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Abstract. To a knot, we can associate algebraic invariants such as knot polynomials or geometric
invariants such as the volume of the knot complement. It wasn’t until about ten years ago — when the
volume conjecture was speculated — that there was a reason to believe that these two concepts were
related. In this talk, I’ll give a basic introduction to knot theory, culminating in the statement of the
volume conjecture.

0 The big picture

A very useful survey article is An introduction to the volume conjecture by Hitoshi Murakami, which is
available at arXiv:1002.0126v1 [math.GT]arXiv:1002.0126v1 [math.GT]. Today, we won’t be careful in distinguishing between knots
and links — when we say knot, we will sometimes allow it to have multiple components.

KNOTS
{S1 ↪→ S3}/ambient isotopy

KNOT POLYNOMIALS HYPERBOLIC VOLUMES

algebra geometry

volume

conjecture

1 Knot projections

You can project a knot in three-dimensional space to the two-dimensional plane to generically obtain a
4-valent planar graph with under-crossings and over-crossings.

Example. Pictured below are knot projections of the unknot, the left-handed trefoil, and the figure-
eight knot, respectively.

1

http://arxiv.org/abs/1002.0126


Question. When do two projections describe the same knot?

Two projections obviously describe the same knot if they are related by ambient isotopy of the plane or
the following three moves, known as Reidemeister moves.

(I) twist/untwist (II) poke/unpoke (III) slide

Theorem (Reidemeister, 1927). Two knot projections describe equivalent knots if and only if they are related
by ambient isotopy of the plane and Reidemeister moves.

Proof. Suppose that you have two knot projections which describe equivalent knots.

Consider a “generic” ambient isotopy from one knot to the other.

Watch the movie made by the projection.

The knot projection changes combinatorially only when a region is created or destroyed.

Such a region generically has 1, 2 or 3 sides — these correspond to the Reidemeister moves.

2 Knots from braids

An n-braid consists of n strings running down the page, from n points ordered from left to right at the
top to n points ordered from left to right at the bottom, up to ambient isotopy.

Example. The diagram below left is a simple example of a braid. The diagram below right is not an
example of a braid, because the strings do not all run down the page (and cannot be made to do so
after ambient isotopy).

Fact. The n-braids form an infinite group Bn.

Composition: The braid β1 · β2 is obtained by putting the braid β1 above the braid β2.

β1 β2 β1 · β2
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Identity: The identity braid consists of strings which run directly down the page.

Inverse: The braid β−1 looks like the projection of the braid β reflected in a horizontal axis.

β β β · β−1

After “jiggling” the projection of a braid, the crossings occur at different heights. So an n-braid
decomposes into basic twists σk and σ−1

k for k = 1, 2, . . . , n− 1.

1 k k + 1 n

σk

1 k k + 1 n

σ−1
k

It’s easy to check that these twists must satisfy the following braid relations.

σi · σj = σj · σi for |i− j| ≥ 2

σk · σk+1 · σk = σk+1 · σk · σk+1 for k = 1, 2, . . . , n− 2

Theorem. The braid group has the presentation Bn = 〈σ1, σ2, . . . , σn−1 | braid relations〉.

Proof. As with knots and links, we only need to consider relations coming from ambient isotopy of the
plane and Reidemeister moves.

Ambient isotopy: Relations coming from ambient isotopy correspond to the braid relations of
the first type.
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Reidemeister I: This move never occurs, since the strings of a braid always run down the page.

Reidemeister II: This move corresponds to the trivial relation σ · σ−1 = σ−1 · σ = id.

Reidemeister III: This move corresponds to the braid relations of the second type.

There is a simple way to obtain a knot from a braid. To make a knot or link from a braid β, simply take
its closure, which we’ll denote by cl(β).

cl

Question. Which knots and links are closures of braids?

Theorem (Alexander, 1923). Every knot and link is the closure of a braid.

The proof is not difficult and appears in Chapter 5 of The Knot Book by Colin C. Adams.

Question. When do two braids represent the same knot or link?

Two braids obviously represent the same knot or link if they are related by the following two moves.

Conjugation: If α, β ∈ Bn, then cl(α · β) = cl(β · α).

Stabilisation: If β ∈ Bn, then cl(β) = cl(β · σ±1
n ) where β · σ±1

n ∈ Bn+1.

α

β

β

α

β β

Theorem (Markov, 1936). Given two braids β1 and β2, the closures cl(β1) and cl(β2) represent the same knot
or link if and only if β1 and β2 are related by conjugations, stabilisations and destabilisations.

The proof is rather involved and appears in Chapter 2 of Braids, Links, and Mapping Class Groups by
Joan S. Birman.
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3 Knot polynomials

The idea is to associate a value to a knot projection which is invariant under Reidemeister moves.
Another approach is to associate a value to a braid which is invariant under conjugations, stabilisations
and destabilisations. This will produce a knot invariant f (K) for which

f (K1) 6= f (K2)⇒ K1 6= K2; and

f (K1) = f (K2)⇒ K1 = K2 or K1 6= K2.

There are many knot invariants, but the most important ones are often polynomials.

Alexander polynomial (1923)
Let X be the infinite cyclic cover of the knot complement of K. The Alexander polynomial arises
from considering the action of the covering transformation on the first homology H1(X; Z).

Jones polynomial (1984)
Vaughan Jones discovered the Jones polynomial while studying braid group representations
and operator algebras. The Jones polynomial and its “coloured versions” are the knot invariants
which we will be most concerned with.

HOMFLY polynomial (1985)
The HOMFLY polynomial can be defined using a simple combinatorial relation on the knot
projection, known as a skein relation. The Alexander polynomial and the Jones polynomial can be
obtained by appropriate substitutions from the HOMFLY polynomial. The HOMFLY polynomial
is related to Chern–Simons gauge theories for SU(N).

Kauffman polynomial (1987)
The Kauffman polynomial can also be obtained using a skein relation. The Jones polynomial
can be obtained by appropriate substitution from the Kauffman polynomial. The Kauffman
polynomial is related to Chern–Simons gauge theories for SO(N).

4 The Jones polynomial

To an oriented link K, we associate a Laurent polynomial J(K) in the variable q1/2. It turns out that the
Jones polynomial11 J(K) can be uniquely defined using the following local combinatorial rules on any
given projection of K.

Normalisation: J(unknot) = 1

Skein relation: (q1/2 − q−1/2) J(L0) = q−1 J(L+)− q J(L−)

L− L0 L+

1When we want to make the dependence on q explicit, we will write J(K; q).
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Example. Suppose that you want to calculate the Jones polynomial of the Hopf link. We can choose
L+ to be the Hopf link, L− to be the unlink and L0 to be the unknot, as shown in the diagram below.

L+ L− L0

The skein relation then gives us the equation (q1/2− q−1/2) J(unknot) = q−1 J(Hopf link)− q J(unlink)
which simplifies to

J(Hopf link) = q2 J(unlink) + q3/2 − q1/2.

It remains to calculate the Jones polynomial of the unlink. We can choose L0 to be the unlink, L+ to be
the unknot and L− to be the unknot, as shown in the diagram below.

L0 L+ L−

The skein relation then gives us the equation (q1/2 − q−1/2) J(unlink) = q−1 J(unknot)− q J(unknot)
which simplifies to J(unlink) = −q1/2 − q−1/2. Substituting this into the equation above, we find that

J(Hopf link) = −q1/2 − q5/2.

There is a way to construct knot invariants from algebraic objects known as quantum groups, which
can be thought of as deformations of Lie algebras. For a Lie algebra g, one can define a corresponding
quantum group Uq(g), where q denotes a complex parameter which matches the q appearing in the
Jones polynomial. One obtains a knot invariant for every representation ρ : g → gl(V) which uses
the structure of the quantum group Uq(g). In particular, when g = sl2(C), there exists a unique
N-dimensional irreducible representation of sl2(C), so we obtain a sequence of knot invariants JN(K).
It turns out that the usual Jones polynomial corresponds to J2 while in general, JN is known as the
N-dimensional coloured Jones polynomial. In future, we will see how to rigorously define the coloured
Jones polynomials, since they are a crucial ingredient of the volume conjecture.

5 Geometry of the knot complement

Given a knot K ⊆ S3, the knot complement S3 \ K is naturally a three-manifold. One of the main themes
of modern three-manifold topology is geometrisation. In two dimensions, geometrisation takes the
following form: every oriented closed surface possesses a unique complete metric with curvature −1,
0, or +1. These three cases correspond to hyperbolic, Euclidean, and spherical geometry, respectively.

The picture in three dimensions turns out to be far more complicated. It was conjectured by Thurston
that every oriented prime closed three-manifold can be cut along tori22 so that the interior of each

2Such a decomposition of a three-manifold is often called a JSJ decomposition after Jaco, Shalen and Johannson.
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resulting piece has one of eight model geometries. We now know that Thurston’s geometrisation
conjecture is true, thanks to the work of Perelman. Fortunately, there is also a geometrisation theorem
for knot complements due to Thurston.

Theorem (Thurston, late 1970s). Every knot is a torus knot, a satellite knot, or a hyperbolic knot.

To understand this trichotomy, we need the following definitions.

A torus knot is one which lies on the surface of an unknotted torus.

A satellite knot is one which is obtained by taking a knot lying non-trivially inside a solid torus
and then knotting the solid torus.

A hyperbolic knot is one whose complement admits a complete hyperbolic metric.

It follows from the geometrisation theorem for knot complements that many knots are hyperbolic. In
fact, there are only 32 knots which are not hyperbolic among the 1, 701, 936 prime knots with at most
sixteen crossings. Since the hyperbolic structure on a knot complement is guaranteed to be unique,
any property extracted from it must be a knot invariant. In particular, the hyperbolic volume of a knot
complement is a knot invariant. The software SnapPea is able to calculate hyperbolic volumes of knot
complements to great precision.

6 The volume conjecture

The volume conjecture is a relatively recent development in mathematics — here is some of its history.

In 1995, Kashaev discovered a sequence of knot invariants fN(K) ∈ C which use the quantum
dilogarithm function.

In 1997, Kashaev observed that his knot invariants seem to have exponential growth with respect
to N. More precisely, he conjectured that for hyperbolic knots,

2π lim
N→∞

log | fN(K)|
N

= hyperbolic volume of S3 \ K.

In 2001, Murakami and Murakami proved that Kashaev’s invariants are related to coloured Jones
polynomials via the equation

fN(K) = JN(K)|q=exp(2πi/N) .

Putting all of this together, we obtain the following statement of the volume conjecture.

Conjecture (Volume conjecture). For a hyperbolic knot K,

2π lim
N→∞

log |JN(K)|q=exp(2πi/N)

N
= hyperbolic volume of S3 \ K.
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There are now many formulations of the volume conjecture, many of which are generalisations of the
original conjecture above. In particular, there is a compelling generalisation which applies to any knot,
whether or not it is hyperbolic. One simply replaces the hyperbolic volume of the knot complement
with the simplicial volume, otherwise known as the Gromov norm.

Some people in the business believe that the volume conjecture will not remain a conjecture for very
long. However, it appears that the conjecture is just the shadow of a very deep connection between
algebra and geometry.

The volume conjecture has been proved for

the figure-eight knot by Ekholm;

the 52 knot by Kashaev and Yokota;

Whitehead doubles of torus knots by Zheng;

torus knots by Kashaev and Tirkkonen;

torus links of type (2, 2m) by Hikami;

knots and links with volume zero by van der Veen;

the Borromean rings by Garoufalidis and Lê;

twisted Whitehead links by Zheng;

Whitehead chains by van der Veen; and

the satellite link around the figure-eight knot with pattern the Whitehead link by Yamazaki and
Yokota.

7 Where are we going?

In this seminar series, I hope that we’ll be able to cover the following topics. All of them play a part in
the ongoing mathematical development which is inspired by the volume conjecture.

Hyperbolic geometry, knot complements, and how to calculate volumes of three-manifolds.

The character variety of a knot complement, the A-polynomial, and the AJ conjecture.

Quantum algebra, the Yang–Baxter equation, and the coloured Jones polynomial.

The relation between Chern–Simons gauge theory and the Jones polynomial and between Chern–
Simons invariants and hyperbolic volume.

Eynard–Orantin invariants and their speculated relation to the AJ and volume conjectures.
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