vertices must have at least two cherries. (This can be proved by considering the
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tree obtained by deleting all leaves: it must have at least two leaves, which give the required
cherries.)

The set of full ε-approximate Steiner trees with n terminals, is denoted by Aε(n). Let us
define two functions of interest. First, given a full tree T embedded in E3, let S(T ) denote the
minimum length tree with the same terminals and topology as T (permitting degeneracies,
which means that some edges may have zero length). Define

F (ε, n) = sup
T∈Aε(n)

L(T )

L(S(T ))
− 1.

Perhaps the first thing to do is check that this quantity is finite. This is easy to verify.

Lemma 2.1 For all n ≥ 2 and all ε < 120◦, F (ε, n) ≤ Kn−1 for some K = K(ε).

Proof We define a function C = C(ε) below, and prove by induction that if n terminals
are in a region of diameter D, then the length of an ε-approximate tree T is bounded above
by a function f(n,D), where f(n, D) = 2(n − 1)D(C + 1)n−2, n ≥ 2. Clearly, the length
of the minimum Steiner tree S is at least half of the minimum possible value of D. (This
follows since all terminals are within distance L(S) of one terminal.) Combining these will
then imply the lemma.

For n = 2, the bound f(n,D) = D is immediate. For general n > 2, take any cherry of T .
Its terminals have distance at most D apart, and it is easy to see that the pseudo-Steiner point
s in the cherry must have distance at most CD from each of the terminals, where C = C(ε)
depends only on ε. Hence, deleting the cherry except for s, which becomes a terminal, we
obtain a new ε-approximate Steiner tree on n−1 terminals, and L(T ) ≤ f(n−1, (C +1)D)+
2CD by induction on n. The inductive claim follows, since f(n − 1, (C + 1)D) + 2CD =
f(n,D) + 2CD − 2D(C + 1)n−2 ≤ f(n,D) for n ≥ 3.

We next give an example showing that for large ε, there is no upper bound on F (ε, n)
which is independent of n.

Lemma 2.2 For ε > 60◦, there exists a constant c(ε) > 0 such that F (ε, n) > nc for infinitely
many n.

Proof Let Ur denote the sphere of radius r centred at the origin. For k ≥ 2 we construct a
set of n = 2k terminals on U1, and an ε-approximate Steiner tree T with these terminals such
that L(T ) ≥ (2 + δ)k−1 for some δ = δ(ε) > 0.

We describe the last steps of the construction first: we first give the idea of how to locate
the terminals on U1, given the locations of the Steiner points of the cherries. Given any point
s on U2, it is easy to verify that s is a pseudo-Steiner point in a cherry with terminals on
U1, where the angle between the edges at s is precisely 60◦, and so is the angle they make to
the tangent plane to U2 at s. The lines to the terminals from s are actually tangent to U1.
For ε > 60◦, the angle between the edges at s can be made equal to 120 − ε◦ by moving to
U2+δ for some δ = δ(ε) > 0 whilst the angles to the tangent plane at s become larger. Hence,
given any 2k−1 points on U2+δ, these can be made pseudo-Steiner points in cherries which can
appear in an ε-approximate Steiner tree with 2k terminals in U1. The condition on angles to
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the tangent planes permits us to iterate this construction, we may construct two trees, each
with 2k−1 terminals, starting with any two desired points on U(2+δ)k−1 . By choosing these two
points sufficiently close together, an ε-approximate Steiner tree can be completed. Its length
is at least twice the distance from U1 to U(2+δ)k−1 , whilst the minimum Steiner tree has length
at most n = 2k (by simply joining each terminal on U1 to the origin). The lemma follows.

For algorithms seeking approximately minimal trees, one searches potential topologies of
the minimum Steiner tree and looks at ε-approximate trees. So in fact the main question
about approximation needs to be asked about trees with the same topology as the minimum
Steiner tree. Define Aε(n) to be the set of trees T in Aε(n) such that the minimum Steiner
tree for the terminals of T has the same topology as T , and put

F (ε, n) = sup
T∈Aε(n)

L(T )

L(S(T ))
− 1.

We immediately have
F (ε, n) ≤ F (ε, n). (1)

Despite the more practical relevance of F (ε, n), we have no results about it other than via
F (ε, n).

Our emphasis (with a basis in practical considerations) will be to determine the behaviour
of F (ε, n) or F (ε, n) for very small ε. This is because an algorithm of successive approximations
can cause the angle error to be as small as we like for any given n. When we make assumptions
like ε < n−3 for convenience, we believe the results still give a good idea of the behaviour for
large n even when the bound on ε is relaxed considerably.

We next give a lower bound on F (ε, n) valid for all ε, including small ε, unlike Lemma 2.2.
Note that Ω(x) denotes a function bounded below by some positive constant times x.

Lemma 2.3 F (ε, n) ≥ Ω(ε) for all n.

Proof We give an example with a full topology on n terminals, though of course for non-full
trees, the case n = 3 suffices to prove the result. Take T0 to be a centrally symmetrical Steiner
tree in the x, y-plane with all edge lengths 1, and with all terminals having paths of length k to
the central Steiner point. (Thus many terminals will actually coincide, but a tiny perturbation
permits us to ignore this.) Take T to be a tree with the same terminals as T0, but with all
pseudo-Steiner points lying above the plane so that they project onto the Steiner points of T0,
and with maximum angle errors (all angles 120◦−ε). This can be done very symmetrically, so
that the gradients (in the z direction) of the edges from the central pseudo-Steiner point s are
all equal (and roughly c

√
ε), and all pseudo-Steiner points of given distance from s have the

same z coordinate. (Note that if the upper edge enters a true Steiner point with downward
gradient α, where α is small, and the other two edges are placed symmetrically, then their
downward gradients are approximately α/2. So the symmetrical placement can only be done
so that all edges have gradients O(

√
ε).) Hence L(T )− L(T0) = O(εL(T0)).

Returning to the consideration of upper bounds, we next give an example to demonstrate
that, in a certain sense, the upper bound in the proof in Lemma 2.1 does not give an entirely
misleading picture of ε-approximate Steiner trees. We show that for arbitrarily small ε, there
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exist ε-approximate Steiner trees in which the distance from some of the pseudo-Steiner points
to the convex hull of the terminals is an arbitrarily large multiple of the diameter of that convex
hull. This shows how little physical similarity there may be between the minimum Steiner
tree T0 and an ε-approximate Steiner tree T with the same set of terminals. This does not
yield a lower bound, but has an implication that certain approaches for upper bounds will
not work, or will be very difficult to carry out. For, if ε is much bigger than 1

ln n
, it is clear

from the following example that there is no strong relation between the length, position or
angle of an edge of T and the corresponding edge of T0.

Example For all ε > 0 sufficiently small there is some C > 0 such that we can construct
for all n an ε-approximate tree with n terminals, all located within a unit ball centred at
the origin, and such that one of the pseudo-Steiner points has distance at least nCε from the
origin. This is in the spirit of the proof of Lemma 2.2. Begin with a point s of distance R
from the origin (R to be determined), and construct three points si (1 ≤ i ≤ 3) such that
the angles which the edges sis make at s are within ε of 120◦ and |P0si| = R(1 − ε/2) for
each i, where P0 denotes the origin. (This can be done by taking the three edges pointing
inwards from the surface of the sphere through s0 centred at P0, and choosing the si to be
the closest points to P0 on these lines. In fact ε/2 can be increased to some constant times√

ε, but this is not needed.) Then branch again at each si, again choosing edges entering the
sphere through si centred at P0, with the entering angles at least ε/2. After i branchings, the
distance from the branch points to P0 is R(1− ε/2)i. When this quantity is less than 1, stop
and make these points terminals. The number of terminals is n = 3 × 2i−1. We may choose
R(1− ε/2)i = 1, so that ln R = −i ln(1− ε/2) > C ′iε > Cε ln n, as required.

We conjecture that the error in an ε-approximate Steiner tree cannot be substantially
larger than that given in Lemma 2.3, when ε is sufficiently small.

Conjecture 2.1 There exists ε0 > 0 such that uniformly for all 0 < ε < ε0 and all n,

(a) F (ε, n) = O(ε),

(b) F (ε, n) = O(ε).

(c) For any d > 3, the analogues of (a) and (b) hold for trees in Ed.

Note that (a) implies (b). The separate statement (b) is included in case (a) is false, since
(b) is important for algorithmic purposes. To express it in words, part (a) says that there
exists a constant c such that for ε > 0 sufficiently small the following is true. Let T0 be a
Steiner tree for a set of n terminals (not necessarily the minimum tree for those terminals).
Let T be an ε-approximate tree with the same topology as T0 and the same terminals. Then
L(T )− L(T0) is at most cεL(T0).

As a first step we will prove the following. Although it gives a weaker bound than our
next result, it requires less conditions on ε and has a much simpler proof.

Theorem 2.1 Let ε0 < 120. Uniformly for all ε < ε0, F (ε, n) ≤ O(n2
√

ε).

Then in Section 4 we will prove the following result, which is much sharper for small ε.
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Theorem 2.2 Uniformly for all ε < n−2, F (ε, n) ≤ O(ε(log n + n3ε)).

Corollary 2.1 Uniformly for all ε < n−3 log n, F (ε, n) ≤ O(ε log n).

So we have come within a factor of log n of Conjecture 2.1, provided ε is sufficiently small
compared with n.

Note 1. It is easy to get planar examples with “error” of the order of nε2L for large n,
though the conjecture would imply that this would not occur if ε is much bigger than 1/n.

Note 2. Our proofs immediately give the same results for d dimensions, d ≥ 4. For d = 2
the same method gives a more precise result, but for this there are presumably other methods
available as well.

Proof of Theorem 2.1 Start with an ε-approximate tree T with ε < ε0. At each pseudo-
Steiner vertex in turn, make the angles precisely equal to 120◦, by rotating the three branches
of the tree at the vertex, keeping the whole of each branch rigid so that the angles at all
other vertices are fixed. To effect this change, the edges at the vertex only have to move
through angles O(

√
ε). Each rotation moves all terminals a distance at most O(

√
ε)L(T ).

After proceeding through all pseudo-Steiner vertices, we have a true Steiner tree T ′, of the
same length as the original tree T , but in which each terminal has moved distance at most
O(n

√
ε)L(T ). If we now move these terminals back to their original positions, with the natural

induced motion of the Steiner tree, preserving its 120◦ angles, the total change in length of the
tree is at most O(n2

√
ε)L(T ). (If the topology of the Steiner tree remains nondegenerate, this

comes from a standard first derivative argument; see Hwang et al. [5]. If it becomes degenerate,
we can permit “negative length” edges in a standard way to preserve the argument.) So the
Steiner tree for these terminals, with the same topology as T , is O(n2

√
ε)L(T ) shorter than

T ′ and hence T .

3 Toroidal images

Given n terminals in R3 and a choice of full topology, we can generate a toroidal image, by
generalising the planar procedure of Melzak (see Hwang et al. [5]). In R3, the procedure
consists of successive iterations of a step in which a cherry of the topology is chosen, and the
two leaf terminals are “merged” into a new terminal on the equilateral circle, i.e. the set of
positions of the third point of an equilateral triangle with two vertices at the cherry points.
In the given full topology, the Steiner point incident with the two cherry vertices disappears
and its neighbour is joined in the topology to the new terminal on the equilateral circle. We
will call this new terminal an equilateral point; it corresponds to the Melzak or Simpson point
for Steiner trees in the plane.

The new cherry can be chosen in any manner at each step, but we may fix any sequence of
choices by referring to the original topology. For simplicity of discussion, at first we restrict
to the case that there is a reserved terminal tf , called the final terminal, that is never chosen
in a cherry (and hence remains till there is only one other terminal). The procedure is called
“unfolding” the original topology with respect to the sequence of cherries (where each cherry,
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after the first, exists in an intermediate topology). At the end, the topology has been unfolded
to an interval, which joins the final terminal with the last equilateral point chosen.

Points on the equilateral circle can be parametrised by circular coordinates. Unfolding
a topology with respect to a given sequence of cherries, using all possible points on the
equilateral circle in each step of the iterative process produces a map φ from T n−2 into R3.
(T n−2 is the Cartesian product of n − 2 circles, i.e an (n − 2)-dimensional torus). Namely,
a given choice of n − 2 circular coordinates corresponds to choices of points on each of the
equilateral circles, and then φ gives the position of the point on the final equilateral circle.
We will refer to φ(T n−2) as the toroidal image (with respect to a given sequence of cherries
and final terminal).

Recall that the topology T ′ of a tree T ′ is called a degenerate of a full topology T if it
can be obtained by collapsing some edges to zero length, so that the vertices at the ends of
the collapsed edges merge. By convention, T is a degenerate of T , i.e no edges might be
collapsed.

Theorem 3.1 For any full topology T and given set of terminals, the greatest distance be-
tween the final terminal and the toroidal image (with respect to any final terminal and sequence
of cherries) is a lower bound on the length of every (Steiner) tree whose topology is a degen-
erate of T .

Proof Let f(T , s) denote the greatest distance between the final terminal and the toroidal
image generated with respect to a sequence of cherries s. We have to show L(T0) ≥ f(T , s),
and we do this for all trees T0 which are degenerates of T (regardless of their angles).

This is by induction on the number of terminals. It is clearly true for two terminals.
So take an approximate Steiner tree T0 with at least three terminals, and the specified final
terminal tf and sequences of cherries for the topology T . Then there exists a cherry in the
sequence; take the first, with terminals say t0 and t1 at a pseudo-Steiner point s in the tree
T0. Let s′ be the third neighbour of s in T0, which can be assumed to also be a pseudo-Steiner
point. Let m be the (or any) point on the equilateral circle defined by t0 and t1 and involved
in the maximum of the distance between tf and the toroidal image. Obtain T1 from T0 by
replacing the cherry by m; i.e. delete the edges incident with s and join m directly to the
third neighbour of s in T0 by a straight line. Then L(T1) ≤ L(T0). (In fact if T0 is a full
Steiner tree, then the lengths are equal if m is chosen as the furthest point on the equilateral
circle from s′, and it is easy to see from this that the inequality holds in all other cases. Note
also that the inequality L(T1) ≤ L(T0) relies on the fact that for any point s in space, the
distance to a vertex of an equilateral triangle is at most the sum of the distances to the other
two vertices of this triangle. )

If s denotes the specified sequences of cherries, and s′ is the same with the cherry above
omitted, we now have

L(T0) ≥ L(T1) ≥ f(T1, s
′) = f(T , s)

where the middle step is by induction and the last is by choice of m. (Note that T1 denotes
the topology of the tree T1.) The theorem follows.

This theorem is actually all we need for purposes of the following section. However, there
are a number of other nice observations we would like to make.
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If there exists a full Steiner tree T0 with the given terminals, then the unfolding procedure
can be performed so that at each step, the Melzak point is chosen on the extension of the
third edge e of T0 that meets the Steiner point of the chosen cherry. (The first two edges being
the ones from the terminals of the cherry.) The fact that the extension of the edge passes
through the circle follows from the well-known properties of Steiner trees in R2 [5], noting
that we may focus on just three points here and the 3-point problem has a planar minimum
tree. Furthermore, if the point chosen on the circle is the farthest one from the Steiner point
of the cherry, then the length of the Steiner tree on the new set of terminals is the same as
the old one (again, appealing to the known planar result). By induction, the original Steiner
tree has the same length as the final interval joining the final terminal and the toroidal image.
Combining this observation with Theorem 3.1 immediately gives the following.

Corollary 3.1 If a full Steiner tree exists for a set of terminals, then the length of the Steiner
tree is equal to the maximum distance between the final terminal and the toroidal image in an
unfolding with respect to any sequence of cherries.

When the procedure is performed in the above way, using a full Steiner tree T0, with
respect to any sequence of cherries, we call it a proper unfolding. Note that this is unique
because the Steiner tree is unique.

We may generalise these results as follows. We may use any edge to split the given topology
into two components and, loosely speaking, unfold each separately. To be precise, consider
a full Steiner topology T for a set of n terminals with a distinguished edge e in T . Obtain
two topologies T1 and T2 by deleting e. (The ordering of these can be arbitrary.) To T1 we
can reinstate e and add its incident vertex from T2, which we may call t∗1, an artificial new
terminal (which can be placed anywhere). Similarly, add e and another artificial terminal t∗2
to T2. The resulting topologies T ∗

1 and T ∗
2 can be unfolded with respect to any sequences

of cherries, with t∗1 and t∗2 the final terminals respectively. The possible positions of the last
Melzak points chosen (in the two cases) constitute two toroidal images of φe,1(T

p) and φe,2(T
q)

mapped into R3, where p+ q = n−2. Finally, T is unfolded with respect to e (and the choice
of cherries) by choosing one point from each of these toroidal images.

In the case that e is incident with a terminal t, this corresponds to unfolding T with t as
the final terminal.

Theorem 3.2 For any full topology T and given set of terminals, the greatest distance be-
tween the two toroidal images (with respect to any edge of T and sequences of cherries) is a
lower bound on the length of every (Steiner) tree whose topology is a degenerate of T , and is
equal to the length of the full Steiner tree with topology T (if it exists).

Proof This uses the proof of the previous theorem and corollary. The induction works using
the first cherry in either of the sequences for the two subtopologies. The rest of the proof is
virtually the same.

We return now to the simpler unfoldings first described, in which the edge e is incident
with a final terminal. It is interesting to consider the distance function d from the final
terminal to the Melzak point chosen on the last equilateral circle. Note that d can be viewed
as a map defined on T n−2, by composing the usual distance function with φ. The following
result is elementary.
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Lemma 3.1 The map φ is differentiable; so also is d, assuming that the final terminal is
not on the toroidal image. If the final terminal does lie on the toroidal image, then d2 is
differentiable.

We emphasise that for a given topology, there may be many possible sequences of choices of
cherries during the unfolding procedure, each producing a different toroidal image. Lemma 3.1
refers to any one predeterimined sequence that has a final terminal.

Theorem 3.3 In a proper unfolding, the last equilateral point is the unique furthest point
on the toroidal image φ(T n−2) (with respect to the same sequence of cherries) from the final
terminal. In particular, there is only one local maximum for distance on the toroidal image.

Proof Observe that for a critical point of d, the equilateral point m chosen on the last
equilateral circle C must be either closest or furthest away from the final terminal tn. Moreover
for a local maximum, the latter must be the point selected. (If the equilateral circle was
equidistant from tn, it is easy to see that no full tree can be constructed. So we do not need
to worry about this degenerate case.)

Assume that C is obtained by rotating an equilateral triangle with two fixed vertices m′

and tn−1, where m′ lies on the previous equilateral circle C ′, tn−1 was the other terminal of
that cherry, and the third moving vertex m sweeps out the circle C. Also let s be the Steiner
point between m′ and tn−1, for the three point tree m′, tn−1, tn. Firstly, it is an elementary
exercise to check that the plane through m′, tn−1, tn meets C in the two points which are
critical for d if all earlier equilateral points are held fixed, with the farthest point m from
tn being the correct choice for the equilateral point, required to merge the vertices m′, tn−1.
Next, we claim that for a critical point of d, the line from s to m′ must be orthogonal to C ′ at
m′. We will show there are precisely two such choices for m′ on C ′, giving a local maximum
and minimum for d (again with the choices of earlier equilateral points held fixed).

We need to compute first variation of the length of a Steiner tree, when precisely one
terminal moves. If θ is the angle of the direction of movement to the edge at that terminal,
then the first variation is −cosθ. So we observe that if the line sm′ is not orthogonal to C ′

then the (directional) derivative of d is not zero as m′ moves around C ′, so this is not a critical
point. Consequently, the length of the 3-terminal Steiner tree m′, tn−1, tn, s is the same as
the distance d(tn, m), since the line tnm is orthogonal to the equilateral circle C and m is the
furthest point away from tn.

We need also to show that there are just two points m′ on C ′ with the property that the
line sm′ is perpendicular to C ′. But by replacing the terminals tn−1 and tn by the appropriate
equilateral point m̄ using Melzak’s procedure, we can find the distance d by measuring the
distance function from m̄ to C ′, which has two critical points. Notice again for a local
maximum, we must choose the furthest point m′ on C ′ away from m̄. Moreover, from the
comments before this proof, this is the correct choice to make m′′, tn−2, tn−1, tn, s, s

′ a 4 point
Steiner tree, where s′ is the Steiner vertex at the cherry m′′, tn−2, C ′ is the equilateral circle
obtained by rotating an equilateral triangle around the fixed vertices m′′, tn−2 and m′′ is the
equilateral point chosen on the previous equilateral circle C ′′.

This argument iterates by looking back into the procedure to consider the previous equilat-
eral circle, and so on. At each stage, we find that the Steiner tree constructed in the previous
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step is orthogonal to the relevant equilateral circle, and moreover, choosing the furthest point
away from the point corresponding to m̄ gives a local maximum of the length function and
a Steiner tree with length d(tn, m). Iterating back to the first equilateral circle proves the
theorem.

Further consideration of the proof of the theorem shows that on each circle, there are only
two choices of point which give a critical point for d and hence 2n−2 choices in total, assuming
that no circle is equidistant from the point corresponding to m̄ in any given step. Now it
is well-known that for a Morse function on an n − 2 dimensional torus, this is the smallest
number of critical points. This observation may be quite useful in searching for the unique
local (and global) maximum in the toroidal image.

We may generalise Theorem 3.3 to apply to the more general unfoldings.

Theorem 3.4 If a full Steiner tree on n terminals is properly unfolded with respect to any
edge into an interval joining points x, y on the two toroidal images, then x and y are furthest
apart on the two images. Moreover the distance function between the two images has only one
local maximum.

Proof We follow the same strategy — in fact if one ‘end’ of the Steiner tree is unfolded into
a point x on the image of T p, we can keep this point fixed and apply the previous argument,
as in Theorem 3.3. This shows that y is the furthest point on the image of T q from x and the
distance function from x to the image of T q has a unique local maximum. One can then vary
x, keeping y fixed. Of course, critical points for both x, y varying are the same as for varying
each separately. (This is by the usual consideration of partial derivatives). A local maximum
for x, y varying together must be a local maximum for each point varying separately so there
is only one such choice of x, y.

4 Proof of Theorem 2.2

We make use of the following.

Lemma 4.1 Consider points O and P in a plane Π, and define Q(P ) by the clockwise-
oriented equilateral triangle OPQ. Let P move with velocity vector u, where u ∈ Π, and let
v be the corresponding velocity vector of Q(P ). Then v is of the same magnitude as u and
has direction 60◦ clockwise of that of u.

Proof This follows easily from the fact that the map P 7→ Q(P ) is linear; it is clearly the
60◦ clockwise rotation around O.

To prove Theorem 2.2, note that the definition of F involves full trees T . We can begin
with any full ε-approximate pseudo-Steiner tree T0 and select any terminal t̂ of T0, which we
will call the root terminal.

We first give a brief sketch of this proof. By Theorem 3.1 L(S(T0)) is at least the maximum
distance of t̂ from a point on the toroidal image generated by unfolding T , so that t̂ is the final
terminal, i.e T is unfolded to an edge ending at t̂. Recall that any point on the toroidal image
is generated by an iterated choice of equilateral points s∗i on equilateral circles. These points
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can be viewed as lying on smaller toroidal images, starting at the first chosen cherry and
working towards t̂. We will use the positions of the pseudo-Steiner points of T0 to iteratively
choose such points s∗i . In the process, we will also choose a point s′i which lies close to s∗i
and also lies on the extension of an edge of T0. At the end of this process, we will be able to
compare the length of T0 to the distance between t̂ and a point on the toroidal image, which
from above is a lower bound on L(S(T0)).

This is an inductive argument. The first step, in which we consider the approximate error
in a cherry, is a convenient simplified version of the general step, so we give it in detail.
Then later, we compute the accumulation of errors caused by induction. Choose a cherry of
the pseudo-Steiner tree, for which two non-root terminals t1 and t2 of T0 are adjacent to a
common pseudo-Steiner point s1. (It is elementary to prove that such a cherry can be found,
so long as there is at least one pseudo-Steiner point.) Let s2 denote the other (third) vertex
of T0 adjacent to s1. Put Li = |s1ti| for i = 1 and 2, and without loss of generality assume
L1 ≥ L2. A key feature of the argument is the consideration of the plane Π determined by s1,
s2 and t1. In a Steiner tree, Π would also contain t2. However, for an ε-approximate Steiner
tree, such local planarity is lost. Define s′1 on the extension of s2s1 so that

|s1s
′
1| = L1 + L2.

See Figure 1.
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Figure 1: A cherry in T0

We need to find an appropriate equilateral point s∗1 on the equilateral circle C for t1 and
t2. The circle C is defined to be the set of all points P such that Pt1t2 forms an equilateral
triangle. Let u = u(s∗1) denote the projection of s∗1 onto the line s1s

′
1. Since the angles in T0

at s1 are within ε◦ of 120◦, it is possible (shown next) to choose s∗1 so that

(i) |us∗1| = O(εL1);

(ii) |us′1| = O(ε2L1 + εL2).

(Recall L1 ≥ L2.) We note that the particular point s∗1, as defined below, lies in the plane Π.
This is not required for the argument, but may help with visualisation. Here and in the rest
of the proof, the constants implicit in the O() are uniform for all ε sufficiently small.
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We now show how to choose s∗1 to satisfy (i) and (ii). We define s∗1 to be the intersection
of Π and C that is near s′1. For later use, we define a function r as follows. For any point x
near t2 (where ‘near’ can be taken to mean at distance less than |t1t2|/10), define the point
r(x) to be that point in the plane Π which forms an equilateral triangle with t1 and x, and is
near to s′1. (Note that there will be two such points — we are assuming ε is sufficiently small
here, so the distance from t2 to Π is less than |t1t2|/10 say.) Note that s∗1 = r(t2). If T0 were
a true Steiner tree, then s′1 = s∗1.

Let l be the projection of the line s1t2 onto Π, and let x0 be the point on l such that
|s1x0| = |s1t2| = L2. The angle α = ∠t2s1x0 will be called the out-of-plane angle error at s1.
(Note that this depends on the choice of which terminal is t1 as opposed to t2, but this does
not matter.) It is clear from basic considerations of the angles at s1, using the fact that T0 is
ε-approximate, that α = O(

√
ε). We next claim that

|r(x0)r(t2)| = O(α2L2). (2)

This is easy to verify from the fact that the distance of t2 from Π is O(αL2) and that the
distance from x0 to the projection of t2 onto Π is O(α2L2).

If we rotate the edges s1t1 and s1x0 to s1t̄1 and s1x̄0, staying in the plane Π, so that the
angles s2s1t̄1 and s2s1x̄0 are both exactly 120◦, then x̄0t̄1s

′
1 becomes an equilateral triangle (by

the definition of s′1 and the Melzak construction). Hence by Lemma 4.1 and noting L1 ≥ L2,
we get

|r(x0)s
′
1| ≤ β(L1 + L2) = O(βL1) (3)

where β = ∠t1s1t̄1+ ∠x0s1x̄0, which we call the in-plane angle error at s1.
Clearly β = O(ε), which we will use shortly. Imagine moving x0 directly to x̄0. Then from

Lemma 3, its direction of movement is at approximately 60◦ to the line s1s
′
1. Hence, r(x0)

moves at a direction within β of perpendicular to s1s
′
1. Applying the same observation to the

movement of t1 directly towards t′1, we obtain

|s1r(x0)| − |s1s
′
1| = O(β2(L1 + L2)) = O(β2L1). (4)

In view of (3) (or arguing in a similar fashion), this is also a bound on the length of the
projection of the interval r(x0)s

′
1 onto the line s1s

′
1. Hence, from (2) and noting r(t2) = s∗1,

|u(s∗1)s
′
1| = O(α2L2 + β2L1), (5)

whilst (2) and (3) combine directly to give

|s′1s∗1| = O(α2L2 + βL1). (6)

The bounds (i) and (ii) follow from equations (6) and (5), since α = O(
√

ε) and β = O(ε).
Thus, s∗1 satisfies (i) and (ii). Now form a new tree T1 by deleting the edges s2s1, s1t1 and

s1t2 from T0 and adding the edge s2s
∗
1. By (i) and (ii),

L(T0)− L(T1) = O(ε2L1 + εL2), (7)

and by (i), we have the bound
∠s∗1s2s1 = O(ε). (8)
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The new tree T1 has one less pseudo-Steiner point.
We proceed inductively: apply the above process to T1 to obtain T2 (with suitable con-

straints replacing (i) and (ii), as specified below), and so on, in the kth step working on a
cherry of Tk. Each time a pseudo-Steiner vertex s of T0 is replaced, the new vertex created is
called s∗. The general argument will be similar to the one described above, except that now
the angles of the edges at the pseudo-Steiner point are no longer within ε of 120◦, and the
lengths of the edges do not represent precisely the length of T0 in the corresponding branch.
We need to quantify the build-up of these errors, so make the following definitions. For any
terminal q of Tk, if q is a terminal of T0, define f(q) = g(q) = 0. Otherwise, q = s∗j for some
pseudo-Steiner point sj of T0. Letting s denote the vertex of Tk adjacent to q, define f(q)
to be the angle between sq and the edge ssj of T0. (For example, note that (8) says just
f(s∗1) = O(ε).) Also define L̄(sq) to be the total length of the branch of T0 at s containing
the vertex sj, and let g(q) be the absolute value of the difference between |sq| and L̄(sq). See
Figure 2. Note that f(q) and g(q) become defined either in T0 if q is a terminal of it, or in
some Ti when q first gets created. They have the same values in all trees Ti which contain q.

s'

s*

qs

1
q =s*

j1

2
q =s*

j2

sj1

sj2

Tj2

Tj1

Figure 2: A cherry in Tk

Assume that after k iterations (k ≥ 1), a pseudo-Steiner vertex s is adjacent to the two
terminals q1 and q2 of Tk. That is, in T0, the pseudo-Steiner vertex s is adjacent to points sj1

and sj2 such that for i = 1 and 2, either sji
is a terminal of T0 or the branch of T0 containing

sji
has been replaced by an edge sqi = ss∗ji

.
For i = 1 and 2 let Li(s) = |sqi|. First suppose that q1 and q2 are terminals of T0. Then

the argument above applies, where L1 ≤ L1 + L2 and L2 = min{L1, L2}. So, to avoid making
any assumption about the relative magnitudes of L1(s) and L1(s), we have as a result of (8)

f(s∗) = O(ε(L1(s) + L2(s))),
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and from (7)
g(s∗) = O(ε2(L1(s) + L2(s)) + ε min{L1(s), L2(s)}).

Now repeat the argument above in the case that q1 and q2 are not both terminals of T0.
The main difference is that now the edges at s can be made to have all angles within ε of
120◦ by rotating them through angles of f(q1) and f(q2) respectively, and we aim to bound
f(s∗) and g(s∗). (The plane Π may be ambiguously defined if the angle errors have built up
to the point that the three points determining it are collinear, but any choice will do the job
in that case. The multiplicative error bouond is then constant, or larger.)

The effect of non-zero f(q1) and f(q2) is to increase the out-of-plane and in-plane angle
errors α and β by up to f(q1)+f(q2). (Actually, the out-of-plane and in-plane components of
this error cannot both simultaneously be so large, and possibly analysing the split-up would
improve the result, especially if the constraint ε < n−2 were relaxed.) Then we have

α ≤ O(
√

ε) + f(q1) + f(q2), β ≤ O(ε) + f(q1) + f(q2) (9)

and considering equations (5) and (6), whose derivation still applies in the current situation,

f(s∗) ≤ O(α2 min{L1(s), L2(s)}) + β(L1(s) + L2(s))

L1(s) + L2(s)

≤ O(α2) + β, (10)

g(s∗) ≤ O
(
α2 min{L1(s), L2(s)}+ β2(L1(s) + L2(s))

)
+ g(q1) + g(q2) (11)

Define a function ν for any terminal q of Tk as follows. Let ν(q) = 1 if q is a terminal of
T0. Otherwise, q = s∗j for some j, and define ν(q) to be the number of terminals of T0 which
lie in the component of T0 − s containing sj.

We now show from (10) by induction on k (or, if you prefer, on ν(s∗)) that there exists a
C > 0 (independent of n, T and ε) such that

f(s∗) < Cν(s∗)ε. (12)

To establish this, observe firstly that for the initialisation, the statement can be extended
to terminals s∗ of T0 and is then immediate. Next observe that the inductive assumptions
f(qi) < Cν(qi)ε (i = 1 and 2) imply using (9)

α = O(
√

ε) + O(nε) = O(
√

ε)

as ε < n−2, and so α2 = O(ε). Then (12) follows from (9), (10) and

ν(q1) + ν(q2) = ν(s∗). (13)

We now have β = O(nε) from (9) and the fact that ν(s∗) < n, and so from (11)

g(s∗) ≤ O
(
ε min{L1(s), L2(s)}+ n2ε2(L1(s) + L2(s))

)
+ g(q1) + g(q2). (14)

We next prove by induction from (14) that for some absolute constant C > 0

g(s∗) ≤ C(ε log ν(s∗) + n2(ν(s∗)− 1)ε2)L̄(s) (15)
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where
L̄(s) = L̄(sq1) + L̄(sq2), (16)

recalling that L̄(sqi) denotes the length of the branch of T0 at s corresponding to sqi.
Again, (15) can be extended so as to hold for terminals s∗ of T0 since then g(s∗) = 0. Since
ε < 1/n2, (15) applied inductively gives g(qi) = O(

√
εL̄(sqi)). Hence from the definition of g,

Li(s) = L̄(sqi)(1 + O(
√

ε)), and so, noting from (14)

g(s∗) ≤ O
(
ε min{L̄(sq1), L̄(sq2)}+ n2ε2L̄(s)

)
+ g(q1) + g(q2).

Hence, applying (15) inductively and using (13) and L̄(qi) ≤ L̄(sqi) (defining L̄(qi) = 0 if
qi is a terminal of T0), we obtain

g(s∗) ≤ O
(
ε min{L̄(sq1), L̄(sq2)}+ n2ε2L̄(s)

)
+ Cn2(ν(s∗)− 2)ε2L̄(s)

+Cε
2∑

i=1

L̄(sqi) log ν(qi)

≤ Cn2(ν(s∗)− 1)ε2L̄(s) +
1

4
Cε min{L̄(sq1), L̄(sq2)}+ Cε

2∑
i=1

L̄(sqi) log ν(qi)

upon choosing C to be four times the size of the constant implicit in the O( ). By (13)
and (16), the latter can be written as

g(s∗) ≤ Cn2(ν(s∗)− 1)ε2L̄(s) + CεL̄(s) sup
0≤x≤1/2

1≤y≤ν(s∗)−1

{x/4 + x log y + (1− x) log(ν(s∗)− y)}

where x stands for L̄(sq1)/L̄(s) and y stands for ν(q1), assuming without loss of generality
that L̄(sq1) ≤ L̄(sq2). Fixing x in the last expression shows the maximum occurs for y = 1,
and then the expression becomes

x/4 + (1− x) log(ν(s∗)− y) ≤ x/4 + (1− x) log ν(s∗).

Since log ν(s∗) ≥ log 2 > 1/4, this last bound is maximised at x = 0 and so the supremum
has value at most log ν(s∗). From this, (15) follows.

We now apply (15) to the pseudo-Steiner point s adjacent to the root vertex t̂, since for
this s we have

g(s∗) = ||t̂s∗| − L̄(t̂s∗)| = ||t̂s∗| − L(T0)|.

By Theorem 3.1, L(S(T0)) ≥ |t̂s∗|. As L(S(T0)) ≤ L(T0), we obtain Theorem 2.2.
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