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Take a permutation and count the number of ways to express it as a product
of a fixed number of transpositions — you have calculated a Hurwitz number.
By adding a mild constraint on such factorisations, one obtains the notion of a
monotone Hurwitz number. We have recently shown that the monotone
Hurwitz problem fits into the so-called topological recursion/quantum curve
paradigm. This talk will attempt to give the flavour of what exactly the
previous sentence means.
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Let Hg,n(H1, M2, ..., Un) be I multiplied by the number of tuples

(01, 02,...,0m) of transpositions in S| such that
Em=29-2+n+|ul;
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Secret
Hurwitz numbers count branched covers of CP!.
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For monotone Hurwitz numbers, we add a mild constraint.

Definition
Let Flg,n(u1, U2, - -, 1in) be gy multiplied by the number of tuples
(01,02,...,0m) of transpositions in Sy, such that
"m=29-2+n+|uf;
® 0107 ---0m has labelled cycles of lengths u1, ua2, ..., un;
m (01,092,...,0m) is transitive; and

if oj = (aj bj) with a; < b;, then by <by <:-- < bm.

Secret
Monotone Hurwitz numbers are natural from the viewpoint of

®m matrix models (HCIZ integral);
m representation theory (Jucys—Murphy elements); and

= integrability (Toda tau-functions).
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All 24 products produce cycle type (1, 2), so Ho,2(1,2) = 23—‘!‘ =4,

Only the first 12 products are monotone, so Hg 2(1,2) = % =2.
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m Polynomiality. There are polynomials Pg,n, and pg,n such that

Hi
Hg,n(M1, ..., Mn) =m!x H% X Pg,n(M1, ..., Mn)
Flgn(H1, .- tin) = TTC4) x Pgn(s, ..., kn).

For example, Py,2(u1, H2) = %(ZL@ + 202 + 22U -y — 2 - 1).

m Cut-and-join recursion. (Monotone) Hurwitz numbers of type
(g, n) can be calculated from those of types

(9,n-1)
(9-1,n+1)

g1+92=9
(91,m)x(92,n2) for =" 0 o

For example,

Ao (s p2) = (1 +p2) AL (ua +p2) + D, aBHo3(a, B, i)
a+p=H1

+2 > B [Hoa(a)Ar,2(B, u2) + H1,1() Fo,2(B, 12)] -
a+p=p1
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We use the definitions
o ﬁ29—2+n
= 2o m=exp| T 3 5 Fonle )]
g=0n=1 '
mX=xandy= —ﬁ%, which imply [X, ¥] = A.

A

wave function
Z(x, h)




New results

This is joint work with A. Dyer and D. Mathews (arXiv:1408.3992).

= The spectral curve P(x,y) = xy? —y +1 =0 yields

0]
Fg,n(X]_, .. .,Xn) = Z Flg,n(lJ]_, .. .,/Jn) Xl'fl .--Xlr;ln.
M



New results

This is joint work with A. Dyer and D. Mathews (arXiv:1408.3992).

= The spectral curve P(x,y) = xy? —y +1 =0 yields

0]
Fg,n(X]_, .. .,Xn) = Z Flg,n(lJ]_, .. .,/Jn) Xl'fl .--Xlr;ln.
M

m The wave function satisfies

Z(x, h) _1-1—22

d=1m=0

d+m-—1) x4pm-d
d



New results
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= The spectral curve P(x,y) = xy? —y +1 =0 yields

0]
Fg,n(X]_, .. .,Xn) = Z Flg,n(lJ]_, .. .,/Jn) Xl'fl .--Xlr;ln.
M

m The wave function satisfies

Z(x, h) _1-1—22

=1m=0

d+m-—1) x4pm-d
d

= The corresponding quantum curve is P(X,¥) =Xy2 -y + 1, so

2azz oz



