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Take a permutation and count the number of ways to express it as a product

of a fixed number of transpositions — you have calculated a Hurwitz number.

By adding a mild constraint on such factorisations, one obtains the notion of a

monotone Hurwitz number. We have recently shown that the monotone

Hurwitz problem fits into the so-called topological recursion/quantum curve

paradigm. This talk will attempt to give the flavour of what exactly the

previous sentence means.



Hurwitz numbers

Hurwitz numbers count the number of ways to express a permutation
as a product of transpositions.

Definition
Let Hg,n(μ1, μ2, . . . , μn) be 1

|μ|! multiplied by the number of tuples
(σ1, σ2, . . . , σm) of transpositions in S|μ| such that

m = 2g− 2+ n+ |μ|;

σ1σ2 · · ·σm has labelled cycles of lengths μ1, μ2, . . . , μn; and

〈σ1, σ2, . . . , σm〉 is transitive.

Secret
Hurwitz numbers count branched covers of CP1.



Hurwitz numbers

Hurwitz numbers count the number of ways to express a permutation
as a product of transpositions.

Definition
Let Hg,n(μ1, μ2, . . . , μn) be 1

|μ|! multiplied by the number of tuples
(σ1, σ2, . . . , σm) of transpositions in S|μ| such that

m = 2g− 2+ n+ |μ|;

σ1σ2 · · ·σm has labelled cycles of lengths μ1, μ2, . . . , μn; and

〈σ1, σ2, . . . , σm〉 is transitive.

Secret
Hurwitz numbers count branched covers of CP1.



Hurwitz numbers

Hurwitz numbers count the number of ways to express a permutation
as a product of transpositions.

Definition
Let Hg,n(μ1, μ2, . . . , μn) be 1

|μ|! multiplied by the number of tuples
(σ1, σ2, . . . , σm) of transpositions in S|μ| such that

m = 2g− 2+ n+ |μ|;

σ1σ2 · · ·σm has labelled cycles of lengths μ1, μ2, . . . , μn; and

〈σ1, σ2, . . . , σm〉 is transitive.

Secret
Hurwitz numbers count branched covers of CP1.



Monotone Hurwitz numbers

For monotone Hurwitz numbers, we add a mild constraint.

Definition
Let ~Hg,n(μ1, μ2, . . . , μn) be 1

|μ|! multiplied by the number of tuples
(σ1, σ2, . . . , σm) of transpositions in S|μ| such that

m = 2g− 2+ n+ |μ|;

σ1σ2 · · ·σm has labelled cycles of lengths μ1, μ2, . . . , μn;

〈σ1, σ2, . . . , σm〉 is transitive; and

if σi = (ai bi) with ai < bi, then b1 ≤ b2 ≤ · · · ≤ bm.

Secret
Monotone Hurwitz numbers are natural from the viewpoint of

matrix models (HCIZ integral);

representation theory (Jucys–Murphy elements); and

integrability (Toda tau-functions).
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Example calculation

Take (g,n) = (0,2) and μ = (1,2), so m = 2g− 2+ n+ |μ| = 3.

There are 27 products of 3 transpositions in S3 and 24 are transitive.

(1 2) ◦ (1 2) ◦ (1 3)
(1 2) ◦ (1 2) ◦ (2 3)
(1 2) ◦ (1 3) ◦ (1 3)

(1 2) ◦ (1 3) ◦ (2 3)
(1 2) ◦ (2 3) ◦ (1 3)
(1 2) ◦ (2 3) ◦ (2 3)

(1 3) ◦ (1 3) ◦ (2 3)
(1 3) ◦ (2 3) ◦ (1 3)
(1 3) ◦ (2 3) ◦ (2 3)

(2 3) ◦ (1 3) ◦ (1 3)
(2 3) ◦ (1 3) ◦ (2 3)
(2 3) ◦ (2 3) ◦ (1 3)

(1 2) ◦ (1 3) ◦ (1 2)
(1 2) ◦ (2 3) ◦ (1 2)
(1 3) ◦ (1 2) ◦ (1 2)

(1 3) ◦ (1 2) ◦ (1 3)
(1 3) ◦ (1 2) ◦ (2 3)
(1 3) ◦ (1 3) ◦ (1 2)

(1 3) ◦ (2 3) ◦ (1 2)
(2 3) ◦ (1 2) ◦ (1 2)
(2 3) ◦ (1 2) ◦ (1 3)

(2 3) ◦ (1 2) ◦ (2 3)
(2 3) ◦ (1 3) ◦ (1 2)
(2 3) ◦ (2 3) ◦ (1 2)

All 24 products produce cycle type (1,2), so H0,2(1,2) =
24
3! = 4.

Only the first 12 products are monotone, so ~H0,2(1,2) =
12
3! = 2.
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Old results

Polynomiality. There are polynomials Pg,n and ~Pg,n such that

Hg,n(μ1, . . . , μn) =m!×
∏ μ

μi
i
μi!
× Pg,n(μ1, . . . , μn)

~Hg,n(μ1, . . . , μn) =
∏
�2μi
μi

�

× ~Pg,n(μ1, . . . , μn).

For example, ~P1,2(μ1, μ2) =
1

12 (2μ
2
1 + 2μ2

2 + 2μ1μ2 − μ1 − μ2 − 1).

Cut-and-join recursion. (Monotone) Hurwitz numbers of type
(g,n) can be calculated from those of types

(g,n− 1)
(g− 1, n+ 1)

(g1, n1)× (g2, n2) for g1 + g2 = g

n1 + n2 = n+ 1.

For example,

μ1 ~H1,2(μ1, μ2) = (μ1 + μ2) ~H1,1(μ1 + μ2) +
∑

α+β=μ1

αβ ~H0,3(α, β, μ2)

+2
∑

α+β=μ1

αβ
�

~H0,1(α) ~H1,2(β, μ2) + ~H1,1(α) ~H0,2(β, μ2)
�

.
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Topological recursion and quantum curves

quantum curve

bP(bx, by)

Schrödinger eq.

bP(bx, by)Z = 0

wave function

Z(x,ℏ)

spectral curve

P(x, y) = 0

differentials

ωg,n(x1, . . . , xn)

free energies

Fg,n(x1, . . . , xn)

top. rec.
∫

· · ·
∫

quantise semi-classical limit

We use the definitions

Z(x,ℏ) = exp
� ∞
∑

g=0

∞
∑

n=1

ℏ2g−2+n

n! Fg,n(x, . . . , x)

�

bx = x and by = −ℏ ∂
∂x , which imply [bx, by] = ℏ.



Topological recursion and quantum curves

quantum curve

bP(bx, by)

Schrödinger eq.

bP(bx, by)Z = 0

wave function

Z(x,ℏ)

spectral curve

P(x, y) = 0

differentials

ωg,n(x1, . . . , xn)

free energies

Fg,n(x1, . . . , xn)

top. rec.
∫

· · ·
∫

quantise semi-classical limit

We use the definitions

Z(x,ℏ) = exp
� ∞
∑

g=0

∞
∑

n=1

ℏ2g−2+n

n! Fg,n(x, . . . , x)

�

bx = x and by = −ℏ ∂
∂x , which imply [bx, by] = ℏ.



New results

This is joint work with A. Dyer and D. Mathews (arXiv:1408.3992).

The spectral curve P(x, y) = xy2 − y+ 1 = 0 yields

Fg,n(x1, . . . , xn) =
∞
∑

μ

~Hg,n(μ1, . . . , μn) x
μ1
1 · · ·x

μn
n
.

The wave function satisfies

Z(x,ℏ) = 1+
∞
∑

d=1

∞
∑

m=0

¨

d+m− 1

d− 1

«

xd ℏm−d

d!
.

The corresponding quantum curve is bP(bx, by) = bxby2 − by+ 1, so

xℏ2 ∂
2Z

∂x2
+ ℏ

∂Z

∂x
+Z = 0.
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