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Abstract
The r-acyclic edge chromatic number of a graph is defined to be the minimum

number of colours required to produce an edge colouring of the graph such that
adjacent edges receive different colours and every cycle C has at least min(|C|, r)
colours. We show that (r − 2)d is asymptotically almost surely (a.a.s.) an upper
bound on the r-acyclic edge chromatic number of a random d-regular graph, for
all constants r ≥ 4 and d ≥ 2.

1 Introduction

An edge colouring of a graph is proper if adjacent edges are coloured with different
colours. A proper edge colouring of a graph is acyclic if each cycle has at least 3
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colours. The acyclic edge chromatic number A′(G) of a graph G is the minimum num-
ber of colours required for a proper acyclic edge colouring of G. The (vertex) acyclic
chromatic number was introduced by Grünbaum [7] in the context of planar graphs, and
investigated further for example in [2, 5, 1].

In this paper, we consider the following generalisation of these definitions. For r ≥
3 fixed, a proper edge colouring is said to be r-acyclic if each cycle C has at least
min(|C|, r) colours. The r-acyclic edge chromatic number A′

r(G) of a graph G is the
minimum number of colours required for a proper r-acyclic edge colouring of G. Hence
A′(G) = A′

3(G).
(An alternative definition for an r-acyclic edge colouring would be to require that

every cycle has at least r colours. However, this definition is only of interest in graphs
with girth at least r.)

We will be interested in the r-acyclic chromatic number of random regular graphs.
Throughout, d and r are fixed constants while n, the number of vertices of the random
graph, tends to infinity such that n is even if d is odd. All asymptotic statements are
with respect to n. We say a property holds asymptotically almost surely (a.a.s.) if the
probability that it holds tends to 1 as n tends to infinity. (In some parts of the argument
we restrict to n even, but this should be clear from the context.)

Clearly at least d colours are required for an acyclic edge colouring of a graph with
maximum degree d. It is well-known that for d-regular graphs at least d+ 1 colours are
required (this is a special case of Lemma 1.2 below). Alon, McDiarmid and Reed [1]
established a linear upper bound on the acyclic edge chromatic number in terms of
maximum degree, namely that

A′(G) ≤ 64d

when G has maximum degree d. (This was later improved to 16d in [9].) In fact Alon,
Sudakov and Zaks [3] conjectured that

A′(G) ≤ d+ 2

when G has maximum degree d. They proved this when G has girth bounded below by
cd log d, for some fixed constant c (independent of d). They also proved that a uniformly
chosen d-regular graph G on n vertices a.a.s. has

A′(G) ≤

{
d+ 1 if n is even,

d+ 2 if n is odd.

Nešetřil and Wormald [11] improved this, showing that the acyclic edge-chromatic
number of a uniformly chosen d-regular graph is asymptotically almost surely d + 1.
Their result gives further evidence to support a question raised in [3], namely whether
it could be possible that A′(G) = d + 1 for all graphs with maximum degree d, with
the unique exception of the complete graph on an even number of vertices (which has
A′(G) = d + 2). To the best of our knowledge nothing was previously known about
A′
r(G) when r ≥ 4.
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Nešetřil and Wormald’s argument [11] is one of the few that heavily use the known
contiguity results for various random regular graph spaces. Contiguity, a qualitative
asymptotic equivalence between two sequences of probability spaces, is the property
that any event which holds a.a.s. in one sequence also holds a.a.s. in the other. One of
the probability spaces used in [11] consisted of the superposition of d randomly chosen
perfect matchings. (For more information on contiguity, see [14].) In this paper we use
this space again for the present problem, though the case r = 3 does not follow as a
special case of our argument. A major new feature of our work arises from the need to
bound the expected number of cycles and paths formed in certain ways from the random
matchings. More detail is given below.

The main result of this paper is the following.

Theorem 1.1 Let d ≥ 2 and r ≥ 4 be fixed. The r-acyclic edge chromatic number of a
uniformly chosen d-regular graph on n vertices is a.a.s. at most (r − 2)d.

To see why (r − 2)d colours is a natural choice, we give the following heuristic
argument. Consider a proper colouring of the edges of a d-regular graph using c colours.
Choose any r− 1 colours and look at the subgraph consisting of just the edges coloured
with these colours. Let v0, . . . , vt be a walk in this subgraph. Making various unjustified
assumptions including independence, the expected number of ways to extend this walk
by adding an edge {vt, vt+1} (with vt+1 6= vt−1) is (r − 2)(d − 1)/c, since for each of
the d− 1 neighbours u 6= vt−1 of vt in G, the probability that the edge {vt, u} is in the
chosen subgraph is (r − 2)/c. Standard branching process arguments suggest that if
c < (r− 2)(d− 1) then there would be an enormous number of cycles in the graph with
at most r−1 colours. While this does not prohibit an asymptotically almost sure upper
bound which is lower than (r − 2)d, it suggests that our bound might be close to the
truth for large d. Moreover, a similar argument shows that our approach in Section 3
has a problem with less than (r − 2)d colours. We conjecture that rd is asymptotically
the right answer, for large r and d.

We will now outline our argument. The result for d = 2 is trivial. Hence we may
assume that d ≥ 3. Recall that [n] = {1, . . . , n} for all n ∈ Z+. Let Gn,d be the uniform
probability space on the set of all d-regular graphs on the vertex set [n]. A deterministic
step in the proof of Theorem 1.1 is given in Theorem 2.1. Then it remains to show that
the conditions of Theorem 2.1 hold a.a.s. for G ∈ Gn,d. This is established in Section 3 for
the case that n is even. We use the fact that for n even and d ≥ 3, the models Gn,d and
dGn,1 are contiguous (shown by combining results of Robinson and Wormald [12] with
Janson [8] or Molloy et al. [10]). Here dGn,1 denotes the graph sum of d independent,
uniformly chosen perfect matchings on the vertex set [n]. (The graph sum is the model
obtained by taking the union of the edge sets and conditioning on no repeated edges.)
The necessary alterations for the case of n odd are described in Section 4.

To finish this section we give a simple lower bound on A′
r(G) which is linear in d, for

d-regular graphs G with girth at least r.
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Lemma 1.2 For every r ≥ 3, d ≥ 2 and every d-regular graph G with girth at least r,
we have

(r − 1)d/2 < A′
r(G).

Proof. Suppose G has an r-acyclic colouring with c colours. Let M1, . . . ,Mc be the
colour classes, which form a partition of E(G). The union of any r − 1 of these has at
most n − 1 edges, by acyclicity and the fact that G has girth at least r. Each colour
class is involved in exactly

(
c−1
r−2

)
of these (r − 1)-wise unions. Therefore(

c− 1

r − 2

) c∑
i=1

|Mi| ≤ (n− 1)

(
c

r − 1

)
,

which implies that nd/2 =
∑c

i=1 |Mi| ≤ (n− 1)c/(r − 1). Thus

A′
r(G) ≥ nd(r − 1)/2(n− 1) > (r − 1)d/2,

as claimed.

Noga Alon made a suggestion which led to an improved lower bound greater than
0.6884 rd for large r and d. But this is undoubtedly not the best possible, so we do not
give further details here.

It follows from Lemma 1.2 that every asymptotically almost sure upper bound on
A′
r(G) for G ∈ Gn,d must be at least (r − 1)d/2, since the probability that such G

has girth at least r is bounded below by a positive constant (see for example [14]).
We also comment that the proof of the lemma is easily modified to show that a.a.s.
A′
r(G) ≥ (1+o(1))(r−1)d/2, since the total number of edges in cycles of length at most

r is bounded in probability.
One might also ask what upper bound on A′

r(G) is valid for all d-regular graphs G.
The complete bipartite graph Kd,d has A′

4(Kd,d) = d2, since every edge must receive a
different colour to avoid 3-coloured 4-cycles. This is an example of a graph where A′

4(G)
is at least quadratic in d (in contrast with A′(G) which is always linear in d). But the
situation can be much worse. In particular, Greenhill and Pikhurko [6] constructed a
d-regular graph G with A′

r(G) ≥ cr d
br/2c, where cr depends on r but is constant with

respect to d. They did this for all r ≥ 6, and an infinite strictly increasing sequence of
values of d depending on r. Matching upper bounds of the order O(dbr/2c) were given
in [6], proved using the Lovász Local Lemma. (Again the constant implicit in the O(·)
depends on r but not on d.)

2 Deterministic step

In this section we prove a deterministic result which gives conditions under which we can
find an r-acyclic colouring of a given graph. Then to complete the proof of Theorem 1.1
it remains to show that the conditions of Theorem 2.1 below hold a.a.s. for uniformly
chosen d-regular graphs on n vertices. These details are given in the next two sections
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for the cases that n is even and n is odd respectively. In order to describe our line of
attack, we need some definitions.

A k-cycle (respectively, k-path) is a cycle (respectively, path) of length k (where the
length equals the number of edges). Consider a proper edge colouring of a (multi)graph
G. Say that a k-cycle is undercoloured if it is coloured with fewer than min(k, r) colours.
(Note that an undercoloured cycle has length at least four, since the colouring is proper.)
An undercoloured cycle is short if it has at most log5 n edges, otherwise it is long.

We will say that a path is undercoloured if it is coloured with fewer than r colours.
Note that the definition of undercoloured is different for paths and cycles. In particular
k-paths with k < r are always undercoloured, whereas a k-cycle with k < r is only
undercoloured if it contains two edges with the same colour.

If C is an undercoloured k-cycle, then a block of C is an interval of min(k− 1, r− 1)
consecutive vertices of C together with the edges of C incident with them. (If k ≤ r,
then the block contains all the edges of C.) We want to show that it is possible to
choose a block for each undercoloured cycle, such that after recolouring certain edges in
each block no cycle is undercoloured. It turns out that we have to be fairly fussy when
choosing a block from a long undercoloured cycle, in order to make sure that we do not
create any new undercoloured cycles. To explain further we need some more definitions.

A path P = (v, w1, w2, . . . , ws) from a vertex v ∈ C is said to be initially disjoint
from C if {v, w1} 6∈ E(C). A vertex v of C is good (with respect to the given colouring)
if all paths P = (v, w1, w2, . . . , wr) of length r in G which are initially disjoint from C
have {w1, . . . , wr} ∩ C = ∅ and are coloured with r distinct colours. A block is called
good if all its vertices are good. A vertex or block is bad if it is not good. Finally, a long
undercoloured cycle C is called bad if it has a subgraph P which is a path of length at
least r(r− 1)(d− 1)r log2 n containing no good block with respect to C. Otherwise C is
good.

The deterministic result for recolouring blocks is as follows.

Theorem 2.1 Let d ≥ 3 and r ≥ 4 be fixed. Let G be a d-regular graph on n vertices
which is properly edge coloured with (r − 2)d colours in such a way that the following
conditions hold:

(i) There are at most log2 n undercoloured cycles in G.

(ii) No two distinct vertices which lie in short undercoloured cycles in G are joined
by an undercoloured path (except in the case that both vertices lie in a short un-
dercoloured cycle C and the path is a subgraph of C). In particular, no two short
undercoloured cycles in G intersect in just one vertex.

(iii) G has no long bad undercoloured cycles.

If n is sufficiently large, then we can find a set S of edges such that recolouring some
edges in S gives an r-acyclic (r − 2)d-colouring of G.

Proof. Label the undercoloured cycles C1, . . . , CT , where for some t, C1, . . . , Ct are the
short undercoloured cycles and Ct+1, . . . , CT are the long undercoloured cycles. We will
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process the undercoloured cycles in the given order, from each cycle choosing a block
and adding the block to an initially empty set of blocks S. Later the blocks in S will
be recoloured in such a way that forces the resulting edge colouring of G to be proper
and r-acyclic. The details are given below.

Initially set S = ∅. Assume that the cycles C1, . . . , Ci−1 have been processed and we
are about to process cycle Ci. If Ci is a short (undercoloured) cycle then we choose any
block of Ci and add it to S. If Ci is long, subdivide Ci into at least log3 n/(r(r−1)(d−1)r)
disjoint intervals of at least r(r−1)(d−1)r log2 n consecutive edges. From these intervals,
choose one such that all of its vertices are at distance at least r+1 from edges of blocks
already in S. (This is always possible since at most O(T ) = O(log2 n) of these intervals
contain vertices which are at distance at most r from edges of blocks already in S, by
assumption (i).) By assumption (iii) there is a good block in the chosen interval. Choose
one such good block and add it to S. This completes the description of how to form the
set of blocks S.

Now suppose that all blocks in S have been recoloured in such a way that no block
in S contains two edges of the same colour and the resulting colouring Y is a proper
edge colouring of G. (We describe how to perform this recolouring below.) Say that
a cycle is Y -undercoloured if it is undercoloured with respect to Y . Clearly, none of
the original undercoloured cycles C1, . . . , CT is Y -undercoloured since they all contain a
block in S. Any other cycle C ′ which is Y -undercoloured was not undercoloured in the
original edge colouring. Hence C ′ contains some edges of blocks in S which have been
recoloured. If the recoloured edges in C ′ only involve edges from C1, . . . , Ct, then this
contradicts assumption (ii). Therefore C ′ contains a recoloured edge e from a chosen
block B of one of cycles Ct+1, . . . , CT , say Cj. By construction, B is good. That is, all
r-paths that start in B and are initially disjoint from Cj are coloured with r colours in
the original colouring. Moreover, by our choice of blocks, we have not recoloured any of
these r-paths. Thus C ′ contains all r edges of B but then, since B has r distinct colours
in the colouring Y , the cycle C ′ is not Y -undercoloured. Hence Y is an r-acyclic edge
colouring, as required.

It remains to show how to produce the colouring Y . Firstly note that by construction,
blocks in S are vertex-disjoint. Hence we can (properly) recolour each block B in S
independently, in any order. We now describe how to recolour a block B ∈ S.

Suppose first that the edges of B do not form a cycle. If the two end edges of B have
the same colour then choose one such edge e and recolour e with a colour which does
not appear on e or any edge which is adjacent to e in G. This rules out 2d− 1 colours,
so there is always an available colour. Then repeatedly, while B still has any internal
edge with the same colour as another edge of B, choose one such edge e and recolour e
with a colour which does not appear either on an edge adjacent to e or on an edge of
B. Then at most 2d− 4 colours appear on edges which are adjacent to e but not lying
on B, and at most r − 1 colours appear on the edges of B because B has a repeated
colour. Hence there are at least

(r − 2)d− (2d− 4)− (r − 1) = (r − 4)(d− 1) + 1 ≥ 1

choices of colour. Therefore the recolouring procedure can continue edge by edge until
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B has no repeated colours.
Finally suppose that the edges of B form a cycle. We simply proceed as described

for internal edges, above, recolouring one edge of B at a time until B has no repeated
colours.

For d ≥ 3, Theorem 1.1 will follow from Theorem 2.1 if we can produce an edge
colouring with (r− 2)d colours such that conditions (i)–(iii) a.a.s. hold. This we will do
in the next section for the case n even and d ≥ 3 and in Section 4 for the case that n is
odd.

3 The probabilistic argument

Let M1, . . . ,Md be d independent uniformly chosen perfect matchings on the vertex set
[n], and let G be the multiset union of these perfect matchings. Fix integers a1, . . . , ar−2

such that a1 + · · · + ar−2 = n/2 and |ai − aj| ≤ 1 for 1 ≤ i, j ≤ r − 2. Independently
partition each matching Mi uniformly at random into r − 2 sets, the ith containing ai
edges. Call each of these parts a partial matching and colour each partial matching with
a distinct colour, giving (r − 2)d colours in all. Let this probability space of (r − 2)d-
edge-coloured d-regular multigraphs on [n] be denoted by Gn, or G for short.

To justify the choice of using r − 2 colours on each perfect matching, consider the
union S of edges of r − 1 colours R coming from different perfect matchings. If paths
involving just S proliferate, then there will be too many undercoloured cycles and our
method will not work. Given an edge at the end of a path in S, the expected number of
extensions of the path is 1 + o(1), since there are r − 2 other matchings to look at, and
each has a colour in R with probability 1/(r−2)+o(1). Splitting each perfect matching
into fewer than r − 2 colours would give expected number of extensions greater than 1,
leading to a great number of undercoloured cycles and a breakdown of our approach.

We would like to establish that assumption (i) of Theorem 2.1 holds for G ∈ G. To
this end, we now estimate the number of k-cycles in the union of r − 1 random partial
matchings. Label the partial matchings U1, . . . , U(r−2)d. The falling factorial is denoted
by [x]a = x(x− 1) . . . , (x− a+ 1) for all a, x ∈ Z+.

Proposition 3.1 Suppose that 2 ≤ k ≤ n. For G ∈ G, the expected number of under-
coloured k-cycles in G is O(1/k).

Proof. Fix {c1, . . . , cr−1} ⊆ [(r − 2)d] and let U = Uc1 ∪ · · · ∪ Ucr−1 be the union of the
r − 1 chosen colour classes. Let Ck denote the random variable counting the number
of k-cycles of U . Since there are O(1) choices for the set of r − 1 colours, it suffices to
show that ECk = O(1/k).

By relabelling if necessary, let M1, . . . ,Mu denote the perfect matchings which have
nonempty intersection with U , and suppose that U contains t̂s partial matchings from
Ms. Note for later use that ∑

1≤s≤u

t̂s = r − 1. (1)
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Then |Ms ∩ U | = ts = t̂sn/(2(r − 2)) + εs, where εs = O(1) for 1 ≤ s ≤ u. We count
the possibilities for U , with a distinguished k-cycle C. There are [n]k ways to choose
a labelled k-cycle C with a given orientation and start vertex. (Later we will divide
by 2k to remove the reference to the start vertex and orientation.) Let I be the set of
all proper edge colourings of the edges of C using the set of “colours” [u] = {1, . . . , u}.
That is,

I = {i = (i1, . . . , ik) ∈ [u]k | is 6= is+1 for 1 ≤ s ≤ k − 1, ik 6= i1}.

Each i describes how to assign the edges of C to the matchings Ms, where the `th edge
of C (from the given start vertex in the given orientation) is assigned to the matching
Mi` . This covers all possible ways to assign the edges of C to the matchings M1, . . . ,Mu.
Given i ∈ I, define js = js(i) by

js = |Ms ∩ C| = |{` ∈ [k] | i` = s}| for 1 ≤ s ≤ u

and let j = j(i) = (j1, . . . , ju).
Let F (s, t) be the number of ways to select t independent edges on s vertices, where

s ≥ 2t. Then

F (s, t) =

(
s

2t

)
(2t)!

t! 2t
=

s!

(s− 2t)! t! 2t
. (2)

Given i, the number of ways to complete each edge set Ms ∩C to the matching Ms ∩U
is

u∏
s=1

F (n− 2js, ts − js).

(This completes all the colour classes in Ms which are involved in U . There are other
factors counting the number of ways to specify the remaining colour classes in each
matching. However, this factor will cancel with the corresponding factor in the total
number of graphs G. Therefore we can leave this factor out. Similarly we omit the factor
counting the number of ways to partition each perfect matching into its constituent
partial matchings.) Let b ≥ 0 be any constant such that 2

√
bn log n ≤ k. (We will set

the value of b later, depending on k. In particular we will sometimes take b = 0.) It
is easy to check that [n]k ≤ n−b

∏u
i=1[n]ji , by expanding the logarithm of the falling

factorials. We have

ECk =
[n]k
2k

∑
i∈I

u∏
s=1

F (n− 2js, ts − js)

F (n, ts)

≤ n−b

2k

∑
i∈I

u∏
s=1

[n]jsF (n− 2js, ts − js)

F (n, ts)
. (3)

We now estimate the latter ratio, dropping the subscripts on t and j. From (2) and
using Stirling’s formula, since ts ≤ n/2 and ts →∞, we have

[n]jF (n− 2j, t− j)

F (n, t)
=

(n− 2j)!t!2j

(n− j)!(t− j)!
= O(φ(t, j)) (2ρf(x, ρ))j (4)

8



where x = j/t, ρ = t/n,

f(x, ρ) = (1− 2xρ)(1−2xρ)/xρ(1− xρ)−(1−xρ)/xρ(1− x)−(1−x)/x

and φ(t, j) =
√
t/(t− j + 1). (Note that φ(t, j) = O(1) provided that j/t is bounded

away from 1.) Hence, reinstating subscripts, (3) says

ECk = O

(
n−b

k

)∑
i∈I

(
u∏
s=1

φ(ts, js)

)(
k∏
`=1

2ρi`f(xi` , ρi`)

)
(5)

where xs = js/ts and

ρs = ts/n =
t̂s

2(r − 2)
+O(n−1). (6)

Now for a given sequence i we have
∏u

s=1 φ(ts, js) = O(nψ(i)) where

ψ(i) =

{
0 if js ≤ ts/2 for 1 ≤ s ≤ u,

u/2 otherwise.

(Note that if js > ts/2 for some s then k ≥ js > ts/2 ≥ n/4(r − 2) +O(1) = Θ(n).)
Define the u× u matrix Aj with (s′, s) entry given by

as′s =

{
as := 2ρsf(xs, ρs) if s′ 6= s,

0 if s′ = s.

Then (5) can be written as

ECk = O

(
n−b

k

) ∑
i∈[u]k

nψ(i)

k∏
`=1

ai`−1i` . (7)

(The subtraction in the indices should be read cyclically, so i0 = ik.) If ψ(i) > 0 for
some i ∈ [u]k then k = Θ(n) and we can set b = u/2, and otherwise set b = 0 giving

ECk = O(1/k)
∑
i∈[u]k

k∏
`=1

ai`−1i`

in both cases.
The proof is completed in Lemmas 3.2, 3.3, 3.4 where we prove that

∑
i∈[u]k

k∏
`=1

ai`−1i` = O(1). (8)

Lemma 3.2 If k = O(
√
n) then

∑
i∈[u]k

∏k
`=1 ai`−1i` = O(1).
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Proof. For k = o(n) we have xs = o(1) for all s, and expanding the logarithm of f
about xs gives

log f(xs, ρs) =

(
3ρs
2
− 1

2

)
xs +O(xs

2) (9)

for all s. In particular, suppose that k = O(
√
n). Then xs = O(n−1/2) and xsk = O(1),

which implies that js log f(xs, ρs) = O(1) for all s. Let ∆ be the u × u matrix with
(s′, s)th entry given by

αs′s =

{
2ρs if s′ 6= s,

0 if s′ = s.

Then since ∆ is nonnegative,

∑
i∈[u]k

k∏
`=1

ai`−1i` =
∑
i∈[u]k

(
u∏
s=1

f(xs, ρs)
js

)(
k∏
`=1

αi`−1i`

)

= O(1)
∑
i∈[u]k

k∏
`=1

αi`−1i`

= O(1) trace (∆k).

But the trace of ∆k is O(|λ1(∆)|k), where λ1 denotes the eigenvalue with maximum
absolute value. Since ∆ is nonnegative, |λ1(∆)| is bounded above by the maximum row
sum of ∆. The sth row sum of ∆ is

2
∑
` 6=s

ρ` =
∑
` 6=s

t̂`
r − 2

+O(n−1) ≤ 1 +O(n−1)

since t̂s ≥ 1. Hence

trace (∆k) = O(1)(1 +O(n−1))k = O(1),

as required.

So now we can assume that k ≥
√
n. Let

S = {i ∈ [u]k | f(xs, ρs) ≤ 1 for 1 ≤ s ≤ u},

and for 1 ≤ s ≤ u let
Ls = {i ∈ [u]k | f(xs, ρs) > 1}.

Lemma 3.3 We have
∑

i∈S
∏k

`=1 ai`−1i` = O(1).

Proof. If i ∈ S then f(xs, ρs) ≤ 1 for all s. Therefore, elementwise Aj ≤ ∆ where ∆ is
the u× u matrix defined in Lemma 3.2. Hence since ∆ is nonnegative,

∑
i∈S

k∏
`=1

ai`−1i` ≤
∑
i∈S

k∏
`=1

αi`−1i` ≤
∑
i∈[u]k

k∏
`=1

αi`−1i` = trace (∆k) = O(1)
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as shown in the proof of Lemma 3.2.

Now it suffices to prove the following result, since combining Lemmas 3.3 and 3.4
establishes (8) for k >

√
n, as [u]k = S ∪ L1 ∪ · · · ∪ Lu.

Lemma 3.4 Suppose that k >
√
n. For 1 ≤ s ≤ u we have

∑
i∈Ls

∏k
`=1 ai`−1i` = O(1).

Proof. Fix s ∈ [u]. For any sequence j = (j1, . . . , ju) of nonnegative integers with
j1 + · · ·+ ju = k, let Ls,j be defined by

Ls,j = {i ∈ Ls | j(i) = j}.

We will prove that there exists some ε > 0 such that

|λ1(Aj)| ≤ 1− ε (10)

for all sequences j with Ls,j 6= ∅. There are at most O(nu) such sequences j. Hence,
since Aj is nonnegative,

∑
i∈Ls

k∏
`=1

ai`−1i` =
∑

j

∑
i∈Ls,j

k∏
`=1

ai`−1i` ≤
∑

j

trace (Akj ) = O(nu) (1− ε)k = O(1).

It remains to establish (10).
Fix a sequence j with Ls,j 6= ∅. Note that

|λ1(Aj)| =
√
|λ1(Aj

2)|. (11)

(This can be proved by considering the Jordan forms.) We will bound |λ1(Aj
2)| by the

maximum row sum of Aj
2. Now Aj = (J − I)D where J is the u× u matrix of 1’s, I is

the identity matrix and D is the diagonal matrix with main diagonal a1, . . . , au. Thus

Aj
2 = (J − I)D(J − I)D = JDJD − JD2 −DJD +D2.

Let

Ew =
u∑
i=1

awi

for w ≥ 1, and let σ` be the `th row sum. Since JDJ = E1J we have

σ`(A
2
j ) = σ`(JDJD)− σ`(JD

2)− σ`(DJD) + σ`(D
2)

= E1
2 − E2 − a`E1 + a`

2. (12)

We find the following technical result useful, postponing its proof.

Claim 1 There exists δ > 1/3 such that f(x, ρ) ≤ 1 for all ρ ≤ δ.
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By assumption as > 2ρs, so by Claim 1 we have ρs > δ. Suppose that also ρ` > δ
for some ` 6= s. Then

∑
` ρ` > 2δ, whereas

∑
` ρ` = (r − 1)/2(r − 2) + O(n−1) by (1)

and (6). This gives a contradiction unless r = 4. In the case r = 4, the contradiction
comes anyway because then each ti is within O(1) of a multiple of n/4, and so ρs > δ
implies ρs = 1/2 +O(1/n), which again is too large. Hence a` ≤ 2ρ` ≤ 2δ for all ` 6= s.
(Note that this also says that the sets S,L1, · · · ,Lu are pairwise disjoint, but we do not
need this for our proof.) In particular, a` ≤ as for all ` 6= s. Since the derivative of (12)
with respect to a` is E1−a` > 0 we may now assume that a` = 2ρ` = t̂`/(r−2)+O(n−1)
for all ` 6= s. This also shows that the sth row sum is not maximal.

Fixing the value of t̂s and as, it can be seen that E2 is minimised by maximising u,
with t̂` = 1 for all ` 6= s. Fixing E1, the terms −a`E1 +a`

2 in (12) are also maximised up
to O(n−1) terms by taking t̂` = 1, since 1/(r−2)+O(n−1) is now the minimum possible
value of a` or E1−a`. Thus, (12) (with ` 6= s) is maximised by taking t̂` = 1 for all ` 6= s,
which means that u = r− t̂s. We now have Ew = as

w+(u−1)(r−2)−w+O(n−1). Setting
a0 = as − t̂s/(r − 2), (1) gives E1 = a0 + (r − 1)/(r − 2) + O(n−1), and applying (12)
with ` 6= s gives

σ`(Aj
2) ≤ 1 +O(n−1) +

a0(2r − 3− 2t̂s)

r − 2
− t̂s(t̂s − 1)

(r − 2)2
.

This will be at most 1− ε, implying (10) by (11), provided

a0 <
t̂s(t̂s − 1)

(r − 2)(2r − 3− 2t̂s)
− ε1

for some ε1 > 0. Thus we are done if

as <
t̂s

r − 2

(
1 +

t̂s − 1

2r − 3− 2t̂s

)
− ε1

or, for some ε2 > 0,

f(xs, ρs) < 1 +
2(r − 2)ρs − 1

2r − 3− 4(r − 2)ρs
− ε2. (13)

We now assume r ≥ 5, treating r = 4 separately later. The bound in (13) is
increasing in ρs, which is greater than δ > 1/3, so we are immediately done if

f(xs, ρs) < 1 +
2(r − 2)/3− 1

2r − 3− 4(r − 2)/3
.

But this expression is increasing in r, so it suffices to prove that

f(xs, ρs) < 4/3

since r ≥ 5. Later we prove the following.

12



Claim 2 For all ρ ≤ 2/5 and 0 ≤ x ≤ 1, f(x, ρ) < 4/3.

Thus we may assume ρs > 2/5, and we are done by (13) if f(xs, ρs) < 18/11. Note
that Mis ∩ E(C) is a matching, so

js ≤ |E(C) \Mis | ≤
n(r − 1− t̂s)

2(r − 2)
+O(1)

and hence

xs ≤
r − 1

2ρs(r − 2)
− 1 +O(1/n). (14)

Since ρs > 2/5 and r ≥ 5, this implies that xs ≤ 2/3 + O(1/n), since ρs > 2/5 and
r ≥ 5. The following claim (proved below) completes the proof of Case 1 when r ≥ 5.

Claim 3 For all ρ ≤ 1/2 and 0 ≤ x ≤ 3/4, f(x, ρ) < 3/2.

Now suppose that r = 4. Here the only possibility is u = 2, ρs = 1/2 (since one
full matching must be used) and ρ3−s = 1/4 + O(n−1). The largest row sum of Aj is
as = f(xs, 1/2) < 3/2, by (14) and Claim 3, while a3−s ≤ 2ρ3−s = 1/2. The largest
eigenvalue of Aj is

√
a1a2 =

√
as/2 +O(n−1), and (10) follows.

To complete the proof of Lemma 3.4 we must prove our claims. First note that
∂ ln f(x, ρ)/∂ρ =

(
ln(1− z)− ln(1− 2z)− z

)
/xρ2 where z = xρ. By differentiation, it

follows that
∂ ln f(x, ρ)

∂ρ
≥ 0 (15)

for xρ < 1/2, which applies in the whole region of interest.

Proof of Claim 1. We first consider ρ = 1/3. Note that

d ln f(x, 1/3)

dx
=

ln
(
(3− x)3(1− x)/(3− 2x)3

)
x2

and the numerator, having strictly negative derivative for 0 ≤ x ≤ 1, is strictly negative
for 0 < x ≤ 1. Since f(0, 1/3) = 1 (by continuity), the claim follows with ρ = 1/3.
Careful examination of the argument (using continuity of the relevant derivatives, as
functions of ρ) shows that it applies for some ρ = δ > 1/3 as well. It then follows for
ρ < δ by (15).

Proof of Claim 2. By (15) we only need to consider ρ = 2/5. Let f0(x) = d
dx

ln f(x, 2/5)
and f1(x) = exp(2x2f0(x)) = (5−2x)5(1−x)2/(5−4x)5. Then f1(x) has derivative (5−
8x)g(x) where g(x) > 0 on (0, 1), f1(0) = 1 and f1(1) = 0. Hence, for some x0 ∈ (5/8, 1),
f1 > 1 on (0, x0) and f1 < 1 on (x0, 1). So f0 is positive on (0, x0) and negative on (x0, 1).
We compute f0(3/4) > 0 and f0(4/5) < 0, so the maximum value of ln f(x, 2/5) occurs
for x in ((3/4), (4/5)). Differentiation shows that h(z) = (1/z−1) ln(1−z) is increasing
on (0, 1) and thus the maximum of f(x, 2/5) = exp(2h(4x/5)) − h(2x/5) − h(x)) is at
most exp(2h(16/25)− h(3/10)− h(3/4)) ≈ 1.156 < 4/3 as required.
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Proof of Claim 3. We have

d ln f(x, 1/2)

dx
= − 1

x2
ln

(
1− x

(1− x/2)2

)
> 0

and so (recalling (15)) we only need to check that f(3/4, 1/2) ≈ 1.378 < 3/2.

This completes the proof of Lemma 3.4.

Having proved Proposition 3.1, we could try to obtain an r-acyclic edge colouring
using just one extra colour (as in [11]). The approach would be as follows: randomly
choose an edge in each of the undercoloured cycles and recolour it with the new colour.
Then use the Lovász Local Lemma and properties of random regular graphs to deduce
that the resulting colouring is proper. But cycles which had fewer than r−1 colours orig-
inally would still be undercoloured even after adding the new colour. Another problem
occurs if the edge chosen for recolouring in a particular undercoloured cycle is coloured
with a colour that does not appear anywhere else on the cycle. We do not pursue this
approach. Instead we will show how to obtain an r-acyclic colouring without introducing
any new colours, by investigating the structure of the undercoloured cycles and paths
more closely and then applying Theorem 2.1 for the recolouring.

Corollary 3.5 A.a.s. there are at most log2 n undercoloured cycles in G ∈ G.

Proof. Proposition 3.1 proves that the expected number of short undercoloured cycles
is O

(∑n
k=2

1
k

)
= O(log n). The result follows by Markov’s inequality.

Thus assumption (i) of Theorem 2.1 holds a.a.s. for G ∈ G. Now we turn our
attention to showing that assumption (ii) of Theorem 2.1 holds a.a.s. for G ∈ G. We say
that an undercoloured path is extensive if it has more than

√
n log n edges. Otherwise

it is unextensive.

Lemma 3.6 The expected number of undercoloured k-paths in G ∈ G is O(n) if
1 ≤ k ≤

√
n log n, and moreover it is O(n−1) if

√
8n log n ≤ k ≤

√
n log n.

Proof. Let {c1, . . . , cr−1} ⊆ [(r− 2)d]. Form the union U = Uc1 ∪ · · ·∪Ucr−1 of the r− 1
chosen colour classes. Let Pk be the number of k-paths in U . Since there are O(1) ways
to choose the r − 1 colours, it suffices to show that EPk is bounded by O(n), and that
this bound can be reduced to O(n−1) if k ≥

√
8n log n.

The calculations are almost identical to the calculations for ECk from Proposi-
tion 3.1, except in two respects. Firstly, there are O([n]k+1) ways to choose the vertices
of the k-path, a factor O(nk) larger than for a k-cycle. Secondly, the set I of colourings
for the edges of the k-path using the colours [u] contains some k-tuples where the first
and last entry are the same (and thus cannot be used to properly colour a k-cycle).
However, each k-tuple in I can be extended in O(1) ways to give elements of [u]k+1

which can be used to properly colour a (k+1)-cycle (unless u = 2 and k is odd in which
case we can extend each k-tuple in O(1) ways to give elements of [u]k+2 which properly
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colour a (k+2)-cycle). Since 2ρf(x, ρ) = eo(1) is bounded, (by (9), say), the calculations
of Proposition 3.1 show that

∑
i∈[u]k

k∏
`=1

ai`−1i` = O(1).

Hence EPk = O(nk)ECk. Substitute b = 0, b = 2 into (7) to complete the proof.

Using Markov’s inequality we obtain the following results.

Corollary 3.7 A.a.s. there are no extensive undercoloured paths in G ∈ G.

Proof. If k >
√
n log n then any undercoloured k-path must contain an undercoloured

subpath of length b
√
n log nc. By Lemma 3.6 the expected number of undercoloured

paths of this length is O(n−1). Hence there are a.a.s. no undercoloured paths of length
b
√
n log nc, which implies that there are a.a.s. no extensive undercoloured paths.

Corollary 3.8 A.a.s. there are no undercoloured cycles of more than
√
n log n edges.

Lemma 3.9 A.a.s. no two distinct vertices of a short undercoloured cycle C are joined
by an unextensive undercoloured path which is not contained in C.

Proof. Let k, t be integers such that 2 ≤ k ≤ log5 n and 1 ≤ t ≤
√
n log n. For G ∈ G

let Xk,t be the number of ordered pairs (C,P ) where C is an undercoloured k-cycle in
G and P is an undercoloured t-path in G whose endvertices are distinct vertices of C,
with the internal vertices of P disjoint from C. Compare Xk,t with the number of such
pairs (C,P ) in which the endvertices of P are not required to lie on C (that is, they
may be arbitrary). The calculations are almost identical, except that in the first case
(for Xk,t) there are O(k2) ways to choose the two endvertices of the path, but in the
second case there are O(n2). Therefore, from Proposition 3.1 and Lemma 3.6,

EXk,t = ECk · EPt ·O(k2/n2) = O(k/n).

So the expected number of short undercoloured cycles with two vertices joined by an
unextensive undercoloured path is

O(1)
√
n log n

log5 n∑
k=2

k

n
= O

(
log11 n√

n

)
= o(1),

Hence there are a.a.s. none of these structures.

Lemma 3.10 A.a.s. there are no unextensive undercoloured paths between two vertices
in disjoint short undercoloured cycles.
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Proof. Fix integers k, k′, t such that 2 ≤ k, k′ ≤ log5 n and 1 ≤ t ≤
√
n log n. Let

X(k, k′, t) be the number of triples (C,C ′, P ) where C is an undercoloured k-cycle in G,
C ′ is a disjoint undercoloured k′-cycle in G, and P is an undercoloured t-path which has
one endvertex in C, the other endvertex in C ′ and no other vertex in C ∪ C ′. Arguing
as in Lemma 3.9 gives

EX(k, k′, t) = ECk · ECk′ · EPt ·O(kk′/n2) = O(1/n).

It follows that the expected number of pairs of disjoint short undercoloured cycles joined
by unextensive undercoloured paths is

O

(
log11 n√

n

)
= o(1).

Therefore there are a.a.s. no such structures.

Lemma 3.11 A.a.s. no two short undercoloured cycles intersect in a single vertex.

Proof. Fix integers k, k′ such that 2 ≤ k, k′ ≤ log5 n. Let X(k, k′) be the number of or-
dered pairs (C,C ′) where C is an undercoloured k-cycle in G and C ′ is an undercoloured
k′-cycle in G which intersects C in exactly one vertex. Arguing as in Lemma 3.9 gives

EX(k, k′) = ECk · ECk′ ·O(k/n) = O(1/n).

Therefore the expected number of ordered pairs of undercoloured cycles which intersect
in a single vertex is

O

(
log10 n

n

)
= o(1).

Hence there are a.a.s. no such structures.

Corollary 3.12 A.a.s. G ∈ G satisfies assumption (ii) of Theorem 2.1.

Proof. This follows by combining Lemmas 3.7, 3.9, 3.10 and 3.11.

Lemma 3.13 A.a.s. G ∈ G satisfies assumption (iii) of Theorem 2.1.

Proof. Let C be a long undercoloured k-cycle. By definition and using Corollary 3.8
we may assume that log5 n < k ≤

√
n log n. Fix the vertices, edges and edge colours of

C. Also fix a start vertex and a direction on C, and let the vertices of C be labelled
(v1, v2, . . . , vk) from the chosen start vertex v1, in the chosen direction. While the cycle
is equipped with direction, we will write blocks as ordered (r − 1)-tuples consisting of
the r− 1 vertices of the block in the transversal order. Given a vertex v of C, let Fv be
the subgraph induced by the vertices in (V (G) \ V (C)) ∪ {v} which can be reached by

16



a path P of length at most r from v, where V (P ) ∩ V (C) = {v}. We will call Fv the
r-neighbourhood of v. Let m = (d− 1)r − 1. Observe that Fv has at most

1 + (d− 2) + (d− 2)(d− 1) + (d− 2)(d− 1)2 + · · ·+ (d− 2)(d− 1)r−1 = m+ 1

vertices. Suppose that Fv has exactly m+ 1 vertices. Then Fv is a tree and every path
P = (v, w1, . . . , wr) in G which is initially disjoint from C has {w1, . . . , wr} ∩ C = ∅.

We make the following inductive definition of untouched blocks (with respect to
the given start vertex and direction). The block B1 = (v1, . . . , vr−1) is untouched.
Now suppose that the first ` untouched blocks B1, B2, . . . , B` have been identified, for
1 ≤ `. Suppose that B` = (vj, vj+1, . . . , vj+r−2). Then the next untouched block is
B`+1 = (vt, vt+1, . . . , vt+r−2), where t is the minimum over all s ≥ j + r − 1 such that
there is no path of length 2, . . . , r which is internally disjoint with C and which connects
any vertex of B1 ∪ · · · ∪B` to any of vt, vt+2, . . . vt+r−2.

Once the first ` untouched blocks have been identified, they eliminate at most
r(r − 1)m` choices for the starting position of the next untouched block. To see this,
note that there are at most (r − 1)m` vertices in C \ (B1 ∪ · · · ∪ B`) which belong to
Fw for some w ∈ B1 ∪ · · · ∪ B`. Each of these vertices rules out r − 1 possible starting
positions, giving (r − 1)2m` positions, as well as the (r − 1)` positions occupied by the
vertices of B1 ∪ · · · ∪B`. So there are at least ` untouched blocks in any subgraph of C
which consists of a path of r(r − 1)m` edges. In particular, we can certainly define the
first log2 n untouched blocks in any long undercoloured cycle, for a given start vertex
and direction.

Let p`(C) be the probability that the first ` untouched blocks around C (from some
given start vertex in a given direction) are bad, for ` ≥ 0. Note that p0(C) = 1. We will
prove that

p`+1(C) ≤ (1− q)p`(C) (16)

for 0 ≤ ` < log2 n, where q = (2(r − 1))−(r−1)m = O(1). For fixed ` with 0 ≤ ` < log2 n,
suppose that the first ` untouched blocks are all bad. Let FB = ∪v∈V (B)Fv for all blocks
B. Condition on the vertices, edges and edge colourings in FBi

for 1 ≤ i ≤ `. The
total number of vertices fixed (in these r-neighbourhoods and in C itself) is y, where
y ≤ k + (r − 1)m` = O(

√
n log n). Let B`+1 be the next untouched block in C. We

prove that the probability that B`+1 is good, conditioned on the vertices, edges and edge
colourings in C ∪ FB1 ∪ · · · ∪ FB`

, is at least q.
Instead of working with partial matchings, we first argue about perfect matchings

and then (r − 2)-colour each perfect matching later. For ease of notation, write B
for B`+1 and F for FB`+1

. First we show that with probability at least 2−(r−1)m, the
subgraph F is the union of r−1 disjoint trees, each with m+1 vertices, which are disjoint
from C \ B and from the r-neighbourhoods of the previous ` untouched blocks. Call
this event A. Suppose that there are ij fixed edges from the jth perfect matching, with
i1 + · · ·+ id = y. There are [n− y](r−1)m ways to choose vertices to make F the union of
r−1 disjoint trees of m+1 vertices each, such that the vertices in F \B are disjoint from
the y fixed vertices. Fill in the edges of F from the d perfect matchings in a canonical
way. Namely, start with the first vertex v in B. Look at the d− 2 vertices which have
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been selected to be the neighbours of v in Fv. Assign an edge to each in ascending
order, starting from the lowest-labelled vertex and the lowest-labelled allowable perfect
matching (that is, one which is not touching v). Once you have done that, proceed to
the d−1 vertices which have been chosen to neighbour the lowest-labelled new neighbour
of v. Assign edges from the perfect matchings in ascending order. Continue until each
edge in Fv has been assigned. Then do the same for the remaining vertices in B.

Suppose that after this process, aj edges of F have been assigned from the jth perfect
matching, for 1 ≤ j ≤ d. Then a1 + · · · + ad = (r − 1)m. Then the probability that a
randomly chosen perfect matching on n− 2ij vertices contains these aj specified edges
is

1

(n− 2ij − 1)(n− 2ij − 3) · · · (n− 2ij − 2aj − 1)
≥ 1

naj
.

It follows that

P(A) ≥
[n− y](r−1)m

n(r−1)m
≥ 2−(r−1)m.

(This uses the fact that y = o(1), so n− y ≥ n/2.)
For block B to be good, each perfect matching must be (r − 2)-coloured such that

the colouring of F ∪C is proper and such that there is no undercoloured path of length
at least r starting from a vertex of B and using edges of F . For each perfect matching,
order the colour classes of that matching arbitrarily. We stress that every edge of F
has already been assigned to a perfect matching, and we must merely decide to which
colour class of that perfect matching it belongs. Use the first colour (of the appropriate
perfect matching) on any edges of F which are at distance 1 or 2 from C, use the second
colour (of the appropriate perfect matching) on any edges of F which are at distance
3 or 4 from C, and so on, finally using the r/2’th colour (of the appropriate perfect
matching) on all edges of F at distance r − 1 or r from C, if r is even, or using the
(r − 1)/2’th colour (of the appropriate perfect matching) on all edges at distance r − 2
or r − 1 from C and the (r + 1)/2’th colour (of the appropriate perfect matching) on
all edges at distance r from C, if r is odd. Since r/2 ≤ r − 2 if r ≥ 4 is even, and
(r + 1)/2 ≤ r − 2 if r ≥ 5 is odd, this is always possible. Clearly any path of length r
starting from v ∈ C and using edges of F will involve r distinct colours.

Given that event A holds, the probability that this configuration occurs after each
perfect matching is (r − 2)-coloured is at least(

1

r − 2
−O(n−1)

)(r−1)m

> (r − 1)−(r−1)m,

since each edge in a particular perfect matching is coloured with a given colour of that
matching with probability 1/(r − 2) +O(n−1).

Putting this together (and reintroducing the subscript for B`+1), the probability that
B`+1 is good, given that B1, . . . , B` are bad, is at least q = (2(r−1))−(r−1)m. This shows
that (16) holds, for 0 ≤ ` < log2 n. Since p0(C) = 1, the probability that the first
log2 n untouched blocks in a given k-cycle C are bad (from a given start vertex and in
a given direction), conditioned upon C being a subgraph of the edge-coloured graph,
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is bounded above by (1 − q)log2 n = O(n−2). This is uniform over all k-cycles, with
log5 n < k ≤

√
n log n, and all choices of start vertex and direction.

Let Ck be the number of undercoloured k-cycles in G. Then the expected number
of bad long undercoloured cycles is bounded above by

√
n logn∑

k=log5 n+1

ECk · 2k ·O(n−2) = O(n−1)

using Proposition 3.1. Therefore Markov’s inequality guarantees there are a.a.s. no long
bad undercoloured cycles of length at most

√
n log n. This completes the proof.

Proof of Theorem 1.1 for n even. First note that for d = 2, Theorem 1.1 is clearly
true since a 2-regular graph is the union of disjoint cycles. There are 2(r−2) ≥ r colours
available, so we can easily form a proper r-acyclic edge colouring of any 2-regular graph.

Now assume that d ≥ 3. Combining Corollary 3.5, Corollary 3.12 and Lemma 3.13,
we find that a.a.s. G ∈ G satisfies conditions (i), (ii), (iii) of Theorem 2.1. The event that
G ∈ G is simple holds with probability which tends to a non-zero constant (see [4] or [13]).
Applying Theorem 2.1 to simple elements of G, we conclude that a.a.s.G ∈ dGn,1 satisfies
A′
r(G) ≤ (r − 2)d. Hence by contiguity, a.a.s. G ∈ Gn,d satisfies A′

r(G) ≤ (r − 2)d, as
required.

4 Odd number of vertices

Let n be even and d an even constant, d ≥ 4. Consider the probability space which we
denote by G(choose)

n,d , obtained by taking a random G ∈ Gn,d and selecting a set of d/2
edges of G (which we call distinguished edges) uniformly at random. Given such a graph
G with d/2 distinguished edges, we can form a graph G′ by adding a new vertex n + 1
together with d new edges joining vertex n + 1 to each endvertex of the distinguished
edges, then deleting the distinguished edges. Note that G′ is a d-regular multigraph
which is simple if and only if the d/2 chosen edges are non-adjacent (otherwise repeated

edges are formed). We call this operation pegging the edges. Let G(peg)
n,d denote the

probability space of all graphs G′ obtained by the above procedure, restricting the
resulting probability space to simple graphs. We say that two sequences of probability
spaces An, Bn on the same underlying set Ωn are asymptotically equivalent if the total
variation distance between PAn and PBn is o(1). Robinson and Wormald [12, Section 3]
proved that

G(peg)
n,d and Gn+1,d are asymptotically equivalent. (17)

The calculations of the previous section involve d independent, uniformly chosen
perfect matchings. Let (dGn,1)(choose) be the probability space obtained by taking a ran-
dom G ∈ dGn,1 and then choosing a set of d/2 distinguished edges uniformly at random
from G. Then (dGn,1)(peg) denotes the probability space obtained from (dGn,1)(choose) by
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pegging the d/2 distinguished edges, restricting the resulting probability space to simple
graphs.

Lemma 4.1 The probability spaces G(peg)
n,d and (dGn,1)(peg) are contiguous.

Proof. For ease of notation, write A = Gn,d and Â = dGn,1, and write B = G(peg)
n,d and

B̂ = (dGn,1)(peg).

Consider an event X(= Xn) in B or B̂. For a d-regular graph G on [n], let RX(G) be
the probability that choosing a set of d/2 distinguished edges of G uniformly at random,
and pegging these edges, gives an element of X. Fix ε > 0. Then

PB(X) =
∑

RX(G)≤ε

PA(G)RX(G) +
∑

RX(G)>ε

PA(G)RX(G).

The first summand is at most ε, which implies that

ε
∑

RX(G)>ε

PA(G) < PB(X) < ε+
∑

RX(G)>ε

PA(G). (18)

Similarly

ε
∑

RX(G)>ε

P bA(G) < P bB(X) < ε+
∑

RX(G)>ε

P bA(G). (19)

Assume that PB(X) = o(1). The lower bound in (18) shows that
∑

RX(G)>εPA(G) → 0.

That is, PA(RX(G) > ε) → 0, and contiguity of A and Â implies that P bA(RX(G) >
ε) → 0. Then the right hand side of (19) says that P bB(X) = O(ε). Since this is true for
all ε > 0 (or if you like, taking ε→ 0) it follows that P bB(X) = o(1). Thus PB(X) = o(1)
implies P bB(X) = o(1), and the converse follows by the symmetric argument. Hence B
and B̂ are contiguous, as required.

Now let G∗n+1 be the following probability space of (r − 2)d-edge-coloured d-regular
multigraphs on [n + 1]. Fix an ordering on the set of (r − 2)d colours. With G as in
the previous section, take a random G ∈ G. This is a (r − 2)d-edge-coloured d-regular
multigraph on [n]. Uniformly choose a set of d/2 edges of G and peg these edges to
give a graph G′ on the vertex set [n + 1], with the edges incident to vertex n + 1 not
yet coloured. Now take each neighbour v of n + 1 in ascending order (according to its
label) and recolour the edge {v, n + 1} with the least colour (with respect to the fixed
ordering) which may be used to properly colour this edge. There are at least

(r − 2)d− 2(d− 1) ≥ 2

colours available at each step, so this is always possible. This gives a proper (r−2)d-edge
colouring of G′, and this properly edge-coloured graph G′ is an element of G∗n+1.

Proposition 4.2 A.a.s. G′ ∈ G∗n+1 satisfies conditions (i), (ii), (iii) of Theorem 2.1.
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Proof. Take a random G ∈ G with d/2 distinguished edges, as in the construction of
G′ ∈ G∗n+1. Form a set D consisting of the endvertices of the distinguished edges.

Consider first the expected number of undercoloured k-cycles in G′, for 2 ≤ k ≤ n.
If C is an undercoloured k-cycle in G′ which does not involve the vertex n+ 1 then C is
also an undercoloured k-cycle in G. On the other hand, if C is an undercoloured k-cycle
in G′ which involves the vertex n+ 1 then there exists an undercoloured (k− 2)-path in
G with both endvertices in the set D. Considering the calculations of Lemma 3.6, there
are O(n) undercoloured k-paths in G, but forcing both endvertices to be in D gives an
extra factor O(n−2). This implies several statements. Firstly, the expected number of
undercoloured k-cycles in G′ is bounded above by

O(1/k) +O(1/n) = O(1/k)

using Proposition 3.1. Summing over k shows that condition (i) of Theorem 2.1 holds.
Secondly, there are a.a.s. no short undercoloured cycles in G′ involving vertex n + 1.
Thirdly, there are a.a.s. no undercoloured paths in G with both endvertices in the
set D, since there are a.a.s. no extensive undercoloured paths in G and the expected
number of unextensive undercoloured paths in G with both endvertices in D is at most
O(
√
n log n/n) = o(1).

Similarly, an undercoloured k-path in G′ which does not involve vertex n+ 1 is also
present in G. An undercoloured k-path which involves the vertex n+ 1 corresponds to
an undercoloured k1-path and an undercoloured k2-path in G, where k1 + k2 = k− 2 or
k1 = k − 1 and k2 = 0. Therefore the expected number of undercoloured k-paths in G′

is bounded above by

O(n) +
∑
k1

O(1) = O(n),

analogous to the calculations of Lemma 3.6. If k ≥
√
n log n then we may reduce this

bound to
O(n−1) +

∑
k1

O(n−2) = O(n−1)

using the same arguments, noting that at least one of k1, k2 is greater than
√

8n log n.
Hence there are a.a.s. no extensive undercoloured paths in G′ ∈ G∗n+1.

Now consider the expected number of short undercoloured cycles C with two distinct
distinguished vertices which are the ends of an unextensive undercoloured path. We
have seen that a.a.s. there are no short undercoloured cycles in G′ which contain the
vertex n + 1. By Lemma 3.9, any such structure in G′ must have vertex n + 1 on the
unextensive undercoloured path But then G contains a short undercoloured cycle with a
distinguished vertex which is one endvertex of an unextensive undercoloured path, with
the other endvertex in D. The expected number of these structures is

O(1/k) ·O(n) ·O(k/n2) = O(n−1)

by arguments similar to Lemma 3.9. This follows since for one end of the path there are
k choices and for the other there are O(1) choices, instead of a factor of O(n2) for the free
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choice of the two ends. Hence there are a.a.s. no such structures. This also shows that
a.a.s. there are no unextensive undercoloured paths between two vertices in disjoint
short undercoloured cycles. Next, suppose that G′ contains two short undercoloured
cycles which intersect in a single vertex. By Lemma 3.11, vertex n+ 1 must lie on one
(or both) of these short undercoloured cycles. But we have shown above that a.a.s. G′

has no short undercoloured cycles containing vertex n+ 1. Putting all this together we
see that a.a.s. G′ ∈ G∗n+1 satisfies condition (ii) of Theorem 2.1.

Finally for condition (iii), let C be a long undercoloured cycle in G′. We know that
G a.a.s. has no long bad undercoloured cycle, so assume that C contains the vertex
n + 1. Then there is an undercoloured path in G with both endvertices in the set D,
but, as we have shown, a.a.s. there are none of these.

Proof of Theorem 1.1 for n odd. Again, the result is trivial when d = 2. Now
assume that d ≥ 4 is an even constant. By Proposition 4.2, a.a.s. G ∈ G∗n (for n odd)
satisfies conditions (i), (ii), (iii) of Theorem 2.1. The event that G ∈ G∗n is simple holds
with probability which tends to a non-zero constant (see [4] or [13], noting that a.a.s. the
d/2 distinguished edges are pairwise non-adjacent). Therefore a.a.s. G ∈ (dGn−1,1)

(peg)

satisfies A′
r(G) ≤ (r − 2)d. By Lemma 4.1 and (17), it follows that G ∈ Gn,d a.a.s.

satisfies A′
r(G) ≤ (r − 2)d, as required.
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