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A dominating set D of a graph G is a subset of V (G) such that for every vertex
v ∈ V (G), either in v ∈ D or there exists a vertex u ∈ D that is adjacent to v.
We are interested in finding dominating sets of small cardinality. A dominating set
I of a graph G is said to be independent if no two vertices of I are connected by
an edge of G. The size of a smallest independent dominating set of a graph G is
the independent domination number of G. In this paper we present upper bounds
on the independent domination number of random regular graphs. This is achieved
by analysing the performance of a randomised greedy algorithm on random regular
graphs using differential equations.

1. Introduction

Throughout this paper we consider simple graphs that are undirected, unweighted and

contain no loops or multiple edges. A graph G is said to be d-regular if every vertex

in V (G) has degree d (i.e. each vertex is adjacent to precisely d other vertices in G).

When discussing any graph G, we let n denote the cardinality of V (G) and for d-regular

graphs on n vertices, we assume dn to be even to avoid parity problems. For other basic

graph-theoretical definitions we refer the reader to, for example, Diestel [3].

A dominating set D of a graph G is a subset of the vertices of G such that for every

vertex v ∈ V (G), either in v ∈ D or there exists an edge uv ∈ E(G) with u ∈ D. We are

interested in finding dominating sets of small cardinality. The domination number of a

graph G, which we denote by γ(G), is the size of a smallest dominating set of G.
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For an arbitrary graph G the problem of determining γ(G) is one of the core NP-

hard optimisation problems in graph theory and this problem remains NP-hard even

for planar graphs of maximum degree 3 [5]. Johnson [7] showed that for general graphs

on n vertices, γ(G) is approximable within 1 + log n. Raz and Safra [11] showed that

γ(G) is not approximable within c log n for some c > 0. When restricted to graphs of

bounded degree d ≥ 3, Papadimitriou and Yannakakis [10] showed that the problem of

determining γ(G) is APX-complete and is approximable within − 1
2 +

∑d+1
i=1 i

−1.

A dominating set I of a graph G is said to be independent if no two vertices of I are

connected by an edge of G. The independent domination number of a graph G, denoted

by γi(G), is the size of a smallest independent dominating set of G. Halldórsson [6]

showed that for an arbitrary graph G, γi(G) is not approximable within n1−ε for any

ε > 0. Note that for a d-regular graph G it is simple to verify that determining γi(G)

is approximable within (d + 1)/2. For graphs with bounded degree d, Alimonti and

Calamoneri [1] improved upon this trivial bound when d is small and Kann [8] showed

that this problem is APX-complete for bounded degree graphs.

We consider random d-regular graphs that are generated uniformly at random (u.a.r.),

and need some associated notation. We say that a property B = Bn of a random graph

holds asymptotically almost surely (a.a.s.) if the probability that B holds tends to 1 as n

tends to infinity. When d-regular graphs are the objects of consideration, this is modified

so that n is restricted to even numbers if d is odd. For other basic random graph theory

definitions we refer the reader to Bollobás [2].

We [4] improved upon an earlier result of Molloy and Reed [9] by showing that for a

random cubic (i.e. 3-regular) graph G, γi(G) a.a.s. satisfies 0.2641n ≤ γi(G) ≤ 0.27942n.

The upper bound was achieved by using differential equations to analyse the performance

of a randomised greedy algorithm that is based on repeatedly choosing vertices of current

minimum degree and deleting edges. The lower bound was calculated by means of a direct

expectation argument.

Zito [16] presented upper and lower bounds on γi(G) when G is a random d-regular

graph and gave explicit values for these bounds when 3 ≤ d ≤ 7. The lower bounds

were, again, calculated by means of a direct expectation argument whilst the upper

bounds were calculated by using differential equations to analyse the performance of a

randomised algorithm that is based on repeatedly choosing vertices of a particular degree

and deleting edges. Note that for d = 3, the upper bound in [16] is larger than the upper

bound result presented in [4].

In this paper we analyse the average-case performance of a simple heuristic, which

is a random greedy algorithm, that gives upper bounds on γi(G) when G is a random

d-regular graph. This algorithm is an extension of that for d = 3 presented in [4] and

improves all upper bounds presented in [16]. Using the direct expectation argument

presented in [16], we also evaluate corresponding lower bounds on γi(G) for several small

values of d.

In the following section we give a description of our algorithm and in Section 3 we

outline the method used for its analysis. Our analysis uses a theorem of the second

author [15] which we restate in Section 3. The results of this paper are encompassed by

the following theorem, the proof of which is given in Section 4.
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Theorem 1.1. Let d ≥ 3 be fixed. Then for a random d-regular graph G on n vertices,

the size of a minimum independent dominating set is asymptotically almost surely less

than Cu(d)n, where the constant Cu(d) is given in Table 1.

The constant Cu(d) referred to in Theorem 1.1 arises from the solution of particular

sets of differential equations. In Table 1, corresponding lower bounds are also given by

evaluating constants C`(d) from the argument in [16] (the details of which are restated

in the final section).

Table 1 Bounds on γi(G) when G is a random d-regular graph on n vertices.

d C`(d)n Cu(d)n

03 0.2641n 0.27942n
04 0.2236n 0.24399n
05 0.1959n 0.21852n
06 0.1755n 0.19895n
07 0.1596n 0.18329n
08 0.1468n 0.17037n
09 0.1362n 0.15948n
10 0.1273n 0.15015n
15 0.0976n 0.11783n
20 0.0803n 0.09830n
30 0.0606n 0.07526n
40 0.0494n 0.06181n
50 0.0420n 0.05285n

2. Prioritising choices

Consider the following algorithm that greedily finds a dominating set of a graph G.

Repeatedly choose a vertex u randomly to add to a set I. After each vertex is chosen,

remove u and its neighbours from G along with all their incident edges. Once no vertices

remain, the set I is a dominating set in G. It is not difficult to see that the set I is also

a maximal independent set and therefore an independent dominating set.

We modify this algorithm slightly by giving priority, in the choice of u, to the vertices

of current minimum degree in G, and add to I, not always u, but sometimes one of its

neighbours. To be precise, the new algorithm is the following. Repeatedly choose a vertex

u from those vertices of current minimum degree in G. If u has a neighbour of degree

strictly larger than that of u, select v from those vertices of current maximum degree

amongst the neighbours of u. Otherwise, select v to be u. Add v to I and remove v from

G along with its neighbours and all their incident edges.

The deletion of the edges incident with the neighbours of v may cause the current

degree of a vertex in G (that is not a vertex in I or adjacent to a vertex of I in G) to

be decreased to zero. We refer to such vertices as accidental isolates. Due to the priority

assigned to vertices of current minimum degree, accidental isolates that are created are

immediately selected in the subsequent steps to be part of I.
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Note that no two accidental isolates may be connected by an edge of G. This, and the

fact that all edges incident with neighbours of vertices of I in G are deleted, ensures that

I is an independent dominating set in G.

Define an operation to be the process of selecting a vertex, u, of current minimum

(non-zero) degree, the selection of a vertex, v, to add to I, the deletion of all edges

incident with neighbours of v and adding all accidental isolates that are created to I. In

particular, an operation of Type r is an operation in which u has degree r.

The algorithm above for finding a small independent dominating set of d-regular graphs

is a direct extension of the algorithm in [4] that finds a small independent dominating

set of cubic graphs. The algorithm in [4] is analysed as follows. Letting variables Yi
(i = 0, . . . , 3) denote the number of vertices of current degree i, the expected values

of Yi are estimated throughout the algorithm for each i using differential equations. It

is shown that with high probability the variables are concentrated near their expected

values. The analysis in [4] has major complications arising from the fact that priority is

given to vertices currently of minimum degree. We call such an algorithm a prioritised

algorithm.

We do not analyse exactly the algorithm presented above, but a similar one, using a

technique introduced by the second author [15]. This approach approximates the perfor-

mance of a prioritised algorithm by analysing associated deprioritised algorithms. These

algorithms entirely avoid prioritising by using a randomised mixture of operations. The

particular mixture used for any step is prescribed in advance but changes over the course

of the algorithm in order to approximate the prioritised algorithm.

One of the main objectives of using this new technique is to reduce the number of

conditions that are required to be checked. Arguments in [4] require steps involving

branching processes and large deviation inequalities. They also require checking complex

conditions regarding derivatives, especially at the transition between phases, which are

those points at which the smallest “commonly occurring” degree undergoes a “sudden”

shift.

3. Use of deprioritised algorithms

The operations and priorities described in the prioritised algorithm given in Section 2 can

be analysed using [15, Theorem 1]. This provides us with a set of differential equations

whose solution describes the state of a deprioritised version of the algorithm during its

execution. From this, we deduce asymptotically almost sure bounds on the size of the

independent dominating set at the end of the algorithm. (We claim, but do not prove,

that the deprioritised algorithm produces the same asymptotic result as the original

prioritised algorithm.)

The standard model for random d-regular graphs is as follows. Take a set of dn points

in n buckets labelled 1, 2, . . . , n, with d points in each bucket, and choose u.a.r. a pairing

P = p1, . . . , pdn/2 of the points such that each pi is an unordered pair of points and each

point is in precisely one pair pi. The resulting probability space of pairings is denoted by

Pn,d. Form a d-regular pseudograph on n vertices by placing an edge between vertices i

and j for each pair in P having one point in bucket i and one in bucket j.
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In order to prove that a property is a.a.s. true of a uniformly distributed random d-

regular (simple) graph, it is enough to prove that it is a.a.s. true of the pseudograph

corresponding to a random pairing (see Bollobás [2] and Wormald [13]).

As in [14], we redefine this model slightly by specifying that the pairs are chosen

sequentially. The first point in a random pair may be selected using any rule whatsoever,

as long as the second point in that random pair is chosen u.a.r. from all the remaining

free (unpaired) points. This preserves the uniform distribution of the final pairing.

When a pair has been determined in the sequential process, we say that it has been

exposed. By exposing pairs in the order which an algorithm requests their existence, the

generation of the random pairing may be combined with the algorithm (as in [4, 12, 14]).

In this way, the algorithm such as the one in the previous section, which deletes edges,

may be described in terms of operations incorporated into the pairing generation. The

definition of the operations may be extended to do whatever other tasks the algorithm

needs to carry out.

The algorithm proper acts upon the final (pseudo)graph of the generation process, but

the set of exposed pairs builds up this final graph during the course of the generation

process which incorporates the algorithm. The order in which the edges are deleted

corresponds to the order in which the pairs were exposed.

The setting of [15, Theorem 1] requires a number of definitions, and may be described

as follows. It concerns a class of processes applied to the random pairing. As described

above, this may be defined in terms of the generation algorithm which exposes pairs.

The beginning of the generation algorithm is the empty pairing G0. The pairing Gt+1

is obtained from Gt by applying an operation which may expose some of the pairs; the

degree of a bucket is the number of points it contains in exposed pairs. The operation,

opt, which is applied to Gt must be one of some prespecified set of operations, Opi,

i = 1, . . . , d, where Opi consists of selecting a bucket u of degree d− i (vertex of degree

i) in Gt u.a.r., and then applying some specified set of tasks, resulting in Gt+1. A subset

I of V (G) ∪ E(G) is selected during the operations, with I0 = ∅ initially, and I = It for

the pairing Gt.

For 1 ≤ i ≤ d, let Yi = Yi(t) denote the number of buckets of degree d− i in Gt, and

let Yd+1 = Yd+1(t) denote cardinality of the set It. Put Y(t) = Y1(t), . . . , Yd+1(t)).

We refer the reader to [15, Theorem 1] for motivation for the following definitions, and

provide a little explanation below. Let y denote (y1(x), . . . , yd+1(x)). Given functions

fi,r (x,y), define

αk(x,y) = fd−k−1,d−k (x,y) ,

τk(x,y) = −fd−k−1,d−k−1 (x,y) ,

(1)

where

x =
t

n
, y(x) =

Y(t)

n
. (2)
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We will consider the equations

dyi
dx

= F (x,y, i, k) (3)

where

F (x,y, i, k) =





τk
τk+αk

fi,d−k (x,y) + αk
τk+αk

fi,d−k−1 (x,y) k ≤ d− 2

fi,1 (x,y) k = d− 1

(4)

and work with the parameters of fi,` in the domain

Dε = {(x,y) : 0 ≤ x ≤ d, 0 ≤ yi ≤ d for 1 ≤ i ≤ d+ 1, yd ≥ ε} (5)

for some pre-chosen value of ε > 0. The behaviour of the process will be described in

terms of the function ỹ = ỹ(x) = (ỹ1(x), . . . , ỹd+1(x)) defined as follows, with reference

to an initial value x = x0 = t0/n of interest:

ỹi(x0) = Yi(t0)/n, i = 1, . . . , d + 1, and inductively for k ≥ 1, ỹ

is the solution of (3) with initial conditions y(xk−1) = ỹ(xk−1),

extending to all x ∈ [xk−1, xk], where xk is defined as the infimum

of those x > xk−1 for which at least one of the following holds:

τk ≤ 0 and k < d− 1; τk +αk ≤ ε and k < d− 1; ỹd−k ≤ 0; or the

solution is outside Dε or ceases to exist.

(6)

The interval [xk−1, xk] is called phase k. This inductive definition of ỹ continues for

phases k = 1, 2, . . . ,m, where

m denotes the smallest k for which either k = d− 1, or any of the

termination conditions for phase k in (6) hold at xk apart from

xk = inf{x ≥ xk−1 : τk ≤ 0}. (7)

It turns out that the intervals called phases have nonempty interior provided

τk > 0 and τk + αk > ε at (xk−1, ỹ(xk−1)) (1 ≤ k ≤ min{d− 2,m}), (8)

fd−1,d−1 > 0 at (x0, ỹ(x0)),

f ′d−k,d−kτk + fd−k,d−k−1f
′
d−k−1,d−k > 0 at (xk−1, ỹ(xk−1))+ 1 < k

k ≤ min{d− 2,m}),

f ′d−k,d−k > 0 at (xk−1, ỹ(xk−1))− 1 < k ≤ m,

f ′1,1 > 0 at (xd−2, ỹ(xd−2))+ if m = d− 1,
(9)

with f ′ denoting df(x,ỹ(x))
dx and (x, ỹ(x))+ and (x, ỹ(x))− referring to the right-hand and

left-hand limits as functions of x.
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We may now restate [15, Theorem 1] which we will use in the following section in

connection with the independent dominating set algorithm.

Theorem 3.1 ([15]). Let d ≥ 3. Assume that for some fixed ε > 0 the operations Opr
satisfy

E
(
Yi(t+ 1)− Yi(t) | Gt ∧ {opt = Opr}

)
= fi,r(t/n, Y1/n, . . . , Yd+1/n) + o(1) (10)

for some fixed functions fi,r(x, y1(x), . . . , yd+1(x)) and for i = 1, . . . , d+ 1, r = 1, . . . , d,

with the convergence in o(1) uniform over all t and Gt for which Yr(t) > 0 and Yd(t) > εn.

Assume furthermore that

(i) there is an upper bound, depending only upon d, on the number of pairs exposed, and

on the number of elements added to I (i.e. |It+1| − |It|), during any one operation;

(ii) the functions fi,r are rational functions of x, y1, . . . , yd+1 with no pole in Dε defined

in (5);

(iii) there exist positive constants C1, C2 and C3 such that for 1 ≤ i < d, everywhere on

Dε, fi,r ≥ C1yi+1 − C2yi when r 6= i, and fi,r ≤ C3yi+1 for all r.

Define ỹ as in (6), set x0 = 0, define m as in (7), and assume that (8) and (9) both

hold. Then there is a randomised algorithm on Pn,d for which a.a.s. there exists t such

that |It| = nỹd+1(xm) + o(n) and Yi(t) = nỹi(xm) + o(n) for 1 ≤ i ≤ d. Also ỹi(x) ≡ 0

for xk−1 ≤ x ≤ xk, 1 ≤ i ≤ d− k − 1 (1 ≤ k ≤ m).

Some of these definitions can be explained easily. The algorithm in Section 2 works

by deleting edges; the edges deleted correspond to pairs exposed in the corresponding

pairing generation algorithm as described above. In particular, a vertex of degree i in

the original algorithm corresponds to a bucket of degree d− i in the pairing version; we

use vertex degree and bucket degree to distinguish these complementary measures. The

algorithm gives higher priority to the buckets of highest degree (vertices of lowest degree).

The phase is determined by the set of bucket degrees which are reasonably common

(meaning, roughly, more than cn buckets have that degree for some c > 0). Phase k

corresponds to a period in which the smallest such common vertex degree is d − k (i.e.

largest common bucket degree is k). At such a time, vertices of degree d − k − 1, when

created, will immediately be used up, by being chosen for u in the subsequent steps,

until the minimum positive vertex degree returns to d− k. So phase k basically consists

of a mixture of two operations: Opd−k and Opd−k−1. The functions α and τ represent

respectively the expected net increase in Yk+1 in an Opd−k, and the expected net decrease

in Yk+1 in an Opd−k−1. From these quantities, one may estimate the proportions of these

operations being performed at any stage. The randomised algorithm referred to in the

theorem uses roughly the same mixture of operations. This in turn lets us calculate the

expected changes in the variables, and the result is (4), which leads to the differential

equation (3) analogous to the equations derived in [4].
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4. Algorithm analysis

Motivated by the algorithm for finding a small independent dominating set as described

in Section 2, we specify the tasks in Opr, 1 ≤ r ≤ d. Here Opr must first select a random

bucket, u, of degree d − r. The set of randomised tasks consists of choosing a bucket

v, exposing pairs in v and all neighbouring buckets and adding v and any accidental

isolates to I (which denotes the independent dominating set). An “accidental isolate”,

when dealing with the pairing generation, refers to any bucket (other than v and its

neighbours) that attains degree d. According to the rule given in the description of the

algorithm, v is chosen randomly from the buckets neighbouring u of strictly smaller

degree (recalling the relationship between bucket degree and vertex degree), if there are

any, and otherwise v = u.

We may verify the hypotheses of Theorem 3.1. First we will show that (10) holds when

Yd(t) > εn (for any ε > 0). From here onwards in this description, v-degree refers to

vertex degree, so v-degree i means bucket degree d− i. Let yi denote Yi/n and

χq,r = (Sq1)r − (Sq−1
1 )r

where

Sba =

b∑

j=a

Pj , Pj =
jyj
s

and s =

d∑

i=1

iyi.

Then, when performing an instance of Opr, the probability that the neighbours of u have

maximum v-degree exactly q is χq,r + o(1) (see [4] for similar arguments). Similarly, for

Opr, the probability that u has b neighbours of v-degree q, given that the maximum

v-degree amongst the neighbours of u is q, is βb,q,r/χq,r + o(1) where

βb,q,r = (Pq)
b

(
r

b

)
(Sq−1

1 )r−b.

Also, the expected number of neighbours of u that have v-degree j, 1 ≤ j ≤ q − 1, given

that u has b neighbours of v-degree q and q is the maximum v-degree of all neighbours

of u, is γb,j,q,r/βb,q,r + o(1) where

γb,j,q,r = (Pq)
b

(
r

b

)
(Sq−1

1 )r−b−1(r − b)Pj .

Let q denote the maximum v-degree of the neighbours of u. If q > r, Opr selects a

bucket, v, u.a.r. from the neighbours of u of v-degree q to add to the dominating set.

This is Case A. Otherwise (all neighbours of u have v-degree at most r), Opr selects u

to add to the dominating set. This is Case B. For both cases, once the dominating set

bucket has been chosen, all pairs incident with the chosen bucket and its neighbours are

exposed.

The pairs incident with u are always exposed and the effect, on the expected change

in Yi, of changing the v-degree of u to 0 is just

−δi=r
where, here and in the following, δR = 1 if the statement R is true, 0 otherwise.
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For Case A, the effect, on the expected change in Yi, of changing the v-degrees of v

and its neighbours (other than u) by exposing all pairs incident with the neighbours of

v, is just

−δi=q + (q − 1)µi + o(1)

where

µi = −Pi + ρi
∑d
x=2(x− 1)Px and

ρi = −Pi + Pi+1δi+1≤d.

For each of the other neighbours of u, the effect, on the expected change in Yi, of changing

its v-degree from j to j − 1 is just

δi=j−1 − δi=j .

For Case B, the expected number of neighbours of u of degree j ≤ r is

r(Sr1)r
Pj
Sr1

+ o(1)

and the effect, on the expected change in Yi, of the changing v-degree of one such neigh-

bour w, and all its neighbours (other than u), by exposing all pairs incident with w, is

just

−δi=j + (j − 1)ρi + o(1).

So we have that (10) holds with

fi,r = −δi=r +

d∑

q=r+1

χq,r(−δi=q + (q − 1)µi)

+

d∑

q=r+1

r∑

b=1

[
βb,q,r(b− 1)(δi=q−1 − δi=q) +

q−1∑

j=1

γb,j,q,r(δi=j−1 − δi=j)
]

(11)

+

r∑

j=1

r(Sr1)r−1Pj((j − 1)ρi − δi=j).

It also follows that (10) also holds for i = d+ 1 with fd+1,r defined as 1 + f0,r, since in

each Opr, an extra vertex is added to the independent dominating set I and the expected

number of accidental isolates is f0,r as defined in (11).

Hypothesis (i) of Theorem 3.1 is immediate since in any operation only the pairs

involving points in one bucket and its neighbours are exposed, and a bounded number

of vertices are added to I (as there are certainly less than d2 accidental isolates). The

functions fi,r satisfy (ii) because from (11) their (possible) singularities satisfy s = 0,

which lies outside Dε since in Dε, s ≥ yd ≥ ε. Hypothesis (iii) follows from (11) again

using s ≥ yd ≥ ε and the boundedness of the functions yi (which follows from the

boundedness of Dε). Thus, defining ỹ as in (6) with t0 = 0, Yd(0) = n and Yi(0) = 0 for

i 6= d, we may solve (3) numerically to find m, verifying (8) and (9) at the appropriate

points of the computation.



               

10 W. Duckworth and N.C. Wormald

It turns out that these hold for each d in Table 1, and that in each case m = d− 1, for

sufficiently small ε > 0. For such ε, the value of ỹd+1(xm) may be computed numerically

(the result is shown as the constant Cu(d) in Table 1), and then by Theorem 3.1, this is

the asymptotic value of the size of the independent dominating set I at the end of some

randomised algorithm. So the conclusion is that a random d-regular graph a.a.s. has an

independent dominating set of size at most nỹd+1(xm) + o(n). Note also that (by the

theorem) ỹi(x) ≡ 0 in phase k for 1 ≤ i ≤ d− k− 1, and by the nature of the differential

equation, ỹi(x) will be strictly positive for i > d − k. So by (6) and (7), the end of the

process (for ε arbitrarily small) occurs in phase d− 1 when ỹ1 becomes 0.

5. Lower bounds

Zito [16] considered the expected number of independent dominating sets of size λn for a

random d-regular graph on n vertices, d ≥ 3. He showed that this expectation is at most

nO(1)

{
(1− 2λ)

d(1−2λ)
2 (dλ)dλ ((1 + x)d − 1)1−λ

λλ (1− λ)1−λ ddλ xdλ

}n

where x takes the value that minimises

((1 + x)d − 1)1−λ

xdλ
.

Finding the value of λ below which this expression tends to zero gives a lower bound on

the expected size of an independent dominating set of a random d-regular graph on n

vertices. Thus giving the constants C`(d) reported in table 1.
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