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Abstract— In this paper we focus on the problem of

optimising the design of an underground mine decline,

so as to minimise the costs associated with infras-

tructure development and haulage over the life of the

mine. A key design consideration is that the decline

must be navigable by trucks and mining equipment,

hence must satisfy both gradient and turning circle

constraints. The decline is modelled as a mathemati-

cal network that captures the operational constraints

and costs of a real mine, and is optimised using geo-

metric techniques for constrained path optimisation.

A deep understanding of the geometric properties of

gradient and turning circle constrained paths has led

to a very efficient procedure for designing optimal

declines. This procedure has been automated in a

new version of a software tool, Decline Optimisation

Tool, DOTTM. A case study is described indicating

the substantial improvements of the new version of

DOTTMover the earlier one.
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1 Introduction

In open-pit mine design, there are a number of widely
used commercial optimisation software systems based on
the Lerchs-Grossmann algorithm [1] and its improve-
ments. In comparison, the usual method of deciding on
a design for an underground mining network is based on
a mining engineer’s expertise and experience. This gen-
erally involves detailing a small number of feasible de-
signs and choosing the “most suitable” one. Recently
several researchers including Alford et al. [2] and Smith
et al. [3] have shown that some underground mine design
tasks such as stope layout and scheduling are amenable
to optimisation techniques. Our group, based at The
University of Melbourne, has been focusing on the opti-
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misation of underground infrastructure and is developing
software that will ultimately interface with the principal
commercial modelling and visualisation packages used by
the mining industry. The decline optimisation technique
we describe is appropriate for a wide range of hard rock
mines such as gold, silver, lead, zinc, copper or multi-
metal deposits where the orebodies are discrete and which
are mined by stoping or caving methods.

The access infrastructure of an underground mine can be
viewed as a network of interconnected declines and shafts
that provides access to designated orebodies and a means
of transporting ore from these zones to the mill. Find-
ing an efficient layout for such a network is a difficult
design problem. The mining engineer’s initial solutions
have the potential to be dramatically improved by sys-
tematic optimisation, due to the difficulty of designing
efficient structures in three dimensions, the complexity
of the possible connection schemes and the combinations
of choices for operational constraints.

A decline is essentially a system of ramps and crosscuts
(horizontal drives) that connects the access points (points
which must be accessed for drilling and blasting opera-
tions) and draw points (from which the ore is drawn) to
the surface portal or to a breakout from existing mine
infrastructure. We shall assume that the locations and
geometries of the stopes are given and that the stoping
data has been used to determine the coordinates of the
access points and draw points at each of the levels, as well
as the tonnages of ore to be transported to the surface
from each of the draw points.

There are a number of important physical constraints on
the design of a decline. The decline must stand off from
the orebody by some specified minimum distance to avoid
possible sterilisation of the ore and to allow a minimum
working length in the crosscuts. Another key design con-
sideration is that the decline must be navigable by trucks
and mining equipment; this limits the gradient and cur-
vature of the decline. The aim in this paper is to minimise
the cost of the decline, where the cost is a combination
of both development and haulage costs, subject to these
constraints.

In an earlier paper [4] the first version of the Decline Opti-



misation Tool, DOTTM (which we will refer to as DOT1),
was described. In this paper, we describe the mathemati-
cal optimisation theory used to substantially improve the
software tool. The heuristic methods used in DOT1 are
replaced in the new version of the software tool, DOT2,
by a method based on an understanding of exact solu-
tions to a constrained 3-dimensional path problem. This
problem is described in the second section of the paper
where we model the problem of designing an underground
mine decline of minimum cost as a constrained path opti-
misation problem. In the third section, we develop a new
theory of paths in 3-dimensional space that are optimal
with respect to gradient and curvature constraints. These
optimal paths which are used in DOT2 are shorter than
the approximations obtained in DOT1. A case study is
described in Section 6, indicating the significant improve-
ments of the new version of DOTTM over the earlier one
in terms of both the accuracy of the solution and the
speed.

In designing the decline, typically there are no-go regions
that must be avoided such as old mine workings. There
must also be a standoff region for the decline from an
orebody. These problems can be dealt with by adding
barriers which the decline must not penetrate. In this
paper we will limit the problem to designing a decline
without barriers and we will assume homogeneous ground
conditions. These preliminary strategic designs allow the
decline a “free” path from the breakouts to stope access.
In the earlier version, DOT1, a heuristic method of avoid-
ing no-go regions had been implemented. The new ver-
sion of the software tool, DOT2, that is described in this
paper, does not yet have this capability but we plan to
add barrier constraints in the future for comparison with
the best case scenario. This comparison will be useful
for mine management as it indicates the cost of certain
decisions. For example it may influence a decision to add
in a barrier or a decision on the distance for a standoff
region.

2 The Mathematical Model of a Decline

We model the decline as a mathematical network that
captures the operational constraints and costs of a mine.
In the model the nodes of the network correspond to the
orebody level access points and draw points and the sur-
face portal (or breakout point from existing infrastruc-
ture) of the mine. The links in the network model repre-
sent the centrelines of ramps and drives.

The network model must include the navigability require-
ments imposed by the trucks and equipment to be used
in the mine. The absolute value of the gradient of each
ramp is constrained to be within a safe climbing limit
for trucks, typically in the range 1:9 to 1:6.5. Hence the
decline network is gradient constrained with a given max-
imum absolute value for the slope. In addition, there is a

minimum turning radius for curved ramps which is typi-
cally in the range 15-40m. These navigability constraints
are significant factors in the optimal solution and to ac-
commodate these the decline network is modelled as a
gradient-constrained and curvature-constrained network.

A decline can be modelled as a network with a path topol-
ogy if we ignore ventilation infrastructure and alternative
means of egress. In particular, this applies to the case
where there is a single orebody for a proposed new un-
derground mine or an extension to an existing mine. We
will focus on the fundamental problem of finding a least
cost, navigable decline with a given path topology. In fu-
ture work we plan to optimise mine layouts where there
are a number of interconnected navigable declines in a
tree structure.

Access to the orebody from the decline is via horizontal
drives known as crosscuts. These connect the decline to
the given access or draw points, which lie on a sequence of
levels. Each crosscut should meet the decline at an angle
of approximately 90 degrees for geomechanical stability.
This is achieved by having a user-specified range of direc-
tions for the decline at each node. At each access level a
set of candidate nodes, representing a discrete choice of
junctions at which the crosscut can meet the decline, is
specified. We refer to this set of nodes as a group. Each
of these nodes has an associated fixed cost that is pro-
portional to the length of crosscut and is dependent on
the tonnage of ore to be hauled along the crosscut. There
is a requirement that the decline goes through one node
from each group. This provision of choice for the node
locations provides design flexibility and optimisation op-
portunities.

We now model the optimal decline design problem as that
of finding a smooth path in 3-dimensional space of mini-
mum cost satisfying the following conditions:

1. It passes through one node from each of the groups
of specified nodes at each level, in a given order;
furthermore, for each node the path passes through,
the bearing of the path at that node falls within a
user-specified range of bearings;

2. At each point it has gradient at most m, where m is
a given constant;

3. At each point it has radius of curvature at least r
when projected into the horizontal plane, where r is
a given constant.

The cost of each link in the path is the sum of the de-
velopment cost and haulage cost, where the development
cost is proportional to length and the haulage cost is pro-
portional to the length times the total tonnage hauled
through that link (over the life of the mine or targeted
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orebody). In particular, the cost of a link can be min-
imised by minimising its length, since the tonnage of ore
to be hauled for each link is fixed. For a given path the
total cost is the sum of the costs of all links in the path
plus the sum of the costs associated with the selected
nodes (one from each group).

The problem is solved by discretising the set of possi-
ble directions of the path at each of the nodes from the
groups. This allows us to employ a bottom-up dynamic
programming strategy. Suppose there are (up to) n nodes
in each group. The direction vectors at a node will have
a limited number of directions entering (or leaving) the
incident link depending on how close the node is to the
orebodies. If the maximum number of directions at any
node is l, then at each level or stage, we keep track of
the (up to) nl minimum cost subpaths constructed so far
for the nodes at that level. Assuming we can construct a
minimum cost link with given start and end-point direc-
tions in constant time, the path will be constructed in a
time that is approximately quadratic in both the number
of nodes at each level and directions at each node, and
linear in the number of levels. More specifically, the al-
gorithm runs in O(kn2l2) time, where k is the number of
levels.

The dynamic programming framework essentially reduces
the problem to one of efficiently minimising the length of
a single link with given position and direction for each of
the start and end points.

3 Link optimisation: Dubins paths and

their extensions

An abstract solution to the problem of finding minimal
paths in 3-dimensional space with given start and finish
directions and a given minimum turning circle (but no
gradient constraint) has been described in [5]. Unfor-
tunately, this solution, as well as violating the gradient
constraint, has the undesirable property of allowing the
paths to have a continually varying gradient, whereas it
is an industry requirement that the gradient on each link
is both bounded and unchanging.

We approach the problem of minimising the cost of each
link by considering the projected problem in the horizon-
tal plane. Note that a path in the plane can be lifted to a
path with a uniform gradient in 3-dimensional space. The
length of this transformed 3-dimensional path depends
only on the length of the planar path and the gradient.
The transformed path will satisfy the gradient constraint
if and only if the length of the path in the plane reaches
a certain lower bound dependent on the vertical displace-
ment between the end points of the link: if the vertical
displacement is z then the length is at least zm−1, where
m is the given maximum gradient. Henceforth we use
B to denote this lower bound zm−1, where z is calcu-
lated with respect to whichever two end points are under

consideration.

Let P be a path between two given directed points p and
q in R

2, the Cartesian plane. We call P admissible if:

1. P has a continuous first derivative and a piecewise
continuous second derivative;

2. The tangents to P at its start and end points coincide
with the directions of p and q respectively;

3. The absolute curvature of P is bounded above by a
specified positive constant (which we will take to be
1 by choosing a suitable scaling).

The scaling condition in Item 3, above, implies that if the
section of an admissible path is an arc then that section
must have radius at least 1.

The problem of finding the minimum cost link between
two points in R

3, 3-dimensional space, with given ap-
proach and departure directions and gradient and turn-
ing circle constraints can be solved by finding the short-
est path in the plane between the projections of these
points with these same direction and turning circle con-
straints and with a lower bound on the length, and then
transforming this path back to R

3. Specifically, we seek
a minimum length admissible path, P , between two di-
rected points p and q in the plane, such that the length
of P is at least B.

Dubins solved this planar problem without a lower bound
on length in [6]. Our method for the planar problem
where the lower bound is included is based on an exten-
sion of Dubins’ work.

The main result of Dubins is as follows.

Theorem 3.1 [6] Given any two directed points, p and
q, in the plane, there exists an admissible path of min-
imum length from p to q. Further, any such path must
take one of the following forms:

• An arc with radius 1 and length less than 2π, followed
by a line segment, followed by an arc with radius 1
and length less than 2π;

• A sequence of three arcs with radius 1 and with alter-
nating senses (i.e., left-right-left or right-left-right),
where the length of the middle arc is greater than π,
and the length of each arc is less than 2π, thus less
than a full circumference of a circle with radius 1.

Note that one or more of the arcs or line segments may
be degenerate, in the sense that its length is zero. We
refer to paths of the form given in Theorem 3.1 as Dubins
paths. For any given pair of directed points, there may
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be up to six Dubins paths. Using L, S and R to denote
respectively a left turning arc, a (straight) line segment,
and a right turning arc, we can identify each Dubins path
by a unique descriptor, called its type: LSL, LSR, RSL,
RSR, LRL and RLR. Three of the Dubins path types are
illustrated in Fig. 1.

LSL

LSR

LRL

p

p

q

q

q

p

Figure 1: Three of the six types of Dubins paths; ex-
amples of the other three can be obtained from these by
reflection through a horizontal axis.

Given directed points p and q, a minimum length admis-
sible path from p to q can be found simply by calculating
the lengths of each of the Dubins paths from p to q and
selecting the shortest path. If the shortest Dubins path
has length at least B, then it is the solution to the origi-
nal problem. Suppose now that the length of the shortest
Dubins path is less than B. The approach we take here
is to try to obtain an admissible path with length B by
continuously extending the shortest Dubins path. We
will see that this is not always possible, in which case
a solution, possibly with length greater than B, can be
obtained using one of the other Dubins paths.

For the remainder of this paper, we use the term ‘exten-
sion’ of a path to mean a path obtainable by continuously
deforming the original path, such that at all times dur-
ing the deformation the path remains admissible. We
now define two specific types of path extensions.

If a Dubins path, P , contains an arc with length at least
π, then P can be extended to an admissible path P ′ of
any greater length in the manner illustrated in Fig. 2. In
particular, any Dubins path of type LRL or RLR can be
extended in this way, since the length of the middle arc
of any such path is always greater than π. We refer to
this type of extension as a parallel extension.

If the lengths of the arcs of a Dubins path are all less
than π, then the situation is more complicated. Consider
a Dubins LSL or LSR path, P , from p to q. Then P

q

p

P

P'

Figure 2: A parallel extension.

q

p

P
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q

p

P
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)( pCR

)( pCL

)( ¢pCL

)(qCL

)(qCR

Figure 3: The two types of rolling extensions.

can be extended as follows. Let CL(p) and CR(p) denote
the circles with unit radius that are tangent to the di-
rected point p, on the left and right sides of p respectively.
(Thus, the first arc of P is an arc of CL(p).) Similarly,
let CL(q) and CR(q) denote the circles with unit radius
that are tangent to the directed point q, on the left and
right sides of q respectively. It is helpful to imagine P
as an elastic band fixed at p and q, and the four tangent
circles as barriers that restrict the region in which P can
lie. Then P can be extended either by “rolling” CL(p)
clockwise around CR(p) to a new position CL(p)′, or by
“rolling” CR(p) anticlockwise around CL(p), keeping the
other three circles fixed, as shown in Fig. 3. We refer to
these two types of extensions as rolling extensions.

In the configurations depicted in Fig. 3, P could be ex-
tended indefinitely by rolling one circle sufficiently far
around the other. However, as far as the present appli-
cation is concerned, it makes more sense to extend P in
this manner only until one of the arcs achieves a length
of π, at which stage a parallel extension can be applied
if necessary. We call a path infinitely extendible if it has
arbitrarily long extensions.

For some configurations of p and q, a rolling extension can
be carried out only until the extended path P ′ reaches a
local maximum admissible path. By a local maximum
admissible path we mean an admissible path that is a lo-
cal maximum under continuous deformations of the path
(that always remain admissible); in other words, a path
such that there does not exist an arbitrarily small de-
formation to a longer path within the space of admis-
sible paths. If P ′ achieves the required length B before
reaching a local maximum admissible path, then the local
maximum causes no difficulties. However, if the length of
the local maximum path is less than B, then this strat-
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p q

)( pCL
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Figure 4: An example of a path that is not infinitely
extendible.

egy does not work. Applying the other type of rolling
extension may prove successful, but this is not always
the case. Fig. 4 depicts a situation where the path P ′

“gets stuck” between the four tangent circles. For ex-
ample, the lower path in broken lines in the figure can
be obtained by rolling CL(p) around the circumference of
CR(p) until it meets CR(q). If we continue to roll CL(p)
further around the circumference of CR(p), then under a
continuous deformation the path from p is forced to en-
ter the circle CR(q), and cannot meet up with q at the
correct bearing without either breaking the turning cir-
cle constraint or substantially increasing the length of the
path (by first leaving the circle CR(q), and then looping
around to meet q at the correct angle). It follows that the
two paths shown as broken lines are both local maxima
and cannot be lengthened by small deformations under
the admissibility conditions. The paths are local maxima
but not global maxima (where global maximum simply
means the longest admissible path with no condition on
continuous deformations).

It is important to characterise local maxima. We first
note that if P is a local maximum admissible path in the
plane between two directed points then P contains no
twice differentiable points with absolute curvature less
than 1. This follows from the observation that the length
of a segment of the path with absolute curvature less
than 1 can be increased (while remaining admissible) by
the perturbation of a unit circle tangent to an interior
point of such a segment, resulting in replacing part of
the segment by three unit circle arcs.

It follows that P must be a sequence of unit circle arcs
with alternating senses, which we denote by a sequence
of C’s. So, for example, CCC represents a path of type
LRL or RLR. The key theorem is as follows.

Theorem 3.2 Given two directed points, p and q, in the
plane, let P be an admissible path from p to q. If P is
a local maximum then P is of the form CCC (or a de-
generacy) where the angle around each circle is less than
π and the sum of the two angles around the outer two
circles minus that around the inner circle is less than π.

The proof of the theorem, which is fairly straightforward,
involves showing that a path of the form CCCC is not
a local maximum. Details of the proof are planned to
appear in a future paper.

4. Is Lmax

³ B?

5. Is

(length of

P2) ³ B?

Return “P1,

don’t extend”;

and stop.

Return “P1,

extend to length

B”; and stop.

Return “P2,

don’t extend”;

and stop.

Return “P2,

extend to length

B”; and stop.

3. Calculate Lmax as follows: if there are

two local maximum paths from p to q

extending P1, then Lmax is the length of

the longer one, otherwise Lmax = .

2. Is

(length of

P1) ³ B?

1. Identify the shortest Dubins path, P1,

and the second shortest Dubins path, P2,

from p to q.

Y

Y

Y

N

N

N

Figure 5: A flow chart showing how to construct a mini-
mum cost admissible path from p to q.

4 A Minimal Path algorithm

We now outline an algorithm for constructing a single
minimum cost link in 3-dimensional space with given ap-
proach and departure directions and gradient and turning
circle constraints. The algorithm is presented as a flow
chart in Figure 5. Theorem 3.1 allows one to calculate all
the possible Dubins paths and hence to identify the short-
est, P1, and second shortest, P2, in Step 1. Theorem 3.2
characterises the local maximum admissible paths that
can be obtained from P1, allowing one to calculate Lmax

in Step 3. The output of the algorithm indicates how
to construct the minimum cost link. The final decline
is built from these minimum cost links via dynamic pro-
gramming, as discussed in Section 2, and is minimum up
to the degree of discretisation of possible positions and
angles at the nodes.

The algorithm first solves the planar path problem with
lower bound B considered in Section 3. For a given link,
let p and q be the projections in the horizontal plane of its
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two endpoints. Apart from certain degenerate configura-
tions which we describe below, at most one of the Dubins
paths from p to q can fail to be infinitely extendible.

If two or more Dubins paths coincide because of the pres-
ence of degenerate arcs or line segments, then the shortest
and second shortest Dubins paths may be the same. If
this occurs, then P2 is the second shortest distinct Dubins
path in Step 5.

The algorithm fails if the minimum Dubins path from p
to q takes one of the following degenerate forms: a line
segment with length less than 4a where a is the unique
number satisfying the equation cos a = a, or an arc with
length less than π/2. In these cases, the algorithm must
be modified by taking P2 to be the path obtained by
appending a circle, i.e., an arc of length 2π, to P1. Note
that the algorithm assumes that if P1 is not infinitely
extendible then P2 is infinitely extendible. A proof of
this is planned to appear in a future paper.

Observe that none of the 3-dimensional paths need to
be constructed in the course of running the algorithm;
rather, the algorithm returns a Dubins path type together
with information on whether and how the Dubins path is
to be extended. Once the length Lpq of the optimal pla-
nar path between p and q has been computed, then it is
easily seen that the length of the corresponding path in 3-
dimensional space (furnished with a constant gradient) is
√

L2
pq + (zp − zq)2, where zp and zq are the z coordinates

of the two endpoints of the link. This strategy of com-
puting lengths and recording the type of Dubins path,
rather than constructing each 3-dimensional path during
the dynamic programming, ensures that ultimately only
the links that are actually needed for the optimal decline
path are constructed.

Finally, we comment briefly on the problem of construct-
ing the links in the optimal decline path. A link is repre-
sented by a list of line segments and arcs, where each line
segment is parameterized by its start and end points, and
each arc is parameterized by its centre, start angle and
turn angle. Constructing a Dubins path and a parallel
extension are straightforward, but constructing a rolling
extension is more difficult, and generally requires the use
of an iterative procedure.

Once a planar path has been constructed for a given link
it is converted to a path in 3-dimensional space by giving
it the correct constant gradient: ±(zp − zq)(Lpq)

−1.

5 Further Practical Constraints on the

Path Optimisation Problem

Both DOT1 and DOT2 design the decline link by link.
This may result in some links having gradients less than
the maximum gradient. For two given adjacent access
points, it may not be possible to construct a link of max-

imum gradient simply because of their physical distance
apart. If a decline with a constant gradient throughout
is required, and there is at least one link with less than
maximum gradient in the optimal solution, then in the
new decline every link would have to have less than max-
imum gradient. A decline with constant gradient can be
achieved by rerunning DOT2 using successively smaller
maximum gradients until a suitable decline is generated.
This new decline, however, may be substantially longer
than the optimal solution under the original maximum
gradient.

In discussion with industry, it has become clear that there
should be an aim to reduce the occurrence of adjacent
arcs with opposite senses (mathematically, points of in-
flexion) such as occurs in an LRL or an RLR path; such
features are usually avoided by mining engineers, as far
as possible, because of the physical problem of reversing
the direction of camber of the road surface at the inflex-
ion point, as well as the difficulty it causes for the drivers
of the ore trucks. We have modified the path extension
methods to take account of the opposing arcs constraint,
by ensuring that there is a straight of length at least 10
metres between such arcs, and incorporated the modifi-
cations into DOTTM . In a later paper, the question of
the optimality of the algorithm with the opposing arcs
constraint will be examined carefully. This opposing arcs
constraint is included in the DOT2 software tool demon-
strated in the case study described below.

6 Case Study

DOTTM has been tested mainly in design tasks for vari-
ous Australian and New Zealand mines operated by New-
mont Australia Limited, our collaborative research part-
ner. This has been particularly valuable in refining the
features in DOTTM to match both operational and strate-
gic design needs; the new algorithm, DOT2 incorporates
many refinements over the heuristic DOT1 - mainly the
improved algorithm outlined in Section 4. This algorithm
uses optimal paths which give significant savings in cost.

In June 2006 we were offered the chance to compare our
design with one developed by an experienced mine con-
sultant. The design was required to span 18 given access
or draw points with a decline maximum gradient of 1:7
and a minimum turning radius of 25 metres. We were
able to compare our DOT1 and DOT2 designs against
the engineer’s design. Fig. 6 compares the designs in a
composite representation. The heuristic algorithm can
be set at different levels dependent on the level of accu-
racy. It took about 20 minutes at a reasonable level of
accuracy to find a decline of 1883 metres in length. The
new algorithm is optimising for the given input and took
only a few seconds to find a design of length 1771 metres.
The engineer’s original design was 1964 metres in length.
Thus the new algorithm saved about 10% over the orig-
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Figure 6: A comparison of the engineer’s original design with the declines generated by DOT1 and DOT2.

inal design and significantly outperformed the heuristic
in time and total decline length. Since a metre of de-
cline development currently costs about AU$4,000, the
development savings alone from DOT2 are of the order
of AU$772,000, compared to the original engineer’s de-
sign. Over the life of a mine the corresponding savings in
haulage, ventilation and other operational costs may dou-
ble this, leading to overall savings of the order of AU$1.5
million.

7 Conclusions

We have presented a new algorithm for designing under-
ground mine declines so as to optimise the associated
life-of-mine costs, based on a mathematical analysis of
the properties of minimum length curvature-constrained
paths. This approach, implemented in DOT2, substan-
tially improves on previous methods, in terms of both
speed and accuracy. The efficiency of DOT2 allows al-
ternative decline designs to be generated and displayed
in seconds. The automation of this component of the de-
sign process allows the mining engineer to consider and
explore alternative development scenarios.
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