
Linear Programming and the

Worst-Case Analysis of Greedy

Algorithms on Cubic Graphs ?

W. Duckworth a,1, N.C. Wormald b,2

aDepartment of Computing, Macquarie University,
Sydney NSW 2109, Australia.

bDepartment of Combinatorics & Optimization, University of Waterloo,
Waterloo ON, Canada N2L 3G1.

Abstract

We introduce a technique using linear programming that may be used to analyse
the worst-case performance of a class of greedy heuristics for certain optimisation
problems on regular graphs. We demonstrate the use of this technique on heuris-
tics for bounding the size of a minimum maximal matching (MMM), a minimum
connected dominating set (MCDS) and a minimum independent dominating set
(MIDS) in cubic graphs. As a result, we show that for n-vertex connected cubic
graphs, the size of a MMM is at most 9n/20 + O(1), the size of a MCDS is at most
3n/4 + O(1) and the size of a MIDS is at most 29n/70 + O(1). We also consider
n-vertex connected cubic graphs of girth at least 5 and for such graphs we show
that the size of a MMM is at most 3n/7 + O(1), the size of a MCDS is at most
2n/3 + O(1) and the size of a MIDS is at most 3n/8 + O(1).

Key words: worst-case analysis, cubic, 3-regular, graphs, linear programming.

? This research was carried out while the authors were in the Department of Math-
ematics and Statistics, The University of Melbourne, VIC 3010, Australia.
∗ Corresponding author.

Email addresses: billy@ics.mq.edu.au (W. Duckworth),
nwormald@math.uwaterloo.ca (N.C. Wormald).

URLs: http://www.ics.mq.edu.au/~billy (W. Duckworth),
http://www.math.uwaterloo.ca/~nwormald (N.C. Wormald).
1 Research supported by Macquarie University while the author was supported by
the Macquarie University Research Fellowships Grants Scheme.
2 Research supported by the Australian Research Council while the author was
affiliated with the Department of Mathematics and Statistics, The University of
Melbourne; currently supported by the Canada Research Chairs program.

Preprint submitted to JCTB 22 August 2005

1 Introduction

Many NP-hard graph-theoretic optimisation problems remain NP-hard when
the input is restricted to graphs of bounded or regular degree, even when
the maximum degree of the graph is 3, for example, Maximum Independent
Set [11, problem GT20] and Minimum Dominating Set [11, problem GT2] to
name but two. (See, for example, [1] for recent results on the complexity and
approximability of these problems.) In this paper, we introduce a technique
that may be used to analyse the worst-case performance of greedy algorithms
on cubic (i.e. 3-regular) graphs. The technique uses linear programming and
may be applied to a variety of graph-theoretic optimisation problems. Suitable
problems would include those problems where, given a graph, we are required
to find a subset of the vertices (or edges) involving local conditions on the
vertices and (or) edges. These include problems such as Minimum Vertex
Cover [11, problem GT1], Maximum Induced Matching [6] and Maximum
2-Independent Set [19]. The technique could also be applied to regular graphs
of higher degree, but with dubious benefit as the effort required would be
much greater.

The technique we describe provides a method of comparing the performance
of different greedy algorithms for a particular optimisation problem, in some
cases determining the one with the best worst-case performance. In this way,
we can also obtain lower or upper bounds on the cardinality of the sets of
vertices (or edges) of interest. Using this technique, it is simple to modify
the analysis in order to investigate the performance of an algorithm when the
input is restricted to (for example) cubic graphs of bounded girth or cubic
graphs with a forbidden subgraph.

Besides introducing a new general approach to giving bounds on the perfor-
mance of greedy algorithms using linear programming, we demonstrate how
the linear programming solution can sometimes lead to constructions that
achieve the bounds obtained. In these cases, the worst case performance of
these particular algorithms is determined quite precisely, even though the im-
plied bound on the size of a the minimal or maximal subset of edges or vertices
is not sharp.

Throughout this paper, when discussing any cubic graph on n vertices, we
assume n to be even and we also assume the graph to contain no loops nor
multiple edges. The cubic graphs are assumed to be connected; for discon-
nected graphs, for each particular problem under consideration, applying our
algorithm for that problem in turn to each connected component would, of
course, cause the constant terms in our results to be multiplied by the number
of components.

2

In this paper, we present and analyse greedy algorithms for three problems
related to domination in cubic graphs. A (vertex) dominating set of a graph
G = (V, E) is a set D ⊆ V (G) such that for every vertex v ∈ V (G), either
v ∈ D or v has a neighbour in D. An edge dominating set of a graph G = (V, E)
is a set F ⊆ E(G) such that for every edge e ∈ E(G), either e ∈ F or e
shares a common end-point with an edge of F . An independent set of a graph
G = (V, E) is a set I ⊆ V (G) such that no two vertices of I are connected by
an edge of E(G). A matching of a graph G = (V, E) is a set M ⊆ E(G) such
that no two edges of M share a common end-point.

We now formally define the problems that we consider in this paper.

Minimum Independent Dominating Set : An independent dominating
set (IDS) of a graph G = (V, E) is a set of vertices I ⊆ V (G) that is both an
independent set and a dominating set. A minimum independent dominating
set (MIDS) is therefore an IDS of minimum cardinality.

Minimum Maximal Matching : A maximal matching (MM) of a graph
G = (V, E) is a set of edges E ⊆ E(G) such that E is a matching and every
edge in E(G) \ E shares at least one end-point with an edge of E . A minimum
maximal matching (MMM) is therefore a MM of minimum cardinality. Note
that finding a MMM of a graph G is equivalent to finding a MIDS of the line
graph of G. A MMM of G may also be considered as a minimum independent-
edge dominating set of G.

Minimum Connected Dominating Set : A connected dominating set
(CDS) of a graph G = (V, E) is a set of vertices C ⊆ V (G) that is a dominating
set with the additional property that the subgraph induced by the vertices of
C is connected. A minimum connected dominating set (MCDS) is therefore a
CDS of minimum cardinality.

Let MCDS, MIDS and MMM denote the problems of finding a MCDS,
a MIDS and a MMM of a graph, respectively. The algorithms we present in
this paper are only heuristics for these problems; they find small sets when
the problem asks for a minimum set.

Griggs, Kleitman and Shastri [12] showed that every n-vertex connected cubic
graph has a spanning tree with at least d(n/4)+2e leaves, implying (by deleting
the leaves) that such graphs have a CDS of size at most 3n/4. Lam et al [17]
showed that for n ≥ 10, the size of a MIDS of n-vertex connected cubic graphs
is at most 2n/5. Both these results use rather complicated and elaborate
arguments, so the extraction of an algorithm from them can be difficult. By
contrast, our approach is an attempt to automate the proofs, greatly reducing
the proportion of ad hoc arguments by using computer calculations.

Note that for n-vertex cubic graphs, it is simple to verify that, the size of a

3

MM is at least 3n/10, the size of a CDS is at least (n−2)/2 and the size of an
IDS is at least n/4. In this paper we prove that for n-vertex connected cubic
graphs, the size of a MMM is at most 9n/20 + O(1), the size of a MCDS is
at most 3n/4 + O(1) and the size of a MIDS is at most 29n/70 + O(1). For
MMM (as far as the authors are aware) no other non-trivial approximation
results were previously known for this problem when the input is restricted to
cubic graphs.

Many optimisation problems have been considered when the input is re-
stricted, see, for example, [3,23,24] for the study of the similar problem of
maximum independent set size in graphs with restricted girth. Ever-increasing
bounds were obtained as the girth increases. We note that for cubic graphs of
girth 4 (in relation to all problems that we consider in this paper) our analy-
sis gives no improved result than the unrestricted case. We therefore consider
n-vertex connected cubic graphs of girth at least 5. For such graphs, we show
that the size of a MMM is at most 3n/7+O(1), the size of a MCDS is at most
2n/3 + O(1) and the size of a MIDS is at most 3n/8 + O(1).

The following section describes the notion of analysing the worst-case perfor-
mance of greedy algorithms using linear programming. Our algorithms (and
their analysis) forMMM,MCDS andMIDS of cubic graphs are given in
Sections 3, 4 and 5 respectively. We conclude in Section 6 by mentioning some
of the other problems to which we have applied this technique.

2 Worst-Case Analysis and Linear Programs

In each of the problems that we consider in this paper, we are given a graph
and aim to find a subset of the vertices (or edges) of small cardinality that
satisfies local conditions on the vertices and (or) edges. The algorithms we
introduce in the following sections are greedy algorithms based on selecting
vertices (that have particular properties) from an ever-shrinking subgraph of
the input graph. After choosing such a vertex, which we call the target, a
vertex (or edge) near the target is selected to be added to the set we wish to
construct. Once this selection has been made, edges and vertices are deleted
from the (sub)graph in order to guarantee that, after the next element is
selected to be added to the set, the set constructed thus far satisfies the given
requirements (domination, independence, etc.).

We describe the algorithms in terms of a series of operations; an operation
being the process of selecting one or more elements to be added to the set and
performing the necessary deletion of vertices and edges. The operations will
be classified into types, according to their effects on the neighbourhood of the
selected element.

4

The first operation of each algorithm involves selecting the first element to
be added to the set and deleting the appropriate vertices and edges. For each
subsequent operation (before the completion of the algorithm) we note that
there must always exist a vertex of degree strictly less than 3 since the input
graph is assumed to be connected.

At any stage of a given algorithm, we may characterise the vertices of the
graph based on their degree (for MCDS we also consider their “colour” and
this will be defined in the relevant section). Let Vi denote such a set and let
Yi denote |Vi|, where 1 ≤ i ≤ t for some t. Operations performed by a given
algorithm will cause a change in the values of some of the variables Yi.

As an example, we considerMIDS where we are required to find an IDS, I,
of small cardinality. Each operation may be represented by equations showing
the change in the variables Yi and the change in the size of I.

Consider Figure 1 in which vertex 1 has degree 1, vertex 5 has degree 2 (all
other vertices have degree 3) and assume that vertex 2 has been selected to
be added to I. Vertex 2 and its neighbours are deleted along with all their
incident edges ensuring that, after the next selection of a vertex to be added to
the IDS, the set I constructed thus far is indeed independent and dominating.
Black vertices indicate those which are selected to be added to I and dotted
lines indicate edges that are deleted. The deletion of these edges may cause
additional vertices to be added to I (vertices that are isolated as a consequence
of the deletion of these edges) and vertex 5 in the figure is such a vertex.

3

1 2

4

5

6
Fig. 1. An example operation

For an operation Op, we let ∆Yi(Op) denote the net change in Yi due to
operation Op. We use m(Op) to denote the increase in the size of I due to
operation Op and its value will depend on the individual operation being
performed. We represent an operation by a set of equations. The equations
representing the operation given in Figure 1 are ∆Y3 = −4, ∆Y2 = −1,
∆Y1 = 0 and m(Op) = 2 (since the edges incident with the vertices 1, . . . , 5
are deleted, vertex 6 is changed from a vertex of degree 3 to a vertex of degree
1 and the size of I increases by 2 as a result of this operation).

5

At the start of each of our algorithms, all vertices are of degree 3 (forMCDS
all vertices are also of the same “colour”), and consequently belong to the
same set Vi, which we may assume is Vt. So, initially Yt = n and Yi = 0 for
all 1 ≤ i < t, and at the end of the algorithm Yi = 0 for all 1 ≤ i ≤ t. This
implies that the total change in Yt over the execution of the algorithm is −n
(since vertices of Vt are destroyed but never created). The net change in Yi for
1 ≤ i < t will be zero over the execution of the algorithm.

We construct the set of all possible operations performed by an algorithm for a
given problem by considering each possible subgraph that may be encountered.
Denote the set of all operations using OPS and for each operation in this set,
there is a set of corresponding equations of the above form.

For operation Op ∈ OPS, we use r(Op) to denote the number of times op-
eration Op is performed by an algorithm. Then, the solution to the linear
program LP0 given in Figure 2 gives an upper bound on the size of the set
returned by the algorithm. Note that ∆Yi(Op) for 1 ≤ i < t can be considered

MAXIMISE :
∑

Op∈OPS

m(Op)r(Op)

SUBJECT TO : Ct :
∑

Op∈OPS

∆Yt(Op)r(Op) = −n

Ci :
∑

Op∈OPS

∆Yi(Op)r(Op) = 0 1 ≤ i < t

r(Op) ≥ 0 Op ∈ OPS

Fig. 2. The linear program LP0

to be composed of two parts since an operation may destroy vertices of Vi and
simultaneously create new vertices of Vi. We denote the negation of the num-
ber of vertices of Vi destroyed by operation Op using Y −

i (Op) and similarly
the number created by Y +

i (Op), so that, Y +
i (Op) + Y −

i (Op) = ∆Yi(Op).

To eliminate operations that would otherwise increase the maximum value of
the solution to the linear program, and similarly to add further constraints,
we will prioritise the operations to some extent. In two of our examples we
find it convenient to use the following idea. Before each operation, we have an
ordered list of sets Si of vertices, called a priority list. The sets in this list are
in decreasing order of priority. The priority of a vertex is defined to be the
priority of the highest priority set it appears in (or, if it appears in none, the
vertex has “arbitrarily low” priority). Vertices of lower priority can be chosen
as the target only when the sets of higher priority are empty. For example,
the priority list for our algorithm forMIDS is as follows.

6

S1: vertices that have at least one neighbour of degree 1,

S2:
vertices of degree 2 (and their neighbours) that have
precisely one vertex at distance 2,

S2:
vertices of degree 2 (and their neighbours) that have
precisely two vertices at distance 2,

S3:
vertices of degree 2 (and their neighbours) that have
precisely three vertices at distance 2,

S4:
vertices of degree 2 (and their neighbours) that have
precisely four vertices at distance 2.

For each algorithm, we will define rules which further prioritise operations of
otherwise equal priority.

Since the input graph is assumed to be connected, the first operation of an al-
gorithm is unique in the sense that it is the only operation where the minimum
degree of the vertices is 3. Let OPS0 ⊆ OPS denote the set of operations for
which Y −

i = 0 for all 1 ≤ i < t. OPS0 therefore consists of all the possible
first operations. Due to the priorities of the algorithm, we may exclude certain
operations. We denote the set of operations that are excluded on this basis by
OPS1. To analyse the algorithm, we include only those operations that are
permitted (by the priorities of the algorithm) to occur after the first operation.
Denote this set of operations by OPS2 = OPS \ {OPS0 ∪ OPS1}. For our
MIDS example, consider the operations given in Figure 3 and assume that
vertex v has been selected to be added to I. The operation in Figure 3(a)
is excluded as it is in OPS0. As the algorithm prioritises the selection of a
vertex with a neighbour of degree 1 over that of any other vertex, operations
such as that given in Figure 3(b) are in OPS1 and are also excluded. When
we restrict the input to cubic graphs of girth at least 5, further operations are
also excluded such as the example given in Figure 3(c).

(c)(a) (b)

v v v

Fig. 3. Excluded operations

7

In each of our algorithms, there will be a γ (actually 1) such that all operations
destroying at least one vertex in Vγ to have priority over all others. It follows
that

(A) when Yγ > 0, any operation Op being performed must have Y −
γ (Op) < 0.

Let K denote the possible range of values for Y −
γ (Op) where Op ∈ OPS2 (note

that all such values are negative). For −k ∈ K, let sk = max(0, Yγ − k + 1),
i.e. the number of vertices in Vγ over and above k − 1 (if any). Consider the
possible contributions to sk from the various operations.

From property (A), if Y −
γ (Op) = 0, then Op cannot be performed due to

the priority constraints unless Yγ = 0. Thus, such an operation contributes
max(0, Y +

γ (Op) − k + 1) to sk. If Y −
γ (Op) < 0 and ∆Yγ(Op) ≥ 0, then Op

contributes at most ∆Yγ(Op) to sk. No other operation can increase sk. On
the other hand, if Y −

γ (Op) ≤ −k and ∆Yγ(Op) < 0, then Op must subtract at
least mγ,k := min(−∆Yγ(Op),−Y −

γ − k + 1) from sk. It follows that the net
increase in sk throughout the algorithm, after the first step, is bounded above
by the left hand side of the following constraint, which we call CPk

(s):

∑
Y−γ (Op)=0

Y +
γ (Op)≥k

Op∈OPS2

(Y +
γ (Op)− k + 1)r(Op) +

∑
Y−γ (Op)<0

∆Yγ (Op)>0
Op∈OPS2

∆Yγ(Op)r(Op)

−
∑

Y−γ (Op)≤−k

∆Yγ (Op)<0
Op∈OPS2

mγ,kr(Op) ≥ −s.

If sk has value s after the first operation then, since sk = 0 at the end of
the algorithm, CPk

(s) must hold (noting that the first operation cannot be in
OPS2). We refer to these constraints, for each −k ∈ K, as priority constraints.

Our algorithms will also be such that

(B) vertices in Vγ have degree less than 3.

This leads to extra priority constraints C′
Pk

(s) for each positive k:

∑
Y−γ (Op)=0

Op∈OPS2

bY +
γ (Op)/kcr(Op) +

∑
Y−γ (Op)<0

∆Yγ (Op)>0
Op∈OPS2

d∆Yγ(Op)/ker(Op)

−
∑

∆Yγ (Op)≤−k
Op∈OPS2

b−∆Yγ(Op)/kcr(Op) ≥ −s,

where −s is determined by the first operation.

8

The justification for this constraint is as follows. Let Yγ,k = bYγ/kc. By prop-
erty (B), the net change in Yγ,k over the course of the whole algorithm is 0.
The third summation, being subtracted, is a lower bound on the net decrease
in Yγ,k due to operations which decrease Yγ. The first two summations pro-
vide an upper bound on the net increase in Yγ,k due to all other operations,
apart from the increase s due to the first operation. The operations in the first
summation can only be performed, in view of condition (A), when Yγ = 0,
and so bY +

γ (Op)/kc is the actual increase in Yγ,k due to such an operation.
Any other operation Op which can increase Yγ,k must have Y −

γ (Op) < 0 and
∆Yγ(Op) > 0, and d∆Yγ(Op)/ke is the maximum possible increase in Yγ,k in
such a step.

For any possible initial operation Opinit, consider the linear program obtained
from LP0 by adding any prescribed set of the priority constraints, excluding
the operations in {OPS0 ∪ OPS1}, and altering to represent the part of the
algorithm remaining after the first step. Denote this linear program by LP1.
In comparison with LP0, the right hand sides of the constraints Ci will have
changed by O(1) (representing the changes in the variables due to Opinit).
Then create the linear program LP2 from LP1 by setting the right hand side
of all constraints (except Ct) to 0. This basically ignores the effect if the initial
operation Opinit. LP2 is then independent of Opinit and differs from LP0 in that
all operations in {OPS0∪OPS1} are excluded, and a set of priority constraints
have been added with s = 0 in all cases. We scale all linear programs by 1/n
(so that the right hand side of the constraint Ct becomes −1) and, using a
linear program solver, solve LP2. Post-optimal analysis of this solution will
indicate the degree to which the solution to LP1 can differ from this.

Lemma 1 For any one of the problems under consideration, and for any valid
initial operation, the solutions of LP1 and LP2 differ by at most c/n for some
constant c.

Proof: We analyse the effect of each possible operation in OPS0 by consid-
ering how such an operation may affect the right hand sides of the constraints.
(We refer the reader to [2,9,22], for example, for a background in the theory
of linear programming.)

After scaling, we represent the column vector of the right hand sides of the
constraints of LP2 by

b = [−1, 0, . . . , 0]T .

Let ∆bi for 1 ≤ i ≤ t represent the change in the right hand side of constraint
Ci : in passing from LP2 to LP1. Thus, −n∆bi is the change in Yi due to the
initial operation. We represent the column vector of changes to the right hand
sides of the constraints in passing from LP2 to LP1 by

∆b = [∆bt, ∆bt−1, . . . , ∆b1, 0, . . . , 0]T .

9

Let κi denote the optimum value of the objective function of the linear program
LPi and let y∗ be an optimum dual solution. If we replace b by b −∆b, we
know [22, equation (20) page 126] that κ1 ≤ κ2 − y∗∆b and as ∆bi = ci/n
for some constant ci depending on i, the solutions to LP1 and LP2 differ by
at most c/n for some constant c. 2

One of the themes of this work is that instead of developing ad hoc arguments
for each problem of this type, the same general argument can be used and to
some extent automated. For the present work, our elimination of operations
that cannot occur in LP2 due to prioritisation is simply by inspection, but this
too could presumably be automated. (We did use a degree of automation in
generating the possible operations and the LP constraints.) One could possibly
construct a program for which the input is a list of priorities in some form,
and the output is an upper or lower bound from LP2.

Apart from giving an upper bound on the size of the set of interest, often, the
solution to the linear program may also be used to construct a subgraph of a
cubic graph for which the given algorithm has a worst case indicated by the
solution to the linear program. From this subgraph we are able to construct
an infinite family of cubic graphs for which the given algorithm has a worst
case indicated by the solution to within a constant number of vertices of the
input graph.

In general, there may be many different combinations of operations that, for
a given problem, give the same numerical solution. In particular, two or more
sets of operations may have equivalent sets of equations for the overall changes
in the variables. As a consequence of this, the subgraph constructed from the
solution may not be of the simplest form.

For a given algorithm, additional priorities may be present in order to decide
which element is selected to be added to the set under construction. No extra
constraints are added to ensure these priorities are adhered to (although we do
exclude certain operations on this basis). Due to these priorities, the subgraph
constructed from the solution may be infeasible for the given algorithm. Should
this occur, we can attempt to simplify the subgraph indicated by the solution.
Replacing operations by other operations, that have the same sets of equations,
may remove the conflict of the solution with the non-constrained priorities of
the algorithm. By replacing sets of operations by ones with equivalent sets of
equations, the number of operations in the solution may possibly be reduced.

Given a solution to the linear program, we may try to create a cubic graph
which “corresponds” to the solution by first finding a “piece” of a cubic graph
with one vertex of degree 2 say, on which the algorithm would perform the
desired operations with the desired relative frequencies, up to the point that
there is again only one vertex of degree 2.

10

We may then take multiple copies of the subgraph formed by the deleted
vertices, and identify a vertex in one copy with a vertex in the next copy to
form one or more chains. Chains of subgraphs may be formed into a cubic
graph by identifying vertices in the first operation with vertices in either ends
of the chains.

Figure 4 represents one of the many possible ways of how these example graphs
may be formed. The shaded region (and an incident edge) represents the re-
peating subgraph and the black vertex represents the vertex that is selected
to be added to the set by the initial operation of the algorithm. Each repeated
subgraph in the chains is then processed in turn until the last operation is
performed.

...

...

...

...

Fig. 4. Forming a cubic graph

In order to find families of cubic graphs for which a given algorithm has a
worst-case performance indicated by the solution to the corresponding lin-
ear program, to within a constant number of vertices, it suffices to find the
corresponding repeating subgraph.

3 Small Maximal Matchings

Yannakakis and Gavril [26] showed that the size of a smallest edge dominating
set (EDS) of a graph is the same as the size of a smallest maximal match-
ing (MM) and that the problem of finding a minimum edge dominating set
(MEDS) is NP-hard even when restricted to planar or bipartite graphs of max-
imum degree 3. In the same paper they also gave a polynomial time algorithm
that finds a MEDS of trees. Horton and Kilakos [15] showed that the problem
of finding a MEDS remains NP-hard for planar bipartite graphs and planar
cubic graphs. They also gave a polynomial time algorithm that finds a MEDS
for various classes of chordal graphs. More recently, Zito [27], extended these
NP-hardness results to include bipartite (ks, 3s)-graphs for every integer s > 0
and for k ∈ {1, 2}. (A (∆, δ)-graph is a graph with maximum degree ∆ and
minimum degree δ.) It is simple to verify that, for cubic graphs, the problem
of finding a minimum maximal matching (MMM) is approximable within 5/3.

11

Zito [28] showed that for a random n-vertex cubic graph G, the size of a MMM
of G, β(G), asymptotically almost surely (a.a.s. i.e. with probability tending
to 1 as n goes to infinity) satisfies 0.3158n < β(G) < 0.47653n. This upper
bound has since been improved to 0.34622n [4].

In this section, we present an algorithm that finds a small MM of cubic graphs.
We analyse the worst-case performance of this algorithm using the linear pro-
gramming technique outlined in Section 2 and show that for n-vertex con-
nected cubic graphs, the algorithm returns a MM of size at most 9n/20+O(1).
We also show that there exists infinitely many n-vertex cubic graphs that have
no MM of size less than 3n/8. When we restrict the input to be n-vertex con-
nected cubic graphs of girth at least 5, the algorithm returns a MM of size at
most 3n/7 + O(1).

3.1 Algorithm Edge Greedy

We describe a greedy algorithm, Edge Greedy, that is based on selecting edges
which have an end-point that has a neighbour of minimum degree and finds
a small MM, E , of an n-vertex cubic graph G. In order to guarantee that the
matching chosen is indeed a matching and maximal, once an edge e is chosen
to be added to the matching, all edges incident with the end-points of e are
deleted and any isolated edges created due to the deletion of these edges are
added to the matching. We categorise the vertices of the graph at any stage of
the algorithm by their current degree so that for 1 ≤ i ≤ 3, Vi denotes the set
of vertices of degree i. Define τ(e) to be the ratio of the increase in the size of
the matching to the number of edges deleted when an operation is performed
after selecting the edge e to be added to the matching.

Figure 5 shows an example of an operation for this algorithm. The edge e has
been chosen to be added to the matching and deleted edges are indicated by
dotted lines. The edge e′ is isolated as a consequence of deleting these edges
and is also added to the matching.

3 4 5 6

21

e

e

’
Fig. 5. An example operation for Edge Greedy

12

The set of equations associated with the example of Figure 5 is ∆Y3 = −4,
∆Y2 = 0, ∆Y1 = 0 and m(Op) = 2 (as the edges incident with the vertices 1,
2, 4 and 5 are deleted, vertices 3 and 6 are changed from vertices of degree
3 to vertices of degree 2 and the size of the matching is increased by 2 due
to this operation). For this operation τ(e) = 1/3. Note that in this operation,
it is assumed that the current minimum degree in G is 2, therefore no other
edges may be isolated by this operation.

For a given set of vertices S, let (S, ∗) denote the set of all edges incident
with the vertices of S. The algorithm Edge Greedy is given in Figure 6. The
function MinN(T) operates on the given set of vertices T and returns an
edge e for which τ(e) is the minimum of all edges incident with the vertices of
T . The function Add Isolates() involves the process of adding any isolated
edges to the matching and deleting them from G.

e = (u, v)← MinN (V);
E ← {e};
delete ({u, v}, ∗);
Add Isolates();

while ({V1 ∪ V2} 6= ∅)
do

S ← {v | {{N(v) ∩ V1} 6= ∅}};
if (S = ∅) S ← {v | {{N(v) ∩ V2} 6= ∅}};
e = (u, v)← MinN (S);
E ← E ∪ {e};
delete ({u, v}, ∗);
Add Isolates();

od

Fig. 6. Algorithm Edge Greedy

3.2 Edge Greedy Analysis

The initial operation of the algorithm selects the first edge to be added to the
matching and deletes the necessary edges. Subsequently, edges are repeatedly
selected to be added to the matching based on the minimum degree of the
vertices available. At each iteration, we use the following priority list to choose
a target vertex.

S1: vertices that have at least one neighbour of degree 1,

S2: vertices that have at least one neighbour of degree 2.

13

As a further restriction, we choose an edge e to add to the matching for
which τ(e) is the minimum of all edges incident with the vertices of Si. Should
there exist two edges in T , say e and e′, for which τ(e) = τ(e′), the function
returns the edge with the fewest vertices neighbouring its endpoints. Any
further ties are broken arbitrarily. We now analyse the worst-case performance
of Edge Greedy and in this way prove the following theorem.

Theorem 1 Given a connected, n-vertex, cubic graph, algorithm Edge Greedy
returns a maximal matching of size at most 9n/20 + O(1).

Proof: We form the linear program LP2 as outlined in Section 2. From
the set OPS1 of all operations that may occur after the initial operation, we
exclude those that may not be performed due to the priorities of the algorithm.
As we prioritise the selection of a vertex with a neighbour of degree 1 over the
selection of any other vertex when Y1 = 0, we have γ = 1. So for each k such
that V −

1 (Op) = k, we add the constraints CPk
(0) and C ′

Pk
(0). (In the case of

C ′
Pk

(0), the choice of which k to use is rather arbitrary; all choices produce
valid results.)

Using an exact linear program solver (in Maple), we solve LP2. The solution is
shown in Figure 7 and by Lemma 1 this shows that for n-vertex cubic graphs,
algorithm Edge Greedy returns a MM of size at most 9n/20 + O(1). The
operations Opi (for i ∈ {1, 2, 3}) are shown in Figure 8 and their corresponding
equations may be derived from the table in the figure. For each operation, the
edge e is selected by the algorithm to be added to the matching. Edges added
to the matching are indicated by heavier lines and deleted edges are indicated
by dotted lines. 2

Op1 Op2 Op3 Solution

1
8

1
10

1
10

9
20

Fig. 7. A solution to the LP for Edge Greedy

A subgraph that forms part of a cubic graph that realises the solution of the
linear program is shown in Figure 9. For each component (which has forty
vertices), eighteen of the sixty edges are chosen to be added to the matching
in the numbered order. Edges labelled 1,4,7 and 10 are each added by an Op2,
those labelled 2,5,8 and 12 are each added by an Op3 and the remaining edges
are added in pairs, each pair by an Op1.

An edge i∗ denotes that this edge was isolated and added to the matching
in the same operation that the edge i was chosen for addition. Connecting a
number of these subgraphs by identifying vertices in adjacent components and
adding a subgraph to represent the first and last operations of the algorithm
gives a family of cubic graphs for which the algorithm returns a MM of size
at most 9n/20 + O(1).

14

Op2 Op3Op1

e e e

Op ∆Y3
− ∆Y2

− ∆Y1
− ∆Y3

+ ∆Y2
+ ∆Y1

+ m(Op)

Op1 0 −4 0 0 0 0 2

Op2 −5 −1 0 0 3 1 1

Op3 −5 0 −1 0 3 0 1

Fig. 8. Operations in the LP solution for Edge Greedy

13

2

3

3*

5

6

6*

8

9
9*

10
7

11 11*

12

4

1
13*

Fig. 9. Repeating component

Having considered an upper bound on the size of a MMM of a cubic graph,
we now consider the maximum, over all n-vertex cubic graphs, of the the size
of a MMM. The graph of Figure 10 represents a family of cubic graphs. As
each component of eight vertices must contribute at least three edges to any
MM, this shows that there exists infinitely many n-vertex cubic graphs with
no MM of size less than 3n/8.

Fig. 10. No MM of size less than 3n/8

15

3.3 Cubic Graphs with Girth at least 5

For graphs with girth 4, the introduction of more priorities of selection into the
algorithm gives no better result than the unrestricted case. We now restrict
the input to graphs of girth at least 5. Algorithm Edge Greedy5 takes as input
an n-vertex cubic graph of girth at least 5, G, and returns a MM, E , of G.

Theorem 2 Given a connected, n-vertex, cubic graph of girth at least 5, algo-
rithm Edge Greedy5 returns a maximal matching of size at most 3n/7+O(1).

Proof: This is the same as the proof of Theorem 1 except that there are
less operations to consider as we may remove those involving any cycles of
length less than 5. The solution is shown in Figure 11. The operations Opi

(for i ∈ {1, 2, 3, 4, 5}) are shown in Figure 12. The corresponding equations
may be derived from the table in the figure. 2

Op1 Op2 Op3 Op4 Solution

1
14

1
14

1
14

1
14

3
7

Fig. 11. Edge Greedy5 solution
e

Op1 Op2

e e e

Op4Op3

Op ∆Y3
− ∆Y2

− ∆Y1
− ∆Y3

+ ∆Y2
+ ∆Y1

+ m(Op)

Op1 −5 −1 0 0 3 1 1

Op2 −3 −3 0 0 1 3 1

Op3 −1 −3 −3 0 0 0 3

Op4 −5 0 −1 0 3 0 1

Fig. 12. Equations for the operations in the LP solution for Edge Greedy5

4 Small Connected Dominating Sets

The problem of finding a MCDS is a well known NP-hard optimisation prob-
lem [11] and is polynomially equivalent to the Maximum Leaf Spanning Tree
problem (MLST). A spanning tree of a graph G = (V, E) is a connected
spanning subgraph T = (V, E ′) which does not contain a cycle. Vertices of
degree 1 in T are called leaves and we are interested in finding a spanning tree
with a large number of leaves. The non-leaf vertices of T form a CDS.

16

Solis-Oba [25] showed thatMLST is approximable with approximation ratio
2, improving the previous best known approximation ratio of 3 by Lu and
Ravi [18]. Galbiati, Maffioli and Morzenti [10] showed that when restricted to
cubic graphs, this problem is APX-Complete (i.e. there exists a constant c such
that it is NP-hard to approximateMLST within c). It is simple to verify that,
for cubic graphs,MCDS is approximable with asymptotic approximation ratio
2. Griggs, Kleitman and Shastri [12] showed that every n-vertex connected
cubic graph has a spanning tree with at least d(n/4)+2e leaves. Duckworth [5]
showed that the size of the smallest CDS of a random n-vertex cubic graph is
a.a.s. less than 0.5854n.

In this section we present a greedy version of the algorithm introduced by
Guha and Khuller [13] that “grows a tree”. The idea behind the algorithm
of [13] is given in Figure 13.

Start out with all vertices marked “white”
Select an initial vertex v to add to T (colour it “black”)
Add all edges incident with v to T
Colour all neighbours of v “grey”
While there are still “white” vertices

Add a “grey” vertex v to T (colour it “black”)
Add all edges incident with v and a “white” vertex to T
Colour all “white” neighbours of v “grey”

Fig. 13. Guha and Khuller’s Algorithm

At the end of this algorithm, the set of “black” vertices forms a CDS. We
analyse this algorithm using the linear programming technique and show that
n-vertex connected cubic graphs have a MCDS of size at most 3n/4 + O(1)
which gives a new derivation, to within a constant number of vertices, of the
main result of [12]. When the input is restricted to n-vertex connected cubic
graphs of girth at least 5, a modified algorithm returns a CDS of size at most
2n/3 + O(1). We also show that there exist infinitely many n-vertex cubic
graphs of girth 5 that have no CDS of size less than 4n/7.

4.1 Algorithm Build Tree

In our greedy version of the algorithm of [13], Build Tree, after each operation
we delete any edges that connect two “grey” vertices. Note that all “white”
vertices have degree 3 and all “grey” vertices have degree 1 or 2. Each “grey”
vertex then has one or two “white” neighbours and we assign a priority to
selecting “grey” vertices of degree 2 over selecting “grey” vertices of degree 1.
The input graph is assumed to be connected and so after the initial operation
and before the completion of the algorithm there always exists a “grey” vertex
with at least one “white” neighbour.

17

We distinguish vertices by means of their colour and their number of “white”
neighbours so that the cardinalities of the sets of vertices in Figure 14 may
characterise the graph at any stage of the algorithm.

Set Colour No white neighbours Set Colour No white neighbours

V0 grey 1 V3 white 1

V1 grey 2 V4 white 2

V2 white 0 V5 white 3

Fig. 14. CDS categories

An example operation for Build Tree is given in Figure 15. Vertex 1 is se-
lected to be added to the CDS and deleted along with its incident edges. The
neighbours of vertex 1 are coloured “grey” and the edges (2,4) and (3,4) are
deleted since all their end-points are now “grey”. The set of equations associ-
ated with the example operation of Figure 15 is ∆Y0 = 2, ∆Y1 = −2, ∆Y2 = 0,
∆Y3 = −1, ∆Y4 = 0, ∆Y5 = −1 and m(Op) = 1.

1

2

3 5

4

1

2

3 5

4

Fig. 15. An example operation for Build Tree

Recall that for a set of vertices S, (S, ∗) denotes all edges incident with the
vertices of S. Algorithm Build Tree in Figure 16 takes an n-vertex cubic graph
G as input and returns a connected dominating set C of G.

Select v from V (G)
C ← {v};
colour N(v) “grey”;
delete (v, ∗);
while ({V2 ∪ V3 ∪ V4 ∪ V5} 6= ∅)
do

delete all edges incident with two “grey” vertices;
if (V1 6= ∅) select v from V1;
else select v from V0;
C ← C ∪ {v};
colour N(v) “grey”;
delete (v, ∗);

od

Fig. 16. Algorithm Build Tree

18

For each operation we select a “grey” vertex to add to C and vertices are
repeatedly selected until no “white” vertices remain. After each operation we
delete all edges that are incident with two “grey” vertices.

4.2 Build Tree Analysis

We now analyse the worst-case performance of Build Tree and in this way
prove the following theorem.

Theorem 3 Given a connected, n-vertex, cubic graph, algorithm Build Tree
returns a connected dominating set of size at most 3n/4 + O(1).

Proof: As we prioritise the selection of a vertex from V1 over the selection
of a vertex from V0, we have γ = 1. The rest of the proof is as for Theorem 1,
again using both priority constraints for each k such that V −

1 (Op) = k. The
solution to LP2 and the non-zero variables in the solution are shown in Fig-
ure 17. The operations Opi (for i ∈ {1, 2, 3}) are shown in Figure 18. For each
operation, the grey vertex v is selected by the algorithm to be added to the
CDS. Deleted edges are indicated by dotted lines. The equations associated
with these operations may be derived from Figure 19. 2

Op1 Op2 Op3 Solution

1
4

1
4

1
4

3
4

Fig. 17. Build Tree LP solution

v

v

Op3

Op1

v

Op2

Fig. 18. Operations in the LP solution for Build Tree

19

Op ∆Y5
− ∆Y4

− ∆Y3
− ∆Y2

− ∆Y1
− ∆Y0

−

Op1 −1 −2 0 0 −1 0

Op2 −1 0 −1 0 0 −2

Op3 −2 −1 0 0 0 −1

Op ∆Y4
+ ∆Y3

+ ∆Y2
+ ∆Y1

+ ∆Y0
+ m(Op)

Op1 0 1 0 0 2 1

Op2 1 0 0 0 1 1

Op3 2 0 0 1 0 1

Fig. 19. Operations in the LP solution for Build Tree

The subgraph that forms part of a cubic graph that realises the solution of
the linear program is shown in Figure 20.

1
3

2

Fig. 20. Repeating component

For each component, the algorithm adds three of the four vertices to the CDS
in the numbered order. Connecting a number of these subgraphs by identifying
vertices in consecutive subgraphs and adding a subgraph to represent the
initial operation of the algorithm gives a family of cubic graphs for which the
algorithm returns a CDS of size at most 3n/4 + O(1).

The tightness of this bound was demonstrated in [12] using the example given
in Figure 21. The graph consists of multiple copies of “K4 minus an edge”.
Adjacent copies are connected together in a chain by an edge and the final
copy in the chain is connected back to the first as indicated.

Fig. 21. No CDS of size less than 3n/4

20

Since each component of four vertices must contribute at least three vertices
to any CDS, this shows that there exist infinitely many n-vertex cubic graphs
with no CDS of size less than 3n/4.

4.3 Cubic Graphs with Girth at least 5

When we restrict the input to cubic graphs of girth at least 5, we add more
priorities to the selection of “grey” vertices of degree 1 and, in some instances,
add more than one vertex to the CDS per operation. The modified algorithm,
Build Tree5, given in Figure 22.

Select v from V (G);
C ← {v};
colour N(v) “grey”; delete (v, ∗);
while ({V2 ∪ V3 ∪ V4 ∪ V5} 6= ∅)
do

delete all edges incident with two “grey” vertices;
if (V1 6= ∅) select v from V1;
else S ← {v | {{v ∈ V0} ∧ {N(v) ∩ V4} 6= ∅}};

if (S = ∅)S ← {v | {{v ∈ V0} ∧ {N(v) ∩ V3} 6= ∅}};
if (S = ∅)S ← {v | {{v ∈ V0} ∧ {N(v) ∩ V2} 6= ∅}};
select u from S;
if (N(u) ∈ V2) v ← u;
else if (N(u) ∈ V4) v ← N(u);

C ← C ∪ {u};
delete (u, ∗);

else w ← N(u);
C ← C ∪ {u};
delete (u, ∗);
v ← {N(w) ∩ {V2 ∪ V3 ∪ V4 ∪ V5}};
C ← C ∪ {w}
delete (w, ∗);

C ← C ∪ {v}; colour N(v) “grey”; delete (v, ∗);
od

Fig. 22. Algorithm Build Tree5

The algorithm takes as input an n-vertex cubic graph G of girth at least 5 and
returns a CDS C of G. As before, the selection of a “grey” vertex of degree 2
has priority over the selection of a “grey” vertex of degree 1.

The priority list to describe the priorities of selection of a vertex from V0 is as
follows:

21

S1: vertices in V0 that have a neighbour u in V4

S2: vertices in V0 that have a neighbour u in V3

S3: vertices in V0 that have a neighbour u in V2.

In the instance where S3 is the highest priority non-empty set, we add the
vertex v to the CDS, colour all neighbours of v “grey” and delete all edges
incident with v. In the instance where S1 is the highest priority non-empty set,
we add u and v to the CDS, colour the neighbours of u “grey” and delete all
edges incident with u and v. In the instance where S2 is the highest priority
non-empty set we add u, v and the “white” neighbour w of u to the CDS,
colour all neighbours of w “grey” and delete all edges incident with u, v and
w.

Theorem 4 Given a connected, n-vertex, cubic graph of girth at least 5,
algorithm Build Tree5 returns a connected dominating set of size at most
2n/3 + O(1).

Proof: This is as for the proof of Theorem 3, but excluding operations
based on the condition that the input graph has girth at least 5, and taking
note of operations that cannot occur due to the prioritisation. The solution
to LP2 and the non-zero variables in the solution are shown in Figure 23. The
equations associated with the operations Opi (for i ∈ {1, 2, 3}) may be derived
from Figure 24 and the operations are shown in Figure 25. For each operation,
black vertices are added to the CDS and deleted edges are indicated by dotted
lines.

2

Op1 Op2 Op3 Solution

1
24

1
8

1
6

2
3

Fig. 23. Build Tree5 LP solution

Now consider the maximum, over all n-vertex cubic graphs of girth 5, of the
the size of a MCDS. The graph of Figure 26 represents a family of cubic graphs
which contain a chain of k repeating components.

Each component has fourteen vertices indicating that the entire graph has
n = 14k vertices. Adjacent components are chained together by an edge and
the last component in the chain is connected back to the first as indicated.
This graph has girth 5. As each component must contribute at least eight
vertices to any CDS, this shows the existence of a family of n-vertex cubic
graphs of girth 5 with no CDS of size less than 4n/7.

22

Op ∆Y5
− ∆Y4

− ∆Y3
− ∆Y2

− ∆Y1
− ∆Y0

−

Op1 −3 −4 −1 0 0 −2

Op2 −7 0 −1 0 0 −2

Op3 0 −2 −2 0 −2 −1

Op ∆Y4
+ ∆Y3

+ ∆Y2
+ ∆Y1

+ ∆Y0
+ m(Op)

Op1 0 4 0 2 0 3

Op2 4 0 0 2 0 3

Op3 0 2 0 0 3 1

Fig. 24. Operations in the LP solution for Build Tree5

Op1

Op2

0

0

1

3

3

0

0

5

5

5

5 1

1

5

5 1

1

5

4

4

4

4 3

3

3

3

4

4

4

4

5

5

5

0

4

1

4

3

0

33

3 0

0

Op3

Fig. 25. Operations in the LP solution for Build Tree5

5 Small Independent Dominating Sets

The problem of finding a MIDS is one of the core NP-hard optimisation prob-
lems in graph theory [11]. Halldórsson [14] showed that for general graphs,
this problem is not approximable within n1−ε for any ε > 0. Kann [16] showed
that when restricted to graphs of maximum degree at least 3, the problem is
APX-Complete. Lam, Shiu and Sun [17] showed that for n ≥ 10, the size of
an IDS of n-vertex connected cubic graphs is at most 2n/5. They also give an
example of a cubic graph on ten vertices with no IDS of size less than four.

23

Fig. 26. No CDS of size less than 4n/7

The algorithm we present is simple to implement and, for n-vertex connected
cubic graphs, ensures that the size of the IDS returned is at most 29n/70 +
O(1). We also show that there exist infinitely many n-vertex cubic graphs
which have no IDS of size less than 3n/8. This obviously does not rule out the
possibility that there exists an alternative algorithm that always returns an
IDS of size at most 3n/8. Restricting the input to n-vertex connected cubic
graphs of girth at least 5, a modified algorithm returns an IDS of size at most
3n/8 + O(1).

Reed [21] showed that the size of a minimum dominating set of n-vertex con-
nected cubic graphs is at most 3n/8. He also gave an example of a cubic graph
on eight vertices with no dominating set of size less than three, demonstrating
the tightness of this bound. Molloy and Reed [20] showed that the the size of
the smallest dominating set D(G) of a random cubic graph G on n vertices,
a.a.s. satisfies 0.2636n ≤ |D(G)| ≤ 0.3126n. Duckworth and Wormald [7]
tightened these bounds by showing that the size of a MIDS, D, of a random
cubic graph, a.a.s. satisfies 0.2641n ≤ |D| ≤ 0.2794n.

5.1 Algorithm Min Ratio

We describe a greedy algorithm based on selecting vertices of minimum degree
that finds a small independent dominating set I of an n-vertex cubic graph
G. In order to guarantee that I is indeed independent and dominating, once
a vertex is chosen to be added to I, it is deleted along with all its neighbours
and the edges incident with each of those neighbours. The only other vertices
that are added to I are those which are isolated by such an operation of the
algorithm. At any stage of our algorithm we characterise the vertices of the
input graph based on their current degree so that Vi for 1 ≤ i ≤ 3 denotes the
set of vertices of degree i.

For any particular operation performed by the algorithm, a number of vertices
are deleted and a subset of these are added to I. We define ρ(v) to be the
ratio of the increase in size of I to the number of vertices deleted when an
operation is performed by selecting vertex v to be added to I. The algorithm,
Min Ratio, is given in Figure 27.

24

v ← MinR(V);
I ← {v};
delete (N(v), ∗);
Add isolates();
while ({V1 ∪ V2} 6= ∅)
do

S ← {v | {{N(v) ∩ V1} 6= ∅}};
if (S = ∅) S ← {{{v} ∪N(v)} | {v ∈ V2 ∧Q(v) = 1}};
if (S = ∅) S ← {{{v} ∪N(v)} | {v ∈ V2 ∧Q(v) = 2}};
if (S = ∅) S ← {{{v} ∪N(v)} | {v ∈ V2 ∧Q(v) = 3}};
if (S = ∅) S ← {{{v} ∪N(v)} | {v ∈ V2 ∧Q(v) = 4}};
u← MinR(S);
I ← I ∪ {u};
delete (N(u), ∗);
Add isolates ();

od

Fig. 27. Algorithm Min Ratio

In the algorithm, Q(v) denotes the number of vertices at minimum distance
2 from v. The function MinR(T) operates on the given set of vertices T and
returns an element u ∈ T for which ρ(u) is the minimum of all vertices in T .
Should there exist two vertices {v, v′} ∈ T such that ρ(v) = ρ(v′) (and ρ(v) is
the minimum of all vertices in T) a vertex is selected arbitrarily from {v, v′}.
The function Add isolates() adds any isolated vertices created in V (G) to
I.

After the initial operation of the algorithm, vertices are repeatedly selected to
be added to I based upon the minimum degree of the vertices available and
the number of vertices at minimum distance 2 from these vertices, until no
vertices remain.

The priority list for this algorithm is the one given in Section 2.

5.2 Min Ratio Analysis

Theorem 5 Given a connected, n-vertex, cubic graph, algorithm Min Ratio
returns an independent dominating set of size at most 29n/70 + O(1).

Proof: As we prioritise the selection of a vertex of degree 1 over the selection
of a vertex of degree 2, we have γ = 1. The rest of the proof of Theorem 1 is
then followed. The solution to the LP is shown in Figure 28. The operations
Opi (for i ∈ {1, 2, 3}) are as shown in Figure 29 and their associated equations
may be derived from Figure 30.

25

Op1 Op2 Op3 Solution

2
35

1
14

1
10

29
70

Fig. 28. Min Ratio solution

Op1
v v v

Op2 Op3

Fig. 29. Operations performed in the worst case

Op ∆Y3
− ∆Y2

− ∆Y1
− ∆Y3

+ ∆Y2
+ ∆Y1

+ m(Op)

Op1 −3 −2 −1 0 0 0 3

Op2 −6 0 −2 0 3 0 2

Op3 −4 −1 0 0 0 2 1

Fig. 30. Operations performed in the worst case

For each operation, the black vertex v is selected by the algorithm to be added
to the IDS. In each case, vertices may be isolated and these are also coloured
black to indicate their addition to the IDS. Deleted edges are indicated by
dotted lines. 2

The subgraph that forms part of a cubic graph that realises the solution of
the linear program is shown in Figure 31.

2

13

13*

1
2*

3

4

4*

5

6

6*

7

8

8*

9

10

10*

11

12

12* 12* 13*

14

15* 15* 16* 16*

15 16

Fig. 31. Repeating component

26

For each component, the algorithm selects 29 of the 70 vertices to be added
to I in the numbered order. A vertex labeled i∗ indicates that this vertex
was isolated after the vertex labeled i was added to I and was subsequently
added to I. Connecting a number of these subgraphs by identifying vertices
in consecutive components and adding a subgraph to represent the first and
last operations of the algorithm gives a family of cubic graphs for which the
algorithm returns an IDS of size at most 29n/70 + O(1).

Now consider sharpness of the result. The graph of Figure 32 represents a
family of cubic graphs which contain a chain of k repeating components. Each
component has eight vertices indicating that the entire graph has n = 8k
vertices.

A component is connected to the next component in the chain by one edge and
the final component in the chain is connected back to the first as indicated.
As each component must contribute at least three vertices to any IDS, this
shows the existence of a family of n-vertex cubic graphs with no IDS of size
less than 3n/8.

Fig. 32. No independent dominating set of size less than 3n/8

5.3 Cubic graphs with Girth at least 5

Restricting the input to n-vertex cubic graphs of girth at least 5, we apply a
modified algorithm that is based on selecting vertices of minimum degree, us-
ing operations that remove the fewest edges and combining this with selecting
vertices that give a minimal ratio.

The algorithm, which we call Min Deg One, is essentially the same as the
algorithm Min Ratio except that for each of the sets in the priority list, should
there exist two vertices v and v′ for which ρ(v) = ρ(v′) (and ρ(v) is the
minimum of all vertices in the set), we choose the operation that deletes the
fewest edges.

Theorem 6 Given a connected, n-vertex, cubic graph of girth at least 5, al-
gorithm Min Deg One returns an independent dominating set of size at most
3n/8 + O(1).

27

Proof: The linear program LP2 is formed in the same way as that for
Min Ratio. Due to the restriction in girth for the input, this linear program has
approximately one third the number of variables. The solution is of the form
shown in Figure 33. The operations Opi (for i ∈ {1, 2, 3, 4, 5, 6}) represent the
operations shown in Figure 34 and their associated equations may be derived
from Figure 35. 2

Op1 Op2 Op3 Op4 Op5 Op6 Solution

1
70

1
70

1
28

3
56

1
42

1
14

3
8

Fig. 33. Min Deg One solution
Op1 Op2 Op3

Op4 Op5 Op6

Fig. 34. Operations performed in the worst case

Op ∆Y3
− ∆Y2

− ∆Y1
− ∆Y3

+ ∆Y2
+ ∆Y1

+ m(Op)

Op1 0 −2 −2 0 0 0 2

Op2 −5 0 −3 0 2 0 3

Op3 −6 −3 0 0 3 2 1

Op4 −8 −1 0 0 5 0 1

Op5 −3 −1 −3 0 1 0 3

Op6 −3 −3 −2 0 0 3 2

Fig. 35. Operations performed in the worst case

Regarding sharpness, the graph of Figure 36 represents a family of cubic graphs
which contain a chain of k repeating components.

v v v v

Fig. 36. No IDS of size less than n/3

28

Each component has eighteen vertices indicating that the entire graph has
n = 18k vertices. Components are connected by a cycle of k edges passing
through the vertex labeled v in each component as indicated. This graph has
girth 5. As each component must contribute at least six vertices to any IDS,
this shows the existence of a family of n-vertex cubic graphs of girth 5 with
no IDS of size less than n/3.

6 Remarks

In joint work with Zito [8], we used our linear programming technique to find
a large induced matching of a (2, 3)-regular bipartite graph as a means of
approximating the sparsest 2-spanner problem on 4-connected planar trian-
gulations.

The technique has also been used to find a large induced matching of a cubic
graph but a simpler analysis may be used to achieve the same result. The
technique was used in [6] to find families of cubic graphs for which an algorithm
has its worst case performance.

We have also used this technique to find a large 2-independent set and a small
vertex cover of a cubic graph. In both cases, while a result is achieved, the
same result is relatively easily achieved by means of a simpler analysis.

Acknowledgement The authors would like to thank an anonymous referee
whose thoughtful comments led us to find an error in an earlier version of this
paper.

References

[1] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela
and M. Protasi, Complexity and Approximation: Combinatorial Optimization
Problems and their Approximability Properties, Springer-Verlag, 1999.

[2] J.E. Calvert and W.L. Voxman, Linear Programming, Harcourt Brace
Jovanovich, Florida, U.S.A., 1989.

[3] T. Denley, The independence number of graphs with large odd girth, The
Electronic Journal of Combinatorics, 1 (1994) #R9 12 pages.

[4] W. Duckworth, Small edge dominating sets of regular graphs, Electronic Notes
in Theoretical Computer Science, 91(C) (2004) 43–55.

[5] W. Duckworth, Minimum connected dominating sets of random cubic graphs,
The Electronic Journal of Combinatorics, 9(1) (2002) #R7 13 pages.

29

[6] W. Duckworth, D. Manlove and M. Zito, On the approximability of the
maximum induced matching problem, The Journal of Discrete Algorithms, 3(1)
(2005) 79–91.

[7] W. Duckworth and N.C. Wormald, Minimum independent dominating sets of
random cubic graphs, Random Structures and Algorithms, 21(2) (2002) 147–
161.

[8] W. Duckworth, N.C. Wormald and M. Zito, A PTAS for the sparsest 2-
spanner problem in 4-connected planar triangulations, The Journal of Discrete
Algorithms, 1(1) (2003) 67–76.

[9] T. Gál, Postoptimal Analyses, Parametric Programming and Related Topics,
McGraw-Hill International Book Company, New York, 1979.

[10] G. Galbiati, F. Maffioli and A. Morzenti, A short note on the approximability
of the maximum leaves spanning tree problem, Information Processing Letters,
52(1) (1994) 45–49.

[11] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, Freeman and Company, 1979.

[12] J.R. Griggs, D.J. Kleitman and A. Shastri, Spanning trees with many leaves in
cubic graphs, The Journal of Graph Theory, 13(6) (1989) 669–695.

[13] S. Guha and S. Khuller, Approximation algorithms for connected dominating
sets, Algorithmica, 20 (1988) 374–387.

[14] M.M. Halldórsson, Approximating the minimum maximal independence
number, Information Processing Letters, 46(4) (1993) 169–172.

[15] J.D. Horton and K. Kilakos, Minimum edge dominating sets, SIAM Journal on
Discrete Mathematics, 6(3) (1993) 375–387.

[16] V. Kann, On the Approximability of NP-Complete Optimisation Problems,
Doctoral Thesis, Department of Numerical Analysis, Royal Institute of
Technology, Stockholm, 1992.

[17] P.C.B. Lam, W.C. Shiu and L. Sun, On the independent domination number
of regular graphs, Discrete Mathematics, 202 (1999) 135–144.

[18] H-I. Lu and R. Ravi, Approximating maximum leaf spanning trees in almost
linear time, Journal of Algorithms, 29(1) (1998) 132–141.

[19] A. Meir and J.W. Moon, Relations between packing and covering numbers of a
tree, Pacific Journal of Mathematics, 61(1) (1975) 225–233.

[20] M. Molloy and B. Reed, The dominating number of a random cubic graph,
Random Structures and Algorithms, 7(3) (1995) 209–221.

[21] B. Reed, Paths, stars and the number three, Combinatorics, Probability and
Computing, 5 (1996) 277–295.

[22] A. Schrijver, Theory of Linear and Integer Programming, Wiley, 1986.

30

[23] J.B. Shearer, A note on the independence number of triangle-free graphs,
Discrete Mathematics, 46 (1983), 83–87.

[24] J.B. Shearer, A note on the independence number of triangle-free graphs II,
Journal of Combinatorial Theory Series B, 53 (1991), 300-307

[25] R. Solis-Oba, 2-approximation algorithm for finding a spanning tree with
maximum number of leaves, Lecture Notes in Computer Science, 1461 (1998)
441–452.

[26] M. Yannakakis and F. Gavril, Edge dominating sets in graphs, SIAM Journal
on Discrete Applied Mathematics, 38(3) (1980) 364–372.

[27] M. Zito, Randomised Techniques in Combinatorial Algorithmics, Doctoral
Thesis, Department of Computer Science, The University of Warwick, UK, 1999.

[28] M.Zito, Small maximal matchings in random graphs, Lecture Notes in
Computer Science, 1776 (2000) 18–27.

31

